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1 Introduction

Let S[n] be the Hilbert scheme of n points of a projective K3 surface S. The main
theorem of [23] states that the action on the cohomology ring of the Neron–Severi Lie
algebra gNS, which is the Lie subalgebra of EndQ(H∗(S[n],Q)) generated by all algebraic
Lefschetz triples (ea, fa, h) (see Section 2), can be lifted to the Chow ring, and expli-
cit formulas for the lifts of ea, fa and h in terms of Nakajima operators are provided.
The goal of this master’s thesis is to investigate the question whether this theorem is
equally true for the Fano variety of lines F (Y ) of a smooth cubic hypersurface Y ⊆ P5.
An analog for the Fano varieties F (Y ) could be expected because they are examples
of hyperkähler varieties deformation equivalent to the Hilbert schemes of points S[2] of
suitable K3 surfaces S [2], which form the most well-known class of hyperkähler varieties
other than K3 surfaces themselves.

Let X be a hyperkähler variety deformation equivalent to S[2] for a K3 surface S. In
particular, X is of complex dimension 4. As a matter of notation, for any cycle class
Z ∈ CH∗(X) denote by Z1 and Z2 the pullbacks toX×X via the two projections. Denote
by qX the Beauville–Bogomolov quadratic form on H2(X,Q) and by B ∈ H4(X×X,Q)
its associated cohomology class. Let a ∈ H1,1(X,Q) such that qX(a) 6= 0. Recall the
Lefschetz operator ea which is given by the cup product with the class a as well as the
Lefschetz dual operator fa, both endomorphisms of H∗(X,Q). Moreover, denote by h
the grading operator given on Hk(X,Q) by multiplication by k − 4. The first result of
this work is then Theorem 5.8, providing an explicit lift Fa of the Lefschetz dual fa to
the Chow ring of correspondences in terms of a lift L ∈ CH2(X ×X) of B. With some
additional work, we obtain in Proposition 5.14 a lift H of h depending only on L.

Conjecture 1.1 (Conjecture 5.21). Let X be a hyperkähler variety of K3[2]-type. Let
L ∈ CH2(X ×X) be a lift of B and let l be its pullback along the diagonal embedding
∆ : X ↪→ X ×X. For any divisor class a ∈ CH1(X) with qX(a) 6= 0 we define

Fa :=
4

25qX(a)
(l1a1 + l2a2) +

2

qX(a)
L(a1 + a2) ∈ CH3(X ×X),

H :=
4

23 · 25
(l22 − l21) +

2

25
L(l2 − l1) ∈ CH4(X ×X).

Then there exists a lift L as above such that the linear map

ϕ : gNS(X) −→ CH∗(X ×X)

given by ϕ(ea) = ∆∗(a), ϕ(fa) = Fa and ϕ(h) = H is a well-defined Lie algebra homo-
morphism.

This is analogous to the main theorem of [23]. For any hyperkähler variety X of
K3[n]-type there exists a lift L ∈ CH2(X × X) of B coming from Markman’s twis-
ted sheaves [19], see also [26, Theorem 9.15]. In the case X = S[2] for a projective
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K3 surface S, it is shown in [26, Proposition 16.1] that the latter agrees with the ex-
plicit construction of a lift L in [26], stated in Theorem 4.21. We use this explicit lift
in Section 6 in order to prove that our formulas for the lifts Fa of fa and H of h agree
with the canonical lifts provided in [23] in terms of Nakajima operators. This is the
content of Theorems 6.7 and 6.8. Hence, the main theorem of loc. cit. shows that the
conjecture is true if X = S[2]. In the case of the Fano variety of lines F = F (Y ) of a
smooth cubic fourfold Y , the explicit construction of L in [26], given in Theorem 4.14,
is not rigorously proven to coincide with the cycle class obtained in [26, Theorem 9.15],
but Shen and Vial expect it to be true as well [26, p. 4].

Theorem 1.2 (Theorem 5.19). Let F = F (Y ) be the Fano variety of lines of a smooth
cubic fourfold Y and g ∈ CH1(F ) the Plücker polarization class. Let L ∈ CH2(F × F )
be the explicit lift of B from Theorem 4.14. Then there is an sl2(Q)-action on CH∗(F )
given by the Lie algebra homomorphism

sl2(Q)→ CH∗(F × F ),

e 7→ ∆∗(g),

f 7→ Fg,

h 7→ H,

lifting the sl2(Q)-action on the cohomology ring H∗(F,Q) given by eg, fg and h.

Whenever F (Y ) has Picard rank 1, i.e., CH1(F (Y )) = 〈g〉, which is true for very general
cubic fourfolds Y , Conjecture 1.1 indeed reduces to Theorem 1.2. Even more evidence
for the conjecture is provided by Proposition 5.29, where we are able to prove the addi-
tional commutation relation [Fa, Fb] = 0 in full generality.
We propose two new relations in Conjecture 5.15 which hold in cohomology and would
yield a generalization of Theorem 1.2 to the case of divisor classes different from g, see
Proposition 5.20. Conjecture 1.1, however, would still be out of reach. The reason we
do not succeed in proving the latter in the case of the Fano variety of lines F (Y ) is that
we neither have at our disposal an analog of the machinery of Nakajima operators nor
do we have sufficiently strong injectivity results for the cycle class map yet, extending
results such as [6, Proposition 6.4], stated below as Theorem 4.15, which is the main
geometrical input used in the proof of Theorem 1.2.
One of the reasons why it is desirable to have explicit canonical lifts of fa and espe-
cially h available, is that the eigenspace decomposition of the lift H of h, if it is indeed
diagonalizable, could be expected to be multiplicative with respect to the intersection
product. This is because the eigenspace decomposition of H can be viewed as an analog
of the Beauville decomposition in the abelian variety case, as discussed in the intro-
duction of [22]. The following result establishes such an eigenspace decomposition in
particular in the cases X = F (Y ) and X = S[2], mildly upgraded by Theorem 5.22.

Theorem 1.3 (Theorem 5.22). Let X be a hyperkähler variety of K3[2]-type endowed
with a lift L ∈ CH2(X×X) of B satisfying all the relations (4.6)-(4.9) from Section 4.1,
e.g., X can be the Fano variety of lines of a smooth cubic fourfold or the Hilbert scheme

2



of two points of a projective K3 surface endowed with the explicit lift L of Theorems 4.14
and 4.21, respectively. Let Λiλ ⊆ CHi(X) be the eigenspace for the eigenvalue λ of H∗.
The operator H∗ ∈ EndQ(CH∗(X)) is diagonalizable with eigenspace decomposition

CH0(X) = Λ0
−4,

CH1(X) = Λ1
−2,

CH2(X) = Λ2
0 ⊕ Λ2

−2,

CH3(X) = Λ3
2 ⊕ Λ3

0,

CH4(X) = Λ4
4 ⊕ Λ4

2 ⊕ Λ4
0,

where all direct summands are non-trivial and those not sitting in the leftmost column
belong to the homologically trivial cycle classes CH∗(X)hom. Conversely, the cycle class
map is injective on Λ3

2 as well as on Λ4
4 = 〈l2〉.

This decomposition agrees with the Fourier decomposition of [26, Theorem 2] by The-
orem 5.26, implying in particular the following multiplicativity conjecture in the case of
the Fano variety of lines of a very general cubic fourfold. We note also that the Fourier
decomposition requires all the mentioned relations (4.6)-(4.9) from Section 4.1 while the
last one of these (4.9) is not actually needed for Theorem 1.3. We introduce the following
notation. For s ∈ Z let

CHi(X)s :=
{
Z ∈ CHi(X) : H∗(Z) = (2i− 4− 2s)Z

}
= Λi2i−4−2s.

In here, s should be seen as a sort of defect. The terms with s = 0 give the expected
eigenvalue 2i− 4 of H∗ and correspond to the leftmost column in the eigenspace decom-
position of H∗ above. We can see that only terms with s ≥ 0 occur. In fact, there is
a conjecture by Beauville in the abelian variety case which predicts this behavior, see
again the introduction of [22]. It also predicts the injectivity of the cycle class map on
CH∗(X)0, and Theorem 1.3 confirms this in all codimensions except 2. We can now
state the conjecture as follows.

Conjecture 1.4 (Conjecture 5.23). Let X be as in Theorem 1.3. Then for all occurring
s, t ∈ Z we conjecture that the intersection product gives a well-defined map

CHi(X)s × CHj(X)t
·−→ CHi+j(X)s+t.

This can be rewritten in equivalent ways, see [22] and also our short discussion after
Conjecture 5.23. By Theorem 1.4 of loc. cit. and our Theorem 6.8, the above conjecture
is true for X = S[2]. An independent proof is obtained through Theorem 5.26, stating
that the decomposition of Theorem 1.3 agrees with the Fourier decomposition of [26,
Theorem 2], and using the multiplicativity of the latter [26, Theorem 3]. In the case of the
Fano variety X = F (Y ) we show the simplest case of divisors directly in Proposition 5.24.
If Y is very general, the conjecture is true by the corresponding result for the Fourier
decomposition, see Corollary 5.27 and Remark 5.28. In fact, using [6, Proposition A.7],
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only the case i = j = 2, s = t = 0 is not yet known for arbitrary smooth cubic
fourfolds Y . In the paragraph preceding [26, Theorem 3], Shen and Vial remark that
these results actually provide strong evidence for the Fourier version of Conjecture 1.4
which they, however, do not state explicitly. It agrees, of course, with Conjecture 1.4
because the decompositions agree.

Theorem 1.5 (Corollary 5.27). Conjecture 1.4 is true if X = S[2] for a projective
K3 surface S and if X = F (Y ) for a very general cubic fourfold Y .

The text is structured as follows: We will begin in Section 2 by recalling the Grothen-
dieck standard conjecture of Lefschetz type in order to provide some general motivation.
In Section 3 we introduce the Hilbert and Quot functor and state their representability.
In Section 4 we then concentrate on those Hilbert schemes especially relevant to us,
the Fano variety of lines of smooth cubic fourfolds and the Hilbert scheme of points
of K3 surfaces which at the same time provide examples of hyperkähler varieties. We
introduce the Beauville–Bogomolov form qX and its associated cohomology class B in
Subsection 4.1. In the two following subsections we in particular introduce the explicit
lifts of B to the Chow ring constructed in [26]. Sections 5 and 6 contain our new results,
outlined above, and we end with a short appendix, collecting a few lemmas.

In this master’s thesis we work over C, and the Chow ring is always with coefficients
in Q. For basics on the Chow ring and intersection theory we refer to [5, 7]. We will also
make heavy use of the language of algebraic correspondences, as explained, e.g., in [15].
Finally, by a variety we mean a separated, integral scheme of finite type over a field,
usually over C.
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2 The Grothendieck standard conjecture of Lefschetz type

We start by recalling very briefly some basic facts from Kähler geometry. These can
be found, e.g., in [12, Section 1.2 and Chapter 3]. On a compact complex Kähler
manifold X of complex dimension n, the operator of cup product with a given Kähler
class a in H1,1(X,C) is called the Lefschetz operator, denoted

ea : H•(X,C) −→ H•+2(X,C), β 7→ β ∪ a.

More generally, we will always denote by ea the cup product operator with a given class
a ∈ H2(X), even if a is not a Kähler class and the field of coefficients is different from C.
In this particular case, however, the hard Lefschetz theorem gives the remarkable result
that k-fold iteration is an isomorphism

eka : Hn−k(X,C)
∼=−−→ Hn+k(X,C). (2.1)

Let next h ∈ EndC(H∗(X,C)) be the grading operator, acting on Hk(X,C) by multi-
plication with the integer k − n. Instead of coefficients in C we can equally consider
coefficients in Q.

Lemma 2.1. Let a ∈ H2XF,Q) such that (2.1) holds for all 1 ≤ k ≤ n. Then there
exists a unique endomorphism fa ∈ EndQ(H∗(X,Q)), called the Lefschetz dual operator,
which decreases the degree by 2 and satisfies [ea, fa] = h. In particular (ea, fa, h) is an
sl2-triple, i.e., the commutation relations

[ea, fa] = h, [h, ea] = 2ea, [h, fa] = −2fa

hold.

Proof. Existence can be shown using the Hodge star operator in a linear algebra version,
see the proof of [12, Proposition 1.2.26]. Another proof, using the primitive decomposi-
tion, can be found in [14, Proposition 1.4.6].
Uniqueness is rather simple. We abbreviate f := fa, e := ea and H i := H i(X,Q). First
observe that f is uniquely determined on H0 and H1 because it decreases the degree
by 2. Now, let f be determined on H i. Let β ∈ H2n−i and write β = en−i(β̂) for a
unique β̂ ∈ H i. Then using [e, f ] = h several times we can express f(β) = f(en−i(β̂)) as
a polynomial in a and β̂ with the additional summand en−i(f(β̂)) which is determined
already. Hence, if f is determined on H i, then it is determined on H2n−i as well. Next,
if f is determined on H2n−i+4, then it is determined also on H i. Indeed, for β ∈ H i we
have f(β) ∈ H i−2, and therefore en−i+2(f(β)) can be expressed as a polynomial in a and
β with the addtional summand f(en−i+2(β)). Here, en−i+2(β) ∈ H2n−i+4 and en−i+2 is
an isomorphism H i−2 ∼= H2n−i+2, concluding the proof.

Remark 2.2. One can also use the commutation relations to express fa directly as
a sum of compositions of powers of ea and the inverses (eka)

−1 coming from the hard
Lefschetz theorem. For example, if n = 4, we have fa = 4(e4

a)
−1 ◦ e3

a on H2(X) and
fa = 4ea ◦ (e4

a)
−1 ◦ e2

a + 2(e2
a)
−1 ◦ ea on H4(X). It is possible to derive a general formula

of this sort but it is not overly helpful for our purposes.
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If we now change the setting slightly and let X be a smooth projective variety over C and
a an ample divisor with cohomology class in H2(X,Q) ∩ H1,1(X,C), again denoted a,
then in H2(X,C) the class a can be represented by a Kähler form, so that the eka are
isomorphisms by the hard Lefschetz theorem, and Lemma 2.1 gives a unique formal
Lefschetz dual fa. By construction, (ea, fa, h) is then an sl2-triple, here with rational
coefficients. What can be observed about the operator ea, moreover, is that it is algebraic
in the sense that it lifts to the algebraic correspondence ∆∗(a) ∈ CHn+1(X ×X) in the
Chow ring, where ∆ : X ↪→ X ×X denotes the diagonal embedding. The Grothendieck
standard conjectures now ask whether fa is algebraic as well [15].

Conjecture 2.3 (Grothendieck’s standard conjecture of Lefschetz type). Let a be an
ample divisor class on a smooth projective variety X of dimension n. Then the Lefschetz
dual fa lifts to a correspondence Fa ∈ CHn−1(X ×X).

As a consequence, the commutator of algebraic correspondences

Ha := [∆∗(a), Fa]

is automatically a lift of the grading operator h. Note that Ha, contrary to h, might
depend on a.

Remark 2.4. In the literature two different definitions for the Lefschetz dual oper-
ator can be found in the algebraic setting. The Grothendieck standard conjectures of
Lefschetz type with respect to either one, however, are equivalent [14, 15]. The other
Lefschetz dual f ′a is a one-sided inverse of the Lefschetz operator and can be defined via
the following diagrams (which are actually the same), the first for i ≤ n, the second for
i > n:

H i(X) H2n−i(X)

H i−2(X) H2n−(i−2)(X),

en−i
a

∼=

f ′a ea

∼=

e
n−(i−2)
a

H2n−i(X) H i(X)

H2n−(i−2)(X) H i−2(X).

ei−n
a

∼=

ea f ′a

∼=
ei−2−n
a

However, we will only be interested in the classical definition from before.

