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Abstract

Let X be a smooth variety, let S be a smooth surface, let Cg,N →Mg,N be
a universal curve over a moduli space of stable marked curves and let (C,x)
be a marked nodal curve.

In the first part of the thesis, comprised of two chapters, we develop the
theory of quasimaps to a moduli space of stable sheavesM on S. A quasimap
is a map to the moduli space of all sheaves (not necessarily stable), generi-
cally mapping to M . For each ϵ ∈ R>0, there exists a stability condition for
quasimaps, termed ϵ-stability. Moduli spaces of ϵ-stable quasimaps interpo-
late between moduli spaces of stable maps to M and moduli spaces of stable
sheaves of the relative geometry S×Cg,N →Mg,N , the two being the moduli
spaces of ϵ-stable quasimaps for extremal values of ϵ. Using Zhou’s theory
of calibrated tails, we prove wall-crossing formulas, which therefore relate
Gromov–Witten invariants of M and relative Donaldson–Thomas invariants
of S × Cg,N →Mg,N .

In the second part of the thesis, we introduce a stability condition for
maps from nodal curves to X × C relative to X × x for each ϵ ∈ R≤0,
termed ϵ-admissibility. Moduli spaces of ϵ-admissible maps interpolate be-
tween moduli space of twisted stable maps to an orbifold symmetric product
[X(n)] and stable maps to the relative geometry X × Cg,N → Mg,N . Us-
ing Zhou’s theory of calibrated tails, we prove wall-crossing formulas, which
therefore relate orbifold Gromov–Witten invariants of [X(n)] and relative
Gromov–Witten invariants of X × Cg,N →Mg,N .

The main result of the thesis is establishment of correspondences be-
tween different enumerative theories, using aforementioned wall-crossings.
In particular, we prove the wall-crossing part of Igusa cusp form conjecture;
higher-rank/rank-one Donaldson–Thomas wall-crossing for some threefolds
S ×C; Donaldson–Thomas/Pandharipande–Thomas wall-crossing for some
threefolds S × C. We show that the quantum cohomology of S[n] is deter-
mined by relative Pandharipande–Thomas theory of S×P1 for del Pezzo and
K3 surfaces. Finally, we express crepant resolution conjecture for the pair
S[n] and [S(n)] in terms of Gromov–Witten/Pandharipande–Thomas corre-
spondence for S × C, thereby proving 3-point genus-0 crepant resolution
conjecture, if S is a toric del Pezzo surface.
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Chapter 1

Introduction

1.1 Overview

Quasimaps were first considered in an unpublished work by Drinfeld in early
80’s in the context of geometric representation theory, see Braverman [Bra06]
for an account of the representation-theoretic side of the theory. Their
importance in a different but not unrelated field of enumerative geometry
was also already understood. In subsequent years the enumerative side of
quasimaps was studied as an alternative to Gromov–Witten theory in the
case of certain GIT targets by many people (e.g. [MOP11], [Tod11]), leading
to the work of Ciocan-Fontanine–Kim–Maulik [CKM14], where the theory
was given the most general treatment.

Moduli spaces of stable quasimaps and stable maps are different com-
pactifications of moduli spaces of stable maps with smooth domains. There
exists also a mixed theory of ϵ-stable quasimaps that interpolates between
the two, thereby giving rise to a wall-crossing, which provides an effective
way to compute Gromov–Witten invariants in terms of quasimap invariants,
which in many cases are more accessible. Moreover, it turned out that the
quasimap wall-crossing is related to enumerative mirror symmetry. For ex-
ample, in [CK20] it was shown that for a quintic threefold the generating
series of quasimap invariants exactly matches the B-model series, while the
quasimap wall-crossing is the mirror transformation.

Quasimaps then found their applications beyond numbers in the enumer-
ative geometry of Nakajima quiver varieties (see e.g. [Oko17]), which also
brought them back to their roots, since enumerative geometry is inseparable
from geometric representation theory in this context. It also brings us to the
theme of quasimaps to a moduli space of sheaves. Already for the simplest
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example of a Nakajima quiver variety - a punctorial Hilbert scheme (C2)[n]

of the affine plane C2 - one can consider five enumerative theories, among
which there is the GIT quasimap theory:

GW - Gromov–Witten theory of (C2)[n];
Q - GIT quasimap theory of (C2)[n];
GWorb - orbifold Gromov–Witten theory of [(C2)(n)];
GWrel - relative Gromov–Witten theory of C2 × Cg,N/Mg,N ;
PTrel - relative Pandharipande–Thomas theory of C2 × Cg,N/Mg,N ,

which are related in the following ways:

• GIT quasimap wall-crossing between GW and Q, proposed in [CK14],
proven in [Zho22];

• analytic continuation and a change of variables between GW and GWorb,
provided by crepant resolution conjecture, proposed in [Rua06], refined
in [BG09,CIT09];

• analytic continuation and a change of variables between GWrel and
PTrel provided by PT/GW correspondence, proposed in [MNOP06a,
MNOP06b];

• the moduli spaces of Q and PTrel are naturally isomorphic and virtual
fundamental classes coincide, [Oko17, Excercise 4.3.22].

Moreover, all of those correspondences are equivalences - the generating
series of invariants of the theories above are equal up to a change of a
variable. The above correspondences were established in series of articles
[BP08,BG09,OP10a,OP10d,OP10b], the culmination of which were [PT19a]
and [PT19b], where they were shown to hold on the level of cohomological
field theories.

Similar correspondences can be formulated for an arbitrary surface S
with one exception - the theory of the type Q does not make sense in the form
it is stated for C2, because, in general, S[n] does not admit a natural GIT
presentation1, despite being constructed with the help of GIT techniques.
On the other hand, the moduli space S[n] is naturally embedded into a

1There is no natural choice of a GIT stack, whose stable locus is S[n], apart from S[n]

itself, which is not interesting for our purposes.
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rigidified2 stack of coherent sheaves Coh(S)(((C∗. More generally, any moduli
space M of Gieseker-stable sheaves on S in a class3 v is naturally embedded
into a rigidified stack of all coherent sheaves in the class v,

M ⊂ Cohr(S)v := Coh(S)v((( C∗.

In Chapter 2 and Chapter 3, we will be interested in quasimaps to a pair

(M,Cohr(S)v),

which we define to be maps from nodal curves to Cohr(S)v which generically
map to M , see Definition 2.2.1. It will be shown that our quasimap theory
is naturally equivalent to the theory of the type PTrel already on the level
of moduli spaces, i.e. the relevant moduli spaces are naturally isomorphic.

We then introduce a notion of ϵ-stability for quasimaps to moduli spaces
of sheaves, which depends on a parameter ϵ ∈ R>0∪{0+,∞}. Moduli spaces
of ϵ-stable qusimaps therefore interpolate between theories of the types GW
and PTrel. We prove that their moduli spaces are proper and admit a perfect
obstruction theory. Using the theory of calibrated tails of Zhou introduced
in [Zho22], we establish a wall-crossing formula which relates invariants for
different values of ϵ ∈ R>0 ∪ {0+,∞}. The result is an equivalence of the
theories of type GW and PTrel in a general context: for all surfaces, all
positive ranks and all curve classes. Moreover, the wall-crossing invariants
are given by the virtual intersection theory of moduli spaces of flags of
sheaves on a surface S. They were thoroughly studied in [Obe21b] in the
case of K3 surfaces.

The correspondence between PTrel and GW was already considered on
the level of invariants, e.g. for (C2)[n] in [OP10c] and more recently for
(Am)[n] in [Liu21]. It was also expected to hold in a more general context.
In particular, the conjectures of Oberdieck–Phandharipande [OP16, Conjec-
ture A] and Oberdieck [Obe19, Conjecture 1] regarding such relation for K3
surfaces served as our main motivating goal.

In Chapter 2, we lay down the foundation of the theory of quasimaps
to moduli spaces of sheaves. While in Chapter 3, we focus on quasimaps to
moduli spaces of sheaves on a K3 surface. Moduli spaces of sheaves on K3
surfaces require a special treatment due to the presence of a holomorphic

2Rigidification amounts to taking quotient of the usual stack Coh(S) by the scaling
C∗-action, the quotient affects the automorphisms of the objects but not the isomorphism
classes of the objects. We refer to Section 2.1.1 for more details.

3By which we mean that sheaves have Chern character v ∈ H∗(S, Q) .
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symplectic form and, consequently, vanishing of standard virtual fundamen-
tal cycles of the relevant enumerative theories. These chapters are based
upon two preprints [Nes21a,Nes21b].

In Chapter 4, we focus on a correspondence between GWorb and GWrel
for an arbitrary smooth target X. Influenced by the ideas from the the-
ory of quasimaps, we introduce a stability, termed ϵ-admissibility, for maps
from nodal curves to X × Cg,N/Mg,N , which depends on the parameter
ϵ ∈ R≤0 ∪ {−∞}. Moduli space of ϵ-admissible maps interpolate between
theories GWorb and GWrel for arbitrary smooth target X. Using the Zhou’s
theory of calibrated tails, we establish a wall-crossing formula relating the
invariants for different values of ϵ ∈ R≤0 ∪ {−∞}, which is completely anal-
ogous to quasimap wall-crossing formulas. The result is an equivalence of
the theories of type GWorb and GWrel for an arbitrary smooth target X.
This wall-crossing can be termed Gromov–Witten/Hurwitz (GW/H) wall-
crossing, because if X is a point, the moduli spaces of ϵ-admissible maps
interpolates between Gromov–Witten and Hurwitz spaces.

Together, quasimap and GW/H wall-crossings can be represented by the
square in Figure 1.1.

quasimap
wall-crossing

GW/H
wall-crossing

GWorb([S(n)])GW(S[n])
C.R.C.

PTrel(S × Cg,N/Mg,N ) GWrel(S × Cg,N/Mg,N )
PT/GW

Figure 1.1: The Square

The square was considered for the first time in [BG09] for S = C2 and
C = P1, and was established with the help of [OP10a, OP10b, BP08]. We,
however, provide a geometric justification for the square. Moreover, the
vertical sides of the square hold in greater generality - quasimap wall-crossing
holds for moduli spaces of sheaves of an arbitrary rank; GW/H wall-crossing
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holds for targets of an arbitrary dimension. Using the wall-crossings, we
establish the following results. In Chapter 2, we prove:

• quantum cohomology of S[n] is determined by relative Pandharipande–
Thomas theory of S × P1, if S is a del Pezzo surface, conjectured
in [Obe19] for K3 surfaces and by Davesh Maulik for del Pezzo surfaces;

In Chapter 3:

• quantum cohomology of S[n] is determined by relative Pandharipande–
Thomas theory of S×P1, if S is a K3 surface, conjectured in [Obe19];

• the wall-crossing part of Igusa cusp form conjecture, conjectured in
[OP10c];

• relative higher-rank/rank-one Donaldson–Thomas correspondence for
S × P1 and S × E, if S is a K3 surface and E is an elliptic curve;

• relative Donaldson–Thomas/Pandharipande–Thomas correspondence
for S × P1, if S is a K3 surface;

In Chapter 4:

• 3-point genus-0 crepant resolution conjecture in the sense of [BG09]
for the pair S[n] and [S(n)], if S is a toric del Pezzo surface.

• the geometric origin of y = −eiu in PT/GW through C.R.C.

Moreover, the quasimap wall-crossing played a crucial role in establishing
a holomorphic anomaly equation for K3[n] in [Obe22].

From the perspective of mathematical physics, the quasimap wall-crossing
is related to so-called dimensional reduction. For example, it was used
in [KW07]. In fact, quasimap wall-crossing for moduli spaces of rank-0
sheaves should be one of the algebro-geometric aspects of [KW07]. This will
be addressed in the forthcoming work - [Nes22]. For more on dimensional
reduction in a mathematical context, we refer to [GLSY18], and in a physical
context - to [BJSV95].

1.2 Quasimaps and sheaves

Let us explain the correspondence between quasimaps to a moduli space of
sheaves on a surface and sheaves on threefolds. For simplicity, let our moduli
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space be S[n] for a smooth surface S over the field of complex numbers C,
satisfying q(S) := h1,0(S) = 0. Then we have a natural embedding

S[n] ⊂ Cohr(S)v,

such that the complement of S[n] is the locus of non-torsion-free sheaves
with Chern character v = (1, 0,−n) ∈ H∗(S,Q).

For the choice of v as above, the stack Cohr(S)v has a canonical universal
family. For a smooth curve C, the relation between torsion-free sheaves on
a threefold S × C and quasimaps from C to the pair (S[n],Cohr(S)v) then
becomes apparent. Indeed, by the moduli problem of sheaves on S, the later
is given by a family of sheaves on S over C, i.e. a sheaf on S × C,

f : C → Cohr(S)v ⇔ F ∈ Coh(S × C),

where F is flat over C. The rigidification of the stack amounts to requiring
the determinant of F to be trivial. The general fiber of F over C is torsion-
free by the definition of a quasimap. Therefore F is torsion-free itself. Being
of rank 1 and having a trivial determinant, F is, in fact, an ideal sheaf
of 1-dimension subscheme. Conversely, any ideal sheaf of 1-dimensional
subscheme defines a quasimap in the above sense.

The degree of a quasimap to a pair (S[n],Cohr(S)v) is defined by evalu-
ating it at determinant line bundles over Cohr(S)v. In this way the degree
is determined by the Chern character of the corresponding family and vice
versa,

degree β of f ⇔ ch(F ) = (n, β̌),

for more about the notation on the right we refer to Section 2.2 and Section
2.3.1.

1.2.1 Stability

We import ϵ-stability from the GIT set-up to ours, Definition 2.2.10. This
will allow us to interpolate between Gromov–Witten theory and stable4

quasimap theory. The idea of ϵ-stability can be summarised as follows. In
the stable quasimap theory we trade rational tails (which are allowed in
Gromov–Witten theory) for base points5(which are prohibited in Gromov–
Witten theory) for the sake of properness of the moduli space. On the
other hand, ϵ-stability allows both rational tails and base points, putting

4By which we mean 0+-stable quasimaps.
5Those points that are mapped outside of the stable locus.
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numerical restrictions on their degrees. The value ϵ ∈ R>0 ∪ {0+,∞} is the
measure of that degree, see Definition 2.2.10. When ϵ = 0+, quasimaps do
not have any rational tails but have base points of all degrees. When ϵ =∞,
quasimaps do not have any base points but have rational tails of all degrees.

In the language of one-dimensional subschemes on threefolds, ϵ-stability
controls non-flatness of a subscheme on S×C over C. Non-flatness arises due
to the presence of non-dominant components or floating points. ϵ-stability
requires that a weighted6 sum of the degree and the Euler characterstics
of either floating points or non-dominant components must not exceed ϵ ∈
R>0∪{0+,∞}. If it becomes larger than ϵ in the limit, then a curve sprouts
a rational tail, like in relative Donaldson–Thomas theory. In addition, ϵ-
stability also controls the degree and the Euler characteristics of components
of the subscheme which lie on rational tails. See Corollary 2.3.1 for more
precise statements.

1.2.2 Properness

Having defined ϵ-stability, we then use the relation between sheaves and
quasimaps to prove Proposition 2.2.21, where it is shown that moduli spaces
of ϵ-stable quasimaps are proper for fine projective moduli spaces of sheaves.
The stack Cohr(S)v is not bounded, but the stability of quasimaps suffices to
guarantee the boundedness of moduli spaces of ϵ-stable quasimaps. However,
it is essential to consider the entire stack Cohr(S)v, because with the increase
of the degree the more of the stack becomes relevant for the properness of
moduli spaces. This is one of the reasons why GIT point-of-view breaks7

down here, at least for a projective surface. Nevertheless, we closely follow
the proof of properness in the GIT set-up, and it roughly consists of two
steps.

The first step is to prove that the number of components of the domain
of a quasimap is bounded after fixing the degree and the genus. This is
achieved with a line bundle on the stack Cohr(S)v which is positive with
respect to quasimaps, see Section 2.2.1. Our construction of such line bundle
crucially exploits the geometry of coherent sheaves, in particular, Langton’s
semistable reduction, [Lan75].

The second step is to show that quasimaps are bounded for a fixed curve.
6The degree is weighted more than the Euler characterstics.
7More precisely, the stack Coh(S) is locally a GIT stack. However, it is unbounded and

(very) singular. Moreover, those GIT charts, through which our quasimaps factor for a
fixed degree, are not stacky quotients of affine schemes. Therefore results from the theory
of GIT quasimaps are not applicable.
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For this, in Lemma 2.2.11 we reverse the Langton’s semistable reduction and
prove that there is bounded amount of choices to obtain a stable quasimap
of a fixed degree from a stable map. Boundedness also implies that families
of sheaves corresponding to quasimaps are stable for a suitable stability. In
Appendix A the converse is shown to be true for moduli spaces of slope
stable sheaves with rk ≤ 2. In the case of S[n], it is not difficult to see, as
sheaves are of rank one, therefore being stable is equivalent to being torsion-
free. We also expect it to be true in general. We then prove a variant of
Hartog’s property for sheaves on families of nodal curves over a discrete
valuation ring (DVR), Lemma 2.2.19, which allows us to conclude the proof
of properness of the moduli spaces in the same way as it is done in the GIT
case, [CKM14, Section 4.3].

On the way we establish a precise relation between quasimaps and sheaves.
Namely, in the case of S[n], the moduli space of stable quasimaps is naturally
isomorphic to a relative Hilbert scheme

Qg,N (S[n], β) ∼= Hilbn,β̌(S × Cg,N/Mg,N ),

where Cg,N → Mg,N is the universal curve over the moduli space of stable
marked curve. More specifically, the moduli space on the right parametrises
triples (I, S × C,x), where I is an ideal on S × C and x is a marking of C.
Stability of such triples consists of the following data:

• the curve (C,x) is prestable, in particular, it does not have rational
tails;

• the subscheme corresponding to the ideal is flat over nodes and marked
points 8;

• the ideal is fixed only by finitely many automorphisms of the curve
(C,x).

The moduli space of ϵ-quasimaps, Qϵg,N (S[n], β), similarly admits a purely
ideal-theoretic formulation, such that some rational tails are allowed and
some subschemes with vertical components are prohibited, as is shown in
Corollary 2.3.1. These moduli spaces therefore provide an interpolation,

Mg,N (S[n], β) oo ϵ // Hilbn,β̌(S × Cg,N/Mg,N ). (1.1)

The higher-rank case admits a similar identification with relative moduli
spaces of sheaves, see Definition 2.2.14.

8This is a usual stability condition in relative Donaldson–Thomas theory, referred to
as predeformability.
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1.2.3 Perverse quasimaps

A variant of the quasimap theory for a moduli space of sheaves is given by
considering the stack of objects in a perverse heart Coh(S)♯. For S[n], one
can therefore consider a perverse pair,

S[n] ⊂ Coh♯r(S)v,

see Section 2.3.2 for precise definitions. The moduli space of stable perverse
quasimaps is isomorphic to the relative moduli stack of stable pairs (we refer
to [PT09] for the theory of stable pairs in enumerative geometry),

Qg,N (S[n], β)♯ ∼= Pn,β̌(S × Cg,N/Mg,N ).

In Section 2.3.3, we discuss the case of S = C2, for which the moduli stack
of perverse sheaves with a framing is naturally isomorphic to the GIT stack
associated to (C2)[n] (including the unstable part) viewed as Nakajima quiver
variety, thereby making GIT quasimaps and moduli-of-sheaves quasimaps
equivalent in this case. This provides a conceptual geometric explanation
for the equivalences of different enumerative theories that were previously
observed on the level of invariants, e.g. in [OP10c].

1.2.4 Obstruction theory

An obstruction theory of Qg,N (S[n], β) is given by the deformation theory of
maps from curves to a derived enhancement of RCoh♯r(S)v of Coh♯r(S)v. The
former exists by [TV07]. In fact, we consider a modification of the standard
enhancement - we take a derived fiber over derived Picard stack, as is ex-
plained in [ST15], to obtain the enhancement, whose virtual tangent bundle
is given by the traceless obstruction theory of sheaves. The relative sheaf-
theoretic obstruction theory of Hilbn,β̌(S×Cg,N/Mg,N ) can be shown to be
isomorphic to the map-theoretic obstruction theory of Qg,N (S[n], β), as is ex-
plained in Section 2.4.2. With this comparison result, we can relate Gromov–
Witten theory and relative Donaldson–Thomas theory via quasimap wall-
crossing.

The moduli space of ϵ-stable quasimaps has all the necessary structure,
such as the evaluation maps, to define invariants via the virtual fundumental
class in the spirit of Gromov–Witten theory,

⟨τm1(γ1), . . . , τmN (γN )⟩M,ϵ
g,β :=

∫
[Qϵ

g,N (M,β)]vir

i=N∏
i=1

ψmi
i ev∗

i γi,

11



where γ1, . . . , γN are classes in H∗(S[n]) and ψ1, . . . , ψN are ψ-classes asso-
ciated to the markings of curves. In the language of ideals on threefolds,
the primary quaismap insertions correspond exactly to relative DT inser-
tions. We similarly define perverse invariants ♯⟨τm1(γ1), . . . , τmN (γN )⟩ϵg,N,β
associated to the pair (S[n],Coh♯r(S)v).

1.2.5 Wall-crossing

Invoking recent results of [Zho22], we then establish the quasimap wall-
crossing. However, for this part of the present work we mostly refer to
Zhou’s article, as his arguments carry over to our case almost verbatim. We
now briefly explain what is meant by the quasimap wall-crossing.

The space R>0 ∪ {0+,∞} of ϵ-stabilities is divided into chambers, in
which the moduli space Qϵg,N (M,β) stays the same, and as ϵ crosses a wall
between chambers the moduli space changes discontinuously. The quasimap
wall-crossing relates invariant for different values of ϵ, it involves certain
DT-type invariants that are defined via the virtual localisation S × P1 with
respect to the C∗-action on P1,

t[x, y] = [tx, y], t ∈ C∗.

These invariants are assembled together in so-called I-functions, which is
defined in Section 2.5.1. By convention we set

eC∗(Cstd) = −z,

where Cstd is the standard representation of C∗ on C. Then in the case of
S[n], the I-function is

I(q, z) = 1 +
∑
β>0

qβev∗

(
[Fβ]vir

eC∗(Nvir)

)
∈ A∗(S[n])[z±]⊗Q Q[[qβ]],

where Fβ ⊂ Hilbn,β̌(S × P1) is the distinguished C∗-fixed component con-
sisting of subschemes which are supported on fibers of S×P1 → S and over
0 ∈ P1, and which are non-flat only over 0 ∈ P1. The evaluation

ev : Fβ → S[n]

is defined by taking the fiber of the subscheme over ∞ ∈ P1. We define

µ(z) := [zI(q, z)− z]+ ∈ A∗(S[n])[z],

12



where [. . . ]+ is the truncation by taking only non-negative powers of z.
To state the wall-crossing formula in the most efficient way, we assemble
invariants in the following generating series

F ϵg (t(z)) =
∞∑
n=0

∑
β

qβ

N !⟨t(ψ1), . . . , t(ψN )⟩ϵg,N,β ,

where t(z) ∈ H∗(X [n],Q)[z] is a generic element, and the unstable terms are
set to be zero.

Theorem. For all g ≥ 1 we have

F 0+
g (t(z)) = F∞

g (t(z) + µ(−z)).

For g = 0, the same equation holds modulo constant and linear terms in t.

The change of variables above is a consequence of the wall-crossing for-
mula across each wall between extremal values of ϵ, see Theorem 2.5.3.
Moreover, by evoking the identification C∗-equivariant sheaves on S × C
with flags of sheaves on S, one can express the wall-crossing invariants in
terms of integrals on moduli spaces of flags of sheaves. For more details on
this relation we refer to [Obe21b], where the case of K3 surfaces is treated,
leading to a beautiful connection between different enumerative theories.

1.2.6 Reduced wall-crossing

The case of moduli spaces of sheaves on a K3 surface requires a special
treatment due to the presence of a holomorphic symplectic form and, conse-
quently, vanishing of the standard virtual fundamental class ofMg,N (S[n], β).
In more concrete terms, the vanishing is due to existence of a surjective co-
section of the obstruction-theory complex E•,

σ : E• ↠ O[−1].

A non-trivial reduced enumerative theory is obtained by taking the cone of
σ. The same phenomenon happens on Donaldson–Thomas side - obstruction
theories of moduli spaces Hilbn,β̌(S × Cg,N/Mg,N ) admit surjective cosec-
tions, therefore reduction is also necessary. In order to compare reduced
Gromov–Witten theory of S[n] and reduced Donaldson–Thomas theory of
S×Cg,N/Mg,N , we have to furnish Qϵg,N (S[n], β) with a surjective cosection
and, consequently, with a reduced obstruction theory - this is the principle
aim of the present work.

13



Surjective cosection

Let S be a K3 surface and M be a projective moduli space of stable sheaves
on S. To give a short motivation for our forthcoming considerations, let us
recall the origin of reduced perfect obstruction theory of Gromov–Witten
theory of M . Since M is hyper-Kähler, for any algebraic curve class β ∈
H2(M,Z) there exists a first-order twistor family

M→ Spec C[ϵ]/ϵ2

of M , for which the horizontal lift of β is of (k, k)-type only at the central
fiber. In particular, the standard GW invariants vanish. To get a non-trivial
enumerative theory, we have to remove obstructions that arise via such de-
formations ofM . However, in the case of ϵ-stable quasimaps, we need twistor
families not only of the moduli space M but of the pair (M,Cohr(S)v). Such
twistor families can be given by non-commutative deformations of S. Let
us now elaborate on this point.

For simplicity, assume M = S[1] = S. A map f : C → S of degree β is
determined by its graph on S×C. Let I be the associated ideal sheaf of this
graph. The deformation theories of I, as a sheaf with fixed determinant,
and f are equivalent. Assuming C is smooth and β ̸= 0, the existence of
a first-order twistor family associated to the class β is equivalent to the
surjectivity of the following composition

H1(TS) ↪→ H1(TS×C) ·At(I)−−−−→ Ext2(I, I)0
σI−→ H3(Ω1

S×C) ∼= C, (1.2)

i.e. to the existence of a class κβ ∈ H1(TS) whose image is non-zero with
respect to the composition above, where σI := tr(∗ · −At(I)) for the Atiyah
class At(I) ∈ Ext1(I, I⊗Ω1

S×C). To see this, recall that the second map gives
the obstruction to deform I along a first-order deformation κ ∈ H1(TS),
while the third map, called semiregularity map [BF03], relates obstructions
of deforming I to the obstructions of

ch2(I) = (−β, 1) ∈ H4(S × C,Z) = H2(S,Z)⊕ Z

to stay of (k, k)-type. With these interpretations in mind, it is not difficult
to grasp that κβ is indeed our first-order twistor family associated to β.

The semiregularity map σI globalises, i.e. there exists a cosection

σ : E• ↠ O[−1]

of the obstruction-theory complex of the moduli space of ideals M on S×C.
This cosection σ is surjective by the existence of first-order twistor fami-
lies, if the second Chern character of ideals is equal to (β, n) for β ̸= 0. By
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localisation-by-cosection technique introduced by Kiem–Li [KL13], the stan-
dard virtual fundamental class therefore vanishes. To make the enumerative
theory non-trivial, we have to consider the reduced obstruction-theory com-
plex Ered := cone(σ)[−1]. Proving that Ered defines an obstruction theory

TM → Ered

is sometimes difficult, instead, [KL13] provides a construction of the reduced
virtual fundamental class without an obstruction theory.

Let us come back to the case of a general moduli space of sheaves M . By
construction of M , the deformation theory of quasimaps to M is equivalent
to the one of sheaves on threefolds of the type S × C, see Proposition 2.4.5
for more details. The obstruction theory of higher-rank sheaves on S × C
also admits a cosection given by the semiregularity map. We want to show
it is surjective. However, already for M = S[n] with n > 1, there is a
problem with the argument presented above. If the degree of f : C → S[n]

is equal to a multiple of the exceptional curve class9, then (1.2) is zero.
Indeed, in this case ch2(I) = (0, n) and the composition (1.2) is equal to
the contraction ⟨−, ch2(I)⟩, which therefore pairs trivially with classes in
H1(TS). The geometric interpretation of this issue is that the exceptional
curve class of S[n] stays Hodge along the commutative deformations of S,
because punctorial Hilbert schemes deform to punctorial Hilbert schemes
under commutative deformations of S. To fix the argument, we have to
consider classes not only in H1(TS), but in a larger space

H0(∧2TS)⊕H1(TS)⊕H2(OS),

i.e. we have to consider non-commutative first-order twistor families to prove
the surjectivity of the semiregularity map.

Strategy

For surjectivity of the semiregularity map, we will largely follow [BF03, Sec-
tion 4] and [MPT10, Proposition 11] with few extra layers of complication.
Firstly, since our threefold S × C might be singular (because C is nodal),
we have to consider Atiyah classes valued in Ω1

S ⊞ ωC ,

Atω(F ) ∈ Ext1(F, F ⊗ (Ω1
S ⊞ ωC)),

9The curve class dual to a multiple of the exceptional divisor associated to the resolution
of singularities S[n] → S(d).
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instead of Ω1
S ⊞ LC = Ω1

S ⊞ Ω1
C , as the latter does not behave well under

degenerations. Chern characters of sheaves are then defined via the Atiyah
class of the form as above. Secondly, after establishing the expected corre-
spondence between degrees of quasimaps and Chern characters of sheaves,
we allow contractions with classes in H0(∧2TS)⊕H1(TS)⊕H2(OS) instead
of only H1(TS), unlike in [BF03, Section 4]. Proposition 3.1.3 is a vast ex-
tension of [MPT10, Proposition 11] and implies surjectivity of the global
semiregularity map, Corollary 3.2.2.

Having constructed a surjective cosection of the obstruction theory, ide-
ally one would like to reduce it. However, due to the involvement of non-
commutative geometry in our considerations, we can reduce the obstruction
theory only under a certain assumption, which is nevertheless not unnatural,
see Proposition B.0.1 for the details. However, we do not use our reduced
obstruction theory for the construction of the reduced virtual fundamental
class due to the limitations of our assumption. We instead choose to work
with the reduced class of [KL13].

1.3 Gromov–Witten/Hurwitz wall-crossing

1.3.1 Analogy

ϵ-stable quasimaps

Let us now illustrate that the theory of quasimaps sheds light on a seemingly
unrelated theme of admissible covers. A map from a nodal curve C,

f : C → S[n],

is determined by its graph
Γf ⊂ S × C.

If the curve C varies, the pair (C,Γf ) can degenerate in two ways:

(i) the curve C degenerates;

(ii) the graph Γf degenerates.

By a degeneration of Γf we mean that it becomes non-flat10 over C as a
subscheme of S × C, which is due to

• floating points;
10A 1-dimensional subscheme Γ ⊂ S × C is a graph, if and only if it is flat.
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• non-dominant components.

Two types of degenerations of a pair (C,Γf ) are related. Gromov–Witten
theory proposes that C sprouts out a rational tail (C degenerates), when-
ever non-flatness arises (Γf degenerates). Donaldson–Thomas theory, on
the other hand, allows non-flatness, since it is interested in arbitrary 1-
dimensional subschemes, thereby restricting degenerations of C to semistable
ones (no rational tails).

A non-flat graph Γ doesn’t define a map to S[n], but it defines a quasimap
to S[n]. Hence the motto of quasimaps:

Trade rational tails for non-flat points and vice versa.

The idea of ϵ-stability is to allow both rational tails and non-flat points,
restricting their degrees. The moduli spaces involved in (1.1) are given by
the extremal values of ϵ.

ϵ-admissible maps

The motto of Gromov–Witten/Hurwitz wall-crossing is the following one:

Trade rational tails for branching points and vice versa.

Let us explain what we mean by making a complete analogy with quasimaps.
Let

f : P → C

be an admissible cover with simple ramifications. If the curve C varies, the
pair (C, f) can degenerate in two ways:

(i) the curve C degenerates;

(ii) the cover f degenerates.

The degenerations of f arise due to

• ramifications of higher order

• contracted components and singular points mapping to smooth locus.