Let a ∈ H2(X,Q) be Lefschetz, i.e., (2.1) holds for all 1 ≤ k ≤ n. By Lemma 2.1, a
unique operator fa exists such that ea, fa and h satisfy the sl2-commutation relations.
The triple (ea, fa, h) is then called a Lefschetz triple. Looijenga and Lunts [18] and
Verbitsky [28] introduced the total Lie algebra

g(X) ⊆ EndQ(H∗(X,Q))

of a smooth projective variety X which is generated by all Lefschetz triples (ea, fa, h).
The Neron–Severi Lie algebra of X is the Lie subalgebra

gNS(X) ⊆ g(X)
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generated by only those Lefschetz triples where a is algebraic, i.e., a ∈ H1,1(X,Q).
In view of the Grothendieck standard conjecture of Lefschetz type, a natural question
to ask, then, is whether the Neron–Severi Lie algebra action on the cohomology ring
H∗(X,Q) can be lifted to an action on the Chow ring CH∗(X) or even whether there is
a Lie algebra homomorphism

gNS(X) −→ CH∗(X ×X)

to the ring of correspondences CH∗(X ×X) such that

gNS(X) CH∗(X ×X)

EndQ(H∗(X,Q))

cl

commutes, where cl denotes the cycle class map. By the main theorem of [23], this
is the case if X is the Hilbert scheme of points of a projective K3 surface. We will
investigate this question for the Fano variety of lines of a smooth cubic fourfold in
Section 5, obtaining Theorem 5.19 as a partial analog. For more context we also refer
back to the introduction.
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3 Hilbert schemes

This part freely follows [27]. We give some foundational definitions regarding the Hilbert
and Quot functor and introduce notions such as that of a fine moduli scheme. We do
not prove the existence of the Hilbert or Quot scheme as this would take us too far, but
we deal with a few basic questions such as well-definedness of the functors.
Let S be a locally noetherian base scheme, and denote by SchS the category of locally
noetherian schemes over S. By an S-scheme (or scheme over S) we will always mean
an object of this category. The n-dimensional projective space over S is defined to be
PnS := PnZ×Z S, and a projective S-scheme X is a closed embedding i : X ↪→ PnS for some
fixed n. Moreover, let Set be the category of sets.

Definition 3.1. Let X and T be locally noetherian S-schemes. A family of closed
subschemes of X over S parametrized by T is a closed subscheme Z ⊆ X ×S T which is
flat over T with respect to the projection X ×S T → T .

Definition 3.2. Let X be a projective S-scheme. The Hilbert functor

HilbX/S : (SchS)op → Set

associates to an object T the set of all families Z of closed subschemes of X over S
parametrized by T . For a morphism f : T ′ → T of schemes over S the map of sets
HilbX/S(f) sends a family Z parametrized by T to the family Z×T T ′ parametrized by T ′,
viewed as a family of X over S via the natural isomorphism X ×S T ′ ∼= (X ×S T )×T T ′.

Lemma 3.3. The Hilbert functor is well-defined.

Proof. We first show for any morphism f : T ′ → T of S-schemes that Z×T T ′ is a closed
subscheme of (X ×S T )×T T ′ ∼= X ×S T ′ which is flat over T ′. For this, consider

Z ×T T ′ (X ×S T )×T T ′ T ′

Z X ×S T T.

i×idT ′

� f

i

cl. emb.

The right square is cartesian by definition, and so is the entire rectangle, hence so
is the left square. As closed embeddings are stable under base change, i × idT ′ is a
closed embedding as well. The compositon of the two lower horizontal arrows is flat
by assumption, and because flat morphisms are stable under base change, so is the
composition of the upper two horizontal arrows, so Z ×T T ′ is flat over T ′, as desired.

It remains to consider functoriality for compositions T ′′
g−→ T ′

f−→ T of morphisms of
S-schemes. Consider the following diagram:

8



(Z ×T T ′)×T ′ T ′′ Z ×T T ′′

((X ×S T )×T T ′)×T ′ T ′′ (X ×S T )×T T ′′

(X ×S T ′)×T ′ T ′′ X ×S T ′′.

∼=

(i×idT ′ )×idT ′′ i×idT ′′

∼=

∼= ∼=

∼=

The upper square commutes by the naturality of the isomorphism (Y ×T T ′)×T ′ T ′′ ∼=
Y ×T T ′′ in Y . The lower square commutes by the uniqueness part of the universal
property of the fiber product.

We now introduce moduli schemes from the categorical point of view where the cat-
egory of schemes over S could often be replaced by different categories, e.g., by full
subcategories like (smooth, projective) varieties over some field.

Definition 3.4. The functor of points of an S-scheme X is the contravariant Hom-
functor

hX : (SchS)op → Set, T 7→ HomS(T,X),

which is given on morphisms by precomposition. A morphism t : T → X of S-schemes
in hX(T ) is called a T -valued point of X.

Definition 3.5. A contravariant functor h : (SchS)op → Set is called representable if
it is naturally isomorphic to the functor of points of some S-scheme M , i.e., there is a

natural isomorphism η : hM
∼=−−→ h. In this case, the element ξ := ηM (idM ) ∈ h(M)

is called the universal family, and the pair (M, ξ) (or simply M itself) is called a fine
moduli scheme.

Here, ξ determines η uniquely as a natural transformation by the Yoneda Lemma.
Moreover, if (M ′, ξ′) is another fine moduli space for h then there is a unique isomorphism
f : M →M ′ such that h(f)(ξ′) = ξ.

Definition 3.6. Let k be any field and X a projective k-scheme with respect to a fixed
closed embedding i : X ↪→ Pnk . Let F be a coherent sheaf of OX -modules on X. Then the
Hilbert polynomial of F with respect to i is the unique polynomial PF ∈ Q[x] satisfying

PF (m) = χ(X,F(m)) = χ(Pnk , i∗F(m)),

for all m ∈ Z. Here, χ denotes the Euler characteristic of the respective sheaf cohomology
groups. Moreover, if F = OX we also write PX := POX

and call it the Hilbert polynomial
of X.

The Euler characteristic χ is well-defined because the sheaf cohomology groups are
finite-dimensional k-vector spaces, and at most those of degree ≤ dim(X) are non-zero
by Grothendieck’s vanishing theorem. Moreover, for m large enough, χ(X,F(m)) =
dimkH

0(X,F(m)) because all cohomology groups of higher degree vanish for m large

9



enough by Serre’s vanishing theorem. The Hilbert polynomial always exists by [11,
Exc. II.5.2], and it really depends on the closed embedding i. It is by definition an
integer-valued polynomial, i.e., PF (m) is an integer whenever m is – although not all
coefficients of PF are necessarily integers. An important result is the following:

Theorem 3.7 ([11, Theorem III.9.9]). Let T be an integral noetherian scheme and
X a projective T -scheme with respect to a fixed closed embedding i : X ↪→ PnT .
Denote by f : X → T the induced morphism. For each element t ∈ T denote by
Xt = X ×T Spec(κ(t)) the scheme-theoretic fiber of f over t which is naturally a closed
subscheme of Pnκ(t). Then f is flat if and only if the Hilbert polynomial PXt of Xt is
independent of t.

Here, Xt is naturally a closed subscheme of Pnκ(t)
∼= PnZ ×Z Spec(κ(t)) via

X PnZ ×Z T T

Xt PnZ ×Z Spec(κ(t)) Spec(κ(t)).

i

f

p2

�

In here, the entire rectangle and the right square are cartesian, hence so is the left square.
As closed embeddings are stable under base change, the lower left horizontal arrow is a
closed embedding.
One implication of Theorem 3.7, that if f is flat then PXt is constant in t, can be
extended to the case where T is not necessarily integral. In fact, if T is some locally
noetherian scheme and f is flat, then the map t 7→ PXt is locally constant. This is the
main motivation to introduce the following functors.

Definition 3.8. Let P ∈ Q[x] be an integer-valued polynomial and X a projective
S-scheme. The functor

HilbPX/S : (SchS)op → Set

associates to an S-scheme T the set of all families Z of closed subschemes of X over S
parametrized by T such that PZt = P for all t ∈ T . It is also called the Hilbert functor
if P is understood.

Lemma 3.9. The functor HilbPX/S is well-defined.

Proof. We need to show that for any morphism g : T ′ → T of S-schemes, the image of
HilbPX/S(g) actually lies in HilbPX/S(T ′), i.e., for any Z ∈ HilbPX/S(T ) and any t′ ∈ T ′

the Hilbert polynomial of (Z ×T T ′)t′ agrees with that of Zt where t := g(t′). For this,
consider the diagram

(Z ×T T ′)t′ = Z ×T Spec(κ(t′)) Pnκ(t′) Spec(κ(t′))

Zt = Z ×T Spec(κ(t)) Pnκ(t) Spec(κ(t)).

i

b � flat

j
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In here, the entire rectangle and the right square are cartesian, hence so is the left
square. Also, all vertical arrows are flat because the rightmost arrow is induced by a
field extension (which is always flat). Let Ot′ be the structure sheaf of (Z ×T T ′)t′ and
Ot that of Zt. By flat base extension [11, Proposition III.9.3], we have

i∗Ot′ ∼= b∗j∗Ot.

Moreover, the Hilbert polynomial of (Z×T T ′)t′ at m ∈ Z is just χ(Pnκ(t′), i∗Ot′(m)), hence

it suffices to see that H i(Pnκ(t),F)⊗κ(t) κ(t′) ∼= H i(Pnκ(t′), b
∗F) for all coherent sheaves F

on Pnκ(t). This can be seen by calculating the cohomology groups via Čech cohomology
and using that field extensions are flat, and hence tensoring with the field extension
commutes with taking cohomology, see also the proof of [11, Proposition III.9.3].

Theorem 3.10 ([27, Theorem 8.1]). Let S be a locally noetherian scheme and X a
projective S-scheme. Then for each integer-valued polynomial P the functor HilbPX/S
is represented by a projective S-scheme HilbPX/S . In particular, the Hilbert functor is
representable by an S-scheme HilbX/S .

Remark 3.11. Hartshorne [10] showed that the schemes HilbPPn
S/S

are connected if S is

noetherian and connected, but not much about the irreducible components is known in
general, and it appears to be a very difficult question.

The scheme HilbPX/S for a fixed integer-valued polynomial P is usually referred to as the
Hilbert scheme if P is understood from the context. We now introduce the Quot functor
and the Grassmannian functor.

Definition 3.12. Let S be a locally noetherian scheme and X a projective S-scheme.
Let F be a coherent sheaf on X. The Quot functor

QuotPX/S(F) : (SchS)op → Set

associates to an S-scheme T the set of equivalence classes of all coherent quotients
FT → Q→ 0 on X ×S T having Hilbert polynomial P over every point of T and which
are flat over T via the the projection X ×S T → T . Here, FT is the pullback of F
along the projection X ×S T → X. Moreover, two such quotients FT → Q → 0 and
FT → Q′ → 0 are equivalent if there is an isomorphism of short exact sequences

0 K FT Q 0

0 K′ FT Q′ 0.

∼= ∼=

Such an isomorphism, if it exists, is obviously unique. To a morphism f : T ′ → T of
S-schemes the Quot functor associates the map of sets sending the class of FT → Q→ 0
to that of the pullback FT ′ → (idX × f)∗(Q)→ 0.

11



The Hilbert functor HilbPX/S is a special case of the Quot functor letting F := OX be the
structure sheaf. Indeed, closed subschemes of X ×S T which are flat over T correspond
to those ideal sheaves of OX×ST with flat cokernel over T . The following is therefore a
generalization of Theorem 3.10.

Theorem 3.13 ([27, Theorem 9.1]). The Quot functor QuotPX/S(F) is representable by

a projective S-scheme QuotPX/S(F).

If we consider the Quot functor for X = S = P0
S we can see immediately that only the

constant integer-valued polynomials P give a non-trivial functor. This leads us to the
definition of the Grassmannian.

Definition 3.14. The Grassmannian functor

GrS(r, n) : (SchS)op → Set

is defined by GrS(r, n) = QuotrS/S(OnS). Its representing projective S-scheme is denoted

GrS(r, n) or simply Gr(r, n) if the base scheme S is understood. It is called the Grass-
mannian scheme.

The elements of GrS(r, n)(T ) are the equivalence classes of locally free quotients of OnT
of rank r. This can be seen stalk-wise because every finitely generated flat module over a
noetherian local ring is free, and its rank is precisely the Hilbert polynomial. It should be
mentioned that the Grassmannian GrS(r, n) can also be realized as the Hilbert scheme
HilbPPn−1

S /S
for the Hilbert polynomial P (x) =

(
x+r−1
r−1

)
, the key reason being that a closed

subscheme of a projective space over some field is a linear subspace of dimension r − 1
if and only if it has precisely this Hilbert polynomial, see [5, Proposition 6.7].
For simplicity we now restrict to the case S = Spec(A) for some noetherian ring A. The
representability of the Grassmannian can be seen more directly, and its construction
gives more specific information about the representing Grassmannian scheme such as
(depending on the ring A) irreducibility, reducedness and dimension.

Theorem 3.15 ([27, Proposition 2.18]). The Grassmannian functor over S = Spec(A),
A a noetherian ring, is representable by a projective A-scheme. It has an open cover by
finitely many affine spaces over A of relative dimension r(n− r). In particular, if A = k
is a field, then Grk(r, n) is a smooth projective variety of dimension r(n− r).
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4 Hyperkähler varieties and some special Hilbert schemes

In this section we collect the foundational definitions and results for the later sections.
We do not give any full proofs.

4.1 Hyperkähler varieties

We introduce the notion of a hyperkähler variety and one of the most important tools
for studying them, the Beauville–Bogomolov form.

Definition 4.1. A compact complex Kähler manifold X is called hyperkähler if it is
simply connected and the global sections of its sheaf of holomorphic 2-forms Ω2(X) is
generated by a symplectic form, i.e., a 2-form which is non-degenerate at every point
of X. If a hyperkähler manifold is projective, then it is called a hyperkähler variety.

Remark 4.2. The definition immediately implies that the Hodge number h2,0(X) = 1,
and hence h0,2(X) = 1 as well. It is also worthwhile to remark that hyperkähler manifolds
always have even complex dimension. This is because alternating non-degenerate bilinear
forms only exist on vector spaces of even dimension. Also note that a hyperkähler variety
of complex dimension 2 is the same as a projective K3 surface.

The main family of examples of hyperkähler varieties is provided by the Hilbert schemes
of points HilbnS/C =: S[n] of a projective K3 surface S, see Theorem 4.20 below. Another
set of examples, in complex dimension 4, is given by the Fano varieties of lines of a smooth
cubic fourfold, see Theorem 4.11. Note, however, that each of these is deformation
equivalent to S[2] for a suitable K3 surface S [2, Proposition 2]. Some more examples
of hyperkähler varieties are known but they will not be relevant to us here. One of
the main motivations for studying hyperkähler varieties is the following theorem, see [1,
Théorème 1].

Theorem 4.3 (Beauville–Bogomolov decomposition). Every compact complex Kähler
manifold with trivial canonical class admits a finite étale cover by the product of a com-
plex torus, simply connected irreducible Calabi–Yau manifolds and hyperkähler mani-
folds.

We now introduce the Beauville–Bogomolov form which is one of the main tools for
studying hyperkähler manifolds.

Theorem/Definition 4.4 ([24, Section 4.2]). Let X be a hyperkähler manifold of
complex dimension 2n. There is an integral indivisible quadratic form

qX : H2(X,C)→ C

and a positive rational number cX such that∫
X
α2n = cX

(2n)!

n!2n
qX(α)n (4.1)
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for all α ∈ H2(X,C). This determines qX uniquely if n is odd and up to sign if n is
even. In the latter case, we choose it such that qX(σ + σ) > 0 where σ is a generator of
H2,0(X). The associated symmetric bilinear form (−,−) = qX(−,−) is non-degenerate.
We usually consider cohomology with coefficients in Q, in which case, by integral-
ity, (−,−) takes rational values and is still non-degenerate. This is what we call the

Beauville–Bogomolov form in this master’s thesis. The constant cX
(2n)!
n!2n is called the

Fujiki constant, and cX equals 1 if X is deformation equivalent to the Hilbert scheme of
points of a K3 surface [24].