As previously, these two types of degenerations of a pair (C, f) are related.
Hurwitz theory of a varying curve C proposes that C sprouts out ratio-
nal tails, whenever f degenerates in the sense above. On the other hand,
Gromov–Witten theory of a varying curve C allows f to degenerate and
therefore restricts the degenerations of C to semistable ones.
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The purpose of ϵ-admissible maps is to interpolate between these Hurwitz
and Gromov–Witten cases. Let f : P → C be a degree-n map between nodal
curves, such that it is admissible at nodes and g(P ) = h, g(C) = g. We allow
P to be disconnected, requiring then that each connected component maps
non-trivially. Following [FP02], we define the branching divisor

br(f) ∈ Div(C),

it is an effective divisor which measures the degree of ramification away from
nodes and the genera of contracted components of f . If C is smooth, the
br(f) can be given by associating to the 0-dimensional complex

f∗[f∗ΩC → ΩP ]

its support weighted by Euler characteristics. Otherwise, we need to take
the part of the support which is contained in the smooth locus of C.
Remark 1.3.1. To establish that branching divisor behaves well in families
for maps between singular curves, we have to go through an auxiliary (at
least for the purposes of this work) notion of twisted ϵ-admissable map, as
is explained in Section 4.1. The construction of br for families in (4.2) and
(4.3) is the only place where we use twisted maps.

Using branching divisor br, we now can define ϵ-admissibility by the
weighted stability of the pair (C, br(f)), considered in [Has03]. Similar sta-
bility was considered in [Deo14], where the source curve P is allowed to have
more degenerate singularities instead of contracted components. However,
the resulting moduli spaces do not have a perfect obstruction theory.

Definition. Let ϵ ∈ R≤0 ∪ {−∞}. A map f is ϵ-admissible, if

• ωC(e1/ϵ · br(f)) is ample;

• ∀p ∈ C, multp(br(f)) ≤ e−1/ϵ;

One can readily verify that for ϵ = −∞, an ϵ-admissible map is an ad-
missible cover with simple ramifications. For ϵ = 0, an ϵ-admissible map
is a stable11 map, such that the target curve C is semistable. Hence ϵ-
admissibility provides an interpolation between the moduli space of admis-
sible covers with simple ramifications, Admg,h,n, and the moduli space of
stable maps, M•

h(Cg/Mg, n),

Admg,h,n oo ϵ //M
•
h(Cg/Mg, n)

11When the target curve C is singular, by a stable map we will mean a stable map which
is admissible at nodes.
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After introducing markings x = (x1, . . . , xN ) on C and requiring maps to be
admissible over these markings, ϵ-admissibility interpolates between admis-
sible covers with arbitrary ramifications over markings and relative stable
maps. Sometimes it is more convenient to consider normalisation of the
moduli space of admissible covers - the moduli space of stable twisted maps
to BSn, denoted by Kg,N (BSn, h). The interpolation above can therefore
be equally considered as the following one

Kg,N (BSn, h) oo ϵ //M
•
h(Cg,N/Mg,N , n)

In fact, this point of view is more appropriate, if one wants to make an
analogy with quasimaps.

Higher-dimensional case

We can upgrade the set-up even further by adding a map fX : P → X for
some target variety X. This leads us to the study of ϵ-admissibility of the
data

(P,C,x, fX×fC),

which can be represented as follows

P X

(C,x)

fX

fC

In this case, ϵ-admissibility also takes into account the degree of the com-
ponents of P with respect to the map fX , c.f. Definition 4.1.4. If X is an
point, we get the set-up discussed previously.

Let β = (γ, h) ∈ H2(X,Z) ⊕ Z be an extended degree12. For ϵ ∈ R≤0 ∪
{−∞}, we then define

Admϵ
g,N (X(n), β)

to be the moduli space of the data

(P,C,x, fX × fC),

such that g(P ) = h; g(C) = g, |x| = N and the map fX × fC is of degree
(γ, n). The notation is slightly misleading, as ϵ-admissible maps are not

12By a version of Riemann–Hurwitz formula, Lemma 4.1.9, the degree of the branching
divisor br(f) = m and the genus h determine each other, latter we will use m instead of h.
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maps to X(n). The notation is justified by the analogy with quasimaps and
is more natural with respect to our notions of degree of an ϵ-admissible map.

As in this case of X is a point, we obtain the following description of
these moduli spaces for extremal values of ϵ,

M
•
h(X × Cg,N/Mg,N (γ, n)) = Adm0

g,N (X(n), β),
Kg,N ([X(n)], β) ρ−→ Adm−∞

g,N (X(n), β),

such that the map ρ is a virtual normalisation in the sense of (4.12), which
makes two spaces equivalent from perspective of enumerative geometry. We
therefore get an interpolation,

Kg,N ([X(n)], β) oo ϵ //M
•
h(X × Cg,N/Mg,N (γ, n)),

which is completely analogous to (1.1).

1.3.2 Wall-crossing

The invariants of M•
h(X ×Cg,N/Mg,N (γ, n)) that can be related to orbifold

invariants of Kg,N ([X(n)], β) are the relative GW invariants taken with re-
spect to the markings of the target curve C. More precisely, for all ϵ, there
exist natural evaluations maps

evi : Admϵ
g,N (X(n), β)→ IX(n), i = 1, . . . , N.

where IX(n) is a rigidified version of the inertia stack IX(n). We define

⟨τm1(γ1), . . . , τmN (γN )⟩ϵg,N,β :=
∫

[Admϵ
g,N (X(n),β)]vir

i=N∏
i=1

ψmi
i ev∗

i (γi, ),

where γ1, . . . , γN are classes in orbifold cohomologyH∗
orb(X(n)) and ψ1, . . . , ψN

are ψ-classes associated to the markings of the source curves. By Lemma
4.1.17, these invariants specialise to orbifold GW invariants associated to
Kg,N ([X(n)], β) and relative GW invariants associated toM•

h(X×Cg,N/Mg,N (γ, n))
for corresponding choices of ϵ.

To relate invariants for different values of ϵ, we also use the master space
technique developed by Zhou in [Zho22] for the purposes of quasimaps. We
establish the properness of the master space in our setting in Section 2.5.3,
following the strategy of Zhou.
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As in Section 1.2.5, to state compactly the wall-crossing formula, we
define

F ϵg (t(z)) =
∞∑
n=0

∑
β

qβ

N !⟨t(ψ1), . . . , t(ψN )⟩ϵg,N,β ,

where t(z) ∈ H∗
orb(X(n),Q)[z] is a generic element, and the unstable terms

are set to be zero. There exists an element

µ(z) ∈ H∗
orb(X(n))[z]⊗ Q[[qβ]],

defined in Section 4.3.1 as a truncation of an I-function. The I-function
is in turn defined via the virtual localisation on the space of stable maps
to X × P1 relative to X × {∞}. The element µ(z) provides the change of
variables, which relates generating series for extremal values of ϵ.

Theorem. For all g ≥ 1, we have

F 0
g (t(z)) = F−∞

g (t(z) + µ(−z)).

For g = 0, the same equation holds modulo constant and linear terms in t.

The change of variables above is the consequence of a wall-crossing for-
mula across each wall between extremal values of ϵ, see Theorem 4.3.3.

1.4 Application

1.4.1 Applications of the quasimap wall-crossing

Enumerative geometry of del Pezzo[n]

In Section 2.5.4, the wall-crossing invariants of S[n] for a del Pezzo surface
S are explicitly computed. To sate the result, recall that using Nakajima
operators, for n > 1 we have the following identification

H2(S[n],Z) ∼= H2(S,Z)⊕ Z · A,

where A is the exceptional curve class of the Hilbert–Chow morphism

S[n] → S(n).

Invoking the identification above, we assemble invariants in classes

(γ,mA) ∈ H2(S,Z)⊕ Z · A

21



in the following generating series

♯⟨γ1, . . . , γN ⟩S
[n],ϵ

0,γ :=
∑
m

♯⟨γ1, . . . , γN ⟩S
[n],ϵ

0,(γ,mA)y
m.

Assuming 2g − 2 +N ≥ 0, the quasimap wall-crossing then gives us

♯⟨γ1, . . . , γN ⟩S
[n],0+

0,γ = (1 + y)c1(S)·γ · ♯⟨γ1, . . . , γN ⟩S
[n],∞

0,γ .

After applying identification of moduli spaces of perverse quasimaps with
moduli spaces of stable pairs on S × P1, the above result relates the quan-
tum cohomology of S[n] to the ring, whose structure constants are given by
Pandharipande–Thomas theory of S×P1. The change of variables as above
was predicted13 by Davesh Maulik.

Enumerative geometry of K3[n]

In [Obe21b], the wall-crossing terms are shown to be virtual Euler numbers
of certain Quot schemes, which are computed for S[n], if S is a K3 surface.
Therefore, using the results of [Obe21b] together with reduced quasimap
wall-crossing for S[n], we obtain the wall-crossing part of the Igusa cusp
form conjecture [OP16, Conjecture A], thereby completing the proof of the
conjecture along with [OS20] and [OP18].

Genus-0 3-point Gromov–Witten theory of S[n] is shown to be equivalent
to Pandharipande–Thomas theory of S × P1 with three relative vertical
insertions. Together with PT/GW correspondence of [Obe21a], this confirms
the conjecture proposed in [Obe19].

In [Obe22], a holomorphic anomaly equation is established for S[n] for
genus-0 GW invariants with at most 3 markings. The proof crucially uses
the quisimap wall-crossing, which relates genus-0 GW invariants of S[n] to
PT invariants of S × P1 and then to GW invariants of S × P1 by [Obe21a].

Higher-rank/rank-one DT wall-crossing for K3× C

Assume M is a moduli space on a K3 surface S, which satisfies various
assumptions of Chapter 2 which are listed in Section 3.2.1. Since M is
deformation equivalent to S[n], we can prove certain higher-rank/rank-one
DT wall-crossing statements for threefolds S ×C, using the quasimap wall-
crossing on both sides, as it is represented in Figure 1.2.

13Communicated to the author by Georg Oberdieck.
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DTrel,rk>1(S × Cg,N/Mg,N ) DTrel,rk=1(S × Cg,N/Mg,N )
DTrk>1/DTrk=1

Figure 1.2: Higher-rank/rank-one DT

If g = 0, N = 3, the wall-crossing is trivial. We therefore obtain that
higher-rank invariants with three relative vertical insertions associated to
moduli spaces of sheaves which are stable at a general fiber, exactly match
rank-one invariants on S × P1,

DTrel,rk=1(S × P1/S0,1,∞) = GW0,3(S[n]) = DTrel,rk>1(S × P1/S0,1,∞),

where S0,1,∞ = S × {0, 1,∞} ⊂ S × P1. We want to stress that equality
above is equality of invariants, not just generating series.

However, the result is not optimal, since stability of sheaf at a general
fiber over a curve is shown to be equivalent to stability of the sheaf only
under some assumptions. Namely, as is shown in Proposition A.0.4, we
require rk ≤ 2 and M to be a projective moduli of slope stable sheaves.
However, if the assumptions of Proposition A.0.4 are satisfied, we really
get the equality of standard DT invariants associated to moduli of stable
sheaves. An example of such M is discussed in Remark 3.2.1.

In the case of S ×E, where E is an elliptic curve, we get a wall-crossing
statement for absolute invariants and equality of certain relative invariants.

DT/PT correspondence for K3× C

Using both standard and perverse quasimap wall-crossings, we can reduce
the DT/PT correspondence for a relative geometry of the form

S × Cg,N →Mg,N

to the DT/PT correspondence of wall-crossing invariants, as it is illustrated
in Figure 1.3.
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Figure 1.3: DT/PT

As before, if g = 0, N = 3, then the wall-crossing is trivial. We therefore
obtain the following

DTrel,rk=1(S × P1/S0,1,∞) = GW0,3(S[n]) = PTrel,rk=1(S × P1/S0,1,∞).

Again, equality above is equality of invariants, not just generating series.
Such equality can be reasonably expected due to the nature of reduced vir-
tual fundamental classes. In general, one can only expect equality of certain
generating series, which also accounts for the wall-crossing, as it is con-
jectured in [PT09, Conjecture 3.3] for Calabi–Yau threefolds and proven
in [Bri11, Theorem 1.1].

Note that we are in the setting of non-Calabi-Yau relative geometry,
hence the techniques of wall-crossings in derived categories of [KS08] and
[JS12] cannot be applied to prove wall-crossing statements as above.

1.5 Applications of Gromov-Witten/Hurwitz wall-
crossing

1.5.1 The square

For a del Pezzo surface S, we compute the wall-crossing invariants in Section
4.4. A computation for analogous quasimap wall-crossing invariants is given
in Proposition 2.5.10.

The wall-crossing invariants can easily be shown to satisfy PT/GW.
Hence when both ϵ-stable quasimap wall-crossing and ϵ-admissable wall-
crossing are applied, C.R.C. becomes equivalent to PT/GW. For precise state-
ments of both in this setting we refer to Section 4.5.1. This is expressed in
terms of the square of theories in Figure 1.1.

In [PP17], PT/GW is established for S×P1 relative to S×{0, 1,∞}, if S
is toric. Alongside with [PP17], the square therefore gives us the following
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result.

Theorem. If S is a toric del Pezzo surface, g = 0 and N = 3, then C.R.C.
(in the sense of [BG09]) holds for S[n] for all n ≥ 1 and in all classes.

Previously, the theorem above was established for n = 2 and S = P2

in [Wis11, Section 6]; for an arbitrary n and an arbitrary toric surface, but
only for exceptional curve classes, in [Che13]; an arbitrary n and a simply
connected S, but only for exceptional curve classes , in [LQ16] and in sense
of [Rua06]. If S = C2, C.R.C. was proven for all genera and any number of
markings on the level of cohomological field theories in [PT19b]. If S = An,
it was proven in genus-0 case and for any number of markings in [CCIT09]
in the sense of [CIR14]. Crepant resolution conjecture was also proved for
resolutions other than those of Hilbert-Chow type. The list is too long to
mention them all.

The theorem can also be restated as an isomorphism of quantum coho-
mologies,

QH∗
orb(S(n)) ∼= QH∗(S[n]),

we refer to Section 4.5.2 for more details. The result is very appealing,
because the underlying cohomologies with classical multiplications are not
isomorphic for surfaces with c1(S) ̸= 0, but the quantum cohomologies are.
In particular, the classical multiplication on H∗

orb(S(n)) is a non-trivial quan-
tum deformation of the classical multiplication on H∗(S[n]).

We want to stress that C.R.C. should be considered as a more funda-
mental correspondence than PT/GW, because it relates theories which are
closer to each other. Moreover, as [BG09] points out, C.R.C. explains the
origin of the change of variables,

y = −eiu, (1.3)

it arises due to the following features of C.R.C.,

(i) analytic continuation of generating series from 0 to -1;

(ii) factor i in the identification of cohomologies of S[n] and S(d);

(iii) the divisor equation in GW(S[n]);

(iv) failure of the divisor equation in GWorb([S(n)]).

More precisely, (i) is responsible for the minus sign in (1.3); (iii) and (iv) are
responsible for the exponential; (ii) is responsible for i in the exponential.
More conceptual view on C.R.C. is presented in works of Iritani, e.g. [Iri09].
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1.5.2 LG/CY vs C.R.C

We will now draw certain similarities between C.R.C. and the theory of
Landau-Ginzburg/Calabi-Yau correspondence (LG/CY). For all the details
and notation on LG/CY, we refer to [CIR14].

LG/CY consists of two types of correspondences - A-model and B-model
correspondences. The B-model correspondence is the statement of equiv-
alence of two categories - matrix factorisation categories and derived cate-
gories. While the A-model correspondence is the statement of equality of
generating series of certain curve-counting invariants after an analytic con-
tinuation and a change of variables. Moreover, there exists a whole family of
enumerative theories depending on a stability parameter ϵ ∈ R. For ϵ ∈ R>0
it gives the theory of GIT quasimaps, while for ϵ ∈ R≤0 it gives FJRW
(Fan-Jarvis-Ruan-Witten) theory. GLSM (Gauged Linear Sigma Model)
formalism, defined mathematically in [FJR18], allows to unify quasimaps
and FJRW theory. The analytic continuation occurs, when one crosses the
wall at ϵ = 0.

In the case of C.R.C. we have a similar picture. B-model correspondence
is given by an equivalence of categorises, Db(S[n]) and Db([S(n)]). A-model
correspondence is given by an analytic continuation of generating series and
subsequent application of a change of variables, as it is stated in Section 4.5.
There also exist a family of enumerative theories depending on a parameter
ϵ ∈ R. For ϵ ∈ R>0, it is given by quasimaps to a moduli space of sheaves,
while for ϵ ∈ R≤0 it is given by ϵ-admissable maps. It would be interesting
to know, if a unifying theory exists in this case (like GLSM in LG/CY).

B-model A-model

LG/CY Db(XW ) ∼= MF(W ) GW(XW ) ϵ≤0←−−|0
ϵ>0−−→ FJRW(Cn,W )

C.R.C. Db(S[n]) ∼= Db([S(n)]) GW(S[n]) ϵ≤0←−−|0
ϵ>0−−→ GWorb([S(n)])

Table 1.1: LG/CY vs C.R.C

The above comparison is not a mere observation about structural simi-
larities of two correspondences. In fact, both correspondences are instances
of the same phenomenon. Namely, in both cases there should exist Kähler
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moduli spaces, MLG/CY and MC.R.C., such that two geometries in question
correspond to two different cusps of these moduli spaces (e.g. S[n] and [S(n)]
correspond to two different cusps of MC.R.C.). B-models do not vary across
these moduli spaces, hence the relevant categories are isomorphic. On the
other hand, A-models vary in the sense that there exist non-trivial global
quantum D-modules, DLG/CY and DC.R.C., which specialise to relevant enu-
merative invariants around cusps. For more details on this point of view we
refer to [CIR14] in the case of LG/CY, and to [Iri10] in the case of C.R.C.

1.6 Notation and conventions

We work over the field of complex numbers C. Given a variety X, by [X(n)]
we denote the stacky symmetric product by [Xn/Sn] and by X(n) its coarse
quotient. By X [n] we denote the Hilbert scheme of length-n points. For a
partition µ of n, let ℓ(µ) denote the length of µ and age(µ) = n− ℓ(µ).

For a possibly disconnected curve C, we define g(C) = 1− χ(OC).
After fixing an ample line bundle OS(1) on a surface S, for a sheaf F we

define deg(F ) to be the degree of F with respect to the OS(1). By a general
fiber of a sheaf F on S ×C we will mean a fiber of F over some dense open
subset of C.

By convention we set eC∗(Cstd) = −z, where Cstd is the standard repre-
sentation of C∗ on a vector space C.

Let N be a semigroup and β ∈ N be its generic element. By Q[[qβ]] we
will denote the (completed) semigroup algebra Q[[N ]]. In our case, N will be
various semigroups of effective curve classes.
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Chapter 2

Quasimaps to moduli spaces
of sheaves

2.1 Stack of coherent sheaves

2.1.1 Rigidification

Let S be a smooth projective surface. Let OS(1) ∈ Pic(S) be a very ample
line bundle and v ∈ Knum(S) be a class, such that

• rk(v) > 0;

• there are no strictly Gieseker semistable sheaves.

We will frequently identify v with its Chern character. Let

Coh(S)v : (Sch/C)◦ → (Grpd).

be the stack of coherent sheaves on S in the class v. We will usually drop v
from the notation, as we will be working with a fixed class, unless we want
to emphasise some particular choice of the class. There is a locus of Gieseker
OS(1)-stable sheaves in the class v,

M ↪→ Coh(S),

which is a C∗-gerbe over a projective scheme M . The C∗-automorphisms
come from multiplication by scalars. In fact, we can quotient out C∗-
automorphisms of the entire stack Coh(S), as explained in [AGV08, Ap-
pendix C], thereby obtaining a rigidified stack

Cohr(S) := Coh(S)((( C∗.
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A B-valued point of Cohr(S) can be represented by a pair (G, ϕ), where G

is a C∗-gerbe over B and ϕ : G → Coh(S) is a C∗-equivariant map (here we
will ignore 2-categorical technicalities, see [AGV08, Appendix C.2] for more
details). The moduli space M canonically embeds into the stack Cohr(S),
giving rise to the following square

M
� � //

C∗−gerbe
��

Coh(S)

C∗−gerbe
��

M �
�

// Cohr(S)

Now let (X,X) be one of the following pairs, (M,Cohr(S)) or (M,Coh(S)).
Abusing the notation, we define

Pic(X) := lim
U⊂X

Pic(U),

where the limit is taken over substacks of finite type. The stack Coh(S) is
not of finite type, therefore this definition of Picard group might not agree
with the standard one. However, for our purposes it is the most suitable
one. We will refer to the elements of Pic(X) as line bundles. The need for
this definition of the Picard group is justified in Remark 2.1.1.

2.1.2 Determinant line bundles

Let F be the universal sheaf on S × Coh(S), then for each U ⊂ Coh(S) of
finite type we have naturally defined maps

λ|U : K0(S)
p!

S−→ K0(S × U)
·[F|U]
−−−→ K0(S × U) pU!−−→ K0(U) det−−→ Pic(U)

which are compatible with respect to inclusions U′ ⊂ U, hence we have the
induced map

λ : K0(S)→ Pic(Coh(S)).

Remark 2.1.1. The construction of λ|U requires a locally free resolutions of
F|U, the ranks of terms of the resolution grow with U. Hence determinant
line bundles cannot be easily defined as honest line bundles on Coh(S), but
only as elements of Pic(Coh(S)) in the sense of our definition of Pic(Coh(S)).

In general, the C∗-weight of the line bundle λ(u) is equal to χ(v · u),

wC∗(λ(u)) = χ(v · u),
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so there are two types of classes that we will be of interest to us. A class
u ∈ K0(S), such that χ(v · u) = 1, gives a trivilisation of the C∗-gerbe

Coh(S)→ Cohr(S)

over each substack of finite type, or, in other words, a universal family on
Cohr(S). While for a class u ∈ K0(S), such that χ(u,v) = 0, the line bundle
λ(u)|U descends to U((( C∗. Let

Kv(S) := v⊥ ⊂ K0(S),

then λ restricted to Kv(S) descends to a map to Pic(Cohr(S)),

λv : Kv(S)→ Pic(Cohr(S)).

The class v will be frequently dropped from the notation in λv, when it is
clear what stack is considered. We define

Picλ(Coh(S)) := Im(λ), Picλ(Cohr(S)) := Im(λv).

There exists a particular class of elements in Kv(S), which deserve a special
mention and will be used extensively later,

ui := −rk(v) · hi + χ(v · hi) · [Ox],

Li := λ(ui),

where Ox is a structure sheaf of a point x ∈ S, and h = [OH ] for a hyperplane
H ∈ |OS(1)|. More generally, let us fix a Q-basis {L1, . . . , Lρ(S)} of NS(S)
consisting of ample Q-line bundles, such that Li’s and OS(1) are in the same
chamber of Gieseker stabilities. Let {L1,1, . . . ,L1,ρ(S)} be the corresponding
determinant Q-line bundles defined in the same way as L1. The importance
of these classes is due to the following theorem.

Theorem 2.1.2. The line bundles L1 and L0 ⊗ Lm1 are nef and ample
respectively on fibers of M → Pic(S) for all m ≫ 0. The same holds for
L1,ℓ. Moreover, their restrictions to the fibers are independent of a point
x ∈ S.

Proof. See [HL97, Chapter 8].
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2.2 Quasimaps

From now on, we assume that

q(S) := h1,0(S) = 0.

The case of surfaces with q(S) ̸= 0 is discussed in Section 2.2.5.

Definition 2.2.1. A map f : (C,x) → X is a quasimap to (X,X) of genus
g and of degree β ∈ Hom(Picλ(X),Z) if

• (C,x) is a marked nodal connected curve of genus g,

• L ·f C := deg(f∗L) = β(L) for all L ∈ Picλ(X);

• |{p ∈ C| f(p) ∈ X \X}| <∞.

We will refer to the set {p ∈ C| f(p) ∈ X \X} as base points. A quasimap
f is prestable if

• {t ∈ C| f(t) ∈ X \X} ∩ {nodes,x} = ∅.

We define
Eff(X,X) ⊂ Hom(Picλ(X),Z)

to be the cone of classes of quasimaps.

Let
Λ :=

⊕
p

Hp,p(S).

be the (p, p)-part of the cohomology of the surface S. For a smooth con-
nected curve C, we then have a Künneth’s decomposition of (p, p)-part of
the cohomology of the threefold S × C,⊕

p

Hp,p(S × C) = Λ⊗H0(C,C)⊕ Λ⊗H2(C,C) = Λ⊕ Λ. (2.1)

Let f : C → Coh(S) be a quasimap of degree β. By the definition of Coh(S),
the quasimap f is given by a sheaf F on S × C which is flat over C. The
Chern character of F has two components with respect to the decomposition
in (2.1),

ch(F ) = (ch(F )f , ch(F )d) ∈ Λ⊕ Λ,

where the subscripts ”f” and ”d” stand for fiber and degree, respectively. As
the notation suggests,

ch(F )f = v,
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which can be seen by pulling back ch(F ) to a fiber over C and using the
flatness of F . Consider now the linear extension

Eff(M,Coh(S))→ Λ, β 7→ ch(F )d (2.2)

of the map given by associating the degree part of the Chern character to
the degree of the quasimap on a smooth curve. By relating β to ch(F )d in
more explicit terms in the following lemma, we show that the association
above is indeed well-defined, i.e. a degree β cannot have a presentation by
two different ch(F )d’s. Later, in Corollary 2.2.13, it will be shown that
the map is even injective, i.e. the degree of f and the Chern character of
the corresponding family F determine each other, thereby justifying the
subscript ”d” in ch(F )d.

Lemma 2.2.2. The map (2.2) is well-defined.

Proof. By the functoriality of the determinant line bundle construction,

β(λ(u)) = deg(λF (u)),

where λF (u) is the determinant line bundle associated to the family F and
a class u ∈ K0(S). Using Grothendieck–Riemann–Roch and projection for-
mulae we obtain

deg(λF (u)) =
∫
C

ch(pC!(p!
Su · [F ]))

=
∫
S×C

ch(p!
Su · [F ]) · p∗

StdS

=
∫
S

ch(u) · pS∗ch(F ) · tdS

=
∫
S

ch(u) · ch(F )d · tdS .

Now let βΛ : Λ → Q be the descend of (β ◦ λ)Q : K0(S)Q → Q to Λ via
Chern character,

Λ Q

K0(S)Q

βΛ

ch (β◦λ)Q

which exists by the above formula for the degree of a determinant line bun-
dle. The formula also shows that the descend βΛ and β determine each
other. We thereby obtain an expression of ch(F )d in terms of βΛ,

ch(F )d = β∨
Λ · td−1

S ,
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where β∨
Λ is the dual of βΛ with respect to the cohomological intersection

pairing on Λ. Using non-degeneracy of the intersection pairing over alge-
braic classes and the above expression of ch(F )d, we obtain that (2.2) is
indeed well-defined. Moreover, if ch(F )d = 0, then β = 0.

Definition 2.2.3. Following the notation of the proof of Lemma 2.2.2, we
define

β̌ := β∨
Λ · td−1

S .

Note that
β̌ =

∑
i

ch(Fi)d,

where Fi are restrictions of F to the connected components of the normal-
isation of C. If C is smooth, then we obtain an expression of the Chern
character of the family F ,

ch(F ) = (v, β̌) ∈ Λ⊕ Λ,

which can also be considered as a definition of ch(F ) in the case of a singular
curve C.
Remark 2.2.4. Another justification for the use of Picλ(X) is the following
one: λQ|M is surjective for Hilbert schemes of points of surfaces with q(S) =
0, all projective moduli of stable sheaves on a K3 surface and expected
to be surjective for all projective moduli of stable sheaves over surfaces
with q(S) = 0 (see e.g. [HL97, Theorem 8.1.6]). Heuristically speaking,
we care only about curve classes on M , we therefore can throw away some
obscure classes on X, leaving Hom(Picλ(X),Z), which is good enough for
our purposes.

2.2.1 Positivity

The aim of this section is prove the positivity for certain line bundles -
Proposition 2.2.7. We start with the following result, which is inspired
by [BM14, Proposition 4.4].

Lemma 2.2.5. Let F be the sheaf on S × C associated to a map f : C →
Coh(S), then

L1 ·f C = deg(v)rk(pS∗F )− rk(v)deg(pS∗F ),
L0 ·f C = χ(v)rk(pS∗F )− rk(v)χ(pS∗F ),

where deg(v) is the degree of v with respect to OS(1).
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Proof. By the proof of Lemma 2.2.2,

Li ·f C = χ(ui · pS![F ]) for i = 0, 1.

The claim then follows from the following computation

χ(u1 ·B) = −rk(v)χ(B · h) + χ(v · h)χ([Opt] ·B)

= −rk(v)(deg(B)− rk(B)
2 H2 − rk(B)

2 H · c1(S))

+ (deg(v)− rk(v)
2 H2 − rk(v)

2 H · c1(S))rk(B)

= rk(B) deg(v)− rk(v) deg(B);
χ(u0 ·B) = −rk(v)χ(B) + χ(v)χ([Opt] ·B)

= χ(v)rk(B)− rk(v)χ(B).

The relation between quasimaps to Coh(S) and sheaves on S × C is the
central for our study of quasimaps. Since we are interested in quasimaps to
the rigidified stack Cohr(S), we would also like to extend that relation to
this setting, which is done in the following lemma.

Lemma 2.2.6. Any quasimap f : C → Cohr(S) admits a lift to Coh(S).
Different lifts are related by tensoring the corresponding sheaf on S×C with
a line bundle from C.

Proof. By [AGV08, Appendix C.2] a map C → Cohr(S) is given by a
BC∗-gerbe G over C with an C∗-equivariant map ϕ : G→ Coh(S). It can be
checked that

H2
fppf(C,O∗

C) = H2
ét(C,O∗

C) = 0

by passing to the normalisation of C and using the exponential sequence.
Therefore G is a trivial gerbe. Choose some trivialisation

G ∼= C ×BC∗.

By the moduli problem of sheaves a C∗-equivariant map ϕ : C × BC∗ →
Coh(S) is given by a C∗-equivariant sheaf F on S × C such that the C∗-
equivariant structure is the one given by multiplication by scalars applied
to the sheaf F viewed as a sheaf on S × C. In particular, C∗-equivariant
structure is unique and determined by F alone. The sheaf F defines a lift
f : C → Coh(S). Given another lift f ′ : C → Coh(S) with an associated sheaf
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F ′ on S×C, then by the properties the rigidification (see [AGV08, Appendix
C.2]) there exists an automorphism of the trivial gerbe

ψ : C ×BC∗ ∼= C ×BC∗,

such that f ∼= f ′◦ψ, therefore (idS×ψ)∗F ′ ∼= F . Automorphisms of a trivial
gerbe admit the following description

AutC(G) ∼= Pic(C), ψ 7→ Lψ,

which can be easily proven after recalling that maps to BC∗ are given by
line bundles. Moreover, the pullback of a sheaf by ψ is isomorphic to the
sheaf tensored by Lψ. Hence we obtain that

F ∼= (id× ψ)∗F ′ ∼= F ′ ⊗ p∗
CLψ.

Proposition 2.2.7. Let f : C → Cohr(S) be a prestable quasimap. Fix v
and L1,ℓ ·f C for all ℓ. Then there exists m0 ∈ N such that for all m ≥ m0
the quasimap is non-constant, if and only if

L0 ⊗ Lm1 ·f C > 0.

The same holds for all subcurves C ′ and the induced maps for the same
choice of m.

For the illustration of the method, which will be used to prove the claim,
we will firstly prove that

L1 ·f C ≥ 0 (2.3)
under the same assumption. The proof of the inequality (2.3) also contains
the essential ingredients for the proof of the proposition.

Warm-up for Proposition 2.2.7. By Lemma 2.2.6 any f : C → Cohr(S)
can be lifted to Coh(S) and intersections with Li’s are independent of the
lift. Let F be a family of sheaves on S×C associated to a lift of f . Assume
for simplicity that f has one base point b ∈ C. By Langton’s semistable
reduction, [Lan75], the sheaf F can be modified at a point b to a sheaf
which is stable over b and is isomorphic to F away from S× b ⊂ S×C. The
modification is given by a finite sequence of short exact sequences

0→ F 1 →F 0 → Q1 → 0,
...