By an induction argument it can be shown that (4.1) implies∫
X
α1 · · ·α2n =

cX
n!2n

∑
σ∈S2n

(ασ(1), ασ(2)) · · · (ασ(2n−1), ασ(2n)) (4.2)

for all α1, . . . , α2n ∈ H2(X,C), and the same is true for rational coefficients. The
combinatorial factor in front of the sum simply means that we do not repeat products
which are formally equal after some reordering of the n factors and using the symmetry
of (−,−). As an example, if X has complex dimension 4, then∫

X
α1 · · ·α4 = cX((α1, α2)(α3, α4) + (α1, α3)(α2, α4) + (α1, α4)(α2, α3)). (4.3)

The Beauville–Bogomolov form can be made into a natural cohomology class

B ∈ H4(X ×X,Q)

as follows: Let r := dimQH
2(X,Q). We can regard qX(−,−) as a Q-linear map

H2(X,Q)⊗H2(X,Q)→ Q,

hence as an element of H2(X,Q)∨⊗H2(X,Q)∨. Now, as qX is non-degenerate, it induces
an isomorphism H2(X,Q) ∼= H2(X,Q)∨. Under this identification we can view qX as
an element of H2(X,Q)⊗H2(X,Q), namely

q−1
X :=

r∑
i,j=1

qijvi ⊗ vj ∈ H2(X,Q)⊗H2(X,Q),

for a basis (vi) of H2(X,Q) where (qij) is the inverse matrix of (qX(vi, vj)). This formula
for q−1

X does not depend on the choice of basis. Via the Künneth isomorphism we then
obtain an element B ∈ H4(X ×X,Q) corresponding to the element

0⊕ q−1
X ⊕ 0 ∈ (H0(X)⊗H4(X))⊕ (H2(X)⊗H2(X))⊕ (H4(X)⊗H0(X)),

and it is this element B that is called the Beauville-Bogomolov class of X and plays a
major role in the study of hyperkähler varieties. By construction, for an orthonormal
basis (ei) of H2(X) with respect to qX we have

B =
r∑
i=1

ei ⊗ ei, (4.4)
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up to the Künneth isomorphism. Initially, one has to be careful because an orthonormal
basis need not exist over Q. Nonetheless, we can always find an orthogonal basis over Q
with respect to the Beauville–Bogomolov form, and even more conveniently, we can
just extend the field of coefficients to C where all square roots exist, and hence so do
orthonormal bases with respect to any non-degenerate symmetric bilinear form (by a
Gram–Schmidt process). The natural map

H∗(X,Q)→ H∗(X,C) = H∗(X,Q)⊗Q C

is injective, so that every relation among elements in H∗(X,Q) which can be proved in
H∗(X,C), e.g., by choosing an orthonormal basis, actually holds in H∗(X,Q) already.
For this reason, we will write H∗(X) most of the time, meaning coefficients in Q except
when proving relations in the cohomology ring by usage of an orthonormal basis of
H2(X), which will happen frequently, in which case we will tacitly work in H∗(X,C).
Let now b := ∆∗(B) ∈ H4(X) be the pullback via the diagonal embedding ∆ : X ↪→
X ×X and b1 and b2 the pullbacks via the two projections pi : X ×X → X. With the
above expression for B, we then have

b =

r∑
i=1

e2
i . (4.5)

Theorem 4.5 ([19]). Let X be a hyperkähler variety deformation equivalent to the
Hilbert scheme of n ≥ 2 points of a K3 surface. Then there exists a lift L ∈ CH2(X×X)
of the Beauville–Bogomolov form B.

Theorem 4.6 ([26, Proposition 1.3]). Let X be a hyperkähler variety of complex di-
mension 4 such that H4(X) is generated by the cup products of elements in H2(X).
Then B satisfies the quadratic equation

B2 = 2cX [∆]− 2

r + 2
B(b1 + b2)− 1

r(r + 2)
(2b2

1 − rb1b2 + 2b2
2).

Here, r := dimH2(X). Moreover, B is uniquely determined up to sign by this equation.

Let now X be a hyperkähler variety of K3[2]-type and let L ∈ CH2(X × X) be a lift
of B. Denote by ∆ : X ↪→ X×X the diagonal embedding as well as the cycle class of its
image. Let l := ∆∗(L) ∈ CH2(X) and l1, l2 the pullbacks to X ×X via the projections.
In this situation, r = dimH2(X) = 23. We consider the following relations involving L
in the Chow ring of X (resp. X ×X). The first is referred to as the quadratic equation
for L, analogous to the cohomological equation of Theorem 4.6:

L2 = 2∆− 2

r + 2
L(l1 + l2)− 1

r(r + 2)
(2l21 − rl1l2 + 2l22). (4.6)

Additionally, we consider the following three relations for all σ ∈ CH4(X) and all τ ∈
CH2(X):

L∗(l
2) = 0, (4.7)

L∗(l · L∗(σ)) = (r + 2)L∗(σ), (4.8)

(L2)∗(l · (L2)∗(τ)) = 0. (4.9)
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These are the relations which Shen and Vial in [26] established to be the core relations
necessary to obtain a Fourier decomposition as in Theorem 2 of loc. cit. They indeed
constructed an explicit lift L satisfying these relations for both the Fano variety of lines of
a smooth cubic fourfold and the Hilbert scheme of two points of a projective K3 surface,
see Theorem 1 and the paragraphs after Theorem 2 of loc. cit.

Theorem 4.7. Let F be the Fano variety of lines of a smooth cubic fourfold or the
Hilbert scheme of two points of a projective K3 surface. There exists a lift L ∈ CH2(F ×
F ) of B such that all the relations (4.6)-(4.9) are satisfied.

For concrete constructions of such a lift L see Theorems 4.14 and 4.21 below.

4.2 Fano varieties of lines of smooth cubic fourfolds

Definition 4.8. Let Y ⊆ P5 be a cubic hypersurface. The Hilbert scheme

F (Y ) := Hilbx+1
Y/C

for the Hilbert polynomial x+ 1 ∈ Q[x] is called the Fano variety of lines of Y .

A closed subscheme of Pn is a line if and only if it has Hilbert polynomial x + 1; see
[5, Proposition 6.7] for a generalization. Moreover, the definition yields that F (Y ) is
projective by the general result Theorem 3.10 on Hilbert schemes.
The case n = 5 and d = 3 of [5, Corollary 6.33] gives the dimension and smoothness
in the following theorem, [5, Theorem 6.34] shows reducedness, and the proof of [13,
Proposition 2.3] indicates two approaches of how to show irreducibility.

Theorem 4.9. If Y ⊆ P5 is a smooth cubic hypersurface then the Fano variety F (Y )
of lines of Y is a smooth projective variety of dimension 4.

There is an obivious inclusion of F (Y ) = Hilbx+1
Y/C into Hilbx+1

P5/C which is a closed embed-

ding, and the latter agrees with GrC(2, 6). This is because equivalence classes of locally
free quotients O6

T � Q of rank 2 correspond to closed embeddings P(Q) ↪→ P(O6
T ) =

P5 ×C T of T -schemes which are flat over T , and the fiber over every t ∈ T is the
embedding of a line P1

κ(t) ↪→ P5
κ(t), thus having Hilbert polynomial x+ 1. So we have:

Proposition 4.10. F (Y ) is naturally a closed subvariety of Gr(2, 6).

See also the paragraphs of [13, Chapter 3] following Theorem 1.2 for an explicit way of
realizing Fano schemes as the vanishing set of a global section of some symmetric power
of the dual tautological bundle on the Grassmannian.

Theorem 4.11 ([2, Propositions 1 and 2]). Let Y ⊆ P5 be a smooth cubic fourfold.
Then F (Y ) is a hyperkähler variety deformation equivalent to the Hilbert scheme of two
points of some K3 surface.
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Definition 4.12. Let E be the tautological bundle on Gr(2, 6). We fix the following two
notations. Let g ∈ CH1(F (Y )) be the first Chern class c1(E|∨F (Y )). Then g is called the

Plücker polarization class. Moreover, we denote by c ∈ CH2(F (Y )) the second Chern
class c2(E|∨F (Y )).

Let Z ⊆ F (Y ) × Y be the universal family of the Hilbert scheme F (Y ). It is given
on closed points as the set of incident pairs, i.e., pairs of the form ([l], x) with x ∈ l
where l ⊆ Y is a line and [l] ∈ F (Y ) the corresponding closed point. This is essentially
by definition: A closed point t ∈ F (Y ) is denoted [l] and said to correspond to the
line l ⊆ Y if and only if the fiber of Z over t via the projection is precisely the line
l ⊆ Y . Therefore, as a set, the closed points of F (Y ) really correspond to the lines in
Y . Formally, this correspondence is given by ηSpec(C) where η : Hilbx+1

Y/C
∼= hF (Y ) is the

natural isomorphism coming from representability.

Definition 4.13. Let Y be a smooth cubic fourfold and F = F (Y ) its Fano variety
of lines. The incidence subscheme is the closed subset I ⊆ F × F with the reduced
subscheme structure, given by the set of pairs of intersecting lines inside Y . Its cycle class
in CH2(F × F ), also denoted I, is called the incidence correspondence. The tautological
subring R∗(F × F ) ⊆ CH∗(F × F ) is the Q-subalgebra generated by I,∆, c1, c2, g1, g2

where ∆ ⊆ F × F denotes the diagonal and gi, ci for i = 1, 2 are the pullbacks via the
two projections F × F → F .

By [26, Lemma 17.2], we have I = tZ ◦Z which also yields the codimension of I because
Z has codimension 3 in F × Y .

Theorem 4.14 ([26, p. 81]). Let Y be a smooth cubic fourfold and F = F (Y ) its
Fano variety of lines. An explicit lift L of the Beauville–Bogomolov class B, satisfying
Theorem 4.7, is given by

L =
1

3
(g2

1 +
3

2
g1g2 + g2

2 − c1 − c2)− I, (4.10)

where I is the incidence correspondence. Moreover, we have l = 5
6c2(TF ), where c2(TF )

is the second Chern class of the tangent bundle, and c2(TF ) = 5g2 − 8c. Hence, the
tautological subring R∗(F ×F ) contains L, l1, l2. By the quadratic equation (4.6) for L,
it then automatically contains ∆.

This lift L is from now on taken to be the canonical lift of B in the Fano variety setting.
As mentioned in the introduction, it is not rigorously proven that L coincides with the
cycle class obtained from Markman’s twisted sheaves [19] in [26, Theorem 9.15], but
Shen and Vial expect it to be the case [26, p. 4].
The following injectivity result enables us to prove certain relations in the Chow ring
via computations in cohomology. We make heavy use of it in the proof of Theorem 5.19
which is one of our main results.
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Theorem 4.15 ([6, Proposition 6.4]). Let F = F (Y ) be the Fano variety of lines of a
smooth cubic fourfold Y . Then the restriction of the cycle class map to

cl : R•(F × F )→ H2•(F × F )

is injective.

Idea of proof. It suffices to consider the case where Y is very general in which case the
restriction of the cycle class map is surjective onto the rational (p, p)-classes, and because
the tautological subring is also a finite-dimensional Q-vector space, it now suffices to show
that in each degree the vector space dimensions of Rp(F ×F ) and Hp,p(F ×F,Q) agree.
This is relatively straight-forward for degrees 6= 5, 6 but requires an additional relation
in the Chow ring in order to deal with these two cases, which is provided by the appendix
of [6].

4.3 Hilbert schemes of points of K3 surfaces

Two excellent introductions to Hilbert schemes of points of surfaces and Nakajima op-
erators are Lehn’s [17, 16]. See also [23, Section 2.3] for a brief overview and the most
important facts. Original sources are [21, 8]. Let S be a smooth projective surface and
S[n] := HilbnS/C the associated Hilbert scheme of n points of S. We already know that

S[n] is projective. If n < 0 then S[n] is of course the empty scheme. The Chow ring
of the empty scheme is the zero ring. Moreover, S[0] = Spec(C) and its Chow ring,
concentrated in degree 0, equals Q.

Theorem 4.16 ([17, Theorem 3.3 and Lemma 3.7]). Let S be a smooth projective
surface. Then for all n ≥ 0 the Hilbert scheme of points S[n] is connected and smooth
of dimension 2n.

Theorem/Definition 4.17 ([17, Section 3.2]). The Hilbert–Chow morphism is a morph-
ism of schemes over C which topologically is given by

S[n] → Sn/Σn, I 7→
∑
x∈S

length(OS,x/Ix)[x].

Here, Sn/Σn denotes the n-th symmetric power of S, the points of which are formal
sums

∑
i ni[xi] of distinct points xi ∈ S such that

∑
i ni = n, and the I ⊆ OS are the

ideal sheaves with quotients of length n. For n = 1 the symmetric power is just S itself
and the Hilbert–Chow morphism is an isomorphism, as expected. For arbitrary n, the
Hilbert–Chow morphism is in fact still an isomorphism between the open subsets of n
distinct points.

A central idea for understanding Hilbert schemes of n points on a surface S is to consider
all n simultaneously.
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Definition 4.18 ([23, Section 2.3]). Let S be a smooth projective surface. For n ≥ 0
and i ≥ 1 the closed subset

Zn,n+i := {(ξ, x, η) ∈ S[n] × S × S[n+i] : supp(Iξ/Iη) = {x}}

of the product S[n]×S×S[n+i] is endowed with the reduced induced subscheme structure.
Define the Nakajima operators

q±i :
⊕
n∈Z

CH∗(S[n])→
⊕
n∈Z

CH∗(S[n±i] × S)

to be given up to sign by the correspondence [Zn,n+i] respectively its transpose. In terms
of the induced maps, for W ∈ CH∗(S[n]) we set

qi.W = t(pS×S[n+i])∗
(
[Zn,n+i] · p∗S[n](W )

)
.

Similarly, on S[n+i] and for W ∈ CH∗(S[n+i]) we set

q−i.W = (−1)i(pS[n]×S)∗
(
[Zn,n+i] · p∗S[n+i](W )

)
.

Moreover, q0 is defined to be 0. For α ∈ CH∗(S) we define the correspondence

q±i(α) :
⊕
n∈Z

CH∗(S[n])→
⊕
n∈Z

CH∗(S[n±i])

by substituting [Zn,n+i] by [Zn,n+i] · p∗S(α). The composition of Nakajima operators
qi1 · · · qik is here understood to be a correspondence from S[n] to S[n+i1+...+ik] × Sk,
inducing a linear map⊕

n∈Z
CH∗(S[n])→

⊕
n∈Z

CH∗(S[n+i1+...+ik] × Sk),

where the convention is that qi1 contributes the leftmost S-factor. Moreover, for Γ ∈
CH∗(Sk) we let qi1 · · · qik(Γ) be the correspondence from S[n] to S[n+i1+...+ik] given on
W ∈ CH∗(S[n]) by

(pS[n+i1+...+ik])∗
(
(qi1 · · · qik .W ) · p∗Sk(Γ)

)
.

Theorem 4.19 ([23, Section 2.3]). The Nakajima operators satisfy the commutation
relation

[qm, qn] = mδm+n,0 · id×∆S ,

in particular
[qm(α), qn(β)] = mδm+n,0〈α, β〉 · id,

where 〈−,−〉 is the intersection pairing on S.

Theorem 4.20 ([1, Théorème 6.3]). If S is a projective K3 surface then S[n] is a
hyperkähler variety of dimension 2n.

19



We now consider the case n = 2 and set F := S[2] for a projective K3 surface S. We
fix several notations taken from [26, Part 2] that will be used again in Section 6. Let
Z ⊆ F × S be the universal family. Its set of closed points consists of the pairs (η, x)
where x ∈ supp(η). This is a codimension 2 closed subscheme of the product, and we
denote by

Z

F × S S

F

q

p

ρ

π

the projections. The projection p is a double cover. Let c ∈ CH0(S) be the canonical
0-cycle, represented by any point on a rational curve in S [3, Theorem 1]. We let

Sc := p∗q
∗(c) ∈ CH2(F ). (4.11)

Moreover, denote by ∆Hilb ∈ CH1(F ) the divisor class on F parametrizing the non-
reduced length 2 subschemes of S and set

δ :=
1

2
∆Hilb ∈ CH1(F ). (4.12)

This agrees with the convention of [26] which differs in the sign from [23]. Finally, let
I ⊆ F ×F be the subset of pairs of length 2 subschemes which share a common support
point. This is closed and irreducible (see the proof of [26, Lemma 11.2]), and endowed
with the reduced induced subscheme structure it gives a closed subvariety of codimension
2, called the incidence subscheme. Its cycle class in CH2(F × F ) is also denoted I and
called the incidence correspondence. By loc. cit. we have I = tZ ◦ Z.