0→ F k →F k−1 → Qk → 0,
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where F 0 = F , the sheaf F k is stable over b ∈ C and Qi is the maximally
destabilising quotient sheaf of F i−1

b (if F i−1
b has torsion, then Qi is the

quotient by the maximal torsion subsheaf). In particular, for all i

deg(v)rk(Qi)− rk(v)deg(Qi) ≥ 0. (2.4)

Applying derived pushforward pS∗ to each sequence, we get distinguished
triangles

pS∗(F i)→ pS∗(F i−1)→ Qi −→ .

By Lemma 2.2.5 we obtain that

L1 ·f i−1 C = L1 ·f i C + deg(v)rk(Qi)− rk(v)deg(Qi), (2.5)

where f i is the quasimap associated to F i. The line bundle L1 is nef on M
by Theorem 2.1.2 and the assumption q(S) = 0, therefore

L1 ·fk C ≥ 0,

because fk does not have base points. The property of L1 stated in (2.3)
now follows from (2.4) and (2.5).

Proof of Proposition 2.2.7. We now deal with the claim in the proposi-
tion. By Lemma 2.2.5

L0 ⊗ Lm1 ·f C = L0 ⊗ Lm1 ·fk C

+m
∑
i

deg(v)rk(Qi)− rk(v)deg(Qi) +
∑
i

χ(v)rk(Qi)− rk(v)χ(Qi),

(2.6)

therefore for L0 ⊗Lm1 ·f C to be positive for some big enough m, the terms

χ(v)rk(Qi)− rk(v)χ(Qi)

have to be bounded from below. We will now split our analysis, depending
on whether (2.4) is positive or zero.

Consider firstly the case of Qi’s, such that

deg(v)rk(Qi)− rk(v)deg(Qi) > 0.

We plan to use Lemma 2.2.8. The sheaves Qi sit in filtrations (see e.g. [HL97,
Theorem 2.B.1]) inside Fmb ,

Q1 ⊂ Q2 ⊂ · · · ⊂ Qm ⊂ Fmb . (2.7)

36



Since Fmb is stable, we have a bound for µmax(Qi),

µmax(Qi) ≤ µ(v).

By (2.4) and (2.5) the degrees of such Qi can be bounded,

deg(v)rk(Qi)− L1 ·f C
rk(v) ≤ deg(Qi) < deg(v)rk(Qi)

rk(v) , (2.8)

we therefore get a uniform bound on deg(Qi) for all such Qi depending on
the sign of deg(v),

−L1 ·f C
rk(v) ≤ deg(Qi) < deg(v), if deg(v) ≥ 0 ,

deg(v)− L1 ·f C
rk(v) < deg(Qi) < deg(v)

rk(v) , if deg(v) < 0.

If ρ(S) > 1, then we can get the similar bounds for L1,ℓ’s for all ℓ, thereby
bounding c1(Qi). Hence by Lemma 2.2.8 we obtain that

ch2(Qi) < A′,

where the constant A′ depends only on rk(v),deg(v) and L1,ℓ ·f C, we there-
fore can also uniformly bound χ(Qi),

χ(Qi) < A.

We conclude that

χ(v)rk(Qi)− rk(v)χ(Qi) > χ(v)− A · rk(v), if χ(v) ≥ 0;
χ(v)rk(Qi)− rk(v)χ(Qi) > χ(v)rk(v)− A · rk(v), if χ(v) < 0.

Consider now the case of Qi’s, such that

deg(v)rk(Qi)− rk(v)deg(Qi) = 0.

By (2.7) and stability of Fmb it must be that

χ(v)rk(Qi)− rk(v)χ(Qi) > 0.

Now let m0 ∈ N be such that L0 ⊗ Lm0
1 is ample on M (possible by

Theorem 2.1.2) and

m0 · (deg(v)rk(Qi)− rk(v)deg(Qi)) > A · rk(v)− χ(v)
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for all Qi, such that deg(v)rk(Qi)−rk(v)deg(Qi) > 0, if χ(v) ≥ 0. Similarly,
if χ(v) < 0. By (2.6), the proposition then follows for quasimaps with one
base point. Note that all the bounds do not depend on a base point b ∈ C
and therefore are the same for all base points, hence we can safely drop the
assumption that there is one base point.

The dependence of m0 on v and L1,ℓ ·f C follows from bounds presented
in (2.8). The fact, that positivity of the line bundle L0 ⊗ Lm1 holds for all
subcurves for the same choice of m, follows from the proof itself.

Lemma 2.2.8. Let F be a torsion-free sheaf of rank r on a smooth projective
surface S with Picard rank ρ(S) = 1 , such that µmax(F ) < B. Then ch2(F )
is bounded from above by a number that depends only on r, c1(F ) and B.

The same holds, if ρ(S) ̸= 1 and we view µmax(F ) and B as functions
on a neighbourhood U ⊂ Amp(S) around OS(1).

Proof. We present the proof for ρ(S) = 1, the case of ρ(S) ̸= 1 follows
from the same argument. Let

0 = HN0(F ) ⊂ HN1(F ) ⊂ · · · ⊂ HNk(F ) = F

be the Harder-Narasimhan filtration of F . Slopes of the graded pieces of the
filtration satisfy

µmax(F ) = µ(grHN1 ) ≥ · · · ≥ µ(grHNk ),

therefore
deg(grHNi ) < B · rk(grHNi )

and

deg(grHNi ) = deg(F )−
∑
j ̸=i

deg(grHNj ) > deg(F )− B ·
∑
j ̸=i

rk(grHNj )

= deg(F )− B · (r − rk(grHNi )).

Hence we get a uniform bound for all i,

deg(F )− B · r < deg(grHNi ) < B · r, if B ≥ 0;
deg(F ) < deg(grHNi ) < 0, if B < 0,

which implies that c1(grHNi ) is uniformly bounded, since ρ(S) = 1. So there
exists A′ ∈ Z, which depends only on B, r and c1(F ), such that

c1(grHNi )2 < A′, for all i,
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then by semistablity of grHNi and Bogomolov-Gieseker inequality

ch2(grHNi ) ≤ c1(grHNi )2/2rk(grHNi ),

so we get

ch2(grHNi ) < A =
{

A′ if A′ ≥ 0
A′/2r if A′ < 0

Finally, by ch2(F ) = ∑ ch2(grHNi ) and by the fact that there are at most r
pieces in the filtration, we get the desired bound

ch2(F ) < r · A.

2.2.2 Stable quasimaps

For all β ∈ Eff(M,Cohr(S)), we fix once and for ever a line bundle1,

Lβ := L0 ⊗ Lm1 ∈ Picλ(Cohr(S)),

for some m ∈ N, such that L0 ⊗ Lm1 satisfies the conclusion of Proposition
2.2.7.

Given a quasimap f : C → Cohr(S) of a degree β and a point p ∈ C in
the regular locus of C. By Langton‘s semistable reduction, we can modify
the quasimap f at the point p, to obtain a quasimap

fp : C → Cohr(S),

which maps to the stable locus M at p (if p is not a base point, then fp =
f). In other words, because M is proper and C is spectrum of a discrete
valuation ring at p, one can eliminate the indeterminacy of f at p, if we view
it as a rational map to M . We refer to fp as stabilisation of f at p.

Definition 2.2.9. We define the length of a point p ∈ C to be

ℓ(p) := Lβ ·f C − Lβ ·fp C.

By the proof of Proposition 2.2.7, ℓ(p) ≥ 0; and ℓ(p) = 0, if and only if p is
not a base point.

1Such line bundle indeed depends on β, because the conclusions of Proposition 2.2.7
depend on β via the intersection numbers L1,ℓ ·f C for all ℓ.
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In what follows, by 0+ we will denote a number A ∈ R>0, such that
A≪ 1.

Definition 2.2.10. Given ϵ ∈ R>0∪{0+,∞}, a prestable quasimap f : (C,x)→
Cohr(S) of degree β is ϵ-stable, if

(i) ωC(x)⊗ f∗Lϵβ is positive;

(ii) ϵℓ(p) ≤ 1 for all p ∈ C.

We will refer to 0+-stable and ∞-stable quasimaps as stable quasimaps and
stable maps respectively.

A family of quasimap over a base B is a family of nodal curves C over
B with a map f : C → Cohr(S) such that the geometric fibers of f over B
are quasimaps.

Let

Qϵg,N (M,β) : (Sch/C)◦ → (Grpd)
B 7→ {families of ϵ-stable quasimaps over B}

be the moduli space of ϵ-stable quasimaps of genus g and the degree β with
N marked points.

2.2.3 Properness

The first step on the way to proving properness of the moduli space is the
following lemma.

Lemma 2.2.11. Let β ∈ Eff(M,Cohr(S)) and a nodal curve C be fixed.
The family of quasimaps of degree β from C to M is quasi-compact.

Proof. Choose a lift of f to Coh(S), let F 0 be the associated family. The
semistable reduction applied to all base points at once gives a sequence of
short exact sequences

0→ F 1 →F 0 → Q1 → 0,
...

0→ F k →F k−1 → Qk → 0,

such that F k defines a map fk : C → M . To establish the claim of the
lemma, we plan to reverse the semistable reduction, i.e. we start with some

40



map from C to M and take consecutive extensions of the corresponding
families of sheaves by sheaves supported scheme-theoretically on fibers. For
that we have to show that there is bounded number of possibilities. In
particular, we have to show that

(i) the number of steps in the semistable reduction is bounded, i.e. k is
uniformly bounded;

(ii) the family of possible fk : C →M is bounded;

(iii) the family of possible Qi’s is bounded.

To be more precise, different lifts of a quasimap are related by tensoring a
sheaf with a line bundle coming from C, hence a lift of fk also determines
a lift of f . Therefore if we fix lifts of maps to M , there will always be a lift
of f , such that the lift of fk is the one that we fixed, this will eliminate a
potential unboundedness coming from different lifts.

(i) By Proposition 2.2.7 and its proof there are at most β(L1) steps with

deg(v)rk(Qi)− rk(v)deg(Qi) > 0

and there are at most β(L0 ⊗ Lm1 ) steps with

deg(v)rk(Qi)− rk(v)deg(Qi) = 0,

therefore
k ≤ β(L1) + β(L0 ⊗ Lm1 ).

(ii) By the proof of Proposition 2.2.7 the numerical degree of possible fk’s
with respect to an ample line bundle L0 ⊗ Lm1 is bounded in the following
way

β(L0 ⊗ Lm1 ) = L0 ⊗ Lm1 ·f C >L0 ⊗ Lm1 ·fk C ≥ 0.

Since the family of maps with a fixed domain of a given degree is bounded,
the family of possible fk’s must be bounded.

(iii) By the semistable reduction, sheaves Qi’s are subsheaves of stable
sheaves in the class v (see [HL97, Theorem 2.B.1]). Chern classes of Qi’s are
bounded by Lemma 2.2.5 and by the proof of Proposition 2.2.7. Therefore
by boundedness of Quot schemes and stable sheaves, the family of possible
Qi’s is also bounded.
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Corollary 2.2.12. The moduli space Qϵg,N (M,β) is quasi-compact.

Proof. The restriction of a stable quasimap to an unstable component (a
rational bridge or a rational tail) must be non-constant by stability and it
must pair positively with Lβ by Proposition 2.2.7. Therefore the number of
unstable components of the domain curve of a stable quasimap is bounded
in terms of β. Hence the projection Qϵg,N (M,β) → Mg,n factors through a
substack of finite type. By Lemma 2.2.11, the projection is quasi-compact,
therefore Qϵg,N (M,β) is quasi-compact.

To continue further exploiting the geometry of sheaves, we need to be
able to relate quasimaps to sheaves in families (Lemma 2.2.6 permits us to
do it only pointwise). For that, we have to narrow down our scope. If the
C∗-gerbe Coh(S) → Cohr(S) is trivial such that a trivialisation is given by
a section

s : Cohr(S)→ Coh(S),

then by composing quasimaps with s we can lift quasimaps from Cohr(S)
to Coh(S) in families. More generally, in order to lift quasimaps of fixed
degree in families, the C∗-gerbe has to be trivial only over any substack of
finite type U ⊂ Cohr(S), since the moduli of quasimaps of fixed degree is
quasicompact, hence factors through a substack of finite type. A C∗-gerbe is
trivial, if and only if there exists a line bundle of C∗-weight 1. In particular,
if there exists a class u ∈ K0(S), such that χ(u · v) = 1, then there is a
section

su|U : U→ Coh(S),

which is given by the descend of the family F ⊗ λ(u)−1
|U to S × U, note that

the section su is defined only over substacks of finite type, because λ(u) is
defined this way. We will only consider trivialisations that arise through
determinant line bundles. In any case, they are the only ones that can be
checked to exist in practice.

From now on, we make the following assumption, which implies that M
is a fine moduli space and, in some sense, can be seen as slightly a stronger
property than being fine. A more general case is discussed in Section 2.2.5.

Assumption.
∃u ∈ K0(S), such that χ(u · v) = 1.

We will identify a class β with its image with respect to the pushforward
by the section su (more precisely, by the system of sections over substacks
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of finite type),

su∗ : Eff(M,Cohr(S)) ↪→ Eff(M,Coh(S)).

Using (2.2), we can further identify Eff(M,Cohr(S)) with classes Λ, as shown
in the following corollary.

Corollary 2.2.13. The map

ˇ(...) : Eff(M,Cohr(S))→ Λ,

defined as the restriction of (2.2) to Eff(M,Cohr(S)), is injective.

Proof. We need to show that β ̸= 0 implies β̌ ̸= 0. By Proposition 2.2.7,
a non-zero β intersects positively with a line bundle L0 ⊗ Lm1 for some m.
Hence by the definition of β̌ in (2.2.3) it also intersects positively with the
corresponding class in Λ. Therefore it cannot be zero.

Consider now the following map

Qϵg,N (M,β) ↪→Coh(S × Cg,N/Mg,N ),
f 7→su ◦ f 7→ F,

(2.9)

where F is the family associated to the quasimap su ◦ f , Cg,N → Mg,N

is the universal curve over the moduli stack of nodal curves and Coh(S ×
Cg,N/Mg,N ) is the relative moduli stack of sheaves on S × Cg,N/Mg,N .

Definition 2.2.14. Let M ϵ
v,β̌,u(S × Cg,N/Mg,N ) be the stacky image (the

minimal substack through which the map factors) of the map (2.9) . By
M ϵ

v,β̌,u(S × C/Spi) we will denote2 a fiber of

M ϵ
v,β̌,u(S × Cg,N/Mg,N )→Mg,N

over a C-valued point [(C,x)] ∈Mg,N of the moduli space of stable marked
curves. For a curve without markings, we denote the fiber by M ϵ

v,β̌,u(S×C).
Similarly, we define Qϵ(C,x)(M,β) to be the fiber of

Qϵg,N (M,β)→Mg,N

over a C-valued point [(C,x)] ∈ Mg,N . We will frequently drop v from the
notation, as it is fixed; in the case of ϵ = 0+, we will drop 0+.

2The notation is similar to the one of Donaldson–Thomas theory relative to divisors.
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The C-valued points of the moduli space M ϵ
β̌,u

(S ×Cg,N/Mg,N ) are just
families of sheaves associated to quasimaps via the section su.

Lemma 2.2.15. The map (2.9) is an isomorphism onto the image,

Qϵg,N (M,β) ∼−→M ϵ
β̌,u

(S × Cg,N/Mg,N ).

Moreover, M ϵ
β̌,u

(S × Cg,N/Mg,N ) is an open sublocus of sheaves, satisfying
the condition

det(pC∗(p∗
Su⊗ F )) = OC

in families.

Proof. Firstly, over some substack of finite type, there is an indentifica-
tion

Coh(S) ∼= Cohr(S)×BC∗ (2.10)

given by the section su. Hence the composition of a quasimap with the
section su induces a closed immersion

Qϵg,N (M,β) ↪→ Qϵg,N (M, β)(((BC∗,

f 7→ su ◦ f.

With respect to (2.10), the space Qϵg,N (M,β) is a sublocus of the space
Qϵg,N (M, β)((( BC∗, consisting of quasimaps which map to BC∗-factor by
a trivial line bundle. Here, Qϵg,N (M, β) is the moduli space of ϵ-stable
quasimaps to M, defined in the same as in Definition 2.2.10. Moreover,
by associating a family to a quasimap to M, the space Qϵg,N (M, β)(((BC∗ is
naturally an open sublocus of Coh(S × Cg,N/Mg,N )((( BC∗ (being a family
of sheaves on S × C is an open condition). The map (2.9) can therefore be
factored as a composition of a closed immersion with an open one,

Qϵg,N (M,β) ↪→ Qϵg,N (M, β)(((BC∗ ↪→ Coh(S × Cg,N/Mg,N )(((BC∗.

This proves the first claim.
By construction, the section su is given by the decedent of the sheaf

F ⊗ λ(u)−1 from Coh(S) to Cohr(S). By the definition of λ(u), a pullback
sheaf F of F ⊗ λ(u)−1 by a map f : C→ Coh(S) satisfies

det(pC∗(p∗
Su⊗ F )) = OC,

the second claim now follows.
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Remark 2.2.16. If ϵ = 0+, then C-valued points of Mv,β̌,u(S × Cg,N/Mg,N )
are triples (C,x, F ), such that:

• (C,x) is a prestable nodal curve;

• a sheaf F on S × C flat over C;

• ch(F )f = v, ch(F )d = β̌;

• a general fiber of F is stable;

• fibers of F over nodes and markings x are stable;

• det(pC∗(p∗
Su⊗ F )) = OC .

Our determinant-line-bundle condition is natural for families. The standard
determinant-line-bundle condition would involve choice of a line bundle in
families which might not even exist. For a fixed smooth curve, the two
determinant-line-bundles conditions are not far from each other, as shown
in Lemma 2.2.22.

By the definition of a quasimap, a general fiber of F over C is stable.
The stability of a general fiber can be related to the stability of the sheaf F
itself, as is shown in the following lemma.

Lemma 2.2.17. There exists k0 ∈ N such that for all k ≥ k0 the moduli
space M ϵ

β̌,u
(S×C) ⊂M ϵ

β̌,u
(S×Cg,N/Mg,N ) is an open sublocus of a moduli

of Gieseker OS×C(1, k)-stable3 sheaves on S × C, satisfying the condition
det(pC∗(p∗

Su⊗ F )) = OC .

We will refer to the stability in the lemma as suitable. The converse of
the lemma is more subtle. In Appendix A, it is proven in the rank-2 case
for slope stabilities, rank-1 case holds trivially. Note that a sheaf, which is
OS×C(1, k)-stable for all k ≫ 0, is stable at a general fiber. Hence proving
the converse amounts to proving that there are no walls between OS×C(1, k)-
stabilities for k ≫ 0.

Proof of Lemma 2.2.17. Given a sheaf F ∈M ϵ
β̌,u

(S ×C), a general fiber
of F over C is stable. In particular, it is torsion-free, therefore F is torsion-
free itself by Lemma 2.2.18. It also must be OS×C(1, k)-stable for all k ≫ 0,
this can be seen as follows. Since a general fiber of F is stable, the difference
between OS×C(1, k)-Hilbert polynomials of F and of its subsheaves increases

3OS×C(1, k) stands for OS(1) ⊠ OC(k).
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as k increases, because c1(OC(k)) pairs only with chf(F ). Since the family
of OS×C(1, k)-destabilising subsheaves of F is bounded for a fixed k, no
subsheaves of F will be OS×C(1, k)-destabilising for k ≫ 0. Hence F is
OS×C(1, k)-stable for k ≫ 0.

The moduli space M ϵ
β̌,u

(S×C) is quasi-compact, therefore there exists a
uniform choice of k0 for which the statement holds for all sheaves in M ϵ

β̌,u
(S×

C). The fact that it is open follows from openness of stability of fibers.

Lemma 2.2.18. Let F be a sheaf on S × C flat over C, such that Fp is
torsion-free for a general p ∈ C, then F is torsion-free.

Proof. Let T (F ) ⊂ F be the maximal torsion subsheaf. Firstly, T (F ) ̸=
F , because rk(F ) ̸= 0. It also cannot be supported on fibers of S × C → C
due to flatness of F over C, therefore Supp(T (F )) intersects a general fiber.
Since F/T (F ) is generically flat, restricting T (F ) ⊂ F to a general fiber
p ∈ C, we get a torsion subsheaf of Fp for a general p ∈ C, which is zero,
therefore T (F ) is zero.

The final ingredient for the proof of properness of the moduli space is
the following lemma, Hartogs’ property for families of nodal curves over a
DVR (however, for a general surface Hartogs’ property fails).

Lemma 2.2.19. Let C→ ∆ be a family of nodal curves over a DVR ∆ and
{pi} ⊂ C be finitely many closed points in the regular locus of the central
fiber. If there exists a class u ∈ K0(S), such that χ(u · v) = 1, then any
quasimap f̃ : C̃ = C \ {pi} → Cohr(S) extends to f : C → Cohr(S), which is
unique up to unique isomorphism.

Proof. Let F̃ be the family on S× C̃ corresponding to the lift of f̃ by su,
we then extend F̃ to a coherent sheaf F on S × C, quotienting the torsion,
if necessary. The sheaf F is therefore flat over ∆. The central fiber Fk of
F defines a quasimap, if it is torsion-free, because Ck is regular at pi. If
Fk is not torsion-free, we can remove the torsion inductively as follows. Let
F 0 = F and F i be defined by short exact sequences,

0→ F i → F i−1 → Qi → 0,

such that Qi is the quotient of F i−1
k by the maximal torsion subsheaf. It

is not difficult to check, that at each step the torsion of F ik is supported
at slices S × pi, therefore all F i’s are isomorphic to F 0 over S × C̃. By the
standard argument (see e.g. [HL97, Theorem 2.B.1]), this process terminates,
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i.e. F i = F i+1 and F ik is torsion-free for i ≫ 0. Let us redefine the sheaf
F , we set F = F i for some i ≫ 0, then the sheaf F induces a quasimap to
Coh(S), and composing it with the projection to Cohr(S), we thereby obtain
an extension f : C→ Cohr(S) of f̃ .

Consider now another extension f ′ : C→ Cohr(S), we lift both f and f ′

to Coh(S) with su, then let F ′ and F be the corresponding families on S×C

(notice, F might differ from the previous F by a tensor with a line bundle),
by Lemma 2.2.17 they define a family of stable sheaves relative to ∆ in some
relative moduli of sheaves M(S×C/∆), hence they must be isomorphic up to
tensoring with a line bundle by separateness of the relative moduli of stable
sheaves. The isomorphism becomes unique after projection to Cohr(S).
Remark 2.2.20. In general, Hartogs’ property fails for sheaves on a surface.
Hence the assumption that our surface is given by a family of curves C→ ∆
is necessary. This form of Hartogs’ property is good enough for proving
Theorem 2.2.21 in the spirit of [CKM14, Section 4].

Theorem 2.2.21. If there exists a class u ∈ K0(S), such that χ(u · v) = 1,
then Qϵg,N (M,β) is a proper Deligne-Mumford stack.

Proof. The moduli of sheaves is known to be locally of finite type, there-
fore by Lemma 2.2.12 and (2.2.15) the moduli Qϵg,N (M,β) is of finite type
and quasi-separated. By (i) of the quasimaps’ stability (see Definition 2.2.1),
ϵ-stable quasimaps have only finitely many automorphisms, therefore the
moduli space Qϵg,N (M,β) is a quasi-separated Deligne–Mumford stack. Us-
ing the valuative criteria of properness for quasi-separated Deligne–Mumford
stacks and Lemma 2.2.19, the proof of properness then proceeds as in the
GIT case [CKM14, Section 4.3] .

2.2.4 Sheaves with a fixed determinant

We will now relate the moduli space Mβ̌,u(S × C) to a more familiar one -
a moduli space of sheaves with a fixed determinant.

Assume C is a smooth. Let

L := det(G) ∈ Pic(S × C)

be a determinant line bundle for some sheaf G ∈Mβ̌,u(S × C). We define

Mβ̌,L(S × C)

to be the moduli space of sheaves with a fixed determinant L in the class
(v, β̌), which satisfy the following assumptions:
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• stable at a general fiber;

• fixed by at most finitely many automorphisms of C.

Note that the second condition is automatically satisfied, if g(C) ≥ 1 and
β ̸= 0. There exists a projection that relates two moduli spaces,

p : Mβ̌,L(S × C)→Mβ̌,u(S × C), F 7→ F ⊠ det(pC∗(p∗
Su⊗ F ))−1 (2.11)

The projection is well-defined by Lemma 2.2.17. In fact, it is étale, as shown
in the following lemma.

Lemma 2.2.22. Assuming C is a smooth curve and Mβ̌,u(S × C) is non-
empty, the projection p is étale of degree rk(v)2g.

Proof. The surjectivity can be seen as follows. Consider a sheaf F ∈
M ϵ
β̌,u

(S × C), then

L0 := det(F )⊗ L−1 ∈ Pic0(S × C) = Pic0(C).

Now let L
1

rk(v)
0 be a rk(v)th root of L0 (recall that Pic0(C) is a divisible

group), then
det(F ⊗ L

− 1
rk(v)

0 ) = det(F )⊗ L−1
0 = L,

therefore
F ⊗ L

− 1
rk(v)

0 ∈Mβ̌,L(S × C).

It can be easily verified that F ⊗L
− 1

rk(v)
0 is mapped to F via the map (2.11).

This shows the surjectivity.
Now let Pic0(C)[rk(v)] be the rk(v)-torsion points of Pic0(C). The group

Pic0(C)[rk(v)] acts on the moduli space Mβ̌,L(S×C) , because det(F⊗A) =
det(F )⊗A⊗rk(F ) for a line bundle A ∈ Pic(S ×C). Orbits of the action are
the fibers of via (2.11). The action is free, because for a line bundle A, the
following holds,

det(pC∗(p∗
Su⊗ F ⊠A) ∼= det(pC∗(p∗

Su⊗ F )⊗A,

which is due to χ(u · v) = 1. In particular,

Mβ̌,L(S × C)/Pic0(C)[rk(v)] ∼−→Mβ̌,u(S × C),

the claim follows.
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2.2.5 More general cases

Non-trivial gerbe

The proof of properness of the moduli Qϵg,N (M,β) crucially relies on the
identification of the space with the relative moduli of sheaves M ϵ

β̌,u
(S ×

C/Mg,N ). To make it work in the case when C∗-gerbe Coh(S) → Cohr(S)
is not trivial, one needs to consider twisted universal families. Given any
u ∈ K0(S) such that

w = χ(u · v) ̸= 0,

then over each finite type open substacks U ⊂ Coh(S) we can take a wth-root
stack associated to λ(u) with the universal wth-root λ(u) 1

w of λ(u) ,

Coh(S)
u
w
|U → U, λ(u)

1
w ∈ Pic(Coh(S)

u
w
|U).

Then wC∗(λ(u) 1
w ) = 1, therefore λ(u) 1

w defines a trivialisation of the C∗-
gerbe

Coh(S)
u
w
|U → Cohr(S)

u
w
|U,

given by the descend of the twisted family F ⊗ λ(u)− 1
w , where

Cohr(S)
u
w
|U := Coh(S)

u
w
|U((( C∗.

Thereby we obtain the desired section

s u
w

: Cohr(S)
u
w
|U → Coh(S)

u
w
|U.

The price we pay for this section is that the stable locus becomes a Z/wZ-
gerbe of M , which we denote by M

u
w . In particular, we have to consider

orbifold quasimaps for the sake of properness of the moduli space. All the
definitions carry over to this setting verbatim, so let us consider now the
quasimap theory of the pairs,

(M
u
w ,Cohr(S)

u
w ) and (M

u
w ,Coh(S)

u
w ).

As in the case of untwisted case we can consider the following composition

Qϵg,N (M
u
w , β) ↪→ Qϵg,N (M

u
w , β)→ Coh(S × Ctw

g,N/M
tw
g,N ),

f 7→ s u
w
◦ f 7→ F,
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where Mtw
g,N is the moduli of twisted nodal curves with the universal family

Ctw
g,N . The second map is no longer an embedding, because the moduli

problem of Coh(S) u
w is now a pair

(F,det(pC∗(p∗
Su⊗ F ))

1
w ),

a sheaf and a wth-root of det(pC∗(p∗
Su⊗ F )). However, by the definition of

the section s u
w

the wth-root is fixed

(su ◦ f)∗λ(u)
1
w = det(pC∗(p∗

Su⊗ F ))
1
w = OC ,

hence the composition above is an embedding and det(pC∗(p∗
Su⊗F )) = OC .

Let M ϵ
β̌,u

(S × Ctw
g,N/M

tw
g,N ) be its image. We therefore have the desired

identification,

Qϵg,N (M
u
w , β) ∼= M ϵ

β̌,u
(S × Ctw

g,N/M
tw
g,N ),

the rest goes as in the untwisted case. In principle, there are no obstacles
for extension of all results including wall-crossing formulas. Using [AJT],
we then can relate the twisted invariants to untwisted ones.

Non-trivial Jacobian

The case of a surface with q(S) ̸= 0 can be tackled in the same manner.
However, we need to adjust some definitions. Firstly, instead of the stack
Cohr(S)v we have to take its fiber over Pic(S) with respect to the determi-
nant morphism

det : Cohr(S)v → Pic(S),

where we slightly abuse the notation, because the morphism det is only
defined over substacks of finite type.

Then for the definition of a degree, we have to take care of an extra
summands in Künneth’s decomposition of (p, p)-part of the cohomology on
S × C, ⊕

i

p ̸=q⊕
p+p′=i
q+q′=i

Hp,q(S)⊗Hp′,q′(C).

The classes Hom(Picλ(X),Z) are not sensitive to the piece of Künneth de-
composition as above - Chern character ch(F ) of a family F is not deter-
mined by the degree β ∈ Hom(Picλ(X),Z) of the corresponding quasimap.
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On the Gromov–Witten side of M , this extra piece corresponds to extra
classes that are not given by determinant line bundles. One could make the
definition of the degree finer, by defining it as a class inH2(X,Z), but then we
loose a direct connection of the degree with the Chern characters of sheaves
on threefolds. One could also leave the definition as it is, thereby making
the degree slightly coarser. For genus-0 invariants this, however, does not
matter. Indeed the extra piece in Künneth decomposition of cohomology is
not present, because H1,0(P1) = 0.

Similarly, in the case of punctorial Hilbert schemes and the fixed-curve
invariants, one can define the degree of a quasimap by the Chern character
of the corresponding subscheme on a threefold, after contracting rational
tails and projecting the subscheme to the component corresponding to the
fixed curve.

2.3 Hilbert schemes

2.3.1 Relative Hilbert schemes

We now restrict to v = (1, 0,−n), i.e. M = S[n]. Punctorial Hilbert schemes
are special, because there exists a canonical trivialisation of Coh(S)v →
Cohr(S)v over any U ⊂ Cohr(S)v of finite type. It is given by the determi-
nant

det(F) ∈ Pic(S × Coh(S)v)

of the universal sheaf F on S×Coh(S)v. It is indeed a line bundle of weight
1, because F is of rank 1. Hence the family F⊗det(F|U)−1 descends to S×U,
giving the canonical section

sdet |U : U→ Coh(S)v

of the gerbe Coh(S)v → Cohr(S)v. By Corollary 2.2.12, there exists U of
finite type through which the universal quasimap factors. Therefore the
section sdet |U gives us the embedding

Qϵg,N (S[n], β) ↪→ Coh(S × Cg,N/Mg,N ),

which is defined as the one in (2.9). By the construction of the section, the
sheaves in the image of the embedding satisfy

det(F ) = (idS × f)∗ det(F) = OS×C
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over any base scheme B. Therefore the embedding factors through a relative
Hilbert scheme,

Qϵg,N (S[n], β) ↪→ Hilb(S × Cg,N/Mg,N ).

Indeed, the above embedding factors through the relative moduli of sheaves
of rank 1 with trivial determinant by the construction of the section sdet.
This moduli is in turn isomorphic to the moduli of ideals, because there exits
a natural embedding F ↪→ F∨∨ ∼= OS×C . It is a stack but not a scheme,
because S × Cg,N →Mg,N is a stack.

We denote the image of the embedding above by Hilbϵ
n,β̌

(S×Cg,N/Mg,N ),
where the subscript ”n, β̌” is the shortening of

((1, 0,−n), β̌) ∈ Λ⊗ Λ.

The image can be described more explicitly in terms of ideals, or, equiva-
lently, in terms of the corresponding one-dimensional subschemes. Firstly,
the automorphisms of a quasimap f admit the following description

Aut(f) = Aut(C,x)(I) = Aut(C,x)(Γ),

where I is the corresponding ideal sheaf, Γ ⊂ S × C is the associated sub-
scheme and

Aut(C,x)(I) = {ψ : (C,x) ∼= (C,x)|(idS × ψ)∗I = I},

similarly for Aut(C,x)(Γ). The quasimap ϵ-stability therefore requires the
group Aut(C,x)(I) to be finite.

The part (ii) of ϵ-stability in Definition 2.2.10 can be rephrased in terms
of Γ as follows. A sheaf Ip is an ideal for all p ∈ C, if and only if all
irreducible components of the subscheme Γ are dominant over a component
of C and there are not embedded points, if and only if Γ if flat over C. We
call non-dominant components without embedded points vertical. Let

Γh+v ⊆ Γ

be the maximal subscheme without embedded ponts, then Γh+v = Γh ∪ Γv,
where Γh is horizontal part of Γ, which is dominant over C and therefore
is the subscheme associated to the stabilisation of I, and Γv is the vertical
part of Γ. We have the following equality

Ih+v = Ih ∩ Iv,
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because there are no embedded points. Therefore there is an exact sequence

0→ Ih+v → Ih ⊕ Iv +−→ IΓh∩Γv → 0, (2.12)

such that Ih is stable over all t ∈ C. Now let Γui ⊂ Γ be the maximal non-
dominant subscheme (with embedded points) supported on S×bi for a given
base point bi and Γvi be its vertical component without embedded points,
then by the part (ii) of Definition 2.2.10, Lemma 2.2.5 and the sequence
above, these Γui ’s must satisfy

m · deg(Γui ) + χ(Γui )− χ(IΓh∩Γv
i
) ≤ 1/ϵ,

for some fixed m for which Proposition 2.2.7 holds.
Apart from the usual condition on finiteness of automorphisms, the part

(i) of Definition 2.2.10 can be similarly translated into restriction of the
’size’ of Γ on rational tails in terms of its degree and Euler characteristic:
given a rational tail Rj of C, let deg(Γ|Rj

) := deg(ch(Γ|Rj
)d), then for all

rational tails the following must be satisfied

m · deg(Γ|Rj
) + χ(Γ|Rj

) > 1/ϵ.

Finally, by stability of quasimaps, Γ has to be flat over nodes and marked
points.

Punctorial Hilbert schemes S[n] clearly satisfy the assumption of Theo-
rem 2.2.21, hence summing up the discussion above we obtain the following
result.

Corollary 2.3.1. The moduli stack Qϵg,N (S[n], β) is a proper Deligne–Mumford
stack. For some fixed m≫ 0, there exists a natural isomorphism of the mod-
uli spaces

Qϵg,N (S[n], β) ∼= Hilbϵ
n,β̌

(S × Cg,N/Mg,N ),

where the stack on the right is the relative moduli stack of 1-dimensional
subschemes, satisfying the following properties

• |Aut(C,x)(Γ)| <∞;

• Γ is flat over nodes and marked points;

• m · deg(Γui ) + χ(Γui )− χ(Γs ∩ Γvi ) ≤ 1/ϵ for a component Γui ;

• m · deg(Γ|Cj
) + χ(Γ|Rj

) > 1/ϵ for a rational tail Rj.
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Remark 2.3.2. For a fixed smooth curve C with g ≥ 1 and β ̸= 0, we have

QC(S[n], β) ∼= Hilbn,β̌(S × C),

by Corollary 2.3.1. On the other hand,

Q(C,p)(S[n], β) ∼= Hilbn,β̌(S × C/Sp).

Moreover, pulling back a class with a marking on the left is equivalent ot
pulling back the class from a relative divisor on the right.

2.3.2 Changing the t-structure

Consider the following torsion pair in Coh(S),

T = {A ∈ Coh(S) | dim(A) = 0},
T⊥ = {B ∈ Coh(S) | Ext•(A,B) = 0,∀A ∈ T}.

Let Coh♯(S) = ⟨T⊥,T[−1]⟩ be the corresponding tilted perverse heart, we
refer to [HRS96] for the construction of tilted hearts associated to a torsion
pair. Punctorial Hilbert schemes sit inside the rigidification of the corre-
sponding moduli stack,

S[n] ⊂ Coh♯r(S)v := Coh♯(S)v((( C∗,

constructed, for example, in [Lie06].
Before proceeding further, let us introduce some terminology from [AP06].

Let A := Coh♯(S) and AC be the Abramovich–Polishchuk heart in Dperf(S×
C). An object F ∈ AC is called torsion, if it is a pushforward of an object
from Dperf(S × T ), where T ⊂ C is some proper subscheme. The object F
is flat, if Fp := Li∗pF ∈ A for all p ∈ C, and it is torsion-free, if it does not
contain any torsion subobjects.

Let f : C → Coh♯r(S)v be a quasimap to the pair (S[n],Coh♯r(S)), then,
as in the case of the standard heart, we can lift it to Coh♯(S)v by the deter-
minant section

sdet : U→ Coh♯(S)v,

defined over some substack U ⊂ Coh♯r(S)v of finite type. We now prove the
following.

Proposition 2.3.3. Let F be the family on S × C associated to the lift
of f : C → Coh♯r(S)v via sdet, then F is stable pair, i.e. F ∈ P(S × C).
Conversely, given a stable pair I• ∈ P(S × C), then I• ∈ AC .
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Here and elsewhere, P (. . . ) stands for a moduli space of stable pairs
(see [PT09] for the theory of stable pairs in the context of enumerative
geometry). To prove the proposition, we need the following lemma.

Lemma 2.3.4. A flat object F ∈ AC is torsion-free.

Proof of Lemma 2.3.4. Let F̃ be the pullback of F to the normalisation
S × C̃. Let T ⊂ F̃ be the maximal torsion object, then F̃ ′ := F̃ /T is a
torsion-free object, hence it is flat by [AP06, Corollary 3.1.3]. Restricting to
a fiber over some p ∈ C we get an exact sequence

0→ Tp → F̃p → F̃ ′
p → 0,

because F̃ is flat. Thus Tp ∈ Coh♯(S) and ch(Tp) = 0 for all p ∈ C, since
ch(F̃p) = ch(F̃ ′

p), which implies that Tp = 0 for all p ∈ C, which in turn
implies that T = 0. If F had torsion, it would produce torsion in F̃ , hence
F is torsion-free.

Proof of Proposition 2.3.3. Now let be F be an object corresponding to
the lift of a quasimap f : C → Coh♯r(S)v, by definition it is family of objects
in A, hence F ∈ AC by [AP06] and F is flat. It is also clear that F is of rank
1, and that det(F ) = OS×C by the choice of the lift. By [Tod10, Lemma 3.11]
to show that F ∈ P(S × C), we have to establish the following properties:

(i) Hi(F ) = 0, for i ̸= 0, 1;

(ii) H0(F ) is a rank-1 torsion-free sheaf and H1(F ) is 0-dimensional;

(iii) Hom(Q[−1], F ) = 0 for any 0-dimensional sheaf Q.

(i) Since F is a family of objects with amplitude [0, 1], F cannot be of
amplitude wider than [0, 1]. To see this, consider the two triangles, the
object F fits in,

τ<0F → F → τ≥0F →,

τ<2F → F → τ≥2F →,

where the truncation is taken with respect to the standard t-structure. Tak-
ing fibers over t ∈ C and considering long exact sequences of cohomologies
in the standard heart we conclude that τ<0F = 0 and τ≥2F = 0.

(ii) Let T (H0(F )) ⊆ H0(F ) be the maximal torsion subsheaf, composition
T (H0(F )) ↪→ H0(F )→ F is zero, because F is torsion-free, but in the stan-
dard heart the second map is just an inclusion of 0-th cohomology, hence the
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whole composition must be zero, therefore T = 0 and H0(F ) is torsion-free.
Due to fact that Ft is an ideal for a general p ∈ C and Fp ∈ A for all p ∈ C,
H1(F ) must be 0-dimensional by the definition of A.

(iii) The last property follows trivially, because F is torsion-free.

Conversely, given now a stable pair I• ∈ P(S × C), by definition it sits
in a triangle

H0(I•)→ I• → H1(I•)[−1]→,

such that H0(I•) is an ideal sheaf and H1(I•) is 0-dimensional. Applying
pS∗(− ⊗ OC(m)) for m ≫ 0 to the triangle, we obtain that pS∗(H0(I•) ⊗
OC(m)) is a torsion-free sheaf and pS∗(H1(I•) ⊗ OC(m)) is 0-dimensional,
therefore pS∗(I•⊗OC(m)) ∈ A for m≫ 0, hence by the definition I• ∈ AC .

With a bit more work, one should be able to prove that

AC = ⟨T⊥
C ,TC [−1]⟩,

where TC = {A ∈ Coh(S × C)|dim(A) = 0}.

The determinant line bundle construction in this setting also defines the
map λ : K0(S) → Pic(Coh♯(S)v). The line bundles L0 and L1 satisfy the
same properties as in the case of the standard heart.

Lemma 2.3.5. Let f : C → Coh♯(S) be a prestable quasimap. Fix v and
L1,ℓ ·f C for all ℓ. There exists m0 ∈ N such that for all m ≥ m0 the
quasimap is non-constant, if and only if

L0 ⊗ Lm1 ·f C > 0.

The same holds for all subcurves C ′ and the induced maps for the same
choice of m.

Proof. The proof is similar to the one of Proposition 2.2.7, but with one
exception - the unstable locus of Coh♯(S) now contains objects which sit in
a distinguished triangle

H0(A)→ A→ H1(A)[−1]→

such that H1(A) is a 0-dimension sheaf. When we apply semistable re-
duction to such objects the corresponding term χ(v)rk(Qi)− rk(v)χ(Qi) is
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strictly negative. To get around this problem, for a pair I• ∈ P(S × C) we
firstly take its zeroth cohomology

H0(I•)→ I• → H1(I•)[−1] −→

where H0(I•) is an ideal sheaf and H1(I•) is zero dimensional, and then run
the Langton’s semistable reduction for H0(I•).

Now fixing a positive line bundle Lβ from the Lemma 2.3.5 once and for
ever for all β ∈ Eff(S[n],Coh♯r(S)v), we can define the length of base point
as previously. The definition of ϵ-stability carries over to this case verbatim.
Given ϵ ∈ R>0 ∪ {0+,∞}, let

Qϵg,N (S[n], β)♯ : (Sch/C)◦ → (Grpd)

be a moduli of ϵ-stable perverse quasimaps to the pair (S[n],Coh♯r(S)v) for
some β ∈ Eff(S[n],Coh♯r(S)). The proof of boundedness of the moduli is
exactly the same as in the case of the standard heart. Using Lemma 2.3.3,
we obtain an immersion,

Qϵg,N (S[n], β)♯ ↪→ P(S × Cg,N/Mg,N ),

where is the space on the right is the relative moduli space of stable pairs.
We denote the stacky image of above embedding by Pϵ

n,β̌
(S × Cg,N/Mg,N ).

It can also be described more explicitly in terms of stable pairs just as in
the case of a relative Hilbert scheme, Section 2.3.1.

For properness of Pϵ
n,β̌

(S × Cg,N/Mg,N ), we need the following lemma.
However, its proof is different from the one of the standard heart.

Lemma 2.3.6. Let C → ∆ be a family of nodal curves and {pi} ⊂ C be
finitely many closed in the regular locus of the central fiber. Then any
quasimap ũ : C̃ = C \ {pi} → Coh♯r(S)v extends to u : C → Coh♯r(S)v, which
is unique up to unique isomorphism.

Proof. Employing the similar proof as the one of Lemma 2.2.19 is prob-
lematic in this case, as we do not know how to extend objects in the derived
category (unlike sheaves), so we follow a different strategy.

Restricting ũ to the generic fiber C◦ of C over ∆, we obtain a relative
family F ◦ on S × C◦, which by properness of the relative moduli of stable
pairs P(S × C/∆) can be completed to a family F on S × C, it may only
be non-flat over nodes of the central fiber, therefore it defines a rational
quasimap u : C 99K Coh♯r(S)v possibly with indeterminacies only at the nodes
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of the central fiber. It also defines a rational map urat : C 99K S[n], so does ũ,
ũrat : C 99K S[n], the corresponding graphs in Hilb(S[n]×C) agree generically,
therefore by separateness of Hilbert schemes they are equal, i.e. urat = ũrat
. Now if pi is not a limit of base points of ũ, then there is a neighbourhood
U ⊂ C around pi, where

ũ|U/pi
= ũrat|U/pi

= urat|U/pi
= u|U/pi

,

we then define ũ|U = u|U (u is defined at pi, because pi is in the regular
locus), since quasimaps to Coh♯r(S)v do not have any internal automorphisms
we can glue maps in a unique way thereby extending ũ to pi. If pi is an
limit of base points of ũ, let Bi ⊂ C be the section corresponding to these
base points, then there is some neighbourhood U around Bi, such that

ũ|U/Bi
= ũrat|U/Bi

= urat|U/Bi
= u|U/Bi

,

but since ũ|C◦ = u|C◦ , we conclude that ũU/pi
= uU/pi

, again because
quasimaps to Coh♯r(S)v do not have any internal automorphisms and there-
fore glue in a unique away, we then proceed as before. Let u′ : C→ Coh♯r(S)v
be the resulting extension and F ′ be the associated family, then separateness
of relative moduli of stable pairs implies that F ′ = F and that the extension
is unique.

Summing up the discussion above we obtain the following result.

Corollary 2.3.7. The moduli stack Qϵg(S[n], β)♯ is a proper Deligne–Mumford
stack, and there exists a natural isomorphism of the moduli stacks

Qϵg,N (S[n], β)♯ ∼= Pϵ
n,β̌

(S × Cg,N/Mg,N ),

the stack on the right is the relative moduli stack of stable pairs, satisfying
exactly the same conditions as in the case of the standard heart.

Proof. For the properness we again use Lemma 2.3.6 and the proof
presented in [CKM14, Proposition 4.3.1.].
Remark 2.3.8. As in the case of the standard heart, for a fixed smooth curve
C with g ≥ 1 and β ̸= 0, we have

QC(S[n], β)♯ ∼= Pn,β̌(S × C),

by Corollary 2.3.7. On the other hand,

Q(C,p)(S[n], β)♯ ∼= Pn,β̌(S × C/Sp).
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2.3.3 Affine plane

A punctorial Hilbert scheme of the affine plane C2 admits two equivalent
descriptions, one is a Nakajima variety of a quiver, which is a GIT construc-
tion,

(C2)[n] = [µ−1(0)/GLn]s ⊂ [µ−1(0)/GLn],
for the notation see [Gin12]. Another one is a moduli of framed sheaves on
P2. Both descriptions sit in some bigger stack, but to match the unstable
loci, one has to consider a non-standard heart of Db(P2), namely Coh♯(P2),
then

(C2)[n] ⊂ Coh♯(P2, l∞)v,

where on the right we consider framings with respect to the line at infinity,
which in this case just kills C∗-automorphisms. By [BFG06, Theorem 5.7],
we have a canonical isomorphism

µ−1(0)/GLn] ∼= Coh♯(P2, l∞)v,

which identifies stable loci on both sides. Hence a GIT quasimap moduli
space and a perverse-coherent-sheaves quasimap moduli spaces of (C2)[n] are
isomorphic,

Q0+
g,N ((C2)[n], β)GIT ∼= Q0+

g,N ((C2)[n], β)♯.
Moreover, since [µ−1(0)/GLn] is l.c.i., an easy check of virtual dimensions
shows that the obstruction theory on Coh♯(P2, l∞), given by

Homπ(F,F)0[1]∨ → LCoh♯(P2,l∞),

is an isomorphism, where F is the universal complex and LCoh♯(P2,l∞) is the
truncated cotangent complex. Therefore the obstruction theories of both
quasimap theories also match, (see Section 2.4.2 for the construction of the
obstruction theory for perverse coherent-sheaves quasimaps). To match ϵ-
stabilities, one would need to check that the naturally defined line bundles
of both stacks agree. However, we will not be concerned with it here, since
ϵ-stability is mostly an auxiliary tool to do the wall-crossing between ϵ = 0+

and ϵ = ∞ chambers, and the identification above is enough to conclude
that the wall-crossing is the same in both cases.

2.4 Obstruction theory

2.4.1 Preparation

From now on we fix a class u ∈ K0(S), such that
χ(v · u) = 1,
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to lift quasimaps with a section su. For punctorial Hilbert schemes, we
use the determinant section sdet. By a family associated to a quasimap
f : C → Cohr(S), we will mean the one that is obtained from the lift by this
fixed section. The content of this section applies to the pair (S[n],Cohr(S))
as well as to the pair (S[n],Coh♯r(S)), the arguments are exactly the same for
both pairs, hence we will just state and prove everything for (S[n],Cohr(S)).

Lemma 2.4.1. Let f : C → Coh(S) be a quasimap, then the corresponding
family F on S × C is perfect.

Proof. Since F is a family of sheaves on a smooth S over C, which is of
finite type, there exists a locally free resolution of finite length.

Let
tr : Hom(F, F ⊗ L)→ L

be the trace morphism. We define

Exti(F, F ⊗ L)0 := kerH i(tr) for all i.

Proposition 2.4.2. Let f : C → Cohr(S) be a prestable quasimap. Assume
any of the following holds

(i) (M,Cohr(S)) = (S[n],Cohr(S)) or

(ii) S is a del Pezzo surface or

(iii) S is a K3 surface and g(C) ≤ 1,

then the corresponding family F satisfies the following

Exti(F, F )0 = 0 for i ̸= 1, 2.

Proof. By Lemma 2.4.1 and by Serre duality we get

Exti(F, F ) = Ext3−i(F, F ⊗ ωS×C),

therefore Exti(F, F ) = 0 for i /∈ [0, 3], because S × C is l.c.i. (ωS×C is a
locally free sheaf). Since F is stable, it is simple, hence Hom(F, F )0 = 0.
We therefore have to show that

Hom(F, F ⊗ ωS×C)0 = 0.

And since the trace morphism has a section given by
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id⊗ : ωS×C → Hom(F, F ⊗ ωS×C), s 7→ idF ⊗ s

after taking cohomology, it is enough to show that H0(tr) is injective.

(i) Assume that (M,Cohr(S)) = (S[n],Cohr(S)), then F is an ideal sheaf I
of a curve Γ ⊂ S × C. Let U be the complement of Γ and

π : S × C̃ → S × C, D ⊂ S × C

be the normalisation and the singular locus of S×C, respectively. Then by
applying H0(S × C,−) and H0(U,−) to the exact sequence

0→ ωS×C → π∗π
∗ωS×C → ωS×C|D → 0,

we obtain

H0(S × C,ωS×C) H0(S × C, π∗π
∗ωS×C) H0(D,ωS×C|D)

H0(U, ωS×C) H0(U, π∗π
∗ωS×C) H0(D ∩ U, ωS×C|D)

The last two vertical arrows are bijective by Hartog‘s property for sections
of locally free sheaves. Indeed, π∗ωS×C is locally free, Γ is of codimension
2, and D intersects properly with Γ. We conclude that

H0(S × C,ωS×C) = H0(U, ωS×C).

Finally, since I is torsion free, the restriction of global sections

Hom(I, I ⊗ ωS×C)→ Hom(I|U , I|U ⊗ ωS×C) = H0(U, ωS×C)
= H0(S × C,ωS×C)

is injective. Moreover, it is equal to H0(tr) by the construction of tr, hence
the claim follows.

(ii) Assume now that S is a del Pezzo surface, then the degree of a general
fiber of F ⊗ ωS×C is strictly smaller than the degree of a general fiber of
F by ampleness of the anti-canonical line bundle of S. Therefore by the
stability of a general giber of F we have that

Hom(F, F ⊗ ωS×C) = 0.

(iii) Finally, assume S is a K3 surface. We will show that

H0(id⊗) : H0(S × C,ωS×C)→ Hom(F, F ⊗ ωS×C)
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is surjective. By assumption ωS×C ∼= p∗
CωC , hence we have to show that all

morphisms ϕ : F → F ⊠ωC are of the form idF⊠s for some s ∈ H0(C,ωC , ).
By the normalisation sequence it is enough to show it for

π∗F → π∗F ⊠ π∗
CωC ,

where
π = id× πC : S × C̃ → S × C

is the normalisation map. We firstly establish the following result.

Lemma 2.4.3. Let C be smooth. Given a sheaf F on S × C, that defines
a quasimap, and an effective divisor D = ∑

pi on C, then any non-zero
morphism

ϕ : F → F (D) := F ⊠ OC(D)

is injective. Moreover, if all pi’s are distinct, supp(coker(ϕ)) = S ×D and
F is stable over D, then ϕ = idF ⊠ s for some s ∈ H0(O(D), C).

Proof of Lemma 2.4.3. Assume ϕ is not an inclusion, then the difference
of Hilbert polynomials

pOS×C(1,k)(Im(ϕ))− pOS×C(1,k)(F )

increases as n increases, because a general fiber of F is stable. Therefore
Im(ϕ) becomes OS×C(1, k)-destabilising for F (D) for some k ≫ 0. However,
by Lemma 2.2.17 the sheaf F (D) is OS×C(1, k)-stable for some k ≫ 0, which
is a contradiction. Hence ϕ must be an inclusion.

We now deal with the second part of the lemma. Consider the sequence

0→ F
ϕ−→ F (D)→ coker(ϕ)→ 0,

restricting it to S ×D, we obtain

0→ coker(ϕ)→ F|D
ϕ|D−−→ F (D)|D → coker(ϕ)→ 0,

where we used that schematic support of coker(ϕ) is S ×D. Since Fpi ’s are
stable and F|D ∼= F (D)|D, the map ϕ|D must be zero. Therefore the map
F (D)|D → coker(ϕ) is an isomorphism. Consider now the following diagram

0 F F (D) F (D)|D 0

0 F F (D) coker(ϕ) 0,

idF ⊠sD

ψ

ϕ
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where sD ∈ H0(O(D), C) is a defining section of D. The right square of the
diagram is commutative, and the last two vertical arrows are isomorphisms,
so we have

ϕ = ψ ⊠ sD for some ψ ∈ Aut(F ).
But F is stable and therefore simple, hence ψ = c · idF for some c ∈ C∗. The
claim now follows.

Continuation of the proof of Proposition 2.4.2. Recall that there is a
natural isomorphism π∗

CωC
∼= ωC̃(∑ qi + q′

i), where qi and q′
i are preimages

of a node of C. Given now a rational component C̃j of C̃ with at most two
special points, then π∗

jωC
∼= OP1(k) for k ≤ 0. Both π∗

jF and F|C̃j
⊠OP1(k)

are OS×C(1, n)-stable for some n ≫ 0 by Lemma 2.2.17. If k < 0, then
Hilbert polynomials satisfy

pOS×C(1,n)(π∗
jF ) > pOS×C(1,n)(π∗

jF ⊠ OP1(k)),

hence
Hom(π∗

jF, π
∗
jF ⊠ OP1(k)) = 0.

If k = 0, then π∗
jF
∼= π∗

jF ⊠ OP1(k). By induction we then conclude that
the restriction of ϕ to all rational trees must be zero, and by the previous
lemma the restriction of ϕ to their complement comes from box-tensoring a
section.
Remark 2.4.4. All quasimaps are prestable in the case of punctorial Hilbert
schemes, since an ideal I of a curve on a threefold S×C is stable over a node
s ∈ C, if and only if it is flat over the node 4. This can be seen as follows.
The sheaf Is is stable, if and only if it is torsion-free, which is equivalent to
the injectivity on the left of the exact sequence

Is → OS×s → Γs → 0,

which in turn is equivalent to Tor1
S×C(OΓ,OS×s) = 0, but by standard peri-

odic resolution of a structure sheaf of a node,

TorkS×C(OΓ,OS×s) = Tor1
S×C(OΓ,OS×s) for all k ≥ 1.

If I is flat, then I is perfect, hence OΓ is also perfect, so

TorkS×C(OΓ,OS×s) = 0 for some k ≫ 0,

which therefore implies that Tor1
S×C(OΓ,OS×s) = 0.

4In Donaldson–Thomas theory this condition is referred to as predeformable.
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2.4.2 Obstruction theory

In what follows all the functors are derived. We have the following perfect
obstruction theory over a substack of finite type U ⊂ Cohr(S),

(Tvir)∨ := (Homπ(Fr|U,Fr|U)0[1])∨ → LU,

where Fr is the universal family on S × Cohr(S), note that the complex
(Tvir)∨ is of amplitude [-1,1] due to the presence of non-discrete automor-
phisms of the unstable part of Cohr(S). Let

π1 : Cg,N → Qϵg,N (M,β)

f : Cg,N → Cohr(S),

be the canonical projection from the universal curve and the universal map.
The universal map f factors through some substack of finite type, hence we
can define the obstruction-theory complex (π∗f∗Tvir)∨. Let us show how it is
related to obstruction-theory complex of a relative moduli of stable sheaves.
Let

π2 : S × Cg,N ×Mg,N
Qϵg,N (M,β)→ Qϵg,N (M,β),

F ∈ Coh(S × Cg,N ×Mg,N
Qϵg,N (M,β))

be the canonical projection and the universal sheaf, which is defined via
the identifation Qϵg,N (M,β) ∼= M ϵ

β̌,u
(S × Cg,N/Mg,N ). We then take the

traceless part of the relative derived self-hom complex

Homπ2(F,F)0[1],

and prove the following.

Proposition 2.4.5. The complex (π1∗f∗Tvir)∨ is canonically isomorphicto
the complex (Homπ2(F,F)0[1])∨.

Proof. Consider the following diagram

S × Cg,N ×Qϵg,N (M,β) S × U

S × Cg,N ×Qϵg,N (M,β) U

Qϵg,N (M,β)

id×f

π2

πU

f

π1
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the trace map tr : Hom(Fr|U,Fr|U)→ OU has a section given by the inclusion
of identity OU → Hom(Fr|U,Fr|U), therefore

Hom(Fr|U,Fr|U) = Hom(Fr|U,Fr|U)0 ⊕ OU,

and by the moduli problem of Cohr(S) we get

(f× id)∗Fr = F,

hence, by functoriality of the trace and the splitting above, we obtain that

(f× id)∗Hom(Fr|U,Fr|U)0 = Hom(F,F)0.

By base change theorem,

Homπ2(F,F)0 = π1∗f∗HomπU(Fr|U,Fr|U)0.

Corollary 2.4.6. There exists an obstruction theory

ϕ : (π1∗f∗Tvir)∨ → LQϵ
g,N (M,β)/Mg,N

,

which is is perfect under the assumptions of Proposition 2.4.2. Moreover, if
ϵ = 0+, the corresponding virtual fundamental classes coincide with those of
Donaldson–Thomas theory.

Proof. Using the results of [TV07] and [ST15], the stack Cohr(S) can be
naturally upgraded to a derived stack RCohr(S), such that

τ≥0RCohr(S) = Cohr(S),

and
LRCohr(S) = (Tvir)∨.

Recall that a derived enhancement gives rise to an obstruction theory of
underlying classical stack, see [ST15, Section 1] for more details. The ob-
struction theory

ϕ : (π1∗f∗Tvir)∨ → LQϵ
g,N (M,β)/Mg,N

is therefore given by a derived mapping stack of maps from curves to the
derived stack RCohr(S), which exists by Lurie’s representability theorem
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[Lur12] (see also [Toë09]). The obstruction theory is perfect by Proposition
2.4.5 and Proposition 2.4.2 .

By [Sie04], a virtual fundamental class depends only on Chern characters
of the corresponding obstruction-theory complex. The second part of the
claim therefore follows from Proposition 2.4.5.

Let
[Qϵg,N (M,β)]vir ∈ Avdim(Qϵg,N (M,β))Q

be the associated virtual fundamental class. Invoking the identification pre-
sented in Lemma 2.2.2, the virtual dimension of the moduli space can be
computed via the virtual dimension of the relative moduli space of sheaves,

vdim =
∑

(−1)i dim Exti(F, F )0 + (3g − 3) +N

=
∫
S×C

(ch(F ) · ch(F )∨ − 1) · tdS×C + (3g − 3) +N

= rk(v)c1(β̌) · c1(S)− rk(β̌)c1(v) · c1(S) + (dim(M)− 3)(1− g) +N,

where rk(β̌) and c1(β̌) are the components of β̌ ∈ Λ of cohomogical degrees
0 and 2, respectively.

By our definition of a degree β, it can only pair with determinant line
bundles on the stack Cohr(S), and it is unclear, if the virtual anti-canonical
line bundle is a determinant line bundle, even though it is the case over the
stable locus in some very special instances. Therefore the above formula for
the virtual dimension is the most reasonable one. We will treat the first
two summands as the degree with respect to the virtual anti-canonical line
bundle,

β(det(Tvir)) := rk(v)c1(β̌) · c1(S)− rk(β̌)c1(v) · c1(S).

The above formula is, however, dependent upon presentation of Qϵg,N (M,β)
as a relative moduli space of sheaves, the virtual dimension itself is not
though.

2.4.3 Invariants

The moduli Qϵg,N (M,β) has the usual canonical structures to define the
enumerative invariants:

• evaluation maps at marked points

evi : Qϵg,N (M,β)→M, i = 1, . . . , N
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• cotangent line bundles

Li := s∗
i (ωCg,N/Q

ϵ
g,N (M,β)), i = 1, . . . , N

where si : Qϵg,N (M,β)→ Cg,N are universal markings. We denote

ψi := c1(Li), i = 1, . . . , N

Definition 2.4.7. The descendent ϵ-invariants are

⟨τm1(γ1), . . . , τmN (γN )⟩ϵg,N,β :=
∫

[Qϵ
g,N (M,β)]vir

i=N∏
i=1

ψmi
i ev∗

i (γi, ),

where γ1, . . . , γN ∈ H∗(M,Q) and m1, . . .mN are non-negative integers. We
similarly define the perverse invariants ⟨τm1(γ1), . . . , τmN (γN )⟩♯,ϵg,N,β .

Remark 2.4.8. We can also define another kind of invariants by the identifica-
tion of quasimaps with the relative moduli of sheaves - relative Donaldson–
Thomas descendent invariants (do not confuse with invariants relative to
divisors), consider

S × Cg,N

S ×Mg,N+1 Qϵg,N (M,β)

π1 π2

where for the π1 we stabilise the curves and used the identification of Mg,N+1
with the universal curve of Mg,N , for the unstable values of g and N we set
the product S×Mg,N+1 to be S. For a class γ̄ ∈ H∗(S×Mg,N+1,Q) define
the following operation on cohomology,

chk+2(γ̄) : H∗(Qϵg,N (M,β),Q)→ H∗−2k+2−ℓ(Qϵg,N (M,β),Q),

chk+2(γ̄)(ξ) = π2∗ (chk+2(F) · π∗
1(γ̄) ∩ π∗

2(ξ)) .

The relative descendent invariants are then defined by

⟨τ̃k1(γ̄1), . . . , τ̃kr (γ̄r)⟩ϵg,n,β
= (−1)k1chk1+2 ◦ . . . ◦ (−1)kr chkr+2

(
[Qϵg,N (M,β)]vir

)
,

here we just transferred the definitions from rank-1 story, note that for higher
ranks τ̃−1(−) in the notation above might also be non-trivial. We can also
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define the mix of descendent GW invariants and relative Donaldson–Thomas
invariants,

⟨τ̃k1(γ̄1), . . . , τ̃kr (γ̄r) | τm1(γ1), . . . , τmN (γN )⟩ϵg,N,β ,

which are essentially a mix of relative and absolute DT invariants of the
relative geometry

S × Cg,N →Mg,N

for different ϵ-stabilities. However, we will not be concerned with any of the
Donaldson–Thomas-type invariants defined above in the present work.

The discussion in [CKM14, Section 6] also applies to ϵ-invariants in our
setting. In particular, ϵ-invariants satisfy an analogue of the Splitting Axiom
in Gromov–Witten theory, and there exists a projection to the moduli of
stable nodal curves

p : Qϵg,N (M,β)→Mg,N

by taking stabilisation of the domain of a quasimap, so that the classes

p∗(
i=N∏
i=1

ψmi
i ev∗

i (γi, )) ∈ H∗(Mg,N ,Q)

gives rise to Cohomological Field theory on H∗(M,Q).

2.5 Wall-crossing

2.5.1 Graph space

As previously, all the results of this section apply to both standard and
perverse quasimaps, if M = S[n]. In the latter case, all the notations acquire
the superscript ’♯’. This subsection is largely a repetition of [CFK14, Section
4].