Theorem 4.21 ([26, p. 67]). Let F = S[2] for a projective K3 surface S. An explicit
lift L of the Beauville–Bogomolov class B, satisfying Theorem 4.7, is given by

L = I − 2(Sc)1 − 2(Sc)2 −
1

2
δ1δ2. (4.13)

Moreover, by [26, Proposition 16.1], L agrees with the lift of B obtained from Markman’s
twisted sheaves [19] in [26, Theorem 9.15]. For its pullback along the diagonal embedding
i∆ : F ↪→ F × F we have

l := i∗∆(L) = 20Sc −
5

2
δ2. (4.14)

In fact, l = 5
6c2(TF ) where c2(TF ) is the second Chern class of the tangent bundle.
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5 An sl2(Q)-action on CH∗(F (Y ))

5.1 The Lefschetz duals made explicit

Let X be a hyperkähler variety of complex dimension 4 without odd cohomology over Q.
As hyperkähler varieties are simply connected by definition, H1(X) = 0 is automatic,
and by Poincaré duality we have H7(X) = 0 as well. So the condition of having vanishing
odd cohomology over Q is then equivalent to demanding only H3(X) = 0. With this
assumption, the cup product is really commutative and we always write αβ instead of
α ∪ β. Moreover, we denote the second Betti number r := dim(H2(X)).
Another standing assumption we make is cX = 1 in the Fujiki constant of Section 4.1.
This is true for both the Fano variety of lines of a smooth cubic fourfold and the Hilbert
scheme of two points of a K3 surface and more generally for all hyperkähler varieties
which are deformation equivalent to a Hilbert scheme of points of a K3 surface [24]. We
make this restriction mainly for simplicity and in order to ease the notation although
it is not technically important. In fact, the basic and general results of this section,
foremost Proposition 5.1 and Theorem 5.8, can be easily adapted to the case cX 6= 1 by
dividing F̃a by cX , see Remark 5.9.
We do not require throughout this section that the cup product map

∪ : H2(X)⊗H2(X)→ H4(X)

is surjective. This becomes a necessary assumption only if a cohomological decomposition
of the diagonal is needed, which is the case in particular whenever the quadratic equation
of Theorem 4.6 is used.
Let a ∈ H2(X,Q) and denote by ea the endomorphism of H∗(X) given by the cup
product with a. Let h be the grading operator from Section 2,

h : Hk(X)→ Hk(X), β 7→ (k − 4)β.

Finally, denote by 1 ∈ H8(X) the generator of H8(X) with integral 1.

Proposition 5.1. Let a ∈ H2(X,Q) be arbitrary. Define a map

f̃a : H•(X)→ H•−2(X)

by

f̃a(β) :=



0 β ∈ H0(X),

4(a, β)[X] β ∈ H2(X),

2B∗(aβ) β ∈ H4(X),

2aB∗(β) β ∈ H6(X),
4
r+2

(∫
X β
)
ba β ∈ H8(X).

Then f̃a satisfies [ea, f̃a] = (a, a)h and [h, f̃a] = −2f̃a. Moreover, [h, ea] = 2ea.
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If (a, a) 6= 0, we set

fa :=
1

(a, a)
f̃a

to obtain the usual sl2(Q)-commutation relations. By Lemma 5.7 below, (a, a) 6= 0 is
equivalent to a being Lefschetz in the sense of Section 2.

Remark 5.2. In the latter case, fa is uniquely determined by the commutation relations
by Lemma 2.1. It should be emphasized that f̃a is linear in a ∈ H2(X). This is quite
remarkable because for one, fa is not, and neither is it clear from the abstract description
of fa in terms of the inverses (e2

a)
−1 and (e4

a)
−1 that it would suffice to multiply fa by

some quadratic form qX(a) in a in order to make it linear in a.
Note moreover that for (a, a) = 0 the commutation relations do not determine f̃a
uniquely. Indeed, the zero map also satisfies them while f̃a is non-zero on H2(X)
whenever a 6= 0 because the Beauville–Bogomolov form is non-degenerate.

Before proving Proposition 5.1, we need a series of lemmas.

Lemma 5.3. For arbitrary γ, γ′ ∈ H2(X) we have
∫
X bγγ′ = (r + 2)(γ, γ′).

Proof. Let (ei) be an orthonormal basis of H2(X). A direct computation gives∫
X
bγγ′ =

r∑
i=1

∫
X
e2
i γγ

′

=
r∑
i=1

(
(γ, γ′) + 2(ei, γ)(ei, γ

′)
)

= (r + 2)(γ, γ′),

where we used
∑r

i=1(ei, γ)(ei, γ
′) = (γ, γ′).

Lemma 5.4. The linear map H2(X)→ H6(X) given by the cup product with 1
r+2b is

an isomorphism with inverse B∗.

Proof. First, we show that the cup product with the element 1
r+2b gives an isomorphism

H2(X)→ H6(X). By Lemma 5.3, for arbitrary γ, γ′ ∈ H2(X) we have∫
X

(
1

r + 2
bγ

)
γ′ = (γ, γ′).

Hence, 1
r+2bγ 6= 0 whenever γ 6= 0 as (−,−) is non-degenerate. Now, by Poincaré duality,

dim(H2(X)) = dim(H6(X)), hence multiplication by 1
r+2b is indeed an isomorphism.
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Next, we compute

B∗(bγ) = (p2)∗

 r∑
i,j=1

(γeie
2
j )⊗ ei

 =
r∑

i,j=1

(∫
X
eie

2
jγ

)
ei

=
r∑

i,j=1

(
(γ, ei) + 2δij(γ, ej)

)
ei

=
r∑
j=1

r∑
i=1

(γ, ei)ei + 2
r∑
i=1

(γ, ei)ei

= (r + 2)γ,

where we used again an orthonormal basis (ei). So, B∗ is indeed the inverse.

Lemma 5.5. For all a, β ∈ H2(X) we have the relation

(a, a)2

r + 2
bβ = (a, a)a2β − 2(a, β)

3
a3.

Proof. By Poincaré duality, the equation holds if and only if it holds after multiplying
by an arbitrary γ ∈ H2(X) and integrating. By Lemma 5.3, the left hand side then
equals (a, a)2(β, γ) while the right hand side becomes

(a, a)((a, a)(β, γ) + 2(a, β)(a, γ))− 2(a, β)(a, a)(a, γ),

and they agree.

Remark 5.6. In the case (a, a) 6= 0, Lemma 5.5 can also be interpreted as giving the
relation between the isomorphisms e2

a : H2(X) → H6(X) and the cup product with
1
r+2b. Moreover, setting β = a for (a, a) 6= 0 gives

1

r + 2
ba =

1

3(a, a)
a3.

Observe here that the left hand side is defined even in the case (a, a) = 0 and is actually
non-zero if a 6= 0. Additionally, if X = F is the Fano variety of lines of a smooth cubic
fourfold or the Hilbert scheme of two points of a projective K3 surface, then by [29,
Theorem 1.4], this relation lifts to the Chow ring if a and β are interpreted as arbitrary
divisor classes and b is replaced by l = 5

6c2(TF ) where c2(TF ) is the second Chern class
of the tangent bundle.

Lemma 5.7. Let a ∈ H2(X). Then a is Lefschetz in the sense of Section 2 if and
only if (a, a) 6= 0 if and only if either one of the two maps e2

a : H2(X) → H6(X) and
e4
a : H0(X)→ H8(X) is an isomorphism.
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Proof. The equation
∫
X a

4 = 3(a, a)2 proves that (a, a) 6= 0 if and only if e4
a is an

isomorphism, using that H0(X) and H8(X) are both of dimension 1. Next, for (a, a) 6= 0
let β ∈ H2(X) be in the kernel of e2

a, i.e., a2β = 0. It suffices to show β = 0 as by Poincaré
duality we have dim(H2(X)) = dim(H6(X)). Indeed, if a2β = 0 then a2βγ = 0 for every
γ ∈ H2(X). Setting γ = a gives

0 =

∫
X
a3β = 3(a, a)(a, β),

hence (a, β) = 0. Then for arbitrary γ we get

0 =

∫
X
a2βγ = (a, a)(β, γ) + 2(a, β)(a, γ) = (a, a)(β, γ),

so β = 0 as (−,−) is non-degenerate. Conversely, let e2
a be an isomorphism. Then

certainly a 6= 0 and so 0 6= e2
a(a) = a3. By Poincaré duality again, there is some

β ∈ H2(X) with a3β 6= 0, so

0 6=
∫
X
a3β = 3(a, a)(a, β),

in particular (a, a) 6= 0.

Proof of Proposition 5.1. We first show [ea, f̃a] = (a, a)h case by case considering each
H i(X) separately. For β ∈ H0(X) we can assume by linearity β = [X], in which case
indeed

[ea, f̃a]([X]) = 0− f̃a(a) = −4(a, a)[X] = (a, a)h([X]).

For β ∈ H2(X), we first note

B∗(a
2β) = (p2)∗

(
(p1)∗

(
a2β
) r∑
i=1

ei ⊗ ei

)

=

r∑
i=1

(∫
X
a2βei

)
ei

=

r∑
i=1

(
(a, a)(β, ei) + 2(a, β)(a, ei)

)
ei

= (a, a)β + 2(a, β)a.

Hence,

[ea, f̃a](β) = af̃a(β)− f̃a(aβ) = 4(a, β)a− 2B∗(a
2β) = −2(a, a)β = (a, a)h(β),

as desired. Next, for β ∈ H4(X),

[ea, f̃a](β) = 2aB∗(aβ)− 2aB∗(aβ) = 0 = (a, a)h(β).
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In the case β ∈ H6(X), by Lemma 5.4, we can write β = 1
r+2bβ̂ for a unique β̂ ∈ H2(X).

As h(β) = 2β we need to show [ea, f̃a](β)− 2(a, a)β = 0, which, by Poincaré duality, is
equivalent to the vanishing of∫

X

(
[ea, f̃a](β)− 2(a, a)β

)
γ

for all γ ∈ H2(X). For the latter, we indeed get∫
X

(
[ea, f̃a](β)− 2(a, a)β

)
γ =

∫
X

(
2a2β̂γ

)
−
∫
X

(
4

(r + 2)2

(∫
X
bβ̂a

)
baγ

)
−
∫
X

(
2(a, a)

r + 2
bβ̂γ

)
=
(

2(a, a)(β̂, γ) + 4(a, β̂)(a, γ)
)

− 4(a, β̂)(a, γ)− 2(a, a)(β̂, γ)

= 0.

Finally, let β ∈ H8(X). In this case we have

[ea, f̃a](β) = af̃a(β)− 0 =
4

r + 2

(∫
X
β

)
ba2 = 4(a, a)β = (a, a)h(β),

using
∫
X

1
r+2ba

2 = (a, a) by Lemma 5.3 and the fact that H8(X) is of dimension 1. The

relations [h, f̃a] = −2f̃a and [h, ea] = 2ea follow directly from (and are, in fact, equivalent
to) the fact that f̃a decreases and ea increases the degree by 2.

The following is basically a corollary of Proposition 5.1 and our first main result.

Theorem 5.8. Let X be a hyperkähler variety of complex dimension 4 with cX = 1
and H3(X,Q) = 0. Let the Beauville–Bogomolov cohomology class B admit a lift
L ∈ CH2(X ×X). Then the cycle

F̃a :=
4

r + 2
(l1a1 + l2a2) + 2L(a1 + a2) ∈ CH3(X ×X)

is a lift of f̃a, where ai := p∗i (a) are the pullbacks via the two projections pi : X×X → X.

If (a, a) 6= 0, we again set Fa := 1
(a,a) F̃a.

Proof. The cohomology class of F̃a is

[F̃a] =
4

r + 2
(b1a1 + b2a2) + 2B(a1 + a2) ∈ H6(X ×X,Q),

and we want to show that the action of this cohomology class, viewed as a topological
correspondence, coincides with the map f̃a. First, we observe that every summand acts
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trivially on H i(X) for all but one i. Precisely, the b1a1-summand contributes the action
on H2(X), i.e., for all β ∈ H2(X),

(b1a1)∗(β) = (p2)∗

(
r∑
i=1

(e2
i aβ)⊗ [X]

)
=

r∑
i=1

(∫
X
e2
i aβ

)
[X] = (r + 2)(a, β),

and (b1a1)∗ obviously acts as 0 on all H i(X) for i 6= 2. Similarly, the b2a2-summand
gives the action on H8(X), as for β ∈ H8(X) we have

(b2a2)∗(β) = (p2)∗ (β ⊗ (ba)) =

(∫
X
β

)
ba.

The Ba1-summand contributes the action on H4(X),

(Ba1)∗(β) = (p2)∗ (a1β1B) = B∗(aβ).

Finally, the Ba2-summand gives the action on H6(X),

(Ba2)∗(β) = (p2)∗ (β1a2B) = a(p2)∗ (β1B) = aB∗(β),

where the second equation uses the projection formula.

Remark 5.9. In particular, this re-proves the Grothendieck standard conjecture of
Lefschetz type under the assumptions of Theorem 5.8. The latter are known to be
satisfied if X is deformation equivalent to the Hilbert scheme S[2] of two points of a K3
surface S by Theorem 4.5, in particular also for the Fano variety of lines of a smooth
cubic fourfold. Also note again that F̃a is linear in a ∈ CH1(X).
If cX 6= 1, then multiplying F̃a by c−1

X is the desired lift of the modified Lefschetz

dual f̃a. Indeed, for cX 6= 1 Lemma 5.3 only changes by the factor cX , and in Lemma 5.4
multiplication by 1

r+2b must be replaced by 1
(r+2)cX

b. From the proof of Proposition 5.1

it then becomes clear that f̃a essentially needs to be divided by cX with a minor exception
coming from observing

4(a, β)[X] =
4

(r + 2)cX

(∫
X
baβ

)
[X] =

4

(r + 2)cX
(b1a1)∗(β)

for β ∈ H2(X). Hence we can see that the H2(X) case of the case distinction in the
definition of f̃a remains unchanged while all the other cases have to be divided by cX .

For simplicity, we now assume again cX = 1.

Definition 5.10. Under the assumptions of Theorem 5.8, and for a fixed lift L of B,
we denote the commutator by

H̃a := [∆∗(a), F̃a] = (a2 − a1)F̃a

and Ha := 1
(a,a)H̃a for (a, a) 6= 0. Automatically, H̃a is a lift of (a, a)h where h is the

cohomological grading operator.
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Proposition 5.11. Let a ∈ H2(X,Q) be arbitrary. Then, in H8(X×X,Q), the follow-
ing relation holds:

(a, a)Bb1 = (r + 2)Ba2
1 − 2b1a1a2.

Proof. It is not enough to merely show the equation for a running through a basis of
H2(X) as the equation is not linear in a. Instead, we fist observe that it suffices to show
the equation (

(r + 2)Ba2
1 − 2b1a1a2 − (a, a)Bb1

)
γ1 = 0

for all γ ∈ H2(X). Indeed, denote the entire term surrounded by the bigger bracket B.
Then B lies in H6(X) ⊗ H2(X) (up to the Künneth isomorphism). Now, by Poincaré
duality, H6(X) has a basis e∨i for i ∈ {1, . . . , r} satisfying

∫
X e
∨
i ej = δij . We write

B =
∑r

i=1 e
∨
i ⊗ βi for some βi ∈ H2(X), and these summands are linearly independent

in H6(X) ⊗H2(X) in the sense that B = 0 if and only if βi = 0 for all i ∈ {1, . . . , r}.
Thus, if B 6= 0, there is some k such that βk 6= 0. Then letting γ := ek yields

Bγ1 =

r∑
i=1

(e∨i ek)⊗ βi = 1⊗ βk 6= 0.

A direct computation now shows

Bγ1 = (r + 2)Ba2
1γ1 − 2b1a1a2γ1 − (a, a)Bb1γ1

= (r + 2)
r∑
i=1

(eia
2γ)⊗ ei − 2

r∑
i=1

(e2
i aγ)⊗ a− (a, a)

r∑
i,j=1

(eie
2
jγ)⊗ ei

= (r + 2) · 1⊗

(
r∑
i=1

ei
(
2(a, γ)(a, ei) + (a, a)(γ, ei)

))

− 2 · 1⊗ a ·
r∑
i=1

(
(a, γ) + 2(a, ei)(γ, ei)

)
− (a, a) · 1⊗

 r∑
i,j=1

ei
(
(γ, ei) + 2δij(γ, ej)

)
= 2(r + 2)(a, γ) · 1⊗ a+ (r + 2)(a, a) · 1⊗ γ
− 2(r + 2)(a, γ) · 1⊗ a
− (r + 2)(a, a) · 1⊗ γ
= 0,

as desired.

Proposition 5.12. The following relation in H10(X×X,Q) holds for all a ∈ H2(X,Q):

rBb1a1 = b2
1a2.
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Proof. Recall that b2 = r(r + 2) · 1. We have

Bb1a1 =
r∑

i,j=1

(eie
2
ja)⊗ ei =

r∑
i,j=1

(∫
X
eie

2
ja

)
· 1⊗ ei

=
r∑

i,j=1

(2δij(a, ej) + (a, ei)) · 1⊗ ei

= (r + 2) · 1⊗ a,

as desired.

Proposition 5.13. For all a ∈ H2(X,Q) the following relation holds in H10(X×X,Q):

(r + 2)B2a1 = 2Bb1a2 + b1b2a1.

Proof. Both sides lie in H6(X)⊗H4(X), and similar to the proof of Proposition 5.11 it
suffices to show the equation after multiplying by γ1 for an arbitrary γ ∈ H2(X). We
calculate all three terms separately: First note baγ = (r+ 2)(a, γ) ·1. Thus, b1b2a1γ1 =
(r + 2)(a, γ) · 1⊗ b. Next, for the left hand side we have

B2a1γ1 =
r∑

i,j=1

(eiejaγ)⊗ (eiej)

=

r∑
i,j=1

(∫
X
eiejaγ

)
· 1⊗ (eiej)

=

r∑
i,j=1

(
δij(a, γ) + (a, ei)(γ, ej) + (a, ej)(γ, ei)

)
· 1⊗ (eiej)

= (a, γ) · 1⊗ b + 2 · 1⊗ (aγ).

Finally,

Bb1a2γ1 =
r∑

i,j=1

(eie
2
jγ)⊗ (eia)

=
r∑

i,j=1

(∫
X
eie

2
jγ

)
· 1⊗ (eia)

=

r∑
i,j=1

(
(γ, ei) + 2δij(γ, ej)

)
· 1⊗ (eia)

= (r + 2) · 1⊗ (aγ),

and everything fits.

28



Proposition 5.14. Let X be a hyperkähler variety of complex dimension 4 with vanish-
ing H3(X,Q). Whenever L ∈ CH2(X×X) is a lift of B to the Chow ring and l = ∆∗(L)
is the pullback along the diagonal embedding ∆ : X ↪→ X ×X, then the cycle class

H :=
4

r(r + 2)
(l22 − l21) +

2

r + 2
(l2 − l1)L ∈ CH4(X ×X)

is a lift of the grading operator h ∈ EndQ(H∗(X)) only depending on the lift L.
Moreover, if F = F (Y ) is the Fano variety of lines of a smooth cubic fourfold Y and L
is the canonical lift from Theorem 4.14, then Hg = H in the Chow ring, where g is the
Plücker polarization class.

First proof. We check the claim case by case. The action of (b2
1)∗ is trivial except on

H0(X), and similarily (b2
2)∗ acts trivially except on H8(X). Furthermore, (b1B)∗ acts

non-trivially only on H2(X) while (b2B)∗ acts non-trivially only on H6(X). We directly
infer that [H]∗ is trivial on H4(X), hence agrees there with h. Now, on H0(X),

(b2
1)∗([X]) =

(∫
X
b2

)
[X] = r(r + 2)[X],

so [H]∗([X]) = −4[X] = h([X]), as desired. Similarily, for 1 ∈ H8(X) we get

(b2
2)∗(1) = b2 = r(r + 2)1,

so [H]∗(1) = 4 · 1 = h(1) as well. For β ∈ H2(X) we have(
1

r + 2
b1B

)
∗

(β) = B∗

(
1

r + 2
b · β

)
= β

by Lemma 5.4, hence [H]∗(β) = −2β = h(β). At last, let β ∈ H6(X). Again using
Lemma 5.4, we obtain (

1

r + 2
b2B

)
∗

(β) =
1

r + 2
b ·B∗(β) = β,

so [H]∗(β) = 2β = h(β), as desired.
This implies (a, a)[H] = [H̃a] in cohomology for all divisor classes a. If X = F is the
Fano variety and a is a rational multiple of the Plücker polarization class g, then both
(a, a)H and H̃a lie in the tautological subring R∗(F×F ) and thus agree in the Chow ring
by the injectivity result of Theorem 4.15. Finally, (g, g) 6= 0 by [25, Section 2]. Precisely,
we have g4 = 108, so (g, g) = ±6, and in fact (g, g) = 6 by [24, Remark 4.3 (2)] because
g is very ample.

Second proof. Transposing the relation from Proposition 5.11, i.e., pulling back via the
automorphism of X ×X which swaps the factors, we get

(a, a)Bb2 = (r + 2)Ba2
2 − 2b2a1a2.
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Subtracting the two equations yields

(a, a)B(b2 − b1) = (r + 2)B(a2
2 − a2

1)− 2a1a2(b2 − b1).

Now,

r + 2

2
[H̃a] =

r + 2

2
(a2 − a1)[F̃a]

= 2(a2 − a1)(b1a1 + b2a2) + (r + 2)B(a2
2 − a2

1)

= (r + 2)B(a2
2 − a2

1)− 2a1a2(b2 − b1) + 2(b2a
2
2 − b1a

2
1)

= (a, a)B(b2 − b1) + 2(b2a
2
2 − b1a

2
1)

= (a, a)B(b2 − b1) + 2(r + 2)(a, a)(12 − 11)

= (a, a)B(b2 − b1) +
2

r
(a, a)(b2

2 − b2
1)

=
r + 2

2
(a, a)[H].

Here, we used the above equation in line four, Lemma 5.3 in line five and
∫
X b2 = r(r+2)

in line six. Hence, H̃a and (a, a)H agree in cohomology, and therefore H is a lift of h as
long as there exists some a with (a, a) 6= 0 which is always the case for formal reasons,
and also a = g always works. The rest is identical to the first proof.

Conjecture 5.15. Let F be the Fano variety of lines of a smooth cubic fourfold or
the Hilbert scheme of two points of a projective K3 surface and L the canonical lift of
Theorem 4.14 in the first and of Theorem 4.21 in the second case. We conjecture that
for all divisor classes a ∈ CH1(F ) with (a, a) 6= 0 the following relations hold in the
Chow ring:

(a, a)Ll1 = (r + 2)La2
1 − 2l1a1a2, (5.1)

rLl1a1 = l21a2, (5.2)

(r + 2)L2a1 = 2Ll1a2 + l1l2a1. (5.3)

Remark 5.16. The second relation follows from the first one whenever it is known that
a3 is a multiple of la and la2 is a multiple of l2 in the Chow ring of F . In our setting
both are known by [29, Theorem 1.4]. Moreover, the first relation and its transpose
would imply the important equality H = Ha by the second proof of Proposition 5.14
carried out in the Chow ring, replacing B by L and b by l. This equality is necessary
for establishing Conjecture 5.21 below. Note also that we indirectly show H = Ha in
the Hilbert scheme setting in Section 6, see Remark 6.9.

Proposition 5.17. Conjecture 5.15 is true in the case of the Fano variety if a is a
multiple of the Plücker polarization class g. In particular, H = Hg.

Proof. By the aforegoing Propositions 5.11–5.13 the relations are true in cohomology for
all a. If a is a multiple of g, then by Theorem 4.15 they hold in the Chow ring as well
because all occurring terms then lie in the tautological subring R∗(F × F ).
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Proposition 5.18. Let F = F (Y ) be the Fano variety of lines of a smooth cubic
fourfold Y . Let R∗(F ×F ) be the tautological subring of Theorem 4.15. Then the latter
is closed under composition of correspondences,

R∗(F × F ) ◦R∗(F × F ) ⊆ R∗(F × F ).

Proof. This is a consequence of [6, Proposition 6.3]. Following the notation of loc. cit.,
denote by B the moduli space of cubic hypersurfaces in P5 (which is just a projective
space), and by B◦ the Zariski open subscheme of smooth cubic hypersurfaces. Denote
by X → B the universal family and by X ◦ → B◦ its base change. Let F → B◦ be the
universal Fano variety of lines of the fibers of X ◦ → B◦. Denote by Fb the fiber of F
over b ∈ B◦. Then the cited proposition states that for all b ∈ B◦ we have

im
(

CH∗(F ×B◦ F)→ CH∗(Fb × Fb)
)

= R∗(Fb × Fb),

where the map on the left hand side is just the restriction to the fiber. In particular, if
we have two tautological cycle classes Z,W ∈ R∗(Fb×Fb) they have preimages Z,W in
CH∗(F ×B◦ F). But now we can simply form their composition Z ◦W ∈ CH∗(F ×B◦ F),
and its image in CH∗(Fb × Fb) equals Z ◦W . By the proposition, therefore, Z ◦W lies
in R∗(Fb × Fb) again.

In the case CH1(F (Y )) = 〈g〉, which holds for very general cubic fourfolds Y , the
following theorem is a full analog of [23, Theorem 1.1]. Even under Conjecture 5.15,
however, for arbitrary smooth cubic fourfolds we would not achieve a full analog in
the sense of lifting the action of the entire Neron–Severi Lie algebra to the Chow ring.
Despite these technical difficulties, we make Conjecture 5.21 at the end of this subsection.

Theorem 5.19 (Theorem 1.2). Let F = F (Y ) be the Fano variety of lines of any smooth
cubic fourfold Y . Let L ∈ CH2(F × F ) be the lift of B from Theorem 4.14. Then there
is an sl2(Q)-action on CH∗(F ) given by the Lie algebra homomorphism

sl2(Q)→ CH∗(F × F ),

e 7→ ∆∗(g),

f 7→ Fg,

h 7→ H = Hg,

lifting the sl2(Q)-action on the cohomology ring H∗(F ) given by eg, fg and h.

Proof. We have already seen that Fg lifts fg andH lifts h. Moreover, it is clear that ∆∗(g)
lifts eg. By the explicit formulas for ∆∗(g) = ∆g1, Fg and H we know that all of them lie
in the tautological subring R∗(F ×F ) of Theorem 4.15. By Proposition 5.18, so do their
compositions. Hence all the commutators lie in R∗(F × F ), and as the commutation
relations are true in cohomology, they are true in the Chow ring as well.

A natural question to ask is whether for the Fano variety F of some special smooth
cubic fourfold Y we can replace the Plücker polarization class g in the theorem by some
linearly independent divisor class a. Indeed, under Conjecture 5.15, this is true.
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Proposition 5.20. Let X be a hyperkähler variety of K3[2]-type endowed with a sym-
metric lift L ∈ CH2(X ×X) satisfying the relations (4.6) and (4.7). Let a ∈ CH1(X) be
a divisor class satisfying the relations of Conjecture 5.15 with respect to L. Then the
analogous version of Theorem 5.19 holds with respect to L and for g replaced by a.

Proof. We need to show the three necessary commutation relations

[H,∆∗(a)] = 2∆∗(a), [H,Fa] = −2Fa, and [∆∗(a), Fa] = H.

For the last of these we already indicated this in Remark 5.16, and it uses the first
relation of Conjecture 5.15 and its transpose. Let us show now the first two commutation
relations. For the first one, observe that the left hand side equals

(a1 − a2)H =
4

r(r + 2)
(l21a2 + l22a1) +

2

r + 2
L(l1a2 + l2a1)− 2

r + 2
L(l1a1 + l2a2).

For the right hand side use the quadratic equation for L and the second and third relation
of the conjecture. Then

2∆∗(a) =
2

r + 2
L(l1a2 + l2a1) +

2

r(r + 2)
(l21a1 + l22a2).

Hence the difference equals

2

r(r + 2)
(l21a2 + l22a1)− 2

r + 2
L(l1a1 + l2a2) = 0

by another application of the second relation of the conjecture and its transpose.
For the second commutation relation we show without loss of generality [H, F̃a] = −2F̃a.
Here, consider first the composition H ◦ F̃a. The only summand of the latter which is
not easily computed using the projection formula, L∗(l

2) = 0 and the second relation of
Conjecture 5.15 is

− 4

r + 2
(p13)∗

(
(p13)∗(Ll2a1) · (p23)∗(L)

)
,

where pij : X ×X ×X → X ×X denote the projections to the factors according to the
indices. Here, we use the transpose of the third relation of the conjecture in order to
write Ll2a1 = r+2

2 L2a2 − 1
2 l1l2a2. From this we deduce that the above summand equals

2l1a2 − 2(p13)∗

(
(p13)∗(L2) · (p23)∗(La1)

)
.

Next, using the quadratic equation for L2 we obtain that the latter agrees with −4La1.
All together we obtain

H ◦ F̃a = − 16

r + 2
l1a1 +

8

r + 2
l2a2 − 4La1.

Now, tH = −H and tF̃a = F̃a, so

[H, F̃a] = −4L(a1 + a2)− 8

r + 2
(l1a1 + l2a2) = −2F̃a,

as desired.
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The following would be an analog of the main theorem of [23] for hyperkähler varieties
of K3[2]-type.

Conjecture 5.21 (Conjecture 1.1). Let X be a hyperkähler variety of K3[2]-type. Let
L ∈ CH2(X ×X) be a lift of B and r := dimQ(H2(X,Q)) = 23. For any divisor class
a ∈ CH1(X) with (a, a) 6= 0 we define

Fa :=
4

(r + 2)(a, a)
(l1a1 + l2a2) +

2

(a, a)
L(a1 + a2) ∈ CH3(X ×X),

H :=
4

r(r + 2)
(l22 − l21) +

2

r + 2
L(l2 − l1) ∈ CH4(X ×X),

according to Theorem 5.8 and Proposition 5.14. Then there exists a lift L as above such
that the linear map ϕ in the commutative diagram

gNS(X) CH∗(X ×X)

EndQ(H∗(X,Q)),

ϕ

cl

given by ϕ(ea) = ∆∗(a), ϕ(fa) = Fa and ϕ(h) = H is a well-defined Lie algebra homo-
morphism.

As mentioned already in the introduction, the conjecture is true in the case of the
Hilbert scheme S[2] of a projective K3 surface S by the main theorem of [23] and our
Section 6 where we show that our formulas for the lifts of ea, fa and h agree with
those of [23]. In the case of the Fano variety of lines F = F (Y ) of a smooth cubic
fourfold Y , if L is the explicit cycle class of Theorem 4.14 and F has Picard rank 1, i.e.,
CH1(F (Y )) = 〈g〉, which is true for very general cubic fourfolds Y , then the conjecture
reduces to Theorem 5.19. If Y is arbitrary, we lack injectivity results for the cycle class
map in order to lift the entire action of the Neron–Severi Lie algebra gNS. Theorems 6.7
and 6.8 in the Hilbert scheme case, however, suggest that, if a conjecture of this type is
possible, then our formulas for the lifts of fa and h should be the correct ones.