Given β ∈ Eff(M,Cohr(S)), let ϵ ∈ R>0 and k ∈ Z>0 be such that
1/k < ϵ < 1/ deg β, then we define the graph space

QG0,1(M,β) := Qϵ0,1(M × P1, β + [P1]),

where we consider quasimaps to Cohr(S) × P1 and ϵ-stability on the right
is given with respect to Lβ ⊠ OP1(k). This is the moduli space of genus-0
quasimaps to M , whose domain has a unique parametrised rational tail, such
that the restriction of the quasimap to its complement satisfies ϵ-stability,
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which is equivalent to 0+-stability by the choice of ϵ. The definition is
independent of ϵ and k, as long as they satisfy the inequality above.

The obstruction theory of QG0,1(M,β) is given by

(Rπ∗f∗(Tvir ⊞ TP1))∨ → LQG0,1(M,β)/M0,1 .

There is a C∗-action on P1 given by

t[x, y] = [tx, y], t ∈ C∗,

which induces a C∗-action on QG0,1(M,β). The fixed points of the action
must have their entire degrees with the markings lie over either 0 or ∞.
Assuming the marking is over∞, there are two distinguished extremal fixed
components

Fβ and F 0,0
1,β
∼= Q0+

0,1+•(M,β).

The former is the locus of quasimaps with entire degree β over 0 as a base
point, while the latter is the locus of quasimaps with entire degree over∞ in
the form of rational components. If the degree splits non-trivially between
0 and ∞, then the fixed components are of the following form

F 0,β1
1,β2

:= Fβ1 ×M F 0,0
1,β2

, (2.13)

where β = β1 + β2 and the fibered product is taken with respect to dis-
tinguished markings. The description of fixed components F 1,β1

0,β2
with the

marking over 0 is exactly the same. The virtual fundamental classes [F 0,β1
1,β2

]vir

and the virtual normal bundles Nvir
F

0,β1
1,β2

/QG0,1(M,β)
are defined by fixed and

moving parts of the obstruction theory of QG0,1(M,β). They are compatible
with respect to the product expression above,

[F 0,β1
1,β2

]vir = [Fβ1 ]vir ×M [F 0,0
1,β2

]vir,

Nvir
F

0,β1
1,β2

/QG0,1(M,β)
= Nvir

Fβ1/QG0,1(M,β) ⊠M Nvir
F 0,0

1,β2
/QG0,1(M,β).

Let
ev : Fβ →M

be the evaluation map at the unique marking at ∞ ∈ P1.

Definition 2.5.1. We define I-function

I(q, z) = 1 +
∑
β>0
−zqβev∗

 [Fβ]vir

eC∗(Nvir
Fβ/QG0,1(M,β))

 ∈ A∗(M)[z±]⊗Q Q[[qβ]],
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where −z := eC∗(Cstd), where Cstd is the standard representation of C∗. We
also define

µ(z) := [zI(q, z)− z]+ ∈ A∗(M)[z]⊗Q Q[[qβ]],

where [. . . ]+ is the truncation given by taking only non-negative powers of
z. Let

µβ(z) ∈ A∗(M)[z]

be the coefficients of qβ in µ(z).

2.5.2 Graph space and sheaves

There is a forgetful morphism

QG0,1(M,β)→M0,1(P1, 1) (2.14)

which is given by projecting a quasimap to its parametrised component, the
graph space QG0,1(M,β) then admits a relative perfect obstruction

(Rπ∗f∗Tvir)∨ → LQC0,1(M,β)/M0,1(P1,1),

which sits in a distinguished triangle

LM0,1(P1,1) → EQG0,1(M,β) → (Rπ∗f∗Tvir)∨ −→ .

Restricting the sequence above to the fixed component Fβ̌, we obtain that
the morphism

Ef
QG0,1(M,β) → (Rπ∗f∗Tvir)∨,f

between fixed parts is an isomorphism and

eC∗((Rπ∗f∗Tvir)∨,mv) = −zeC∗(Nvir
Fβ/QG0,1(M,β)),

because the restriction of LM0,1(P1,1) is a trivial line bundle with the fiber
being the cotangent space of P1 at ∞, which is not fixed and whose Euler
class is equal to −z. Consider now the component

QG0,p∞(M,β) ⊂ QG0,1(M,β)

of quasimaps, whose marking is over ∞. In other words, this is the fiber of
(2.14) over ∞. Then applying the identification of quasimaps with sheaves,
we obtain

QG0,p∞(M,β) ∼= Mβ̌,u(S × P1/S∞),
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where we slightly abuse the notation, because the moduli spaces on the right
is different from those defined in Definition 2.2.14. In Definition 2.2.14, we
exclude sheaves which fixed by infinitely many automorphisms of a curve.
Here, we include all sheaves.

Moreover, the obstruction theory (Rπ∗F
∗Tvir)∨

|QG0,p∞ (M,β) matches the
relative Donaldson–Thomas obstruction theory of Mβ̌,u(S×P1/S∞). Hence,
for all purposes, the graph space can be replaced by Mβ̌,u(S×P1/S∞). The
fixed component Fβ ⊂Mβ̌,u(S × P1/S∞) can then be expressed in terms of
flags of sheaves on S by invoking the identifications between flags of sheaves
and C∗-equivariant sheaves on S × C.

2.5.3 Master space and wall-crossing

For the material discussed in this section we refer the reader to [Zho22].
Here we just glide over the machinery developed there, adjusting some minor
details to our needs.

The space R>0∪{0+,∞} of ϵ-stabilities is divided into chambers, in which
the moduli Qϵg,N (M,β) stays the same, and as ϵ crosses the a wall between
chambers, the moduli changes discontinuously. Let ϵ0 = 1/d0 be a wall for
a given β ∈ Eff(M,Cohr(S)) and ϵ−, ϵ+ be some values that are close to ϵ0
from left and right of the wall respectively. Assuming 2g−2+N+ϵ0 deg(β) >
0, let

MQϵ0g,N (M,β)→MM̃g,N

be the master space with the projection to the moduli of curves with cali-
brated tails constructed in [Zho22], the construction is carried over to our
set-up varbatim. The space MM̃g,N is a P1-bundle over M̃g,N , the latter
is obtained by a series of blow-ups of a moduli space of semistable curves
weighted by degree, Mss

g,N,d, with total degree d = deg(β). As in GIT case,
the following holds.

Theorem 2.5.2. MQϵ0g,N (M,β) is a proper Deligne–Mumford stack.

Proof. With Lemma 2.2.19 the proof is exactly the same as in GIT case,
we therefore refer to [Zho22, Section 5].

The master space also carries a perfect obstruction theory, which is ob-
tained in the same way as the one for Qϵg,N (M,β). Let

f : MQϵ0g,N (M,β)×
MM̃g,N,d

Cg,N → Cohr(S),

π : MQϵ0g,N (M,β)×
MM̃g,N,d

Cg,N →MQϵ0g,N (M,β)
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be the universal quasimap and the canonical projection, then we have a
relative perfect obstruction theory over MM̃g,n

ϕ : E• = (π∗f∗Tvir)∨ → L
MQ

ϵ0
g,N (M,β)/MM̃g,N

,

which is constructed via the same identification as in Proposition 2.4.5.
Using the master space, we can establish the wall-crossing formula.

Theorem 2.5.3. Assuming 2g − 2 +N + ϵ0 deg(β) > 0, we have

⟨τm1(γ1), . . . , τmN (γN )⟩ϵ−g,N,β − ⟨τm1(γ1), . . . , τmN (γN )⟩ϵ+g,N,β

=
∑
k≥1

∑
β⃗

1
k!

∫
[Qϵ+

g,N+k
(M,β′)]vir

i=N∏
i=1

ψmi
i ev∗

i (γi) ·
a=k∏
a=1

ev∗
N+aµβa(z)|z=−ψN+a

where β⃗ runs through all the (k + 1)-tuples of effective curve classes

β⃗ = (β′, β1, . . . , βk),

such that β = β′ + β1 + · · · + βk and deg(βi) = d0 for all i = 1, . . . , k, and
ϵ+-stability for the class β′ is given by Lβ. The same holds for perverse
quasimap invariants ⟨τm1(γ1), . . . , τmN (γN )⟩♯,ϵg,N,β.

Sketch of the proof. Here we will sketch the proof, for all the details we
refer to [Zho22, Section 6], as the proof in our case is exactly the same as
the one for GIT quasimaps.

The master space MQϵ0g,N (M,β) carries a natural C∗-action, such that
the fixed loci are following three types of spaces (up to finite coverings):

• Qϵ
−
g,N (M,β);

• Q̃ϵ
+
g,N (M,β), base change of Qϵ+g,N (M,β) from Mg,N,d to M̃g,N ;

• Y ×Mk

∏k
i=1 Fβi

, a finite gerbe over Q̃ϵ+g,N+k(M,β′)×Mk

∏k
i=1 Fβi

.

Applying the virtual localisation formula and the taking equivariant residue,
we obtain certain relations between the classes associated to the spaces
above. Projecting everything to a point, we get the wall-crossing formula.
All the effort goes into the careful construction of the master space and the
analysis of moving and fixed parts of the obstruction theories at fixed loci.
The latter task can be separated into two independent parts by splitting
the restriction of the absolute obstruction theory E•

MQ|F of the master space
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to a fixed locus F (one of the spaces above) into the relative obstruction
theory E•

|F and the restriction cotangent complex L
MM̃g,N,d|F of the moduli

of calibrated curves,

L
MM̃g,N,d|F → E•

MQ|F → E•
|F −→,

the analysis of L
MM̃g,N,d|F presented in [Zho22] is completely independent of

what kind of quasimaps one considers, while the analysis of E•
|F does not use

any special feature of the GIT set-up. For more details we refer the reader
to [Zho22, Section 6].
Remark 2.5.4. In the GIT set-up there are naturally defined maps [W/G]→
[Cn+1/C∗], which induce Qϵg,N (W/G, β)→ Qϵg,N (Pn, d). This allows to give
a more refined class-valued wall-crossing by pushforwarding the classes on
MQϵ0g,N (W/G, β) to Qϵ−g,N (Pn, d) instead of a point. In our case this seems to
be less natural. Even though Cohr(S) is Zariski-locally a GIT stack, we do
not have these naturally defined maps, because it is unclear, if line bundles
Lβ’s are actually ample on any of the GIT loci through which the universal
quasimap factors. Moreover, for different β, these loci change.

It is also possible to pushforward the classes toMg,N instead ofQϵg,N (Pn, d).
The problem with this approach is that the projection

Qϵg,N+k(M,β)→Mg,N

involves stabilisation of a curve, which implies that ψ-classes do not pullback
to ψ-classes. Consequently, the wall-crossing formula becomes inefficient to
state.

Since our ϵ-stability depends on a class β, there are only two univer-
sally defined values - 0+ and ∞, i.e. the values that correspond to stable
quasimaps and stable maps. Let ϵ ∈ {0+,∞}, we define

F ϵg (t(z)) =
∞∑
N=0

∑
β≥0

qβ

N !⟨t(ψ), . . . , t(ψ)⟩ϵg,N,β,

where t(z) ∈ H∗(M,Q)[[z]] is a generic element, and the unstable terms are
set to be zero. By repeatedly applying Theorem 2.5.3 we obtain.

Corollary 2.5.5. For all g ≥ 1 we have

F 0+
g (t(z)) = F∞

g (t(z) + µ(−z)).

For g = 0, the same equation holds modulo constant and linear terms in t.
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For g = 0 the relation holds only moduli linear terms in t(z), because
the moduli space Qϵ−0,1(M,β) is empty, if ϵ− deg(β) ≤ 1. The wall-crossing
formula takes a different form in this case.

Theorem 2.5.6. For ϵ ∈ ( 1
deg(β) ,

1
deg(β)−1) we have

ev∗(
[Qϵ−0,1(M,β)]vir

z(z − ψ1) ) = [I(q, z)]z≤−2,qβ ,

where [. . . ]z−2,qβ means that we take a truncation up to z−2 and the coeffi-
cient of qβ.

Proof. See [Zho22, Lemma 7.2.1].

To express the wall-crossing formula above in terms of change of vari-
ables, we do the following. Let {Bi} be a basis of H∗(M,Q) and {Bi} be its
dual basis with respect to intersection pairing. Let

J0+(t(z), q, z) = t(−z)
z

+ I(q, z)

+
∑

β≥0,N≥0

qβ

N !
∑
p

Bi⟨
Bi

z(z − ψ) , t(ψ), . . . , t(ψ)⟩M,0+

0,1+N,β,

where unstable terms are set to be zero, and let

J∞(t(z), q, z) = t(−z)
z

+ 1

+
∑

β≥0,N≥0

qβ

N !
∑
p

Bi⟨
Bi

z(z − ψ) , t(ψ), . . . , t(ψ)⟩M,∞
0,1+N,β,

then genus-0 case admits the following wall-crossing formula.

Theorem 2.5.7. We have

J∞(t(z) + µ(−z)) = J0+(t(z)).

Proof. We again refer to [Zho22, Section 7.4].

2.5.4 Semi-positive targets

I-function.

Using the virtual localisation on the graph space, we can obtain a more
explicit expression for I-functions for semi-positive moduli of sheaves.
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Definition 2.5.8. A pair (M,Cohr(S)) is semi-positive, if for all classes
β ∈ Eff(M,Cohr(S)) the following holds

β(det(Tvir)) ≥ 0.

An example of a semi-positive target would be a moduli of sheaves on a
del Pezzo surface, e.g. P2. However, even a pair (P2,Cohr(S)) is not Fano
in the sense of quasimaps, i.e. there exists class a β ∈ Eff(P2,Cohr(S)) , for
which the following holds

β(det(Tvir)) = 0,

these are just the classes such that c1(β̌) = 0.

Consider now the expansion

[zI(q, z)− z]+ = I1(q) + (I0(q)− 1)z + I−1(q)z2 + I−2(q)z3 + . . . ,

we will show that all terms Ik with k ≥ −1 vanish for a semi-positive target.
The virtual dimension of QG0,1(M,β) is equal to dim(M)+1+β(det(Tvir)).
Hence, by the virtual localisation theorem, degrees of the localised classes

−zev•∗

 [Fβ̌]vir

eC∗(Nvir
Fβ̌/QG0,1(M,β))

 ∈ A∗(M)[z±]

are equal to
−β(det(Tvir)).

On the other hand, again by the virtual localisation theorem, the degrees of
these classes cannot be negative, since they are homogenous summands of
an equivariant class. Hence, we obtain that

[zI(q, z)− z]+ = I1(q) + (I0(q)− 1)z,

as claimed. The remaining terms can be viewed from two different per-
spectives. The first one is map-theoretic, and is shown in the following
proposition.

Proposition 2.5.9. For a semi-positive pair (M,Cohr(S)) the following
holds

(i)
I0(q)−1 = 1 +

∑
β ̸=0

∑
i

qβ⟨γi,1, γi⟩0
+

0,3,β;
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(ii)
I1(q) = f0(q)1 +

∑
j

fj(q)Dj ,

where {Dj} is a basis of H2(M,Q), and

f0(q)
I0(q) =

∑
β ̸=0

qβ⟨[pt],1⟩0+
0,2,β

fj(q)
I0(q) =

∑
β ̸=0

∑
j

qβ⟨Dj ,1⟩0+
0,2,β.

Proof. The proof is exactly the same as in [CK14, Section 5.5].

The second perspective is sheaf-theoretic. In the case of punctorial
Hilbert schemes of del Pezzo surfaces, it allows us to explicitly determine
the terms of the perverse I-function - I♯0 and I♯1. Let us firstly do some
notational preparations. From now on, we assume that M = S[n].

By Corollary 2.2.13, we have an embedding

− ˇ(...) : Eff(S[n],Coh♯r(S)) ↪→ H1,1(S)⊕H2,2(S), (2.15)

here we change the sign of the classes, which amounts to considering classes
of subschemes instead of classes of ideals on threefolds. Using this em-
bedding, we identify β with its image −β̌. The class β can therefore be
decomposed as

β = (γ,m) ∈ H1,1(S)⊕H2,2(S),
hence

Q[[qβ]] = Q[[qγ ]]⊗ Q[[y]], qβ = qγ · ym.

On the side of S[n], the variable y keeps track of multiples of the exceptional
curve class A ∈ H2(S[n],Z), and the above decomposition corresponds to the
one of H2(S[n],Z) given by Nakajima basis (images of Nakajima operators
applied to classes on S),

H2(S[n],Z) ∼= H2(S,Z)⊕ Z · A.

More precisely, if Σ ⊂ S is a curve, then we can define an associated curve
Σn ⊂ S[n] given by letting one point move along Σ and keeping n− 1 other
distinct points fixed. The curve Σn then represents a class in H2(S,Z) ⊂
H2(S[n],Z) with respect to the identification above. For more on Nakajima
basis in the relevant to us context, we refer to [Obe18a].

We define c1(S)n ∈ H2(S[n],Z) to be the class associated to the class
c1(S) ∈ H2(S,Z) as described above, after identifying homology with coho-
mology. With this notation, we have the following result, which was kindly
communicated to the author by Georg Oberdieck.
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Proposition 2.5.10 (Georg Oberdieck). Assume S is a del Pezzo surface,
then for M = S[n] we have

I♯0(q) = 1
I♯1(q) = log(1 + y)c1(S)n.

Proof. By dimension constraints and the fact that there are no γ ∈
Eff(S) such that γ · c1(S) = 1, the non-zero contributions to the I -function
come only from classes of the form β = (0,m). Let us firstly consider I♯0. Let
P ∈ S[n] be a point, then the preimage ev−1(P ) ⊂ Fβ̌ parametrizes stable
pairs supported in U × P1 where U is a local neighbourhood of the support
of P . We can assume that U is the disjoint union’s of C2, hence since C2

carries a symplectic form, the only non-vanishing contributions are therefore
due to m = 0. Hence ⟨I♯0, P ⟩ = 1, which implies that I0 = 1.

We now consider the term I♯1. With the same argument as above ⟨I♯1,A⟩ =
0. Now let us evaluate I♯1 at the classes in H2(S,Z) ⊂ H2(S[n],Z). By the
previous argument, the n− 1 fixed points contribute 1 each, so that

⟨I♯,S
[n]

1 , [Σn]⟩ = ⟨I♯,S1 , [Σ]⟩.

Hence we may assume n = 1. In this case, the moduli space F•,(0,m) is
isomorphic to S, parametrizing pairs (F, s) given by I• = OP1

x
→ OP1

x
(D)

where P1
x = P1 × x for a point x ∈ S, and D = m · [∞]. The local model

of P1,β(S × P1/S0) near Fβ̌ is Symm(P1) × S. The obstruction theory was
computed in [PT09, Section 4.2]5,

DefI• = H0(OD(D))

ObsI• = H0(OD(D)⊗ ωS×P1)∨ = H0(OD(D)⊗ ωP1)∨ ⊗ ω∨
S|x.

Consider now the C∗-action on P1 by t · (x, y) = (tx, y). The coordinate
Y = y/x gets scaled by t · Y = t−1Y hence has weight −z. Let us analyse
the C∗-equivariant structure the obstruction theory. Firstly,

H0(O(D)|D) = (Y −m)⊗ C[Y ]/Y m = CY −m ⊕ CY −m+1 ⊕ . . .⊕ CY −1,

which therefore has weights z, 2z, . . . ,mz as a C-module. Moreover, ωP1 =
C[Y ]dY , so since dY has weight −z we get that H0(O(D)|D ⊗ ωP1) has

5The equivariantly correct obstruction theory is given in the latest arXiv version. The
canonical line bundle ωP1 (D)|D = ωD is equivariantly not trivial.
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weights 0, z, . . . , (m−1)z, therefore its dual has weights (−m+1)z, . . . ,−z, 0.
Let c1 = c1(S), we therefore obtain the following

ev∗
[Fβ̌]vir

eC∗(Nvir) = pS∗

(
eC∗(Obsmov

I• )
eC∗(Defmov

I• ) · p
∗
Sc1

)
= (−z + c1) · · · ((−m + 1)z + c1)

z · 2z · · ·mz · c1

= (−1)m−1(m− 1)!zm−1

m!zm · c1 + (. . .) · c2
1

= (−1)m−1

mz · c1 + (. . .) · c2
1,

this proves the claim.

We now define
♯ ⟨γ1, . . . , γN ⟩S

[n],ϵ
g,γ :=

∑
m

♯⟨γ1, . . . , γN ⟩S
[n],ϵ

g,(γ,m)y
m,

then using the wall-crossing formula from Theorem 2.5.3, the string and
divisor equations, one obtains the following result, which specialises to the
result stated in Section 1.4.1 after enumerating the invariants with respect
to classes on S[n] instead of S × C.

Corollary 2.5.11. Assume 2g − 2 + N ≥ 0. If S is a del Pezzo surface,
then

♯ ⟨γ1, . . . , γN ⟩0
+

g,γ = (1 + y)c1(S)·γ · ♯ ⟨γ1, . . . , γN ⟩∞g,γ .

DT/PT correspondence

Using dilaton equation for GW invariants (see [CK20, Corollary 1.5]), one
can restate the wall-crossing formula for g ̸= 1 (for g = 1 there is an ex-
tra constant term which we do not want to write down for the clarity of
exposition, see [CK20, Corollary 1.5]) as follows

(I0)2g−2 · F 0+
g (t(z)) = F∞

g

(t(z) + I1(q)
I0(q)

)
.

The same holds for the perverse generating series F ♯,ϵg (t(z)). Since the gen-
erating series are related by a change of variables, the above equation is
equivalent to

(I0)2g−2 · F 0+
g (I0(q)t(z)− I1(q)) = F∞(t(z)),
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therefore perverse and non-perverse generating series are related in the fol-
lowing way

(I0)2g−2 · F 0+
g (I0(q)t(z)− I1(q)) = (I♯0)2g−2 · F ♯,0+

g (I♯0(q)t(z)− I♯1(q)),

moving the change of variables to one side we, obtain

(I0)2g−2

(I♯0)2g−2
· F 0+

g

(
I0(q)
I♯0(q)

·
(
t(z) + I♯1(q)

)
− I1(q)

)
= F ♯,0

+
g (t(z)).

Passing from quasimaps to sheaves and establishing the DT/PT correspon-
dence for wall-crossing terms, we would get the DT/PT correspondence for
the relative geometry

S × Cg,N →Mg,N ,

such that 2g− 2 +N > 0 and ch(I)d ̸= 0. In particular, DT/PT correspon-
dence relative to three vertical divisors on S × P1 is reduced to the DT/PT
correspondence of wall-crossing invariants.
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Chapter 3

Quasimaps to a moduli space
of sheaves on a K3 surface

3.1 Semiregularity map

3.1.1 Preliminaries

In what follows, we assume S to be a K3 surface. Let F be a sheaf on
S×C flat over a nodal curve C, such that fibers of F have Chern character
v ∈ H∗(S,Q). We start with some preparations. Consider the Atiyah class

At(F ) ∈ Ext1(F, F ⊗ Ω1
S×C),

represented by the canonical exact sequence

0→ F ⊗ Ω1
S×C → P1(F )→ F → 0,

where P1(F ) is the sheaf of principle parts. Composing the Atiyah class
with the natural map

Ω1
S×C = Ω1

S ⊞ Ω1
C → Ω1

S ⊞ ωC ,

we obtain a class

Atω(F ) ∈ Ext1(F, F ⊗ (Ω1
S ⊞ ωC)).

We then define the Chern character of a sheaf F on S × C for possibly
singular C as follows

chk(F ) := tr
(

(−1)k
k! Atω(F )k

)
∈ Hk(∧k(Ω1

S ⊞ ωC)). (3.1)
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If C is smooth, it agrees with the standard definition of the Chern character.
Using the canonical identification H1(ωC) ∼= C and

∧k(Ω1
S ⊞ ωC) ∼= Ωk

S ⊞ (Ωk−1
S ⊠ ωS),

we get a Künneth’s decomposition of the cohomology

Hk(∧k(Ω1
S ⊞ ωC)) ∼= Hk(Ωk

S)⊕Hk−1(Ωk−1
S ),

therefore⊕
Hk(∧k(Ω1

S ⊞ ωC)) ∼= Λ⊗H0(C,C)⊕ Λ⊗H2(C,C) ∼= Λ⊕ Λ. (3.2)

With respect to this decomposition above, the Chern character ch(F ) has
two components

ch(F ) = (ch(F )f , ch(F )d) ∈ Λ⊕ Λ.

If C is smooth, it was shown in Lemma 2.2.2 that

(ch(F )f , ch(F )d) = (v, β̌),

where β is the degree of a quasimap associated to F and β̌ is its dual class
in H∗(S,Q), defined in Definition 2.2.3. We would like to establish the same
result with respect to the definition of the Chern character given in (3.1, if
C is singular. Let

π : S × C̃ → S × C

be the normalisation morphism and π∗Fi be the restriction of π∗F to its
connected components C̃i of C̃. The above decomposition of the Chern
character then satisfies the following property.

Lemma 3.1.1. Under the identification (3.2) the following holds

ch(F ) = (v,
∑

ch(π∗Fi)d) ∈ Λ⊕ Λ.

In other words, if the quasimap associated to F is of degree β, then

ch(F )d = β̌.

Proof. Firstly, there exist canonical maps making the following diagram
commutative

0 π∗F ⊗ π∗Ω1
S×C π∗P1(F ) π∗F 0

0 π∗F ⊗ Ω1
S×C̃ P1(π∗F ) π∗F 0
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where the first row is exact on the left, because Lπ∗ ∼= F , since1 F is flat
over C. The diagram above implies that the pullback of the Atiyah class
π∗At(F ) is mapped to At(π∗F ) with respect to the map

Ext1(π∗F, π∗F ⊗ π∗Ω1
S×C)→ Ext1(π∗F, π∗F ⊗ Ω1

S×C̃).

The same holds for π∗Atk(F ). Consider now the following commutative
diagram

RHom(F, F ⊗ Ωk
S×C) Ωk

π∗RHom(π∗F, π∗F ⊗ π∗Ωk
S×C)

π∗RHom(π∗F, π∗F ⊗ Ωk
S×C̃) π∗Ωk

S×C̃ ∧k(Ω1
S ⊞ ωC)

such that the first vertical map is the composition

RHom(F, F ⊗ Ωk
S×C)→ π∗Lπ

∗RHom(F, F ⊗ Ωk
S×C) =

= π∗RHom(π∗F, π∗F ⊗ Lπ∗Ωk
S×C)→ π∗RHom(π∗F, π∗F ⊗ π∗Ωk

S×C),

where we used that Lπ∗F ∼= π∗F . Taking cohomology of the diagram above
and using the exactness of π∗, we can therefore factor the map

Extk(F, F ⊗ Ωk
S×C)→ Hk(∧k(Ω1

S ⊞ ωC))

as follows

Extk(F, F⊗Ωk
S×C)→ Extk(π∗F, π∗F⊗π∗Ωk

S×C)→ Extk(π∗F, π∗F⊗Ωk
S×C̃)

→ Hk(Ωk
S×C̃) ∼= Hk(Ωk

S)⊕
⊕
i

Hk−1(Ωk−1
S )⊗H1(ωC̃i

)

→ Hk(Ωk
S)⊕Hk−1(Ωk−1

S )⊗H1(ωC) ∼= Hk(∧k(Ω1
S ⊞ ωC)).

Under the natural identifications H1(ωC̃i
) ∼= C and H1(ωC) ∼= C the last

map in the sequence above becomes

Hk(Ωk
S)⊕

⊕
i

Hk−1(Ωk−1
S ) (id,+)−−−−→ Hk(Ωk

S)⊕Hk−1(Ωk−1
S ).

1To see that, one can use a standard locally-free resolution for a flat sheaf; these
resolutions are functorial with respect to pullbacks.
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The claim then follows by tracking the powers of the Atiyah class Atk(F )
along the maps above. The fact that∑

ch(π∗Fi)d = β̌

follows from the definition of β̌, Definition 2.2.3.

3.1.2 Semiregularity map

By pulling back classes in

HT 2(S) := H0(∧2TS)⊕H1(TS)⊕H2(OS)

to S × C, we will treat HT 2(S) as classes on S × C. Let

σi := tr(∗ · (−1)i
i! Atω(F )i) : Ext2(F, F )→ H i+2(∧i(Ω1

S ⊞ ωC))

be a semiregularity map.

Lemma 3.1.2. The following diagram commutes

H2−k(∧kTS) Ext2(F, F )

H i+2(∧i(Ω1
S ⊞ ωC))

· (−1)k

k! Atω(F )k

⟨∗,chk+i(F )⟩ σi

Proof. If i = 0, then σ0 = tr and the commutativity is implied by the
following statement

⟨κ, tr(Atω(F )k))⟩ = tr⟨κ,Atω(F )k⟩,

whose proof is presented in [BF03, Proposition 4.2] for k = 1 and is the
same for other values of k.

If i = 1, then for the commutativity of the digram we have to prove that

⟨κ, tr(Atω(F )k+1

k + 1! )⟩ = tr(⟨κ, Atkω(F ))
k! ⟩ ·Atω(F )).

If κ ∈ H2(OS), the equality follows trivially, since there is no contraction.
The case of κ ∈ H1(TS) is treated in [BF03, Proposition 4.2]. For κ ∈
H0(∧2TS) we use the derivation property for contraction with a 2-vector
field

⟨ξ,At3
ω(F )⟩ = 3⟨ξ,At2

ω(F )⟩ ·Atω(F ),
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which can be checked locally on a 2-vector field of the form V ∧W .

Due to the decomposition

H i(∧i(Ω1
S ⊞ ωC)) ∼= H i(Ωi

S)⊕H i−1(Ωi−1
S ),

there are two ways to contract a class in H i(∧i(Ω1
S ⊞ ωC)) with a class in

H2−k(∧kTS): either via the first component of the decomposition above or
via the second. Hence due to the wedge degree or the cohomological degree,
only one component of H i(∧i(Ω1

S⊞ωC)) pairs non-trivially with H2−k(∧kTS)
for a fixed k. It is not difficult to check that contraction with the Chern
character

H2−k(∧kTS) ⟨−,chk+i(F )⟩−−−−−−−−→ H i+2(∧i(Ω1
S ⊞ ωC))

is therefore equal to ⟨−, ch(F )f⟩ for i = 0 and to ⟨−, ch(F )d⟩ for i = 1.
Moreover, using the identification

H i+2(∧i(Ω1
S ⊞ ωC)) ∼= H2(OS),

contraction ⟨−, ch(F )d/f⟩ with classes on S×C is identified with contraction
with classes on S.

Proposition 3.1.3. Assume

ch(F )f ∧ ch(F )d ̸= 0,

then there exists κ ∈ HT 2(S), such that

⟨κ, ch(F )f⟩ = 0 and ⟨κ, ch(F )d⟩ ≠ 0.

Hence the restriction of the semiregularity map to the traceless part

σ1 : Ext2(F, F )0 → H3(Ω1
S ⊞ ωC)

is non-zero.

Proof. Using a symplectic form on S, we have the following identifica-
tions

∧2TS ∼= OS , TS ∼= Ω1
S , OS ∼= Ω2

S .

After applying the identifications and taking cohomology, the pairing

HT 2(S)⊗HΩ0(S)→ H2(OS), (3.3)
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which is given by contraction, becomes the intersection pairing

HΩ0(S)⊗HΩ0(S)→ H2(Ω2
S),

whereHΩ0(S) = ⊕
H i(Ωi). In particular, the pairing (3.3) is non-degenerate.

Hence ch(F )⊥
d and ch(F )⊥

f are distinct, if and only if ch(F )d is not a multi-
ple of ch(F )f , therefore there exists a class κ ∈ HT 2(S) with the properties
stated in the lemma. By Lemma 3.1.2 and the discussion afterwards the
property ⟨κ, ch(F )f⟩ = 0 implies that

κ · exp(−Atω(F ) ∈ Ext2(F, F )0,

while the property ⟨κ, ch(F )d⟩ = 0 implies that the restriction of the semireg-
ularity map to Ext2(F, F )0 is non-zero, as it is non-zero when applied to the
element κ · exp(−Atω(F )).

Remark 3.1.4. From the point of view of quasimaps, the condition

ch(F )f ∧ ch(F )d ̸= 0,

is equivalent to the fact that the quasimap f : C → Cohr(S) associated to
F is not constant.