5.2 Eigenspace decomposition of the correspondence H

In this section, we consider the action of the induced map H∗ of the correspond-
ence H obtained in Proposition 5.14. First, we observe that H ∈ CH4(X ×X), so that
H∗(CHi(X)) ⊆ CHi(X) for all i. For the action on CHi(X) we know that in cohomology
h acts by multiplication with 2i − 4, hence we expect the eigenspace decomposition of
CHi(X) under H∗, if indeed diagonalizable, to contain a direct summand for the eigen-
value 2i− 4. This is indeed the case but other eigenvalues occur as well. The eigenvalue
2i− 4 is called the expected eigenvalue and in the decomposition of Theorem 5.22 below
corresponds to the leftmost column.
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Theorem 5.22 (Theorem 1.3). Let X be a hyperkähler variety of K3[2]-type endowed
with a lift L ∈ CH2(X × X) of B satisfying the relations (4.6)-(4.8) from Section 4.1.
Note that (4.9) is not needed here. E.g., X can be the Fano variety of lines of a smooth
cubic fourfold or the Hilbert scheme of two points of a K3 surface. Let Λiλ ⊆ CHi(X)
be the eigenspace for the eigenvalue λ of H∗. The operator H∗ ∈ EndQ(CH∗(X)) is
diagonalizable with eigenspace decomposition

CH0(X) = Λ0
−4,

CH1(X) = Λ1
−2,

CH2(X) = Λ2
0 ⊕ Λ2

−2,

CH3(X) = Λ3
2 ⊕ Λ3

0,

CH4(X) = Λ4
4 ⊕ Λ4

2 ⊕ Λ4
0.

All direct summands other than those in the leftmost column belong to the homologically
trivial cycle classes CH∗(X)hom. We have

Λ3
0 = CH3(X)hom, Λ4

4 = 〈l2〉, Λ4
2 = l · L∗(CH4(X)),

so that the cycle class map is injective on the leftmost column except maybe on Λ2
0.

Moreover, all elements of Λ4
4 ⊕ Λ4

2 are multiples of l, and multiplication by l gives an
injective map CH1(X)→ Λ3

2. Furthermore, L∗(Λ
4
0) = 0.

The last statement even shows Λ4
2 = l · L∗(Λ4

2) using the assumed relation L∗(l
2) = 0.

The following proof is inspired by the proof of [26, Theorem 2.2].

Proof. By Lemma A.3, it suffices to show that suitable products of linear polynomials in
H∗ with distinct zeros vanish. The result on CHi(X) for i ∈ {0, 1} is clear because the
cycle class map injects into cohomology in these cases. Note L∗(CHi(X)) ⊆ CHi−2(X)
and that (l21)∗ is trivial except on CH0(X) while (l22)∗ is trivial except on CH4(X).
Now, for Z ∈ CH2(X) we have L∗(Z) = 0. Indeed, L∗(Z) ∈ CH0(X) and the equation
holds true in cohomology because the pushforward map (p2)∗ of the second projection
p2 : X×X → X acts trivially on the direct summand H6(X)⊗H2(X) of H8(X×X,Q).
Hence,

H∗(Z) =
−2

r + 2
L∗(lZ).

Now, our hypothesis includes the relation L∗(l·L∗(σ)) = (r+2)L∗(σ) for all σ ∈ CH4(X).
We obtain

((H∗ + 2id) ◦H∗)(Z) = (H∗ + 2id)

(
−2

r + 2
L∗(lZ)

)
=

4

(r + 2)2
L∗(l · L∗(lZ))− 4

r + 2
L∗(lZ)

= 0,
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giving the decomposition of CH2(X).
Next, let Z ∈ CH3(X). Then

H∗(Z) =
2

r + 2
lL∗(Z),

and L∗(Z) is a divisor class. Therefore and by Lemma 5.4, L∗(Z) = 0 if and only
if Z ∈ CH3(X)hom is homologically trivial. Again by Lemma 5.4, in cohomology the
cup product by 1

r+2 [l] is the inverse isomorphism of [L]∗ : H6(X) → H2(X). Hence, if
H∗(Z) = 0, then in cohomology

0 = [H∗(Z)] =
2

r + 2
[l] ∪ [L∗(Z)] = 2[Z],

hence Z ∈ CH3(X)hom (and thus L∗(Z) = 0). We have shown Λ3
0 = CH3(X)hom. Next,

by the quadratic equation for L,

((L2)∗ − 2id)(Z) =
−2

r + 2
lL∗(Z) = −H∗(Z),

or, equivalently,
(H∗ − 2id)(Z) = −(L2)∗(Z).

But here, (L2)∗(Z) ∈ CH3(X)hom = Λ3
0 because in cohomology

(B2)∗([Z]) = (p2)∗

 r∑
i,j=1

(eiej [Z])⊗ (eiej)

 ,

and already eiej [Z] = 0 for degree reasons. Therefore, H∗ ◦ (H∗ − 2id) = 0 on CH3(X),
giving the desired decomposition. In order to see that l ·D is an element of Λ3

2 for every
divisor class D, just note H∗(l · D) = 2

r+2 l · L∗(lD), and L∗(lD) is a divisor which in
cohomology agrees with (r + 2)D.
At last, let Z ∈ CH4(X). Then

H∗(Z) =
4

r(r + 2)

(∫
X

[Z]

)
l2 +

2

r + 2
lL∗(Z).

Now,
∫
X [H∗(Z)] = 4

∫
X [Z], implying

H∗(H∗(Z)) =
16

r(r + 2)

(∫
X

[Z]

)
l2 +

4

r + 2
lL∗(Z),

in particular (H2
∗ − 4H∗)(Z) = −4

r+2 lL∗(Z). Applying H∗ once again yields

(H∗ ◦ (H2
∗ − 4H∗))(Z) =

−8

r + 2
lL∗(Z) = 2(H2

∗ − 4H∗)(Z),
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using that
∫
X [lL∗(Z)] = 0. This is because L∗(Z) ∈ CH2(X)hom for degree reasons. We

have seen, then, that H∗ ◦ (H2
∗ − 4H∗) = 2(H2

∗ − 4H∗) or, equivalently,

H∗ ◦ (H∗ − 2id) ◦ (H∗ − 4id) = 0,

giving the desired decomposition for CH4(X). Finally, let Z ∈ Λ4
4. We want to show

that Z is a multiple of l2. Indeed,

4Z = H∗(Z) = l2 · 4

r(r + 2)

∫
X

[Z] +
2

r + 2
l · L∗(Z).

Applying L∗ to the equation and using again the relation L∗(l · L∗(σ)) = (r + 2)L∗(σ)
for all σ ∈ CH4(X) from the hypothesis, we get

4L∗(Z) = L∗(l
2) · 4

r(r + 2)

∫
X

[Z] +
2

r + 2
L∗(l · L∗(Z)) = 2L∗(Z),

hence L∗(Z) = 0. But then, the previous equation implies that Z is a multiple of l2. A
similar argument shows L∗(Λ

4
0) = 0. The equation Λ4

2 = l · L∗(CH4(X)) is immediate
from the explicit formula for H after observing Λ4

2 ⊆ CH4(X)hom.

In order to state our multiplicativity conjecture, we introduce the following notation.
For s ∈ Z let

CHi(X)s :=
{
Z ∈ CHi(X) : H∗(Z) = (2i− 4− 2s)Z

}
= Λi2i−4−2s.

In here, s should be seen as a sort of defect. The terms with s = 0 give the expected
eigenvalue 2i−4 of H∗. The eigenspace decomposition of H∗ above shows that only terms
with s ≥ 0 occur. In fact, there is a conjecture by Beauville in the abelian variety case
which predicts this behavior, see the introduction of [22]. It also predicts the injectivity
of the cycle class map on CH∗(X)0, and Theorem 5.22 confirms this in all codimensions
except 2. We can then rewrite the eigenspace decomposition of Theorem 5.22 as

CH0(X) = CH0(X)0,

CH1(X) = CH1(X)0,

CH2(X) = CH2(X)0 ⊕ CH2(X)1,

CH3(X) = CH3(X)0 ⊕ CH3(X)1,

CH4(X) = CH4(X)0 ⊕ CH4(X)1 ⊕ CH4(X)2.

(5.4)

We can now state the multiplicativity conjecture more naturally.

Conjecture 5.23 (Conjecture 1.4). Let X be as in Theorem 5.22 such that L addition-
ally satisfies (4.9). For all occurring s, t ∈ Z we conjecture that the intersection product
gives a well-defined map

CHi(X)s × CHj(X)t
·−→ CHi+j(X)s+t.
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An equivalent way of stating the conjecture is as follows: Let

H̃ :=
1

2
H + 2∆ ∈ CH4(X ×X). (5.5)

Then the conjecture is equivalent to H̃∗ acting as a derivation, i.e.,

H̃∗(Z ·W ) = H̃∗(Z) ·W + Z · H̃∗(W ) (5.6)

for all Z,W ∈ CH∗(X). Indeed, CHi(X)s is precisely the eigenspace of H̃∗ for the
eigenvalue i − s. The conjecture is then equivalent to saying that the product of the
eigenspaces of H̃ for the eigenvalues i − s and j − t lands in the one for the eigenvalue
i+ j − (s+ t) which is obviously satisfied if (5.6) holds. Conversely, if the conjecture is
true, then (5.6) holds on a generating subset of the Chow ring.
Let now multZ denote the multiplication map with a cycle class Z. Then (5.6) can again
be rewritten as

[H̃∗,multZ ] = mult
H̃∗(Z)

(5.7)

for all Z ∈ CH∗(X), and in fact it suffices to show that the left hand side is multiplication
by some cycle class. A generalization of this in the case of Hilbert schemes of points of
projective K3 surfaces can be found in [22].
The conjecture is in fact true if X = S[2] for a projective K3 surface S and if X = F (Y )
is the Fano variety of lines of a very general cubic fourfold Y , see Corollary 5.27 below.
But first, we treat the simplest case of divisors for the Fano variety of lines of an arbitrary
smooth cubic fourfold Y directly.

Proposition 5.24. Let F = F (Y ) be the Fano variety of lines of a smooth cubic
fourfold Y . Then Conjecture 5.23 is true in the case of divisors, i.e.,

CH1(F ) · CH1(F ) ⊆ CH2(F )0.

Proof. In the case of divisors, only the defect s = t = 0 occurs and we need to show

(Λ1
−4)·2 ⊆ Λ2

0

with the notation of Theorem 5.22. In other words, if D, D′ are two divisor classes, we
have to show H∗(D ·D′) = 0. Indeed,

H∗(D ·D′) =
2

r + 2
l · L∗(D ·D′)−

2

r + 2
L∗(l ·D ·D′) = − 2

r + 2
L∗(l ·D ·D′),

using that L∗(D · D′) = 0 as this is a multiple of the fundamental class vanishing in
cohomology. We claim that L∗(l · D · D′) = 0. But l · D is a multiple of D3 and so
l · D · D′ is a multiple of D3 · D′, which is itself a multiple of l2 by [29, Theorem 1.4]
using l = 5

6c2(TF ) from Theorem 4.14. The latter also implies L∗(l
2) = 0, concluding

the proof.

37



We now compare the eigenspace decomposition of H∗ in Theorem 5.22 to the Fourier
decomposition of [26, Theorem 2] which needs the additional relation (4.9). The Fourier
transform is given by the correspondence

eL = [X ×X] + L+
1

2
L2 +

1

6
L3 +

1

24
L4 ∈ CH∗(X ×X).

We define the Fourier decomposition groups

eLCHi(X)s := {Z ∈ CHi(X) : (eL)∗(Z) ∈ CH4−i+2s(X)},

where s is divided by 2 compared with loc. cit. The Fourier decomposition groups do
not depend on the precise values of the coefficients of the powers Li as long as they are
non-zero.

Theorem 5.25 ([26, Theorem 2]). LetX be a hyperkähler variety ofK3[2]-type endowed
with a lift L ∈ CH2(X×X) of B satisfying all the relations (4.6)-(4.9) from Section 4.1.
Then there is the Fourier decomposition

CH0(X) = eLCH0(X)0,

CH1(X) = eLCH1(X)0,

CH2(X) = eLCH2(X)0 ⊕ eLCH2(X)1,

CH3(X) = eLCH3(X)0 ⊕ eLCH3(X)1,

CH4(X) = eLCH4(X)0 ⊕ eLCH4(X)1 ⊕ eLCH4(X)2.

Theorem 5.26. Let X be a hyperkähler variety of K3[2]-type endowed with a lift
L ∈ CH2(X × X) of B satisfying all the relations (4.6)-(4.9). Then the eigenspace
decomposition of H∗ from Theorem 5.22, or equivalently (5.4), agrees with the Fourier
decomposition of Theorem 5.25.

The only place where the relation (4.9) is needed is the existence of the Fourier decom-
position of CH2(X), see the proof of [26, Theorem 2.4]. The following proof will not
make any other use of this relation.

Proof. In codimensions 0 and 1 there is nothing to show. For codimension 2 it suffices
to show only the two inclusions

eLCH2(X)0 ⊆ CH2(X)0 and eLCH2(X)1 ⊆ CH2(X)1,

because in both cases their sum is CH2(X), and the sums are direct. Let Z ∈ eLCH2(X)0,
i.e., (eL)∗(Z) ∈ CH2(X) which is easily seen to be equivalent to (L3)∗(Z) = 0. Now,
applying the quadratic equation for L twice, it can be checked that

L3 =

(
2− 4

r + 2

)
∆∗(l) +

(
1

r + 2
+

8

(r + 2)2

)
Ll1l2

+

(
4

(r + 2)2
− 2

r(r + 2)

)
L(l21 + l22) +

(
4

r(r + 2)
− 2

r + 2

)
(l21l2 + l1l

2
2),
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where we used L ·∆ = L ·∆∗([X]) = ∆∗(∆
∗(L)) = ∆∗(l). Applying this to Z gives

0 = (L3)∗(Z) =

(
2− 4

r + 2

)
l · Z +

(
1

r + 2
+

8

(r + 2)2

)
l · L∗(l · Z)

+

(
4

r(r + 2)
− 2

r + 2

)(∫
X

[l · Z]

)
l2.

Applying to this the operator L∗ yields then L∗(l · Z) = 0 using the assumed relations
L∗(l

2) = 0 and L∗(l · L∗(σ)) = (r + 2)L∗(σ) for all σ ∈ CH4(X). But now, the explicit
formula for H yields H∗(Z) = 2

r+2 l ·L∗(Z)− 2
r+2L∗(l ·Z) = 0 because L∗(Z) is a multiple

of the fundamental class vanishing in cohomology. This proves the first inclusion.
For the second inclusion let Z ∈ eLCH2(X)1 which is now equivalent to (L2)∗(Z) = 0.
Using the quadratic equation for L we get

0 = (L2)∗(Z) = 2Z − 2

r + 2
L∗(l · Z) +

1

r + 2

(∫
X

[l · Z]

)
l.

Now by [26, Proposition 4.1], l · Z ∈ eLCH4(X)1, and the latter by [26, Theorem 4]
agrees with l · L∗(CH4(X)) ⊆ CH4(X)hom, hence

∫
X [l · Z] = 0. We thus obtain

L∗(l · Z) = (r + 2)Z,

and this is precisely equivalent to H∗(Z) = 2Z. This shows the second inclusion and
finishes the codimension 2 case.
In codimension 3 let first Z ∈ eLCH3(X)1. This is equivalent to L∗(Z) = 0. But now,

H∗(Z) = 2
r+2 l · L∗(Z), so eLCH3(X)1 = CH3(X)1, as desired.

Next, Z ∈ eLCH3(X)0 is equivalent to (L2)∗(Z) = 0, i.e., by the quadratic equation
for L,

0 = (L2)∗(Z) = 2Z − 2

r + 2
l · L∗(Z),

hence H∗(Z) = 2
r+2 l · L∗(Z) = 2Z, concluding the codimension 3 case.

In codimension 4, by [26, Theorem 4], we already know the equality of the direct sum-
mands

eLCH4(X)0 = 〈l2〉 = Λ4
4 = CH4(X)0,

eLCH4(X)1 = l · L∗(CH4(X)) = Λ4
2 = CH4(X)1.

Finally, let Z ∈ eLCH4(X)2 which is equivalent to the vanishing of both L∗(Z) and
[X ×X]∗(Z) =

(∫
X [Z]

)
[X], in particular

∫
X [Z] = 0. So we get

H∗(Z) =
4

r(r + 2)

(∫
X

[Z]

)
l2 +

2

r + 2
l · L∗(Z) = 0,

i.e., Z ∈ Λ4
0 = CH4(X)2, as desired. The reverse inclusion then follows automatically.
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Corollary 5.27 (Theorem 1.5). In the eigenspace decomposition of Theorem 5.22, or
equivalently in (5.4), all occuring direct summands are non-trivial. Moreover, Conjec-
ture 5.23 is true if X = S[2] is Hilbert scheme of two points of a projective K3 surface S
and if X = F (Y ) is the Fano variety of lines of a very general cubic fourfold Y .

Proof. For the non-vanishing of every occurring direct summand, see [26, p. 7]. For the
multiplicativity in the S[2] case we even have two independent possibilities. One is [26,
Theorem 3] and the other is [22, Theorem 1.4] together with our Theorem 6.8 showing
that the two canonical lifts of the cohomological grading operator h agree. The case of a
Fano variety of lines F (Y ) of a very general cubic foufold Y is again [26, Theorem 3].

Remark 5.28. It becomes clear from the proof of [26, Theorem 3] in the case of a Fano
variety F = F (Y ) that the assumption on Y to be very general is only needed for the
inclusions

CH1(F )0 · CH2(F )0 ⊆ CH3(F )0,

CH2(F )0 · CH2(F )0 ⊆ CH4(F )0,

and the first one was dealt with for Y not necessarily very general in [6, Proposition A.7].
The second inclusion, however, still remains open for arbitrary smooth cubic fourfolds Y .
In the very general case these inclusions are even equalities.

5.3 Addendum: some more relations on CH∗(F (Y )× F (Y ))

Even though we cannot establish all necessary commutation relations in order to lift the
entire Neron-Severi Lie algebra action for the Fano variety of lines F (Y ) analogous to
[23, Theorem 1.1] for arbitrary smooth cubic fourfolds Y , we can at least establish the
following relation in full generality:

Proposition 5.29. Let X be any hyperkähler variety of complex dimension 4 with
H3(X,Q) = 0 and L ∈ CH2(X × X) any lift of B with pullback l = ∆∗(L) along the
diagonal embedding. Then for all divisor classes a, b ∈ CH1(X) we have

[F̃a, F̃b] = 0.

This result is of course trivial if a and b are linearly dependent.

Proof. Without loss of generality we can assume cX = 1. During this proof we use the
well known “box notation” for pullbacks along the projection maps from the products
X ×X and X ×X ×X. Denote by 1 := [X] ∈ CH0(X) the fundamental class. Then,
e.g., L� 1 is the cycle (p12)∗(L) ∈ CH∗(X ×X ×X) where pij : X ×X ×X → X ×X
are the projections to the factors corresponding to the indices. We set λ := 4

r+2 to ease
the notation. By definiton,

[F̃a, F̃b] = F̃a ◦ F̃b − F̃b ◦ F̃a

= (p13)∗

(
F̃b � 1 · 1 � F̃a − F̃a � 1 · 1 � F̃b

)
.

40



Obviously F̃b � 1 · 1 � F̃a becomes F̃a � 1 · 1 � F̃b when exchanging the roles of a and
b, in particular all summands of F̃b � 1 · 1 � F̃a which are invariant under exchanging a
and b cancel out after subtracting F̃a � 1 · 1 � F̃b, even before taking the pushforward.
We now compute

F̃b � 1 · 1 � F̃a =
(
λ
(
(lb) � 1 � 1 + 1 � (lb) � 1

)
+ 2 · L� 1 ·

(
b� 1 � 1 + 1 � b� 1

))
·
(
λ
(
1 � (la) � 1 + 1 � 1 � (la)

)
+ 2 · 1 � L ·

(
1 � a� 1 + 1 � 1 � a

))
= λ2 ·

(
(lb) � (la) � 1 + (lb) � 1 � (la) + 1 � (l2ab) � 1 + 1 � (lb) � (la)

)
+ 2λ · 1 � L ·

(
(lb) � a� 1 + (lb) � 1 � a+ 1 � (lab) � 1 + 1 � (lb) � a

)
+ 2λ · L� 1 ·

(
b� (la) � 1 + b� 1 � (la) + 1 � (lab) � 1 + 1 � b� (la)

)
+ 4 · L� 1 · 1 � L ·

(
b� a� 1 + b� 1 � a+ 1 � (ab) � 1 + 1 � b� a

)
.

In here, l2ab = 0 for dimension reasons, and the summands

2λ
(
1 � L+ L� 1

)
· 1 � (lab) � 1 and 4 · L� 1 · 1 � L · 1 � (ab) � 1

are symmetric in a and b, hence cancel out after subtracting F̃a � 1 · 1 � F̃b. Moreover,
using the projection formula, the λ2 term vanishes entirely after taking the pushforward
for dimension reasons, hence we can neglect this term. Up to the irrelevant λ2 summand,
for the difference we then obtain

2λ · 1 � L ·
(

(lb) � a� 1− (la) � b� 1 + (lb) � 1 � a− (la) � 1 � b

+ 1 � (lb) � a− 1 � (la) � b
)

+ 2λ · L� 1 ·
(
b� (la) � 1− a� (lb) � 1 + b� 1 � (la)− a� 1 � (lb)

+ 1 � b� (la)− 1 � a� (lb)
)

+ 4 · L� 1 · 1 � L ·
(
b� a� 1− a� b� 1 + b� 1 � a− a� 1 � b

+ 1 � b� a− 1 � a� b
)
.

(5.8)

Here, after applying the pushforward (p13)∗ and using

L∗(la) = (r + 2)a = (tL)∗(la) ∈ CH1(X),

we get that in (5.8) the last two terms of the first big bracket as well as the first two terms
of the second big bracket cancel out. All the other summands in fact vanish individually
after applying the pushforward, concluding the proof. For this last claim note that any
cycle of the form

(p13)∗ (L� 1 · 1 � L · 1 � a� 1)

is zero because it is a divisor on X ×X vanishing in cohomology.
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Let F = F (Y ) be the Fano variety of lines. Let eL = [F × F ] + L + 1
2L

2 + . . . be the
formal power series in L with respect to the intersection product. In [26], this cycle eL

is studied as the kernel of the Fourier transform F by analogy with the abelian variety
case. For abelian varieties one has, e.g., the relation F−1 ◦ e ◦ F = −f in the Chow ring
[30, p. 11]. The following result suggests that the analogy does not carry over entirely
in this respect, at least for eL as the kernel of the Fourier transform.

Proposition 5.30. Let F be the Fano variety of lines of a smooth cubic fourfold,
g ∈ CH1(F ) the Plücker polarization class and L the canonical lift of B of Theorem 4.14.
Then the relations

e±L ◦∆∗(g) ◦ eL = L(g1 ± g2) +
1

2
(l1 + l2)(g2 ± g1)

hold in CH∗(F × F ).

Both cycles are not lifts of (multiples of) fg. Nonetheless, these cycles resemble Fg a lot.
For this simple reason it could be expected that there is a similar but different kernel
for the Fourier transform giving the analog of the abelian variety case.

Proof. One only needs to calculate the compositions of correspondences which have the
form

(p13)∗
(
Ls � 1 · 1 � Lt · 1 � g � 1

)
. (5.9)

This vanishes whenever (s, t) 6∈ {(0, 3), (3, 0), (1, 2), (2, 1)}. This is clear if s + t ≥ 6 or
s + t ≤ 1 for dimension reasons. Moreover, for s + t ≥ 4 and s + t ≤ 2 it follows in
cohomology for degree reasons and from the fact that (5.9) lies in the tautological subring
of Theorem 4.15 by Proposition 5.18. For the non-zero contributions consider first
s = 1, t = 2. Here, we use the quadratic equation for L2, and by similar computations
get the result 2Lg2 + l2g1. The case s = 0, t = 3 is even simpler and yields 3l2g2.
By symmetry, we have thus considered all the relevant cases, and putting everything
together yields the claimed formula.
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6 The cycles L and H on K3[2] in Nakajima operators

Let S be a smooth projective surface. We will freely use the definitions and results of
Section 4.3. Let Zn ⊆ S[n]×S be the universal family. With the notation of Section 4.3
we have Z2 = Z.

Lemma 6.1. Recall the definition of Zn−1,n from Definition 4.18. Let n ≥ 1 and
pS×S[n] : S[n−1] × S × S[n] → S × S[n] be the projection. Then in CH∗(S × S[n]) we have

(pS×S[n])∗ (Zn−1,n) = tZn.

Proof. First recall that Zn−1,n is a closed subvariety of the product. This can be seen
using the projection map Zn−1,n → S[n−1,n] onto the nested Hilbert scheme [16, Sec-
tion 1.2] and the fact that S[n−1,n] is irreducible by [16, Theorem 1.9]. Indeed, the
projection is proper, hence closed, and it actually is a bijection on closed points. It
follows that Zn−1,n is irreducible, hence a closed subvariety as it is endowed with the
reduced induced subscheme structure.
Now, to prove the claim, note that the equation is clearly true set-theoretically. As Zn−1,n

is a closed subvariety of the product, it suffices to show that the degree of pS×S[n] |Zn−1,n

is 1. Considering a general fiber suffices, and if (x, η) ∈ tZn with η supported at n
distinct points x, x2, . . . , xn then the only preimage in Zn−1,n is ([x2, . . . , xn], x, η) with
multiplicity 1.

The following observation greatly facilitates the task of expressing the canonical lift L
of B from Theorem 4.21 in Nakajima operators.

Corollary 6.2. As correspondences in CH∗(S[2] × S[2]) we have

tZ ◦ Z = −q1([S]) ◦ q−1([S])

in terms of Nakajima operators.

Proof. This follows from the fact that the Hilbert–Chow morphism S[1] → S, sending a
length 1 subscheme to its support point, is an isomorphism and from the definition of
q±1([S]) as correspondences in CH∗(S[2] × S[1]). Indeed,

q1([S]) = (pS[1]×S[2])∗ (Z1,2) ,

q−1([S]) = (−1) · (pS[1]×S[2])∗ (Z1,2) .

The operator q−1([S]) is then a correspondence from S[2] to S[1] while q1([S]) is a corres-
pondence in the opposite direction. Now, using S[1] = S by the Hilbert–Chow morphism,
Lemma 6.1 for n = 2 gives the desired result.

Lemma 6.3. Let S be a projective K3 surface and ∆S ⊆ S×S the diagonal. We denote
by the same symbol its cycle class in CH∗(S × S). Then we have

∆2
S = 24c1c2. (6.1)
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Proof. We use the Beauville–Voisin formula c2(TS) = 24c for projective K3 surfaces S,
proved in [3]. Then by the self-intersection formula [11, Appendix A.4.C7], we have

∆2
S = (i∆S

)∗c2(N∆S/S×S).

Now, by the normal sheaf sequence

0→ T∆S
→ TS×S |∆S

→ N∆S/S×S → 0,

by additivity of the Chern character ch2 and using c1(TS) = 0 we eventually obtain

c2(N∆S/S×S) = c2(TS) = 24c,

hence (i∆S
)∗c2(N∆S/S×S) = 24∆Sc1 = 24c1c2, as desired.

Proposition 6.4. Let S be a projective K3 surface and F = S[2]. We have the following
expressions for correspondences in terms of Nakajima operators:

[F × F ] =
1

4
q1q1q−1q−1([S4]), (6.2)

multSc = −q1q−1(c1c2)− q2q−2(c1c2), (6.3)

multδ2 = 12q2q−2(c1c2)− 1

2
q1q1q−1q−1(∆1234), (6.4)

multl = −20q1q−1(c1c2)− 50q2q−2(c1c2) +
5

4
q1q1q−1q−1(∆1234). (6.5)

Of course, as correspondences we interpret multZ to be ∆∗(Z).

Proof. The first of these equations follows immediately from Corollary A.2 and

[F ] =
1

2
q1([S])q1([S]) · 1S[0] .

The last equation for multl of course follows from the two preceeding ones together
with (4.14). For the second equation we use the notation from Section 4.3 yielding

Sc = p∗q
∗(c) = π∗(ch2(OZ)ρ∗(c)),

as Z = ch2(OZ) by [26, eq. (101) on p. 75]. Now, the first formula of [20, Theorem 1.6]
shows the claim. Finally, for multδ2 we use the operator eδ of multiplication by δ and
its expression in Nakajima operators from [23, eq. (4)] and compute

multδ2 = eδ ◦ eδ

=
1

4

(
q2q−1q−1(∆123) + q1q1q−2(∆123)

)◦2
=

1

4

(
q2q−1q−1q1q1q−2(∆123∆456) + q1q1q−2q2q−1q−1(∆123∆456)

)
.
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Using the commutation relations for Nakajima operators, the second summand inside
the brackets equals −2q1q1q−1q−1(∆1234). For the first summand, we obtain

q2q−1q−1q1q1q−2(∆123∆456) = q2q−1q1q−1q1q−2(∆124∆356)

− q2q−1q1q−2

(
(ρ1256)∗(∆34∆123∆456)

)
= −2q2q−1q1q−2(∆1234)

= 2q2q−2

(
(ρ14)∗(∆23 ·∆1234)

)
= 48q2q−2(c1c2),

where in the last step we used ∆1234 = ∆12∆23∆34 and ∆2
S = 24c1c2 from Lemma 6.3

as well as ∆Sc1 = ∆Sc2 = c1c2, concluding the proof.

Proposition 6.5. Let S be a projective K3 surface and F = S[2]. Then, as correspond-
ences in CH2(F × F ), we can express L in terms of Nakajima operators by

L = −q1q−1([S × S])− 1

8
q2q−2([S × S])− q1q1q−1q−1(c1 + c4). (6.6)

Proof. We express each summand of (4.13) in terms of Nakajima operators. For I we
have I = tZ ◦ Z = −q1q−1([S × S]) by [26, Lemma 11.2] and Corollary 6.2. Recall that
[F ] = 1

2q1([S])q1([S]) · 1S[0] . Using this, we have

δ = eδ([F ])

=
1

2

(
q2q−1q−1(∆123) + q1q1q−2(∆123)

)
◦ 1

2
q1q1([S × S]) · 1S[0]

=
1

4
q2q−1q−1q1q1(∆123) · 1S[0]

= −1

2
q2q−1q1(∆12) · 1S[0]

=
1

2
q2([S]) · 1S[0] .

Together with Corollary A.2 this gives

−1

2
δ1δ2 = −1

8

(
q2([S]) · 1S[0]

)
�
(
q2([S]) · 1S[0]

)
= −1

8
q2([S])q′2([S]) ·∆S[0]

= −1

8
q2q−2([S × S]).

Similarly, using Proposition 6.4, we get

Sc = multSc([F ])

= −1

2
q1q−1q1q1(c1c2) · 1S[0]

= q1q1(c1) · 1S[0] .
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Applying again Corollary A.2 yields

−2(Sc)1 = −q1q1q−1q−1(c4) and − 2(Sc)2 = −q1q1q−1q−1(c1),

and putting everything together gives the claimed formula for L.

Theorem 6.6 ([3]). Let S be a projective K3 surface. Then in CH2(S×S×S) we have
a decomposition of the small diagonal

∆123 = ∆12c3 + ∆13c2 + ∆23c1 − c1c2 − c1c3 − c2c3.

Theorem 6.7. Let S be a projective K3 surface and F = S[2]. Let a be a divisor class
on F and F̃a the canonical lift of the Lefschetz dual f̃a from Theorem 5.8 with respect
to the canonical lift L from Theorem 4.21. Then F̃a agrees with Oberdieck’s canonical
lift of f̃a in [23, eq. (6)], i.e.,

F̃a = −2
∑
n≥1

1

n2
qnq−n(a1 + a2) = −2q1q−1(a1 + a2)− 1

2
q2q−2(a1 + a2), (6.7)

if a is in the surface part CH1(S) ⊆ CH1(S[2]) = CH1(S)⊕Qδ, and

F̃δ = −1

3

∑
i+j+k=0

: qiqjqk(
1

k2
∆12 +

1

j2
∆13 +

1

i2
∆23 +

2

j · k
c1 +

2

i · k
c2 +

2

i · j
c3) :

= 2q2q−1q−1

(
c3 − c1 −∆12 −

1

8
∆23

)
+ 2q1q1q−2

(
c1 − c3 −∆23 −

1

8
∆12

)
.