A geometric interpretation of the above result is the following one. With
respect to Hochschild–Kostant–Rosenberg (HKR) isomorphism

HT 2(S) ∼= HH2(S)

the space HT 2(S) parametrises first-order non-commutative deformations of
S, i.e. deformations of Db(S). Given a first-order deformation κ ∈ HT 2(S),
the unique horizontal lift of ch(F )d/f relative to some kind of Gauss-Manin
connection associated to κ should stay Hodge, if and only if ⟨κ, ch(F )d/f⟩ =
0. On the other hand, ⟨κ, exp(−Atω(F )) gives obstruction for deforming F
on S×C in direction κ. Therefore by Lemma 3.1.2 the semiregularity map σi
relates obstruction to deform F along κ with the obstruction that ch(F )d/f
stays Hodge. Proposition 3.1.3 states that there exists a deformation κ ∈
HT 2(S), for which ch(F )f stays Hodge, but ch(F )d does not. Form the
point of view of quasimaps means that the moduli of stable sheaves M on
S deforms along κ, but the quasimap associated to F does not, if its degree
is non-zero. For example, let S be a K3 surface associated to a cubic 4-fold
Y , such that the Fano variety of lines F (Y ) is isomorphic to S[2]. Then if
we deform Y away from the Hassett divisor (see [Has00]), F (Y ) deforms
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along, but the point class of S does not. Therefore such deformation of Y
will give the first-order non-commutative deformation κ ∈ HT 2(S) of S,
such that v = (1, 0,−2) stays Hodge, but β̌ = (0, 0, k) does not. Note that
β̌ = (0, 0, k) corresponds to multiplies of the exceptional curve class in S[2].
Indeed, there are no commutative deformations of S that will make (0, 0, k)
non-Hodge, because the exceptional divisor deforms along with S[2].

3.2 Reduced wall-crossing

3.2.1 Surjective cosection

Now let M be a moduli space of Gieseker stable sheaves on S in the class
v ∈ Knum(S), subject to the following assumptions:

• rk(v) > 0;

• there are no strictly Gieseker semistable sheaves;

• there exists u ∈ K0(S), such that χ(u · v) = 1.
Note that the second assumption implies that M is smooth and projec-

tive, while the third one implies that M is a fine moduli space (might be
even equivalent, but the author could not find a reference).
Remark 3.2.1. An example of a moduli space M which satisfies the assump-
tions above will be a moduli space of sheaves in the class v = (2, α, 2k + 1)
for a polarisation such that deg(α) is odd (or a generic polarisation that is
close to a polarisation for which deg(α) is odd). Firstly, rk(v) and deg(v)
are coprime, therefore there are no strictly slope semistable sheaves. The
class u = [OS ] − k[Opt] ∈ K0(S) has the property χ(v · u) = 1. Moreover,
Proposition A.0.4 holds in this case, therefore the space Mv,β̌,u(S × C) is
a moduli space of all stable sheaves for some suitable polarisation. More
specifically, such set-up can be arranged on an elliptic K3 surface.

By Lemma 2.2.15, there exists an identification between a space of
quasimapsQϵg,N (M,β) and a certain relative moduli space of sheavesM ϵ

v,β̌,u(S×
Cg,N/Mg,N ),

Qϵg,N (M,β) ∼= M ϵ
v,β̌,u(S × Cg,N/Mg,N ),

such that the naturally defined corresponding obstructions theories are iso-
morphic under the identification above. Let

π : S × Cg,N ×Mg,N
Qϵg,N (M,β)→ Qϵg,N (M,β),

F ∈ Coh(S × Cg,N ×Mg,N
Qϵg,N (M,β))
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be the canonical projection and the universal sheaf, which is defined via the
identifation Qϵg,N (M,β) ∼= M ϵ

β̌,u
(S × Cg,N/Mg,N ). Let

E• := RHomπ(F,F)0[1]

be the obstruction-theory complex relative to the moduli stack of nodal
curves Mg,N . We construct a surjective cosection as follows. There exists a
global relative semiregularity map

sr : E• → R3π∗(Ω1
S ⊞ ωCg,N/Mg,N

)[−1],

and since

R3π∗(Ω1
S ⊞ ωCg,N/Mg,N

) ∼= H2(OS)⊗ OQϵ
g,N (M,β),

we obtain a cosection of the obstruction theory

sr : E• → H2(OS)⊗ OQϵ
g,N (M,β)[−1] ∼= OQϵ

g,N (M,β)[−1], (3.4)

surjectivity of the cosection follows from the preceding results.

Corollary 3.2.2. Assuming β ̸= 0, the semiregularity map sr is surjective.

Proof. Under the given assumption the surjectivity of sr follows from
Proposition 3.1.3 and Lemma 3.1.1.

Consider now the composition

Ext1
C(ΩC ,OC(−

∑
pi))→ Ext2(F, F )0

σ1−→ H3(Ω1
S ⊞ ωC), (3.5)

where the first map defined by the following composition

Ext1
C(ΩC ,OC(−

∑
pi))→ Ext1

C(ωC ,OC) ·−Atω(F )−−−−−−→ Ext2(F, F )0.

The composition (3.5) is zero by the same arguments as those which are
presented in Lemma 3.1.2. Therefore the semiregularity map descends to
the absolute obstruction theory

TMg,N
[−1] E• E•

abs

OQϵ
g,N (M,β)[−1]

sr srabs
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so the results of [KL13] apply.

The cosection of the obstruction theory of the master spaceMQϵ0g,N (M,β)
(see Section 2.5.3 for the definition of the master space) is constructed in the
similar way as for Qϵg,N (M,β) - by viewing it as a relative moduli space of
sheaves. In what follows, we use Kiem–Li’s construction of reduced virtual
fundamental classes via localisation by a cosection, see [KL13]. Kiem–Li’s
classes can be seen as virtual fundamental classes associated to the reduced
obstruction-theory complex Ered, defined as the cone of the cosection,

E•
red = cone(sr)[−1]→ E•

abs
srabs−−−→ O[−1].

However, showing that Ered really defines an obstruction theory is difficult.
This is addressed in Appendix B. We need the virtual localisation theorem
for the proof of the wall-crossing formulas, we therefore refer to [CKL17] for
the virtual localisation of Kiem–Li’s reduced classes.

From now on, by a virtual fundamental class we always will mean a
reduced virtual fundamental class, except for β = 0, since, in this case, the
standard virtual fundamental class does not vanish. The arguments of this
section apply both to standards invariants ⟨τm1(γ1), . . . , τmN (γN )⟩ϵg,N,β and
perverse invariants ⟨τm1(γ1), . . . , τmn(γN )⟩♯,ϵg,N,β , if M = S[n]. We therefore
state and prove everything only for the standard invariants.

3.2.2 Wall-crossing

We start with derivation of a more explicit formula for wall-crossing invari-
ants µβ(z), Definition 2.5.1, by using virtual localisation on a graph space
GQ0,1(M,β). As it is explained in Section 2.5.1, the C∗-fixed components
of GQ0,1(M,β) are identified with certain products, the reduced class of a
product splits as a product of reduced and non-reduced classes on its factors
(cf. [MPT10, Section 3.9]) Assuming the marking is over∞, the virtual class
is therefore non-zero only for Fβ and F 0,0

1,β in the notation of Section 2.5.1.
Now let

γip∞ := γi ⊠ p∞ ∈ H∗
C∗(M × P1),

where p∞ ∈ H∗
C∗(P1) is the equivariant class of∞ ∈ P1. Let {Bi} be a basis

of H∗(M,Q) and {Bi} be its dual basis with respect to intersection pairing.
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Then by the virtual localisation formula, we have the following identity

∑
Bi
∫

[GQ0,1(M,β)]vir
γip∞ =

∑
Bi
∫

[Fβ ]vir

−zev∗Bi
eC∗(Nvir)

+
∑

Bi⟨Bi,
1

−z − ψ
⟩0+
0,2,β, (3.6)

where we used that

eC∗(Nvir
F 0,0

1,β
/GQ0,1(M,β)) = z(z + ψ)

and
p∞|0 = 0, p∞|∞ = −z,

which also implies that only fixed components with markings over ∞ con-
tribute to the integral 3.6.

The virtual dimension of GQ0,1(M,β) is equal to dim(M) + 2, while
the virtual dimension of Q0+

0,2(M,β) is dim(M). On the other hand, the
cohomological degree of Bip∞ is at most dim(M) + 1. Hence the left-hand
side of (3.6) is zero and the second term on the right-hand side is non-zero
only for Bi = [pt]. We therefore get that

−zev∗

 [Fβ]vir

eC∗(Nvir
Fβ/QG0,1(M,β))

 = 1

z
⟨[pt],1⟩0+

0,2,β ∈ A∗(M)[z±].

In particular, we obtain that

µβ(z) = 1⟨[pt],1⟩0+
0,2,β ∈ A∗(M)[z]. (3.7)

Theorem 3.2.3. Assuming 2g − 2 +N + ϵ0 deg(β) > 0, we have

⟨τm1(γ1), . . . , τmn(γN )⟩ϵ−g,N,β − ⟨τm1(γ1), . . . , τmN (γN )⟩ϵ+g,N,β
= ⟨[pt],1⟩0+

0,2,β · ⟨τm1(γ1), . . . , τmN (γN ),1⟩g,N+1,0,

if deg(β) = d0, and

⟨τm1(γ1), . . . , τmN (γN )⟩ϵ−g,N,β = ⟨τm1(γ1), . . . , τmN (γN )⟩ϵ+g,N,β,

otherwise.
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Sketch of the proof. As in the case of Theorem 2.5.3, we have to refer
mostly to [Zho22, Section 6]. The difference with is that we use reduced
classes now.

The fixed components of the master space which contribute to the wall-
crossing formula are of the form (up to some finite gerby structure and finite
coverings)

Q̃ϵ
+
g,N+k(M,β′)×Mk

k∏
i=1

Fβi
,

where β = β′ + β1 + · · · + βk and deg(βi) = d0. Recall that Q̃ϵ+g,N+k(M,β′)
is just a base change of Qϵ+g,N (M,β) from Mg,N to M̃g,N,d, where the latter
is the moduli space of curves with entangled tails. The reduced class of a
product splits as a product of reduced and non-reduced classes on its factors
(cf. [MPT10, Section 3.9]). Hence by Corollary 3.2.2 and [KL13], it vanishes,
unless β′ = 0 and k = 1, in which case

Q̃ϵ
+
g,N+1(M, 0) = Q∞

g,N+1(M, 0) = Mg,N+1(M, 0).

Using the explicit expression of µβ(z) from (3.7) and the analysis presented
in [Zho22, Section 7], we get that contribution of this component to the
wall-crossing is

⟨[pt],1⟩0+
0,2,β · ⟨τm1(γ1), . . . , τmN (γN ),1⟩∞g,N+1,0,

this concludes the argument.

Corollary 3.2.4. For all g ≥ 1 we have

F 0+
g (t(z)) = F∞

g (t(z)) + Fwall(t(z))

where
Fwall(t(z)) = µ(q) ·

( ∞∑
n=0

1
N !⟨t(ψ), . . . , t(ψ),1⟩∞g,N+1,0

)
and

µ(q) =
∑
β>0
⟨[pt],1⟩0+

0,2,βq
β.

For g = 0, the equation holds modulo constant and linear terms in t.

There are invariants that are not covered by the results above and of
great interest for us - those of a fixed genus-1 curve. We deal with them
now. Let E be a smooth genus-1 curve and QϵE/E(M,β) be the fiber of

Qϵ1,0(M,β)→M1,0
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over the stacky point [E]/E ∈ M1,0. In other words, QϵE/E(M,β) is the
moduli space of ϵ-stable quasimaps, whose smoothing of the domain is E.
Maps are considered up translations of E.

Theorem 3.2.5. Assuming β ̸= 0, we have∫
[Qϵ−

E/E
(M,β)]vir

1 =
∫

[Qϵ+
E/E

(M,β)]vir
1 + χ(M)⟨[pt],1⟩0+

0,2,β,

if deg(β) = d0, and ∫
[Qϵ−

E/E
(M,β)]vir

1 =
∫

[Qϵ+
E/E

(M,β)]vir
1,

otherwise.

Sketch of the proof. As in Theorem 3.2.3, the only case when the con-
tribution from the wall-crossing components is non-zero is the one of β′ = 0
and k = 1. In this case

Q̃ϵ
+

(E,0)(M, 0) ∼= M,

and the obstruction bundle is given by the tangent bundle TM . Hence the
virtual fundamental class is χ(M)[pt], then by (3.7) the wall-crossing term
is

χ(M)⟨[pt],1⟩0+
0,2,β,

this concludes the argument.

3.3 Applications

3.3.1 Enumerative geometry of S[n]

Genus-0 invariants

We start with genus-0 3-point quasimap invariants of S[n].

Definition 3.3.1. Given classes

γ1, ..., γN ∈ H∗(M,Q) and γ′
1, ..., γ

′
N ′ ∈ H∗(S × C,Q).

We define
⟨γ1, ..., γN | γ′

1, ..., γ
′
N ′)⟩S×C

v,β̌
∈ Q.

to be DT invariants associated to the moduli space of sheaves Mv,β̌,u(S ×
C/Sx), defined in Definition 2.2.14. On the left we put relative primary
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insertions, on the right - the absolute primary ones (cf. Remark 2.4.8).
Moduli spaces Mv,β̌,u(S × C/Sx) can be identified for different choices of
u ∈ K0(S), we therefore drop u from the notation. If M = S[n], then we
define

⟨γ1, ..., γN | γ′
1, ..., γ

′
N ′)⟩♯,S×C

n,β̌
∈ Q

to be invariants associated to a moduli space of stable pairs Pn,β̌(S×C/Sx).

The moduli space of P1 with three marked points is a point. Hence by
fixing markings, Corollary 2.3.7 implies that

Q0+
0,3(S[n], β)♯ ∼= Pn,β̌(S × P1/S0,1,∞). (3.8)

Moreover, by Theorem 3.2.3 and the string equation, the wall-crossing is
trivial, if g = 0 and N = 3. We therefore obtain that

⟨γ1, γ2, γ3⟩♯,S
[n],0+

0,3,β = ⟨γ1, γ2, γ3⟩S
[n],∞

0,3,β .

Applying the identification (3.8), we get the following result, which together
with PT/GW of [Obe21a] confirms the conjecture proposed in [Obe19].

Corollary 3.3.2.
⟨γ1, γ2, γ3⟩S

[n],∞
0,3,β = ⟨γ1, γ2, γ3⟩S×P1

n,β̌
.

More generally, the results above can be restated for a relative geometry

S × Cg,N →Mg,N ,

such that 2g−2+N > 0. In this case by the string equation, the wall-crossing
is also trivial.

Genus-1 invariants, Igusa cusp form conjecture

Let us firstly establish a more precise relation between β and β̌. Let E be a
smooth genus 1 curve. Given a generic K3 surface S, then by global Torelli
theorem,

Eff(S) = ⟨βh⟩, β2
h = 2h− 2.

Using Nakajima operators, we obtain

Eff(S[n]) = ⟨Cβh
,A⟩,

where A is the exceptional curve class associated to the Hilbert–Chow mor-
phism S[n] → S(n). The class Cβh

is given by moving a point on a smooth
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curve representing the class βh and keeping n− 1 points fixed. For more on
Nakajima basis in the relevant context, we refer to [Obe18a].

Using Corollary 2.2.2, we obtain a correspondence between degrees of
quasimaps and classes on the threefold S × E,

(n,−β̌) : Eff(S[n],Coh♯r(S)) ↪→ Eff(S × E)⊕H6(S × E).

For n > 1, its restriction to Eff(S[n]) ⊂ Eff(S[n],Cohr(S)) is given by

k1Cβh
+ k2A 7→ ((n, k1βh), k2).

While for n = 1, the class βh is sent to ((βh, 1), 0). Note that we changed
the sign of classes on S × E, which amounts to considering the class of the
subscheme rather than its ideal. A general class in Eff(S[n],Cohr(S)) can
therefore be identified with k1Cβh

+ k2A for possibly negative k2.
By Corollary 2.2.2, we have the following identification of moduli spaces

Q0+

E/E(S[n], Cβh
+ kA)♯ ∼= [P(n,βh),k(S × E)/E],

such that the natural obstruction theories match. As before, the subscript
notation of the moduli on the left indicates that we consider maps up to
translations of E. For the same reason we take the quotient by E on the
left. On the other hand,

Q∞
E/E(S[n], Cβh

+ kA)♯ = ME/E(S[n], Cβh
+ kA).

Consider now the following two generating series

PT(p, q, q̃) :=
∑
n≥0

∑
h≥0

∑
k∈Z

pkqh−1q̃n−1
∫

[P(n,βh),k(S×E)/E]vir
1

GW(p, q, q̃) :=
∑
n>0

∑
h≥0

∑
k≥0

pkqh−1q̃n−1
∫

[ME/E(S[n],Cβh
+kA)]vir

1.

The series are well-defined, because (S, β) and (S′, β′) are deformation equiv-
alent, if and only if

β2 = β′2 and div(β) = div(β′),

where div(β) is the divisibility of the class, in our case βh’s are primitive by
definition. In [OP18], it was proven that

PT(p, q, q̃) = 1
−χ10(p, q, q̃) ,
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where χ10(p, q, q̃) is the Igusa cusp form, hence the name of the conjecture.
By the discussion above, we can view both series as generating series of
quasimaps for ϵ ∈ {0+,∞}. Using Theorem 3.2.5, we obtain

PT(p, q, q̃) = GW(p, q, q̃)

+
∑
n≥0

∑
h≥0

∑
k∈Z

pkqh−1q̃n−1χ(S[n])⟨[pt],1⟩♯,S
[n],0+

Cβh
+kA.

Remark 3.3.3. The effective quasimap cone Eff(S[n],Cohr(S)) is strictly big-
ger than the effective cone Eff(S[n]). For a class, which is not in Eff(S[n]), the
moduli space of ∞-stable quasimaps will be just empty. Nevertheless, the
wall-crossing formula still applies but with zero contribution from ϵ =∞.

The invariants ⟨[pt],1⟩♯,S
[n],0+

Cβh
+kA are so-called rubber PT invariants on S×

P1. These are invariants associated to the moduli of stable pairs Pn,β̌(S ×
P1/S0,∞) up to the C∗-action coming from P1-factor which fixes 0 and ∞.
Said differently, these are invariants associated to the quotient

[Pn,β̌(S × P1/S0,∞)/C∗].

These invariants can be rigidified to standard relative PT invariants with
absolute insertions as follows.

Lemma 3.3.4.
⟨[pt],1⟩♯,S

[n],0+

Cβh
+kA = ⟨[pt],1 | D ⊠ ω⟩♯,S×P1

(n,βh),k,

where D ∈ H2(S,Q) is some class such that D · βh = 1 and ω ∈ H2(P1,Z)
is the point class.

Proof. See [MO09, Lemma 3.3].

The wall-crossing invariants can also be given a different and more sheaf-
theoretic interpretation as virtual Euler numbers of Quot schemes, as it is
explained in [Obe21b]. In the same article, wall-crossing invariants are also
explicitly computed for S[n]. Therefore we obtain the following corollary,
which completes the proof of the Igusa cusp conjecture.

Corollary 3.3.5.
PT(p, q, q̃) = GW(p, q, q̃) + 1

F 2∆ ·
1
q̃

∏
n≥1

1
(1− (q̃ ·G)n)24 .

For the definition of the generating series on the right, we refer to [OP16,
Section 2].
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3.3.2 Higher-rank DT invariants

A moduli space M is deformation equivalent to a punctorial Hilbert scheme
S[n], where 2n = dim(M). Hence Gromov–Witten theory of M is equivalent
to the one of S[n]. Applying quasimap wall-crossing both to M and to S[n],
we can therefore express higher-rank DT invariants of a threefold S × C in
terms of rank-one DT invariants and wall-crossing invariants.

K3× P1

Let us firstly consider invariants on S×P1 relative to S0,1,∞. As previously,
by fixing the markings, we obtain

Q0+
0,3(M,β) ∼= Mv,β̌,u(S × P1/S0,1,∞).

Moreover, as in the case of S[n], there is no wall-crossing by Theorem 3.2.3
and the string equation, therefore

⟨γ1, γ2, γ3⟩M,0+

0,3,β = ⟨γ1, γ2, γ3⟩M,∞
0,3,β .

Choose a deformation M to S[n], which keeps the class β algebraic. The
deformation gives an identification of cohomologies

H∗(M,Q) ∼= H∗(S[n],Q).
Under this identification, we have

⟨γ1, γ2, γ3⟩M,0+

0,3,β = ⟨γ1, γ2, γ3⟩M,∞
0,3,β

= ⟨γ1, γ2, γ3⟩S
[n],∞

0,3,β = ⟨γ1, γ2, γ3⟩S
[n],0+

0,3,β . (3.9)
Passing from quasimaps to sheaves and using (3.9), we obtain the following
result.
Corollary 3.3.6. Given a deformation of (M,β) to (S[n], β) we have

⟨γ1, γ2, γ3⟩S×P1

v,β̌
= ⟨γ1, γ2, γ3⟩S×P1

n,β̌
.

K3× E

Consider now S × E for a genus-1 curve E. Applying the same procedure
as for S × P1, we obtain∫

[Mv,β̌,u(S×E)/E]vir
1 =

∫
[Pn,β̌(S×E)/E]vir

1

+ χ(S[n])
(
⟨[pt],1⟩S

[n],0+

0,2,β − ⟨[pt],1⟩M,0+

0,2,β

)
.
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The invariants ⟨[pt],1⟩M,0+ are rubber invariants associated to the moduli
space Mv,β̌,u(S × P1/S0,∞) up to C∗-action coming from P1-factor. As in
Lemma 3.3.4, one can rigidify these invariants.

Lemma 3.3.7.
⟨[pt],1⟩M,0+

0,2,β = ⟨[pt],1 | D ⊠ ω)⟩S×P1

v,β̌
,

where D ∈ H2(S,Q) is some class such that c1(β̌)·D = 1, and ω ∈ H∗(P1,Z)
is the point class.

Proof. The proof is exactly the same as in [MO09, Lemma 3.3].

By degenerating P1 to P1 ∪0 P1 and applying degeneration formula of
[MNOP06b, Section 3.4] (see also [LW15]), we obtain

⟨[pt],1 | D ⊠ ω |⟩S×P1

v,β̌
= ⟨[pt] | D ⊠ ω⟩S×P1

v,β̌
,

which is the consequence of the fact that reduced class restricts to a re-
duced and non-reduced classes (which vanishes, unless β = 0) on irreducible
components. Putting everything together, we get the following wall-crossing
expression for higher-rank DT invariants.

Corollary 3.3.8.∫
[Mv,β̌,u(S×E)/E]vir

1 =
∫

[Pn,β̌(S×E)/E]vir
1

+ χ(S[n])
(
⟨[pt] | D ⊠ ω⟩S×P1

n,β̌
− ⟨[pt] | D ⊠ ω⟩S×P1

v,β̌

)
.

Using same arguments as in [MO09, Lemma 3.3], we get the following
rigidification of the genus-1 invariant∫

[Mv,β̌,u(S×E)/E]vir
1 = ⟨D ⊠ ω⟩S×E

v,β̌
.

By degenerating E to E ∪0 P1 and applying the degeneration formula, we
obtain

⟨D ⊠ ω⟩S×E
v,β̌

= ⟨1 | D ⊠ ω⟩S×E
v,β̌

+ χ(M)⟨[pt] | D ⊠ ω⟩S×P1

v,β̌
,

the second term on the right is the wall-crossing term.

Corollary 3.3.9.
⟨1 | D ⊠ ω⟩S×E

v,β̌
= ⟨1 | D ⊠ ω⟩S×E

n,β̌
.
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Using the Igusa cusp conjecture, we therefore can explicitly express these
higher-rank relative DT invariants.

Moreover, by Lemma 2.2.22, the higher-rank invariants associated to the
moduli space Mv,β̌,u(S×C) can be related to invariants associated to moduli
spaces of sheaves with fixed determinant, Mv,β̌,L(S × C),∫

[Mv,β̌,L(S×E)/E]vir
1 =

∫
[Mv,β̌,u(S×E)/E]vir

rk(v)2.

3.3.3 DT/PT correspondence

Using the wall-crossing for the standard pair (S[n],Cohr(S)) and the perverse
pair (S[n],Coh♯r(S)), we also can relate rank-one PT invariants to rank-one
DT invariants. If g = 0 and N = 3, by Theorem 3.2.3 and the string
equation, there is no wall-crossing in both case.

⟨γ1, γ2, γ3⟩♯,S×P1

0,3,β = ⟨γ1, γ2, γ3⟩S
[n],∞

0,3,β = ⟨γ1, γ2, γ3⟩♯,S×P1

0,3,β ,

Unlike for standard virtual fundamental classes, we really have equality of
invariants in the reduced case. In general, once can only expect equality
of certain generating series, which also account for wall-crossings. Equality
of two theories also holds for S × E, as was shown in [OS19, Theorem 3]
and [Obe18b]. However, in order to apply our methods to this case, we have
to show that DT/PT correspondence holds for the wall-crossing invariants.
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Chapter 4

Gromov–Witten/Hurwitz
wall-crossing

4.1 ϵ-admissible maps

Let X be a smooth projective variety, (C,x) be a twisted1 marked nodal
curve and P be a possibly disconnected orbifold nodal curve.

Definition 4.1.1. For a map

f = fX × fC : P→ X × C,

the data (P,C,x, f) is called a twisted pre-admissible map, if

• fC is étale over marked points and nodes;

• fC is a representable;

• f is non-constant on each connected component.

We will refer to P and C as source and target curves, respectively. Note
that by all the conditions above, P itself must be a twisted nodal curve with
orbifold points over nodes and marked points of C.

Consider now the following complex

RfC∗[f∗
CLC → LP] ∈ Db(C),

1By a twisted nodal curve we will always mean a balanced twisted nodal curve.
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which is supported at finitely many points of the non-stacky smooth locus,
which we call branching points. They arise either due to ramification points
or contracted components of the map fC. Following [FP02], to the complex
above we can associate a effective Cartier divisor

br(f) ∈ Div(C)

by taking the support of the complex weighted by its Euler characteristics.
This divisor will be referred to as branching divisor.

Let us give a more explicit expression for the branching divisor. Let
P◦ ⊆ P be the maximal subcurve of P which contracted by the map fC. Let
P• ⊆ P be the complement of P◦, i.e. the maximal subcurve which is not
contracted by the map fC. By P̃• we denote its normalisation at the nodes
which are mapped into a regular locus of C. Note that the restriction of fC
to P̃• is a ramified cover, the branching divisor of which is therefore given
by points of ramifications.

By P̃◦,i we denote the connected components of the normalisation P̃◦
and by pi ∈ C their images in C. Finally, let N ⊂ P be the locus of nodal
points which are mapped into regular locus of C. The branching divisor
br(f) then has the following explicit expression.

Lemma 4.1.2. With the notation from above we have

br(f) = br(f|P̃•
) +

∑
i

(2g(P̃◦,i)− 2)[pi] + 2f∗(N).

Proof. By the definition of twisted pre-admissibility, all the branching
takes place away from orbifold points. We therefore have to determine what
are the contributions of contracted components (which are schemes) to the
branching divisor.

Given a nodal curve C and its normalisation v : C̃ → C, let NC ⊂ C
be the singular locus of C. Recall that LC ∼= ΩC , we therefore have the
following sequence

0→ ONC
→ LC → v∗L

C̃
→ 0, (4.1)

which, in particular, implies that

χ(LC) = χ(ωC).

With the sequence (4.1) the proof of the claim is the same as in [FP02], the
difference is that we use (4.1) instead of [FP02, (20)].
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Remark 4.1.3. The reason we use LC instead of ωC is that π∗ωC ∼= ωC, where
π : C → C is the projection to the coarse moduli space. Hence ωC does not
see non-étalness of π. Moreover, it is unclear, if a map f∗

CωC → ωP exists at
all in general.

We fix L ∈ Pic(X), an ample line bundle on X, such that for all effective
curve classes γ ∈ H2(X,Z),

deg(γ) = β · c1(L)≫ 0.

Let (P,C,x, f) be a twisted pre-admissible map. For a point p ∈ C, let

f∗Lp := f∗
XL|f−1

C
(p),

we set deg(f∗Lp) = 0, if f−1
C (p) is 0-dimensional. For a component C′ ⊆ C,

let
f∗L|C′ := f∗

XL|f−1
C

(C′).

Recall that a rational tail of a curve C is a component isomorphic to P1

with one special point (a node or a marked point). A rational bridge is a
component isomorphic to P1 with two special points.

Definition 4.1.4. Let ϵ ∈ R≤0 ∪{−∞}. A twisted pre-admissible map f is
twisted ϵ-admissible, if

(i) for all points p ∈ C,

multp(br(f)) + deg(f∗Lp) ≤ e−1/ϵ;

(ii) for all rational tails T ⊆ (C,x),

deg(br(f)|T ) + deg(f∗L|T ) > e−1/ϵ;

(iv)
|Aut(f)| <∞.

Lemma 4.1.5. The condition of twisted ϵ-admissability is an open condi-
tion.

Proof. The conditions of twisted ϵ-admissibility are constructable. Hence
we can use the valuative criteria for openness, i.e. we need to show that if
a pre-admissible map

(P,C,x, f) ∈M(X × Ctw
g,N/M

tw
g,N , (γ, n))(R)
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is ϵ-admissible at the closed fiber of a discrete valuation ring R with fraction
field K, then it is ϵ-admissible at the generic fiber. In fact, each of conditions
of ϵ-admissibility is an open condition. For example, let

T ⊆ (C,x)

a family of curves such that in the generic fiber T| Spec(K) is a rational tail
that does not satisfy the condition (ii). Then the central fiber T| Spec(C) of
T will be a tree of rational curves, whose rational tails don’t satisfy the
condition (ii), because the degree of both br(f) and f∗L can only decrease
on rational tails of T| Spec(C). Note we also use that br(f) is defined for fam-
ilies of pre-admissible twisted maps to conclude that the degree of br(f) is
constant in families.

A family of twisted ϵ-admissable maps over a base scheme B is given by
two families of twisted B-curves P and (C,x) and a B-map

f = fX × fC : P→ X × (C,x),

whose fibers over geometric points of B are ϵ-admissable maps. An isomor-
phism of two families

Φ = (ϕ1, ϕ2) : (P,C,x, f) ∼= (P′,C′,x′, f ′)

is given by the data of isomorphisms of the source and target curves

(ϕ1, ϕ2) ∈ IsomB(P,P′)× IsomB((C,x), (C′,x′)),

which commute with the maps f and f ′,

f ′ ◦ ϕ1 ∼= ϕ2 ◦ f.

Definition 4.1.6. Given an element

β = (γ,m) ∈ H2(X,Z)⊕ Z,

we say that a twisted ϵ-admissible map is of degree β to X(n), of genus g
with N markings, if

• f is of degree (γ, n) and deg(br(f)) = m;

• g(C) = g and |x| = N .
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We define

Admϵ
g,N (X(n), β)tw : (Sch/C)◦ → (Grpd)

S 7→ {families of ϵ-admissable maps over B}

to be the moduli space of twisted ϵ-admissible to X(n) maps of degree β
and genus g with N markings. Following [FP02], one can construct the
branching divisor for any base scheme B, thereby obtaining a map

br : Admϵ
g,N (X(n), β)tw →Mg,N,m. (4.2)

The space Mg,N,m is an Artin stack which parametrises triples

(C,x, D),

where (C,x) is a genus-g curve with n markings; D is an effective divisor of
degree m disjoint from markings x. An isomorphism of triples is an isomor-
phism of curves which preserve markings and divisors.

There is another moduli space related to Admϵ
g,N (X(n), β)tw, which is

obtained by associating to a twisted ϵ-admissible map the corresponding map
between the coarse moduli spaces of the twisted curves. This association
defines the following map

p : Admϵ
g,N (X(n), β)tw →M(X × Cg,N/Mg,N , (β, n)),

where M(X×Cg,N/Mg,N , (β, n)) is the relative moduli space of stable maps
to the relative geometry

X × Cg,N →Mg,N ,

where Cg,N →Mg,N is the universal curve. By Lemma 4.1.5 the image of p
is open.

Definition 4.1.7. We denote the image of p by Admϵ
g,N (X(n), β) with its

natural open-substack structure.

The closed points of Admϵ
g,N (X(n), β) are relative stable maps with re-

stricted branching away from marked points and nodes, to which we refer
as ϵ-admissable maps. On can similarly define pre-admissable maps. As in
Definition 4.1.1, we denote the data of a pre-admissible map by

(P,C,x, f).

The moduli spaces Admϵ
g,N (X(n), β) will be the central objects of our study.
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Remark 4.1.8. The difference between the moduli spaces Admϵ
g,N (X(n), β)

and Admϵ
g,N (X(n), β)tw is the same as the one between admissible covers

and twisted bundles of [ACV03]. We prefer to work with Admϵ
g,N (X(n), β),

because it is more convenient to work with schemes than with stacks for the
purposes of deformation theory and of analysis of the basic properties of the
moduli spaces. Moreover, the enumerative geometries of these two moduli
spaces are equivalent, at least for the relevant values of ϵ. For more details
see Section 4.1.3 and Section 4.1.6.

Since br(f) is supported away from stacky points, the branching-divisor
map descends,

br : Admϵ
g,N (X(n), β)→Mg,N,m. (4.3)

The moduli spaces Admϵ
g,N (X(n), β) also admit a disjoint-union decomposi-

tion
Admϵ

g,N (X(n), β) =
∐
µ

Admϵ
g,N (X(n), β, µ), (4.4)

where µ = (µ1, . . . , µN ) is a N -tuple of ramifications profiles of fC over the
markings x.

Riemann–Hurwitz formula extends to the case of pre-admissible maps.

Lemma 4.1.9. If f : P → (C,x) is a degree-n pre-admissible map with
ramification profiles µ = (µ1, . . . , µN ) at the markings x ⊂ C, then

2g(P )− 2 = n · (2g(C)− 2) + deg(br(f)) +
∑
i

age(µi).

Proof. Using Lemma 4.1.2 and the standard Riemann–Hurwitz formula,
one can readily check that the above formula holds for pre-admissible maps.

4.1.1 Properness

We now establish the properness of Admϵ
g,N (X(n), β), starting with the fol-

lowing result.

Proposition 4.1.10. The moduli spaces Admϵ
g,N (X(n), β) are quasi-separated

Deligne-Mumford stacks of finite type.

Proof. By ϵ-admissibility condition, the map br factors through a quasi-
separated substack of finite type. Indeed, (C,x, br(f)) is not stable (i.e. has
infinitely many automorphisms), if one of the following holds
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(i) there is a rational tail T ⊆ (C,x), such that supp(br(f)|T ) is at most
a point;

(ii) there is a rational bridge B ⊆ (C,x), such that supp(br(f)|B) is empty.
Up to a change of coordinates, the restriction of fC to T or B must of the
form

zn : (⊔kP1) ⊔0 P
′ → P1 (4.5)

at each connected component of P over T or B. Let us clarify the notation
of (4.5). The curve ⊔kP1 is disjoint union of k distinct P1. A possibly
disconnected marked nodal curve (P ′,p) is attached via markings to the
disjoint union ⊔kP1 at points 0 ∈ P1 at each connected component of the
disjoint union; P’ is contracted to 0 ∈ P1 in the target P1; while on i’th P1

in the disjoint union, the map is given by zni for n = (n1, . . . , nk).
The fact that the restriction of fC is given by a map of such form can

be seen as follows. The condition (i) or (ii) implies that the restriction of
fC to T or B has at most two2 branching points, which in turn implies that
the source curve must be P1 by Riemann–Hurwitz theorem. A map from
P1 to itself with two ramifications points is given by zm : P1 → P1 up to
change of coordinate. For a rational tail T , there might also be a contracted
component P ′ attached to the ramification point.

In the case of (ii), the ϵ-admissibility condition then says that

deg(f∗L|B) > 0.

While in the case of (i),

deg(br(f)|T ) = multp(br(f))

for a unique point p ∈ T which is not a node. Hence ϵ-admissibility says
that

deg(f∗L|T )− deg(f∗Lp) > 0.
Since we fixed the class β, the conclusions above bound the number of
components T or B by deg(β). Hence the image of br is contained in a
quasi-compact substack of Mg,N,m, which is therefore quasi-separated and
of finite type, because Mg,N,m is quasi-separated and locally of finite type.

The branching-divisor map br is of finite type and quasi-separated, since
the fibers of br are sub-loci of stable maps to X × C for some nodal curve
C. The moduli space Admϵ

g,N (X(n), β) is of finite type and quasi-separated
itself, because br is of finite type and quasi-seperated and factors through a
quasi-separated substack of finite type.

2Remember that branching might also be present at the nodes.
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Lemma 4.1.11. Given a pre-admissable map (P,C,x, f). Let (P ′, C ′,x′, f ′)
be given by contraction of a rational tail T ⊆ (C,x) and stabilisation of the
induced map

f : P → X × C ′.

Let p ∈ C ′ be the image of contraction of T . Then the following holds

deg(br(f)|T ) + deg(f∗L|T ) = multp(br(f ′)) + deg(f ′∗Lp).

Proof. By Lemma 4.1.9,

2g(P|T )− 2 = −2d+ deg(br(f)) + d− ℓ(p),

where ℓ(p) is the number of points in fiber above p, from which it follows
that

deg(br(f)) = 2g(P|T )− 2 + 2d− d+ ℓ(p)
= 2g(P|T )− 2 + d+ ℓ(p).

By Lemma 4.1.2,

multp(br(f)) = 2g(P|T )− 2 + 2ℓ(p) + d− ℓ(p)
= 2g(P|T )− 2 + d+ ℓ(p).

It is also clear by definition, that

deg(f∗L|T ) = deg(f∗Lp),

the claim then follows.

Definition 4.1.12. LetR be a discrete valuation ring. Given a pre-admissible
map (P,C,x, f) over SpecR. A modification of (P,C,x, f) is a pre-admissible
map (P̃ , C̃, x̃, f̃) over SpecR′ such that

(P̃ , C̃, x̃, f̃)| SpecK′ ∼= (P,C,x, f)| SpecK′ ,

where R′ is a finite extension of R with a fraction field K ′.

A modification of a family of curves C over a discrete valuation ring is
given by three operations:

• blow-ups of the central fiber of C;

• contractions of rational tails and rational bridges in the central fiber
of C;
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• base changes with respect to finite extensions of discrete valuation
rings.

A modification of a pre-admissible map is therefore given by an appropriate
choice of three operations above applied to both target and source curves,
such that the map f can be extended as well.
Theorem 4.1.13. The moduli spaces Admϵ

g,N (X(n), β) are proper Deligne-
Mumford stacks.

Proof. We will now use the valuative criteria of properness for quasi-
separated Deligne-Mumford stacks. Let

(P ∗, C∗,x∗, f∗) ∈ Admϵ
g,N (X(n), β)(K)

be a family of ϵ-admissable maps over the fraction field K of a discrete
valuation ring R. The strategy of the proof is to separate P ∗ into two com-
ponents P ∗

◦ and P ∗
• , the contracted component and non-contracted one of

f∗
C , respectively (as it was done for Lemma 4.1.2). We then take a limit

of f∗
|P ∗

•
preserving it as a cover over the target curve, and a limit of f∗

|P ∗
◦

as a stable map. We then glue the two limits back and perform a series of
modifications to get rid of points or rational components that don’t satisfy
ϵ-admissibility.

Existence, Step 1. Let
(P ∗

◦ ,q∗
◦) ⊆ P ∗

be the maximal subcurve contracted by f
∗
C∗ , the markings q∗

◦ are given by
the nodes of P ∗ disconnecting P ∗

◦ from the rest of the curve. By

(P ∗
• ,q∗

•) ⊆ P ∗

we denote the complement of P ∗
◦ with similar markings. Let

(P̃ ∗
• , t∗, t′∗)

be the normalisation of P ∗
• at nodes which are mapped by f∗

C∗ to the regular
locus of C∗, the markings t∗ and t′∗ are given by the preimages of the those
nodes. The induced map

f̃∗
•,C∗ : P̃ ∗

• → C∗

is an admissible cover. By properness of admissible covers, there exists,
possibly after a finite base change3, an extension

((P•,q•, t, t′), (C,x), f̃•,C) ∈ Adm(R),
3For this proof, if we take a finite extension R → R′, we relabel R′ by R.
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where Adm is the moduli space of stable admissible covers with fixed ram-
ification profiles, such that both source and target curves are marked, and
markings of the source curve are not allowed to map to the markings of the
target curve. The ramification profiles are given by the ramification profiles
of f̃∗

•,C∗ . If necessary, we then take a finite base change and modify the
central fibers of source and target curves to obtain a map

f• : P• → X × C,
such that f•,C is still an admissible cover (possibly unstable)4. Now let

f◦ : (P◦,q◦)→ X × C
be the extension of

f∗ : (P ∗
◦ ,q∗

◦)→ X × C
to SpecR. It exists, possibly after a finite base change, by properness of the
moduli space of stable marked maps. If necessary, we modify the curve C
to avoid contracted components mapping to the markings x. If we do so,
we modify P• accordingly to make f•,C an admissible cover (again, possibly
unstable). We then glue back P◦ and P• at the markings (q◦,q•) and (t, t′)
to obtain a map

f : P → X × C.
Let

(P,C,x, f) (4.6)
be the corresponding pre-admissible map. We now perform a series of mod-
ification to the map above to obtain an ϵ-admissible map.

Existence, Step 2. Let us analyse (P,C,x, f) in relation to the conditions
of ϵ-admissibility.

(i) Let p0 ∈ C| Spec C be a point in the central fiber of C that does
not satisfy the condition (i) of ϵ-admissibility. There must be a contracted
component over p0, because f•,C was constructed as an admissible cover,
preserving the ramifications profiles. We then blow-up the family C at the
point p0 ∈ C. The map fC lifts to a map f̃C to Blp0(C)

P

Blp0C C

fC

f̃C

4The map f• can be constructed differently. One can lift f̃∗
• : P̃ ∗

• → X × C∗ to an
element of the moduli of twisted stable map Kg,N ([SymnX]) after passing from admissible
covers to twisted stable maps and then take a limit there.
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by the universal property of a blow-up, since the preimage of the point p0
is a contracted curve (which is a Cartier divisor inside P ). The map fX
is left unchanged. Let T ⊂ Blp0C be the exceptional curve, which is also
a rational tail of the central fiber of Blp0C attached at p0 to C| Spec C. By
Lemma 4.1.11 we obtain that

deg(br(f̃)|T ) + deg(f̃∗L|T ) = multp0(br(f)) + deg(f∗Lp0) (4.7)

and that for all points x ∈ T

multx(br(f̃)) + deg(f̃∗Lx) < multp0(br(f)) + deg(f∗Lp0). (4.8)

We repeat this procedure inductively for all points of the central fiber for
which the part (i) of ϵ-admissibility is not satisfied. By (4.7) and (4.8) this
procedure will terminate and we will arrive at the map which satisfies the
part (i) of ϵ-admissibility. Moreover, the procedure does not create rational
tails which don’t satisfy the part (ii) of ϵ-admissibility.

(ii) If a rational tail T ⊆ (C| Spec C,x| Spec C) does not satisfy the condition
(ii) of ϵ-admissibility, we contract it

P

C ConTC
fC

f̃C

The map fX is left unchanged. Let p0 ∈ ConTC be the image of the con-
tracted rational tail T . Since

deg(br(f̃)|P ) + deg(f̃∗L|P ) = multp0(br(f)) + deg(f∗Lp0),

the central fiber satisfies the condition (i) of ϵ-admissibility at the point
p0 ∈ ConTC. We repeat this process until we get rid of all rational tails
that don’t satisfy the condition (ii) of ϵ-admissibility.

(iii) By the construction of the family (4.6), all the rational bridges of
C satisfy the condition (iii) of ϵ-admissibility.

Uniqueness. Assume we are given two families of ϵ-admissible maps over
SpecR

(P1, C1,x1, f1) and (P2, C2,x2, f2),
which are isomorphic over SpecK. Possibly after a finite base change, there
exists a family of pre-admissible maps

(P̃ , C̃, x̃, f̃)
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which dominates both families in the sense that there exists a commutative
square

P̃ X × C̃

Pi X × Ci

f̃

fi

(4.9)

We take a minimal family (P̃ , C̃, x̃, f̃) with such property. The vertical maps
are given by contraction of rational tails. Then by the equality

deg(br(f)|P ) + deg(L|P ) = multp0(br(f)) + deg(Lp0),

those rational tails cannot satisfy the condition (ii) of ϵ-admissibility, oth-
erwise the the point to which a rational tail contracted will not satisfy the
condition (i) of ϵ-admissibility. But (Pi, Ci,xi, fi)’s are ϵ-admissible by as-
sumption. Hence the source curves are isomorphic, by separatedness of the
moduli space of maps to a fixed target it must be that

(P1, C1,x1, f1) ∼= (P̃ , C̃, x̃, f̃) ∼= (P2, C2,x2, f2).

4.1.2 Obstruction theory

The obstruction theory of Admϵ
g,N (X(n), β) is defined via the obstruction

theory of relative maps in the spirit of [GV05, Section 2.8] with the difference
that we have a relative target geometry X × Cg,N/Mg,N . There exists a
complex E•, which defines a perfect obstruction theory relative to Mh,N ′ ×
Mg,N ,

ϕ : E• → LAdmϵ
g,N (X(n),β))/Mh,N′ ×Mg,N

,

where Mh,N ′ is the moduli space of source curves with markings at the fibers
over marked points of the target curves; and Mg,N is the moduli space of
target curves. More precisely, such a complex exists at each connected
component Admϵ

g,N (X(n), β, µ).

Proposition 4.1.14. The morphism ϕ is a perfect obstruction theory.

Proof. This is a relative version of [GV05, Section 2.8].

4.1.3 Relation to other moduli spaces

Let us now relate the moduli spaces of ϵ-admissible maps for the extremal
values of ϵ ∈ R≤0 ∪ {−∞} to more familiar moduli spaces.

109



ϵ = −∞

In this case the first two conditions of Definition 4.1.4 are

(i) for all points p ∈ C,

multp(br(f)) + deg(f∗Lp) ≤ 1;

(ii) for all rational tails T ⊆ (C,x),

deg(br(f)|T ) + deg(f∗L|T ) > 1.

Since multiplicity and degree take only integer values, by Lemma 4.1.2 and
the choice of L, there is only possibility for which the condition (i) is satisfied.
Namely, if fC does not contract any irreducible components and has only
simple ramifications.

To unpack the condition (ii), recall that a non-constant ramified map
from a smooth curve to P1 has at least two ramification points; it has pre-
cisely two ramification points, if it is given by

z2 : P1 → P1 (4.10)

up to a change of coordinates. Hence

multp(br(f)) + deg(f∗Lp) = 1,

if and only if fC = z2 and fX is constant. In this case, |Aut(f)| =∞. In the
light of the condition (iii) of ϵ-admissibility, the condition (ii) is therefore
automatically satisfied.

We obtain that the data of a −∞-admissible map (P,C,x, f) can be
represented by the following correspondence

P X

(C,x,p)

fX

fC

where fC is a degree-n admissible cover with arbitrary ramifications over
the marking x and with simple ramifications over the unordered marking
p = br(f), such that |Aut(f)| <∞ Hence the moduli space Adm−∞

g,N (X(n), β)
admits a projection from the moduli space of twisted stable maps with ex-
tended degree (see [BG09, Section 2.1] for the definition) to the orbifold
[X(n)],

ρ : Kg,N ([X(n)], β)→ Adm−∞
g,N (X(n), β), (4.11)
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which is given by passing from twisted curves to their coarse moduli spaces.
Indeed, an element of Kg,N ([X(n)], β) is given by a data of

P X

(C,x,p)

fX

fC

where fC is a representable degree-n étale cover over twisted marked curve
(C,x,p). The additional marking p is unordered, over this marking the map
fC must have simple ramifications after passing to coarse moduli spaces. The
map fX has to be fixed by only finitely many automorphisms of the cover
fC. Passing to coarse moduli space, the above data becomes the data of a
−∞-admissible map.

Moreover, the virtual fundamental classes are related by the push-forward,
as it is shown in the following lemma

Lemma 4.1.15.
ρ∗[Kg,N ([X(n)], β)]vir = [Adm−∞

g,N (X(n), β)]vir.

Proof. Let Kg,N (BSn,m) be the moduli stacks of twisted maps to BSn
(not necessarily stable) and Admg,m,n,N be the moduli stack of admissible
covers (again not necessarily stable). There exists the following pull-back
diagram,

Kg,N ([X(n)], β) Adm−∞
g,N (X(n), β)

Kg,N (BSn,m) Admg,m,n,N

π2

ρ

π2
(4.12)

The bottom arrow is a normalisation map, therefore it is of degree 1. By
[Cos06, Theorem 5.0.1] we therefore obtain the equality of virtual funda-
mental classes given by the relative perfect obstruction theories.

ρ∗[Kg,N ([X(n)], β)/Kg,N (BSn,m)]vir

= [Adm−∞
g,N (X(n), β)/Admg,m,n,N ]vir. (4.13)

The moduli space Kg,N (BSn,m) is smooth and Admg,m,n,N is a locally com-
plete intersection (see [ACV03, Proposition 4.2.2]), which implies that their
naturally defined obstruction theories are given by cotangent complexes.
Using virtual pull-backs of [Man12], one can therefore express the virtual
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fundamental classes given by absolute perfect obstruction theories as follows

[Adm−∞
g,N (X(n), β)]vir = (p ◦ π2)![Mg,N ]

= π!
2p

![Mg,N ]
= π!

2[Admg,m,n,N ]
= [Adm−∞

g,N (X(n), β)/Admg,m,n,N ]vir,

where
p : Admg,m,n,N →Mg,N

is the natural projection; we used that p![Mg,N ] = [Admg,m,n,N ], which is due
to the fact that the obstruction theory is given by the cotangent complex.
The same holds for Kg,N (BSn,m), hence we obtain that

ρ∗[Kg,N ([X(n)], β)]vir = [Adm−∞
g,N (X(n), β)]vir.

ϵ = 0

By the first two conditions of Definition 4.1.4 the map fC can have arbitrary
ramifications and contracted components of arbitrary genera (more precisely,
the two are only restricted by n, g, N and β). In conjunction with other
conditions of Definition 4.1.4 we therefore obtain the following identification
of moduli spaces

Adm0
g,N (X(n), β) = M

•
m(X × Cg,N/Mg,N , (γ, n)), (4.14)

where the space on the right is the moduli space of relative stable maps with
disconnected domains to the relative geometry

X × Cg,N →Mg,N ,

where Cg,N →Mg,N is the universal curve and where the markings play the
role of relative divisors. Instead of fixing the genus of source curves, we fix
the degree m of the branching divisor. At each componentAdm0

g,N (X(n), β, µ)
of the decomposition (4.4), the genus of the source curve and the degree of
the branching divisor are related by Lemma 4.1.9.

The obstruction theories of two moduli spaces are equal, since the ob-
struction theory of the space Adm0

g,N (X(n), β) was defined via the obstruc-
tion theory of relative stable maps.
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4.1.4 Inertia stack

We would like to define evaluation maps of moduli spaces Admϵ
g,N (X(n), β)

to a certain rigidification of the inertia stack IX(n) of [X(n)], for that we
need a few observations.

The inertia stack can be defined as follows

IX(n) =
∐
[g]

[Xn,g/C(g)],

where the disjoint union is taken over conjugacy classes [g] of elements of
Sn, Xn,g is the fixed locus of g acting on Xn and C(g) is the centraliser
subgroup of g. Recall that conjugacy classes of elements of Sn are in one-
to-one correspondence with partitions µ of n. Let us express a partition µ
in terms to repeating parts and their multiplicities,

µ = (η1, · · · , η1︸ ︷︷ ︸
m1

, · · · , ηs, · · · , ηs︸ ︷︷ ︸
ms

).

We define
C(µ) :=

s∏
t=1

Cηt ≀ Smt , (4.15)

here Cηt is a cyclic group and ” ≀ ” is a wreath product defined as

Cηt ≀ Smt := CΩt
ηt

⋊ Smt ,

where Ωt = {1, . . . ,mt}; Smt acts on CΩt
ηt

by permuting the factors. There
exist two natural subgroups of C(µ)

Aut(µ) :=
s∏
t=1

Smt and N(µ) :=
s∏
t=1

CΩt
ηt

(4.16)

as the notation suggests, Aut(µ) coincides with the automorphism group
of the partition µ. The inclusion Aut(µ) ↪→ C(µ) splits the following the
sequence from the right

1→ N(µ)→ C(µ)→ Aut(µ)→ 1. (4.17)

Viewing a partition µ as a partially ordered5 set, we define Xµ as the
self-product of X over the set µ. In particular,

Xµ ∼= Xℓ(µ),

5µi ≥ µj , ⇐⇒ j ≥ i.
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where ℓ(µ) is the length of the partition µ. The group C(µ) acts on Xµ as
follows. The products of cyclic groups CΩ

ηt
acts trivially on corresponding

factors of Xµ, while Smt permutes the factors corresponding to the same
part ηt. These actions are compatible with the wreath product.

Given an element g ∈ Sn in a conjugacy class corresponding to a partition
µ, we have the following identifications

C(g) ∼= C(µ) and Xn,g ∼= Xµ,

such that the group actions match. In particular, with the notation intro-
duced above the inertia stack can be re-expressed,

IX(n) =
∐
µ

[Xµ/C(µ)], (4.18)

and by the splitting of (4.17) we obtain that

IX(n) =
∐
µ

[Xµ/Aut(µ)]×BN(µ). (4.19)

We thereby define a rigidified version of IX(n),

IX(n) :=
∐
µ

[Xµ/Aut(µ)].

Note, however, that this is not a rigidified inertia stack in the sense of
[AGV08, Section 3.3], IX(n) is a further rigidifiction of IX(n).

Recall that as a graded vector space, the orbifold cohomology is defined
as follows

H∗
orb(X(n),Q) := H∗−2age(µ)(IX(n),Q).

By (4.18) we therefore get that

H∗
orb(X(n),Q) = H∗−2age(µ)(IX(n),Q) = H∗−2age(µ)(IX(n),Q). (4.20)

4.1.5 Invariants

Let −−−→Admϵ
g,N (X(n), β) be the moduli space obtained from Admϵ

g,N (X(n), β)
by putting the standard order6 on the fibers over marked points of the source
curve. The two moduli spaces are related as follows∐

µ

[−−−→Admϵ
g,N (X(n), β, µ)/

∏
Aut(µi)] = M

ϵ
g,N (X(n), β), (4.21)

6We order the points in a fiber in accordance with their ramification degrees.
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There exist naturally defined evaluation maps at marked points

evi :
−−−→
Admϵ

g,N (X(n), β)→
∐
µ

Xµ, i = 1, . . . , N.

By (4.16), (4.18) and (4.21) we can define evaluation maps

evi : Admϵ
g,N (X(n), β)→ IX(n), i = 1, . . . , N, (4.22)

as the composition

Admϵ
g,N (X(n), β) =

∐
µ

[−−−→Admϵ
g,N (X(n), β, µ)/

∏
Aut(µi)] evi−−→

evi−−→
∐
µ

[Xµ/Aut(µ)] = IX(n).

For universal markings

si : Admϵ
g,N (X(n), β)→ Cg,N

to the universal target curve

Cg,N → Admϵ
g,N (X(n), β)

we also define cotangent line bundles as follows

Li := s∗
i (ωCg,N/Adm

ϵ
g,N (X(n),β)), i = 1, . . . , N,

where ωCg,N/Adm
ϵ
g,N (X(n),β) is the universal relative dualising sheaf. We de-

note
ψi := c1(Li).

With above structures at hand we can define ϵ-admissible invariants.

Definition 4.1.16. The descendent ϵ-admissible invariants are

⟨τm1(γ1), . . . , τmN (γN )⟩ϵg,β :=
∫

[Admϵ
g,N (X(n),β)]vir

i=N∏
i=1

ψmi
i ev∗

i (γi, ),

where γ1, . . . , γN ∈ H∗
orb(X(n)) and m1, . . .mN are non-negative integers.

4.1.6 Relation to other invariants

We will now explore how ϵ-admissible invariants are related to the invariants
associated to the spaces discussed in Section 4.1.3.
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Classes

Let {δ1, . . . δmS} be an ordered basis of H∗(X,Q). Let

µ⃗ = ((µ1, δℓ1), . . . , (µk, δℓk))

be a cohomology-weighted partition of n with the standard ordering, i.e.

(µi, δℓi) > (µi′ , δℓi′ ),

if µi > µi′ , or if µi = µi′ and ℓi > ℓi′ . The underlying partition will be
denoted by µ. For each µ⃗ we consider a class

δl1 ⊗ · · · ⊗ δlk ∈ H
∗(Xµ,Q),

we then define

λ(µ⃗) := π∗(δl1 ⊗ · · · ⊗ δlk) ∈ H∗
orb(S(d),Q),

where
π :

∐
µ

Xµ → IX(n)

is the natural projection. More explicitly, as an element of

H∗(Xµ,Q)Aut(µ) ⊆ H∗
orb(X(n),Q),

the class λ(µ⃗) is given by the following formula∑
h∈Aut(µ)

h∗(δl1 ⊗ · · · ⊗ δlk) ∈ H∗(Xµ,Q)Aut(µ).

The importance of these classes is due to the fact they form a basis of
H∗

orb(S(n),Q), see Proposition 4.5.1.

Comparison

Given weighted partitions

µ⃗i = ((µi1, δi1), . . . , (µiki
, δiki

)), i = 1, . . . N,

the relative Gromov–Witten descendent invariants associated to the moduli
space M•

m(X × Cg,N/Mg,N , (γ, n)) are usually7 defined as∫
[M•

m(X×Cg,N/Mg,N ,(γ,n))]vir

n∏
i=1

ψmi
i

ki∏
j=1

ev∗
i,jδ

i
j ,

7Note that sometimes the factor 1/|Aut(µ⃗)| is introduced, in this case we add such
factor for all classes defined previously.
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such that the product is ordered according to the standard ordering of
weighted partitions and

evi,j : M•
m(X × Cg,N/Mg,N , (γ, n))→ X

are evaluation maps defined by sending a corresponding point in a fiber over
a marked point.

In the case of Kg,N ([X(n)], β) we define evaluation maps as the compo-
sition

evi : Kg,N ([X(n)], β)→ IX(n) → IX(n), i = 1, . . . N,

where we used (4.19).
The next lemma concludes the comparison initiated in Section 4.1.3. In

what follows, by a ψ-class on Kg,N ([X(n)], β) we will mean a coarse ψ-class.
Orbifold ψ-classes are rational multiples of coarse ones.

Lemma 4.1.17.

⟨τm1(λ(µ⃗1)), . . . , τmN (λ(µ⃗N ))⟩0g,β =
∫

[M•
m(X×Cg,N/Mg,N ,(γ,n))]vir

N∏
i=1

ψmi
i

ki∏
j=1

ev∗
i,jδ

i
j

⟨τm1(λ(µ⃗1)), . . . , τmN (λ(µ⃗N ))⟩−∞
g,β =

∫
[Kg,N ([X(n)],β)]vir

N∏
i=1

ψmi
i ev∗

iλ(µ⃗i).

Proof. In the light of our conventions it is a straightforward application
of projection and pullback-pushforward formulas.

4.2 Master space

4.2.1 Definition of the master space

The space R≤0 ∪ {−∞} of ϵ-stabilities is divided into chambers, inside of
which the moduli space Admϵ

g,N (X(n), β) stays the same, and as ϵ crosses
a wall between chambers, the moduli space changes discontinuously. Let
ϵ0 ∈ R≤0 ∪ {−∞} be a wall, and ϵ+, ϵ− be some values that are close to ϵ0
from the left and the right of the wall, respectively. We set

d0 = e−1/ϵ0 and deg(β) := m + deg(γ) = d.

From now on, we assume

2g − 2 +N + 1/d0 · deg(β) ≥ 0
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and
1/d0 · deg(β) > 2,

if (g,N) = (0, 0).

Definition 4.2.1. A pre-admissible map (P,C, f,x) is called ϵ0-pre-admissible,
if

(i) for all points p ∈ C,

multp(br(f)) + deg(f∗Lp) ≤ e−1/ϵ0 ;

(ii) for all rational tails T ⊆ C,

deg(br(f)|T ) + deg(f∗L|T ) ≥ e−1/ϵ0 ;

(iii) for all rational bridges B ⊆ C,

deg(br(f)|B) + deg(f∗L|B) > 0;

We denote by Mϵ0
g,N (X(n), β) the moduli space of ϵ0-pre-admissible maps.

Let M ss
g,N,d be the moduli space of weighted semistable curves defined in

[Zho22, Definition 2.1.2]. There exists a map

Mϵ0
g,N (X(n), β)→M

ss
g,N,d

(P,C, f,x) 7→ (C,x, d),
where the value of d on a subcurve C ′ ⊆ C is defined as follows

d(C ′) = deg(br(f|C′)) + deg(f∗L|C′).

By MMϵ0
g,N (X(n), β) we denote the moduli space of ϵ0-pre-admissible maps

with calibrated tails, defined as the fiber product

MMϵ0
g,N (X(n), β) = Mϵ0

g,N (X(n), β)×Mss
g,N,d

MM̃g,N,d,

whereMM̃g,N,d is the moduli space of curves with calibrated tails introduced
in [Zho22, Definition 2.8.2].

Definition 4.2.2. Given a pre-admissible map (P,C, f,x). We say a ratio-
nal tail T ⊆ (C,x) is of degree d0, if

deg(br(f)|T ) + deg(f∗L|T ) = d0.

We say a branching point p ∈ C is of degree d0, if

multp(br(f)) + deg(f∗Lp) = d0.
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Definition 4.2.3. We say a rational tail T ⊆ (C,x) is constant, if

|Aut((P,C, f,x)|T )| =∞.

In other words, a rational tail T ⊆ (C,x) is constant, if at each connected
component of P|T the map fC|T is equal to

zn : (⊔kP1) ⊔0 P
′ → P1

up to a change of coordinates. The notation is the same as in (4.5).

Definition 4.2.4. A B-family family of ϵ0-pre-admissible maps with cali-
brated tails

(P,C,x, f, e,L, v1, v2)

is ϵ0-admissible if

1) any constant tail is an entangled tail;

2) if the geometric fiber Cb of C has tails of degree d0, then those rational
tails contain all the degree-d0 branching points;

3) if v1(b) = 0, then is ϵ−-admissible;

4) if v2(b) = 0, then is ϵ+-admissible.

We denote byMAdmϵ0
g,N (X(n), β) the moduli space of genus-g, n-marked,

ϵ0-admissable maps with calibrated tails.

4.2.2 Obstruction theory

The obstruction theory of MAdmϵ0
g,N (X(n), β) is defined in the same way as

the one of Admϵ
g,N (X(n), β). There exists a complex E•, which defines a

perfect obstruction theory relative to Mh,N ′ ×MM̃g,N,d,

ϕ : E• → L
MAdm

ϵ0
g,N (X(n),β)/Mh,N′ ×MM̃g,N

.

The fact that it is indeed a perfect obstruction theory is a relative version
of [GV05, Section 2.8].
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4.2.3 Properness

Theorem 4.2.5. The moduli space MAdmϵ0
g,N (X(n), β) is a quasi-separated

Deligne-Mumford stack of finite type.

Proof. The proof is the same as in [Zho22, Proposition 4.1.11].

We now deal with properness of MAdmϵ0
g,N (X(n), β) with the help of val-

uative criteria of properness. We will follow the strategy of [Zho22, Section
5]. Namely, given a discrete valuation ring R with the fraction field K. Let

ξ∗ = (P ∗, C∗,x∗, f∗, e∗,L∗, v∗
1, v

∗
2) ∈MAdmϵ0

g,N (X(n), β)(K)

be a family of ϵ0-admissable map with calibrated tails over SpecK. We will
classify all the possible ϵ0-pre-admissible extensions of ξ∗ to R up to a finite
base change. There will be a unique one which is ϵ0-admissible.