(6.8)

Proof. First, let a be in the surface part CH1(S) ⊆ CH1(S[2]). We begin by expressing
l1a1 in terms of Nakajima operators, l2a2 being its transpose. We use

l1a1 = [F × F ] ◦multl ◦multa

as correspondences and the formulas from Proposition 6.4 as well as the formula for
ea = multa from [23, eq. (4)]. This seems to be faster here than using Corollary A.2.
We have

l1a1 = [F × F ] ◦multl ◦ ea
= q1q1q−1q−1([S4]) ◦

◦
(

5q1q−1(c1c2)− 5

16
q1q1q−1q−1(∆1234)

)
◦ q1q−1(∆∗(a))

= q1q1q−1q−1([S4]) ◦
(

5q1q1q−1q−1(∆14a1c2c3) +
5

8
q1q1q−1q−1(∆1234a1)

)
.

(6.9)

For the first summand in (6.9), we get

5q1q1q−1q1q−1q1q−1q−1(∆48a8c6c7)− 5q1q1q−1q1q−1q−1(c4c5a6)

= −5q1q1q−1q1q−1q−1(∆46a6c5) + 5q1q1q−1q−1(c3a4)

= 10q1q1q−1q−1(c3a4).
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The second summand in (6.9) equals

5

8
q1q1q−1q1q−1q1q−1q−1(∆4678a8)− 5

8
q1q1q−1q1q−1q−1(∆456a6)

= −5

4
q1q1q−1q1q−1q−1(∆456a6)

=
5

4
q1q1q−1q−1(c3a4 + a3c4)

=
5

2
q1q1q−1q−1(c3a4),

where we used ∆34a3 = a3c4 +c3a4 (see [3]) which requires S to be a K3 surface. Hence,

l1a1 =
25

2
q1q1q−1q−1(c3a4),

and therefore
4

25
(l1a1 + l2a2) = 2q1q1q−1q−1(a1c2 + c3a4).

We now calculate La1 = (−L)◦ (−ea) employing the formula for L from Proposition 6.5.
We have

La1 =

(
q1q−1([S × S]) +

1

8
q2q−2([S × S]) + q1q1q−1q−1(c1 + c4)

)
◦
(
q1q−1(∆∗(a)) + q2q−2(∆∗(a))

)
= q1q−1q1q−1(∆34a4) +

1

8
q2q−2q2q−2(∆34a4) + q1q1q−1q−1q1q−1((c1 + c4)∆56a6)

= q1q1q−1q−1(c1a4 + a1c4)− q1q−1(a2)− 1

4
q2q−2(a2)

+ q1q1q−1q1q−1q−1((c1 + c5)∆46a6)− q1q1q−1q−1(c1a4)

= −q1q−1(a2)− 1

4
q2q−2(a2) + q1q1q−1q−1(a1c4 − c1a4 − c3a4).

After adding La2, clearly q1q1q−1q−1(a1c4 − c1a4) cancels out. We obtain

2L(a1 + a2) = −2q1q−1(a1 + a2)− 1

2
q2q−2(a1 + a2)− 2q1q1q−1q−1(a1c2 + c3a4),

and putting both pieces together yields the desired formula.
Let now a = δ. Using the formula for eδ from [23, eq. (4)], we can analogously compute

l1δ1 = [F × F ] ◦multl ◦ eδ
= −25q1q1q−2(c3),

so that
4

25
(l1δ1 + l2δ2) = −4q1q1q−2(c3)− 4q2q−1q−1(c1). (6.10)
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Using the formula for L, we now consider 2Lδ1 = 2(−L) ◦ (−eδ) and get

2Lδ1 =

(
q1q−1([S × S]) +

1

8
q2q−2([S × S]) + q1q1q−1q−1(c1 + c4)

)
◦
(
q1q1q−2(∆123) + q2q−1q−1(∆123)

)
= q1q−1q1q1q−2(∆345) +

1

8
q2q−2q2q−1q−1(∆345)

+ q1q1q−1q−1q1q1q−2((c1 + c4)∆567)

= −2q1q1q−2(∆23)− 1

4
q2q−1q−1(∆23) + 2q1q1q−2(c1 + c3),

where we applied the Nakajima commutation relations several times. Therefore,

2L(δ1 + δ2) = q1q1q−2

(
2(c1 + c3)− 2∆23 −

1

4
∆12

)
+ q2q−1q−1

(
2(c1 + c3)− 2∆12 −

1

4
∆23

)
.

(6.11)

Putting equations (6.10) and (6.11) together yields the claimed formula for F̃δ.

Theorem 6.8. Let H = 4
r(r+2)(l22 − l21) + 2

r+2(l2− l1)L with r = 23 be the canonical lift
of the cohomological grading operator h from Proposition 5.14. Let S be a projective
K3 surface and F = S[2]. If L is the canonical lift of B of (4.13) and l its pullback
(4.14), then H agrees with Oberdieck’s canonical lift of h [23, eq. (5)], i.e.,

H = 2
∑
n≥1

1

n
qnq−n(c2 − c1) = 2q1q−1(c2 − c1) + q2q−2(c2 − c1). (6.12)

Proof. Let c ∈ CH0(S) be the canonical 0-cycle represented by any point p lying on a
rational curve inside S. Consider l2 ∈ CH0(F ). As l is a multiple of c2(TF ) by (4.14),
by [29, Theorem 1.4] its square is a multiple of the 0-cycle [c, c] = q1(c)q1(c) · 1S[0] which
is represented by a single point in F , hence of degree 1. The latter is a multiple of δ4 so
that the cited theorem is applicable. But this immediately implies

l2 = r(r + 2)q1(c)q1(c) · 1S[0]

because it is true in cohomology. By Corollary A.2 therefore

l21 =
r(r + 2)

2
q1q1q−1q−1(c3c4) and l22 =

r(r + 2)

2
q1q1q−1q−1(c1c2).

Thus, for the first summand of H we obtain

4

r(r + 2)
(l22 − l21) = 2q1q1q−1q−1(c1c2 − c3c4).
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In order to express the remaining summand of H in Nakajima operators, we only need to
compute Ll1 = L◦multl as Ll2 = multl◦L is just its transpose. In view of Proposition 6.5
and the formula for multl of Proposition 6.4, the compositions of q2q−2 summands and
q1q−1 or q1q1q−1q−1 summands are all trivial using the Nakajima commutation relations
and the fact that we work on F = S[2]. We claim

L ◦multl = −25

2
q2q−2(c2)− 25q1q−1(c2)

− 25q1q1q−1q−1(c3c4)− 25q1q1q−1q−1(c1c4).
(6.13)

The last term agrees with its transpose, hence cancels out in L(l2 − l1). Clearly, if
the claim is true, we obtain precisely the desired result. It remains to show (6.13).
First of all, the composition of the summand −1

8q2q−2([S × S]) of L and the summand
−50q2q−2(c1c2) of multl gives

50

8
q2q−2q2q−2(c3c4) = −25

2
q2q−2(c2).

Next, the composition of −q1q−1([S × S]) of L with −20q1q−1(c1c2) of multl yields

20q1q−1q1q−1(c3c4) = 20q1q1q−1q−1(c2c4)− 20q1q−1(c2).

Observe q1q1q−1q−1(c2c4) = q1q1q−1q−1(c1c4) by the commutation relations. For the
composition of −q1q−1([S × S]) with 5

4q1q1q−1q−1(∆1234) we have

−5

4
q1q−1q1q1q−1q−1(∆3456) =

5

2
q1q1q−1q−1(∆234).

Next, for the composition of −q1q1q−1q−1(c1 + c4) with −20q1q−1(c1c2) we get

20q1q1q−1q−1q1q−1((c1 + c4)c5c6) = −20q1q1q−1q−1(c3c4 + 2c1c4).

Finally, the composition of −q1q1q−1q−1(c1 + c4) and 5
4q1q1q−1q−1(∆1234) is

−5

4
q1q1q−1q−1q1q1q−1q−1((c1 + c4)∆5678) = −5

2
q1q1q−1q−1(c3c4 + c1∆34).

Summing up these five compositions yields after some cancellation

L ◦multl = −25

2
q2q−2(c2)− 20q1q−1(c2) +

5

2
q1q1q−1q−1(∆234)

− 20q1q1q−1q−1(c3c4 + c1c4)− 5

2
q1q1q−1q−1(c3c4 + c1∆34).

(6.14)

Now, we use the decomposition of the small diagonal in Theorem 6.6, i.e.,

∆234 = ∆23c4 + ∆24c3 + ∆34c2 − c2c3 − c2c4 − c3c4.

49



Plugging this into the corresponding summand 5
2q1q1q−1q−1(∆234) gives

5

2
q1q1q−1q−1(∆234) =

5

2
q1q1q−1q−1(∆23c4) +

5

2
q1q1q−1q−1(∆24c3)

+
5

2
q1q1q−1q−1(∆34c2)− 5

2
q1q1q−1q−1(c2c3)

− 5

2
q1q1q−1q−1(c2c4)− 5

2
q1q1q−1q−1(c3c4).

In here, the commutation relations imply that the first two summands both agree with
5
2q1([S])q1q−1(∆S)q−1(c). Clearly, the fourth and fifth summand agree as well, and for
the third summand we have

5

2
q1q1q−1q−1(∆34c2) =

5

2
q1q1q−1q−1(∆34c1)

by the commutation relations. We can then continue by

5

2
q1q1q−1q−1(∆234) = 5q1([S])q1q−1(∆S)q−1(c)− 5q1q1q−1q−1(c1c4)

− 5

2
q1q1q−1q−1(c3c4)

= −5q1q−1(c2)− 5q1q1q−1q−1(c1c4)

− 5

2
q1q1q−1q−1(c3c4),

where in the final step we used

q1q−1(∆S) = −idS[1]

as correspondences on S[1]× S[1]. Inserting this into (6.14), we obtain exactly (6.13), as
desired.

Remark 6.9. Theorems 6.7 and 6.8 further justify our claim that, given the canonical
lift L of B, the cycles F̃a and H of Theorem 5.8 and Proposition 5.14 are the canonical
lifts of the cohomological operators f̃a and h. They also show that the lifting of the
cohomological sl2(Q)-action obtained in Theorem 5.19 is the correct (partial) analog of
the lifting on S[2] dealt with for arbitrary S[n] in [23], and so provide additional evidence
for Conjecture 5.21. Finally, these two theorems together with the main theorem of [23]
also show the equation H = Ha (see Remark 5.16) for all divisor classes a with (a, a) 6= 0
in the Hilbert scheme case, and so yields further evidence that this might be true for
general hyperkähler varieties X of K3[2]-type.

Remark 6.10. Theorem 6.8 gives another proof for Conjecture 5.23 for Hilbert schemes
of two points of projective K3 surfaces by the more general [22, Theorem 1.4].
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A Auxiliary results

Lemma A.1. Let X, Y and Z be smooth projective varieties and Γ ∈ CH∗(X × Y ),
Γ̃ ∈ CH∗(X × Z) correspondences. Then as correspondences in CH∗(Y × Z) we have

(Γ× Γ̃)∗(∆X) = Γ̃ ◦ tΓ.

Proof. Writing out the definitions of both sides of the equation we see that we only need
to show

p∗X1Y (Γ) · p∗X2Z(Γ̃) · p∗X1X2
(∆X) = (idY ×∆X × idZ)∗

(
p∗Y X(tΓ) · p∗XZ(Γ̃)

)
. (A.1)

In here, pY X and pXZ are the projections from the triple product Y ×X ×Z to Y ×X
and X × Z, respectively. The projections pX1Y , pX2Z and pX1X2 are the projections
from the product X ×Y ×X ×Z to the factors indicated by the indices. Moreover, ∆X

denotes both the diagonal embedding X ↪→ X ×X and the cycle class of its image. We
can now rewrite the argument of the right hand side of (A.1) as

p∗Y X(tΓ) · p∗XZ(Γ̃) = (idY ×∆X × idZ)∗
(
p∗Y X1

(tΓ)
)
· (idY ×∆X × idZ)∗

(
p∗X2Z(Γ̃)

)
= (idY ×∆X × idZ)∗

(
p∗Y X1

(tΓ) · p∗X2Z(Γ̃)
)
.

Hence, by the projection formula, the entire right hand side of (A.1) equals

(idY ×∆X × idZ)∗

(
p∗Y X(tΓ) · p∗XZ(Γ̃)

)
= p∗Y X1

(tΓ) · p∗X2Z(Γ̃) · p∗X1X2
(∆X)

= p∗X1Y (Γ) · p∗X2Z(Γ̃) · p∗X1X2
(∆X).

This seemingly trivial result has an interesting consequence in the case X = Spec(C)
where ∆X is an isomorphism. The following was pointed out to me by my advisor Georg
Oberdieck and uses only the fact that the Nakajima correspondences qi and q−i are the
transpose of each other up to sign.

Corollary A.2. Let S be a smooth projective surface and recall the Nakajima operators
from Section 4.3. Denote by qi and q′j the operators

qi, q
′
j :
⊕
m,n

CH∗(S[m] × S[n])→
⊕
m,n

CH∗(S[m] × S[n] × S)

acting as qi on the first factor and the identity on the second factor respectively as qj on
the second factor and as the identity on the first factor. Obviously, qi commutes with
q′j . Let Γ ∈ CH∗(Sk+l). Then we have the equation of correspondences

qi1 · · · qikq
′
j1 · · · q

′
jl

(Γ) · 1S[0] = (−1)i1+...+ikqj1 · · · qjlq−ik · · · q−i1(τ∗(Γ)),

where τ : Sk+l → Sk+l permutes the factors according to the permutation of the indices.
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Proof. This follows from the definition of the Nakajima operators and Lemma A.1 on
noting that ∆S[0] = 1S[0] under the identification S[0] × S[0] = S[0] via the diagonal
map.

Lemma A.3. Let V be any vector space (possibly infinite-dimensional) over any field K
and f : V → V an endomorphism. Let λ1, . . . , λr ∈ K be distinct and define the
polynomial

p(X) :=

r∏
i=1

(X − λi) ∈ K[X].

If p(f) = 0, we have

V =
r⊕
i=1

Vi,

where Vi = {v ∈ V : f(v) = λiv}, which of course can be trivial.
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de dimension 4. CR Acad. Sci. Paris Sér. I Math 301, 14 (1985), 703–706.

[3] Beauville, A., and Voisin, C. The Chow ring of a K3 surface. Journal of
Algebraic Geometry 13 (12 2001).

[4] Charles, F., and Markman, E. The standard conjectures for holomorphic sym-
plectic varieties deformation equivalent to Hilbert schemes of K3 surfaces. Com-
positio Mathematica 149, 3 (2013), 481–494.

[5] Eisenbud, D., and Harris, J. 3264 and all that: A second course in algebraic
geometry. Cambridge University Press, 2016.

[6] Fu, L., Laterveer, R., Vial, C., and Shen, M. The generalized Franchetta
conjecture for some hyper-Kähler varieties. Journal de Mathématiques Pures et
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[11] Hartshorne, R. Algebraic Geometry. Graduate Texts in Math. 52. 1977.

[12] Huybrechts, D. Complex geometry: an introduction. Springer Science & Business
Media, 2006.

[13] Huybrechts, D. The geometry of cubic hypersurfaces. Notes available from
http: // www. math. uni-bonn. de/ people/ huybrech (2019).

[14] Kleiman, S. L. Algebraic cycles and Weil conjectures. Dix exposés sur la cohomo-
logie des schémas (1968), 359–386.

[15] Kleiman, S. L. The standard conjectures. Motives (Seattle, WA, 1991) 55 (1994),
3–20.

53

http://www.math.uni-bonn.de/people/huybrech


[16] Lehn, M. Chern classes of tautological sheaves on Hilbert schemes of points on
surfaces. Inventiones mathematicae 136, 1 (1999), 157–207.

[17] Lehn, M. Lectures on Hilbert schemes. Algebraic structures and moduli spaces 38
(2004), 1–30.

[18] Looijenga, E., and Lunts, V. A. A Lie algebra attached to a projective variety.
Inventiones mathematicae 129, 2 (1997), 361–412.

[19] Markman, E. The Beauville-Bogomolov class as a characteristic class. Journal of
Algebraic Geometry 29, 2 (2020), 199–245.
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