(g,N, d) ̸= (0, 1, d0)

Assume that (g,N, d) ̸= (0, 1, d0) and η∗ does not have rational tails of
degree d0. Let

η∗ = (P ∗, C∗,x∗, f∗) and λ∗ = (e∗,L∗, v∗
1, v

∗
2)

be the underlying pre-admissable map and the calibration data of η∗, re-
spectively. Let

ξ− = (η−, λ−) ∈MMϵ0
g,N (X(n), β)(R′)

be family over degree-r extension R′ of R, where the ϵ−-pre-admissible map

η− = (P−, C−,x−, f−).

is constructed according to the same procedure as (4.6). More precisely,
we apply modifications of Step 2 with respect to ϵ−-stability; we leave the
degree-d0 branching points which are limits of degree-d0 branching points
of the generic fiber untouched. The family η− is the one closest to being
ϵ−-admissible limit of η∗. The calibration λ− is given by a unique extension
of λ∗ to the curve C−, which exists by [Zho22, Lemma 5.1.1 (1)].

Let
{pi | i = 1, . . . , ℓ}
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be an ordered set, consisting of nodes of degree-d0 rational tails and degree-
d0 branching points of the central fiber

pi ∈ C−| Spec C ⊂ C−.

We now define
bi ∈ R>0 ∪ {∞}, i = 1, . . . , ℓ

as follows. Set bi to be ∞, if pi is a degree-d0 branching point. If pi is a
node of a rational tail, then we define bi via the singularity type of C− at pi
- if the family C− has Ab−1-type singularity at pi, we set bi = b/r.

We now classify all ϵ0-pre-admissible modifications of ξ− in the sense of
Definition 4.1.12. By [Zho22, Lemma 5.1.1 (1)] it is enough to classify the
modifications of η−.

All the modifications of η− are given by blow-ups and blow-downs around
the points pi after taking base-changes with respect to finite extensions of
R. The result of these modifications will be a change of singularity type of
η− around pi. Hence the classification will depend on an array of rational
numbers

α = (α1, . . . , αℓ) ∈ Qℓ≥0,

the nominator of which keeps track of the singularity type around pi, while
the denominator is responsible for the degree of an extension of R. The
precise statement is the following lemma.

Lemma 4.2.6. For each α = (α1, . . . , αℓ) ∈ Qℓ≥0, such that α ≤ b, there
exists a ϵ0-pre-admissible modification ηα of η− with following properties

• up to a finite base change,

ηα ∼= ηα′ ⇐⇒ α = α′;

• given a ϵ0-pre-admissible modification η̃ of η−, then there exists α such
that

η̃ ∼= ηα

up to a finite base change.

• the central fiber of ηα is ϵ−-stable, if and only if a = b.

Proof. Let us choose a fractional presentation of (a1, . . . , aℓ) with a
common denominator

(a1, . . . , aℓ) = ( a
′
1

rr′ , . . . ,
a′
ℓ

rr′ ).
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Take a base change of η− with respect to a degree-r′ extension of R′. We
then construct ηα by applying modifications η− around each point pi, the
result of which is a family

ηαi = (Pαi , Cαi ,xαi , fαi),

which is constructed as follows.

Case 1. If pi is a node of a degree-d0 rational tail and ai ̸= 0, we blow-up
C− at pi,

Blpi(C−)→ C−.

The map fC− then defines a rational map

fC− : P− 99K Blpi(C−).

We can eliminate the indeterminacies of the map above by blowing-up P−
to obtain an everywhere-defined map

fBlpi (C−) : P̃− → Blpi(C−),

we take a minimal blow-up with such property. The exceptional curve E of
Blpi(C−) is a chain of r′bi rational curves. The exceptional curve of P̃− is a
disjoint union ⊔Ej , where each Ej is a chain of rbi rational curves mapping
to E without contracted components. We blow-down all the rational curves
but the a′

i-th ones in both E and Ej for all j. The resulting families are Cαi

and Pαi , respectively. The family Cαi has an Aα′
i−1-type singularity at pi.

The marking x− clearly extends to a marking xαi of Cαi . The map fBlpi (C−)
descends to a map

fCαi
: Pαi → Cαi .

The map f−,X is carried along with all those modifications to a map

fαi,X : Pαi → X,

because exceptional divisors are of degree 0 with respect to f−,X , hence the
contraction of curves in the exceptional divisors does not introduce any in-
determinacies. We thereby constructed the family ηαi .

Case 2. Assume now that pi is a node of a degree-d0 rational tail, but
ai = 0. The family Cαi is then given by the contraction of that degree-d0
rational tail, it is smooth at pi. The marking x− extends to a marking xαi
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of Cαi . The family Pαi is set to be equal to P−. The map fαi is the compo-
sition of the contraction and f−.

Case 3. If pi is a branching point, we blow-up C− inductively a′
i times,

starting with a blow-up at pi and then continuing with a blow-up at a point
of the exceptional curve of the previous blow-up. We then blow-down all
rational curves in the exceptional divisor but the last one. The resulting
family is Cαi , it has an Aa′

i
-type singularity at pi. The marking x− extends

to the marking xαi of Cαi . The map fC− then defines a rational map

fC− : P− 99K Cαi .

We set
fCαi

: Pαi → Cαi

to be the minimal resolution of indeterminacies of the rational map above.
More specifically, Pαi is obtained by consequently blowing-up P− and blowing-
down all the rational curves in the exceptional divisor but the last one. The
map f−,X is carried along, as in Case 1.

It is not difficult to verify that the central fiber of ηα is indeed ϵ0-pre-
admissible. Up to a finite base change, the resulting family is uniquely
determined by α = (α1, . . . , αℓ) ∈ Qℓ≥0 and independent of its fractional
presentation, because of the singularity types at points pi and the degree of
an extension R.

Given now an arbitrary ϵ0-pre-admissible modification

η = (P,C,x, f)

of η−. Possibly after a finite base change, there exists a modification

η̃ = (P̃ , C̃, x̃, f̃)

that dominates both η and η− in the sense of (4.9). We take a minimal
modification with such property. The family η̃ is given by blow-ups of C−
and P−. By the assumption of minimality and ϵ0-pre-admissibility of η,
these are blow-ups at pi. By ϵ0-pre-admissibility of η, the projections

C̃ → C and P̃ → P

are given by contraction of degree-d0 rational tails or rational components
which don’t satisfy ϵ0-pre-admissibility. These are exactly the operations
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described in Steps 1,2,3 of the proof. Uniqueness of of maps follows from
seperatedness of the moduli space of maps to a fixed target. Hence we obtain
that

η ∼= ηα

for some α = (α1, . . . , αℓ) ∈ Qℓ≥0, where α is determined by the singularity
types of η at points pi.

(g,N, d) = (0, 1, d0)

We now assume that (g,N, d) = (0, 1, d0). In this case the calibration bundle
is the relative cotangent bundle along the unique marking. Moreover, there
is no entanglement. Given a family of pre-admissible maps (P,C,x, f), we
will denote the calibration bundle by MC . Therefore the calibration data λ
is given just by a rational section s of MC .

Let
ξ− = (η−, λ−) ∈MMϵ0

0,1(X(n), β)(R′)

be the family over degree-r extension R′ of R, such that η− is again given
by (4.6), if there is no degree-d0 branching point in η∗. Otherwise, let η−
be any pre-admissible limit. The calibration data λ− is given by a rational
section s− which is an extension of the section s∗ of MC∗ to MC− .

Given a modification η̃ of η− over a degree-r′ extension of R′, the section
s∗ extends to a rational section s̃ of M

C̃
.

Definition 4.2.7. The order of the modification η̃ is defined to be ord(s̃)/r
at the closed point of SpecR′.

We set b = ord(s−)/r, of there is no degree-d0 branching point in the
generic fiber of η∗. Otherwise set b = −∞.

Lemma 4.2.8. For each α ∈ Q, such that α ≤ b, there exists a ϵ0-pre-
admissible modification ηα of η− of order α with following properties

• up to a finite base change,

ηα ∼= ηα′ ⇐⇒ α = α′;

• given a ϵ0-pre-admissible modification η̃ of η−, then there exists α such
that

η̃ ∼= ηα

up to a finite base change.
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• the central fiber of ηα is ϵ−-stable, if and only if α = b.

Proof. Assume η∗ does not have a degree-d0 branching point. We choose
a fractional presentation a = a′/rr′. We take a base change of η− with
respect to a degree-r′ extension of R′. We blow-up consequently a′ times
the central fiber at the unique marking. We then blow-down all rational
curves in the exceptional divisor but the last one. The resulting family with
a marking is (Cα,xα). We do the same with the family P− at the points in
the fiber over the marked point to a obtain the family Pα and the map

fPα : Pα → C̃,

the map f−,X is carried along with blow-ups and blow-downs. The resulting
family of ϵ0−pre-admissible maps is of order a.

Assume now that the generic fiber has a degree-d0 branching point. We
take a base change of η− with respect to a degree-r′ extension of R′. After
choosing some trivialisation of MC∗ , we have that

s∗ = πr
′a− ∈ K ′,

where a− is the order of vanishing of s− before the base-change and π is some
uniformiser of R′. Because of automorphisms of P1 which fix a branching
point and a marked point, we have an isomorphisms of ϵ0-pre-admissible
maps with calibrated tails,

(η∗, s∗) ∼= (η∗, πc · s∗)

for arbitrary c ∈ Z. Hence we can multiply the section s− with πa
′−r′a− to

obtain a modification of order a.

The fact that these modifications classify all possible modifications follow
from the same arguments as in the case (g,N, d) ̸= (0, 1, d0).

Theorem 4.2.9. The moduli space MAdmϵ0
g,N (X(n), β) is proper.

Proof. With the classifications of modifications of η− of Lemma 4.2.6
and Lemma 4.2.8, the proof of properness follows from the same arguments
as in [Zho22, Proposition 5.0.1].
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4.3 Wall-crossing

4.3.1 Graph space

For a class β = (β,m) ∈ H2(X,Z)⊕ Z consider now

M
•
m(X × P1/X∞, (γ, n)),

the space of relative stable maps with disconnected domains of degree (γ, n)
to X × P1 relative to

X∞ := X × {∞} ⊂ X × P1.

One should refer to this moduli space as graph space, as it will play the
same role, as the graph space in the quasimap wall-crossing. Note that we
fix the degree of the branching divisor m instead of the genus h, the two are
determined by Lemma 4.1.9.

There is a standard C∗-action on P1 given by

t[x, y] = [tx, y], t ∈ C∗,

which induces a C∗-action on M
•
m(X × P1/X∞, (γ, n)). Let

Fβ ⊂M
•
m(X × P1/X∞, (γ, n))C∗

be the distinguished C∗-fixed component consisting of maps to X × P1 (no
expanded degenerations). Said differently, Fβ is the moduli space of maps,
which are admissible over∞ ∈ P1 and whose degree lies entirely over 0 ∈ P1

in the form of a branching point. Other C∗-fixed components admit exactly
the same description as in the case of quasimaps in Section 2.5.1.

The virtual fundamental class of Fβ,

[Fβ]vir ∈ A∗(Fβ),

is defined via the fixed part of the perfect obstruction theory of

M
•
m(X × P1/X∞, (γ, n)).

The virtual normal bundle Nvir
Fβ

is defined by the moving part of the ob-
struction theory. There exists an evaluation map

ev : Fβ → IX(n)

defined in the same way as (4.22).
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Definition 4.3.1. We define an I-function to be

I(q, z) = 1 +
∑
β ̸=0

qβev∗

(
[Fβ]

eC∗(Nvir
Fβ

)

)
∈ H∗

orb(X(n))[z±]⊗Q Q[[qβ]].

Let
µ(z) ∈ H∗

orb(X(n))[z]⊗Q Q[[qβ]]

be the truncation [zI(q, z) − z]+ by taking only non-negative powers of z.
Let

µβ(z) ∈ H∗
orb(X(n))[z]

be the coefficient of µ(z) at qβ.

For later, it is also convenient to define

Iβ := 1
eC∗(Nvir

Fβ
) ∈ A

∗(Fβ)[z±].

4.3.2 Wall-crossing formula

From now on, we assume that

2g − 2 + n+ 1/d0 deg(β) > 0,

for (g,N, d0) = (0, 1, d0) we refer to [Zho22, Section 6.4]. There exists a
natural C∗-action on the master space MAdmϵ0

g,N (X(n), β) given by

t · (P,C,x, f, e,L, v1, v2) = (P,C,x, f, e,L, t · v1, v2), t ∈ C∗.

By arguments presented in [Zho22, Section 6], the fixed locus admits the
following expression

MAdmϵ0
g,N (X(n), β)C∗ = F+ ⊔ F− ⊔

∐
#»
β

F #»
β ,

we will now explain the meaning of each term in the union above, giving a
description of virtual fundamental classes and virtual normal bundles.

F+

This is a simplest component,

F+ = Adm
ϵ+
g,N (X(n), β), Nvir

F+ = M∨
+,
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where M∨
+ is the dual of the calibration bundle M+ on Admϵ+

g,N (X(n), β), with
a trivial C∗-action of weight -1, cf. [Zho22]. The obstruction theories also
match, therefore

[F+]vir = [Admϵ+
g,N (X(n), β)]vir

with respect to the identification above.

F−

We define

Ãdm
ϵ−
g,N (X(n), β) := Adm

ϵ−
g,N (X(n), β)×Mg,N,d

M̃g,N,d,

then
F− = Ãdm

ϵ−
g,N (X(n), β), Nvir

F− = M−,

where, as previously, M− is the calibration bundle on Ãdm
ϵ−
g,N (X(n), β) with

trivial C∗-action of weight 1. The obstruction theories also match and

p∗[Ãdm
ϵ−
g,N (X(n), β)]vir = [Admϵ−

g,N (X(n), β)]vir,

where
p : Ãdm

ϵ−
g,N (X(n), β)→ Adm

ϵ−
g,N (X(n), β)

is the natural projection.

F
β⃗

These are the wall-crossing components, which will be responsible for wall-
crossing formulas. Let

#»

β = (β′, β1, . . . , βk)
be a k+ 1-tuple of classes in H2(X,Z)⊕Z, such that β = β′ + β1 + · · ·+ βk
and deg(βi) = d0. Then a component F #»

β is defined as follows

F #»
β = {ξ | ξ has exactly k entangled tails,

which are all fixed tails, of degree β1, . . . , βk}.

Let
Ei F #»

β i = 1, . . . , k,
pi

be the universal i-th entangled rational tail with a marking pi given given
by the node. We define ψ(Ei) to be the ψ-class associated to the marking
pi. Let

g̃lk : M̃g,N+k,d−kd0 × (M0,1,d0)k → M̃g,N,d
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be the gluing morphism, cf. [Zho22, Section 2.4]. Let

Di ⊂ M̃g,N,d

be a divisor defined as the closure of the locus of curves with exactly i + 1
entangled tails. Finally, let

Y → Ãdm
ϵ−
g,N (X(n), β′)

be the stack of k-roots of M∨
−.

Proposition 4.3.2. There exists a canonical isomorphism

g̃l∗kF #»
β
∼= Y ×(IX(n))k

i=k∏
i=1

Fβi
.

With respect to the identification above we have

[F #»
β ]vir =[Y ]vir ×(IX(n))k

i=k∏
i=1

[Fβi
]vir,

1
eC∗(Nvir

F #»
β

) =
∏k
i=1(z/k + ψ(Ei))

−z/k − ψ(E1)− ψn+1 −
∑∞
i=kDi

·
k∏
i=1

Iβi
(z/k + ψ(Ei)).

Proof. See [Zho22, Lemma 6.5.6].
Theorem 4.3.3. Assuming 2g − 2 +N + 1/d0 · deg(β) > 0, we have

⟨τm1(γ1), . . . , τmn(γN )⟩ϵ+g,β − ⟨τm1(γ1), . . . , τmn(γN )⟩ϵ−g,β

=
∑
k≥1

∑
β⃗

1
k!

∫
[Admϵ−

g,N+k
(X(n),β′)]vir

i=N∏
i=1

ψmi
i ev∗

i (γi)·
a=k∏
a=1

ev∗
n+aµβa(z)|z=−ψn+a

where β⃗ runs through all the (k + 1)-tuples of effective curve classes

β⃗ = (β′, β1, . . . , βk),

such that β = β′ + β1 + · · ·+ βk and deg(βi) = d0 for all i = 1, . . . , k.

Sketch of Proof. We will just explain the master-space technique. For all
the details we refer to [Zho22, Section 6]. By the virtual localisation formula
we obtain

[MAdmϵ0
g,N (X(n), β)]vir

=
(∑

ιF⋆∗

(
[F⋆]vir

eC∗(Nvir
F⋆

)

))
∈ AC∗

∗ (MAdmϵ0
g,N (X(n), β))⊗Q[z] Q(z),
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where F⋆’s are the components of the C∗-fixed locus of MAdmϵ0
g,N (X(n), β).

Let

α =
i=N∏
i=1

ψmi
i ev∗

i (γi) ∈ A∗(MAdmϵ0
g,N (X(n), β))

be the class corresponding to decedent insertions. After taking the residue8

at z = 0 of the above formula, capping with α and taking the degree of the
class, we obtain the following equality∫

[Admϵ+
g,N (X(n),β)]vir

α−
∫

[Admϵ−
g,N (X(n),β)]vir

α

= deg
(
α ∩ Resz=0

(∑
ιFβ∗

(
[Fβ]vir

eC∗(Nvir
Fβ

)

)))
,

where we used that there is no 1/z-term in the decomposition of the class

[MAdmϵ0
g,N (X(n), β)]vir ∈ AC∗

∗ (MAdmϵ0
g,N (X(n), β)),

and that
1

eC∗(M±) = 1
z

+O(1/z2).

The analysis of the residue on the right-hand side presented in [Zho22, Sec-
tion 7] applies to our case. The resulting formula is the one claimed in the
statement of the theorem.

We define

F ϵg (t(z)) =
∞∑
n=0

∑
β

qβ

N !⟨t(ψ), . . . , t(ψ)⟩ϵg,N,β ,

where t(z) ∈ H∗
orb(S(n),Q)[z] is a generic element, and the unstable terms

are set to be zero. By repeatedly applying Theorem 4.3.3 we obtain.
Corollary 4.3.4. For all g ≥ 1 we have

F 0
g (t(z)) = F−∞

g (t(z) + µ(−z)).

For g = 0, the same equation holds modulo constant and linear terms in
t(z).

The fact that the change of variables above holds only moduli linear
terms in t(z) is due to the same reasons as in the case of quasimaps, and it
is explained in Section 2.5.3. The variants of Theorem 2.5.6 and Theorem
2.5.7 in exactly the same form hold in this case too.

8i.e. by taking the coefficient of 1/z of both sides of the equality.
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4.4 Del Pezzo

In this section we determine the I-function in the case X = S is a del Pezzo
surface. Firstly, consider the expansion

[zI(q, z)− z]+ = I1(q) + (I0(q)− 1)z + I−1(q)z2 + I−2(q)z3 + . . . ,

we will show that by the dimension constraint the terms I−k vanish for all
k ≥ 1.

For this section we consider H∗
orb(X(n)) with its naive9 grading. Let z

be of cohomological degree 2 in H∗
orb(X(n))[z±]. The virtual dimension of

M
•
m(X × P1/X∞, (γ, n), µ) is equal to∫

c1(S)
β + n+ ℓ(µ).

Hence, by the virtual localisation, the classes involved in the definition of
I-function

ev∗

(
[Fβ,µ]vir

eC∗(Nvir)

)
∈ H∗(Sµ/Aut(µ))[z±] ⊆ H∗

orb(S(n))[z±],

have naive cohomological degree equal to

−2
(∫

c1(S)
β + n− ℓ(µ)

)
. (4.23)

Since S is a del Pezzo surface, the above quantity is non-positive, which
implies that

I0 = 1 and I−k = 0

for all −k ≥ 1, because cohomology is non-negatively graded. Moreover, the
quantity (4.23) is zero, if and only if

µ = (1, . . . , 1) and β = (0,m).

Let us now study Fβ,µ for these values of µ and β. It is more convenient to
put an ordering on fibers over ∞ ∈ P1, so let F⃗β,µ be the resulting space.
We will not give a full description of F⃗β,µ, even though it is simple. We will
only be interested in one type of components of F⃗β,µ,

ιi : Mh,pi
× Sn ↪→ F⃗β,µ, (4.24)

9We grade it with the cohomological grading of H∗(IS(d), Q).
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where Mh,pi
is the moduli spaces of stable genus-h curve with one marking

labelled by pi, i = 1, . . . N . The embedding ιi is constructed as follows.
Given a point

((C,x), x1, . . . , xn)) ∈Mh,pi
× Sn,

let

(P̃ , p1, . . . , pn) =
i=n∐
i=1

(P1, 0) (4.25)

be an ordered disjoint union of P1 with markings at 0 ∈ P1. We define a
curve P by gluing (P̃ , p1, . . . , pn) with (C, pi) at the marking with the same
labelling. We define

fP1 : P → P1

to be an identity on P1’s and contraction on C. We define

fS : P → S

by contracting j-th P1 in P possibly with an attached curve to the point
xj ∈ S. We thereby defined the inclusion

ιi((C, p), x1, . . . , xn)) = (P,P1, 0, fP1 × fS).

By Lemma 4.1.9,
h = m/2, (4.26)

in particular, m is even. More generally, any connected component of F⃗β,µ
admits a similar description with the difference that there might more mark-
ings on possibly disconnected C by which it attaches to P̃ , i.e. P has more
nodes. These components are not relevant for our needs, as it will be ex-
plained below.

Let us now consider the virtual fundamental classes and the normal
bundles of these components Mh,pi

×Sn. By standard arguments we obtain
that

ι∗i
[Fβ,µ]vir

eC∗(Nvir) = e(π∗
i TS ⊗ p∗E∨

h ) · e(E∨z)
z(z − ψ1) ,

where πi : Mh,pi
×Sn → S is the projection to i-th factor of Sn and p : Mh,pi

×
Sn →Mh,pi

is the projection to Mh,pi
; E is the Hodge bundle on Mh,pi

For other components of #»

F β,µ, the equivariant Euler classes eC∗(Nvir)
acquire factors

1
z(z − ψi)
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for each marked point. This makes them irrelevant for purposes of deter-
mining the truncation of I-function. We therefore have to determine the
following classes

π∗

(
e(π∗

i TS ⊗ p∗E∨
h ) · e(E∨z)

z(z − ψ1)

)
∈ H∗(Sn)[z±],

where π : Mh,pi
×Sn → Sn is the natural projection, which is identified with

evaluation map ev via the inclusion (4.24).
Let ℓ1 and ℓ2 be the Chern roots of π∗

i TS . Then we can rewrite the class
above as follows ∫

Mh,1

E∨(ℓ1) · E∨(ℓ2) · E∨(z)
z(z − ψ1) ,

where

E∨(z) := e(E∨z) =
j=h∑
j=0

(−1)g−jλg−jz
j ,

and similarly for E∨(ℓ1) and E∨(ℓ2).
By putting these Hodge integrals into a generating series, we obtain their

explicit form. Note that below we sum over the degree m of the branching
divisor, which in this case is related to the genus h by (4.26). The result
was kindly communicated to the author by Maximilian Schimpf.

Proposition 4.4.1 (Maximilian Schimpf).

1 +
∑
h>0

u2h
∫
Mh,1

E∨(ℓ1) · E∨(ℓ2) · E∨(z)
z(z − ψ1) =

(sin(u/2)
u/2

) ℓ1+ℓ2
z

Proof. The claim follows from the results of [FP00]. Firstly,

1 +
∑
h>0

u2h
∫
Mh,1

E∨(ℓ1) · E∨(ℓ2) · E∨(z)
z(z − ψ1)

= 1 +
∑
h>0

u2h
∫
Mh,1

E∨(ℓ1/z) · E∨(ℓ2/z) · E∨(1)
1− ψ1

.

Now let
a = ℓ1/z, b = ℓ2/z

and
F (a, b) = 1 +

∑
h>0

u2h
∫
Mh,1

E∨(a) · E∨(b) · E∨(1)
1− ψ1

.
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By using virtual localisation on a moduli space of stable maps to P1, we
obtain the following identities

F (a, b) · F (−a,−b) = 1;
F (a, b) · F (−a, 1− b) = F (0, 1).

These identities, with the fact F (a, b) is symmetric in a and b, imply that

F (a, b) = F (a, b)a+b (4.27)

for integer values of a and b. Each coefficient of a power of u in F (a, b) is
a polynomial in a and b, hence the identity (4.27) is in fact a functional
identity.

By the discussion in [FP02, Section 2.2] and by [FP02, Proposition 2],
we obtain that

F (0, 1) = sin(u/2)
u/2 ,

the claim now follows.

Using the commutativity of the following diagram

F⃗β,µ Sn

Fβ,µ [S(n)]

e⃗v

π

ev

and Proposition 4.4.1, we obtain

I1(q) = log
(sin(u/2)

u/2

)
· 1
d− 1!π∗(c1(S)⊗ · · · ⊗ 1). (4.28)

For 2g − 2 +N ≥ 0 we define

⟨γ1, . . . , γN ⟩ϵg,γ :=
∑
k

⟨γ1, . . . , γN ⟩ϵg,(γ,m)u
m,

setting invariants corresponding to unstable values of g,N and β to zero. By
repeatedly applying Theorem 4.3.3, we obtain that

⟨γ1, . . . , γN ⟩0g,β =
∑
k≥1

1
k!

〈
γ1, . . . , γN , I1(q), . . . , I1(q)︸ ︷︷ ︸

k

〉−∞

g,β

.

Applying the divisor equation10 and (4.28), we get following corollary.
10One can readily verify that an appropriate form of the divisor equation holds for

classes in H∗(S(d), Q) ⊆ H∗
orb(S(d), Q).
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Corollary 4.4.2. Assuming 2g − 2 +N ≥ 0,

⟨γ1, . . . , γN ⟩0g,γ =
(sin(u/2)

u/2

)γ·c1(S)
· ⟨γ1, . . . , γN ⟩−∞

g,γ .

4.5 Crepant resolution conjecture

To a cohomology-weighted partition

µ⃗ = ((µ1, δℓ1), . . . , (µk, δℓk))

we can also associate a class in H∗(S[n],Q), using Nakajima operators,

θ(µ⃗) := 1∏k
i=1 µi

Pδℓ1
[µ1] · · ·Pδℓk

[µk] · 1 ∈ H∗(S[n],Q),

where operators are ordered according to the standard ordering (see Subsec-
tion 4.1.6). For more details on these classes, we refer to [Nak99, Chapter
8].

Proposition 4.5.1. There exists a graded isomorphism of vector spaces

L : H∗
orb(S(n),C) ≃ H∗(S[n],C),

L(λ(µ⃗)) = (−i)age(µ)θ(µ⃗).

Proof. See [FG03, Proposition 3.5].
Remark 4.5.2. The peculiar choice of the identification with a factor (−i)age(µ)

is justified by crepant resolution conjecture - this factor makes the invariants
match on the nose. See the next section for more details.

4.5.1 Quasimaps and admissible covers

From now one we assume that 2g − 2 +N ≥ 0. Using (2.15), we obtain an
identification

H2(S[n],Z) ∼= H2(S,Z)⊕ Z. (4.29)

In the language of (quasi-)maps, it corresponds to association of the Chern
character to the graph of a (quasi-)map . Given classes γi ∈ H∗

orb(S(n),C),
i = 1, . . . N , and a class

(γ,m) ∈ H2(S,Z)⊕ Z,
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for ϵ ∈ R>0 ∪ {0+,∞} we set

⟨γ1, . . . , γN ⟩ϵg,(γ,m) := ♯⟨L(γ1), . . . , L(γN )⟩ϵg,(γ,m) ∈ C,

the invariants on the right are defined in Section 2.4.3 and L is defined in
Proposition 4.5.1. We set

⟨γ1, . . . , γN ⟩ϵg,γ :=
∑
m
⟨γ1, . . . , γN ⟩ϵg,(γ,m)y

m.

For ϵ = 0+, these are the relative PT invariants of the relative geometry
S×Cg,N →Mg,N . The summation over m with respect to the identification
(4.29) corresponds to the summation over ch3 of a subscheme.

Using wall-crossings, we will now show the compatibility of PT/GW and
C.R.C. Let us firstly spell out our conventions.

• We sum over the degree of the branching divisor instead of the genus
of the source curve. Assuming γi’s are homogenous with respect to
the age, the genus h and the degree m are related by Lemma 4.1.9,

2h− 2 = −2n+ m +
∑

age(γi).

For ϵ ∈ R≤0 ∪ {−∞}, let

′ ⟨γ1, . . . , γN ⟩ϵg,γ :=
∑

h
⟨γ1, . . . , γN ⟩ϵg,(γ,h)u

2h−2

be generating series where the summation is taken over genus instead.
Then two two generating series are are related as follows

′ ⟨γ1, . . . , γN ⟩ϵg,γ = u2n−
∑

age(γi) · ⟨γ1, . . . , γN ⟩ϵg,γ .

• We sum over Chern character ch3 instead of Euler characteristics χ.
For ϵ ∈ R>0 ∪ {0+,∞}, let

′ ⟨γ1, . . . , γN ⟩ϵg,γ :=
∑
χ

♯⟨γ1, . . . , γN ⟩ϵg,(γ,χ)y
χ

be the generating series where the summation is taken over Euler char-
acteristics instead. Then by Hirzebruch–Riemann–Roch, theorem the
two generating series are related as follows

′ ⟨γ1, . . . , γN ⟩ϵg,γ = y(g−1)n · ⟨γ1, . . . , γN ⟩ϵg,γ .
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• The identification of Proposition 4.5.1 has a factor of (−i)age(µ).

Taking into account all the conventions above and Lemma 4.1.17, we obtain
that [MNOP06b, Conjectures 2R, 3R] can be reformulated11 as follows.

PT/GW. The generating series ⟨γ1, . . . , γN ⟩0
+

g,γ (y) is a Taylor expansion
of a rational function around 0, such that under the change of variables
y = −eiu,

(−y)−γ·c1(S)/2 · ⟨γ1, . . . , γN ⟩0
+

g,γ (y) = (−iu)γ·c1(S) · ⟨γ1, . . . , γN ⟩0g,γ (u).

Assume now that S is a del Pezzo surface. Let us apply our wall-crossing
formulas. Using Corollary 4.4.2, we obtain

(−iu)γ·c1(S) ·⟨γ1, . . . , γN ⟩−∞
g,γ = (eiu/2−e−iu/2)γ·c1(S) ·⟨γ1, . . . , γN ⟩0g,γ . (4.30)

Using Corollary 2.5.11, we obtain

(−y)−γ·c1(S)/2·⟨γ1, . . . , γN ⟩∞g,γ = (y1/2−y−1/2)γ·c1(S)·⟨γ1, . . . , γN ⟩0
+

g,γ . (4.31)

Combining the two, we obtain the statement of C.R.C.

C.R.C. The generating series ⟨γ1, . . . , γN ⟩∞g,γ (y) is a Taylor expansion of a
rational function around 0, such that under the change of variables y = −eiu,

⟨γ1, . . . , γN ⟩∞g,γ (y) = ⟨γ1, . . . , γN ⟩−∞
g,γ (u).

By both wall-crossings, the statements of PT/GW and C.R.C. in the form
presented above are equivalent.

Corollary 4.5.3.
PT/GW ⇐⇒ C.R.C.

11We take the liberty to extend the statement of the conjecture in [MNOP06b] from a
fixed curve to a moving one; and from one relative insertion to multiple ones.
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4.5.2 Quantum cohomology

Let g = 0, N = 3. This is a particularly nice case, firstly because these
invariants collectively are known as quantum cohomology. Secondly, the
moduli space of genus-0 curves with 3 markings is a point. Hence the in-
variants ⟨γ1, γ2, γ3⟩−∞

0,γ are relative PT invariants of S × P1 relative to the
vertical divisor S0,1,∞. In [PP17], PT/GW is established for S × P1 relative
to S × {0, 1,∞}, if S is toric. Corollary 4.5.3 then implies the following.

Corollary 4.5.4. If S is toric del Pezzo, g = 0 and N = 3, then C.R.C.
holds in all classes.

The above result can also be stated as an isomorphism of quantum co-
homologies with appropriate coefficient rings. Let

QH∗(S[n]) := H∗(S[n],C)⊗C C[[qγ ]](y)
QH∗

orb(S(n)) := H∗
orb(S(n),C)⊗C C[[qγ ]](eiu)

be quantum cohomologies, where C[[qγ ]](y) and C[[qγ ]](eiu) are rings of ratio-
nal functions with coefficients in C[[qγ ]] and in variables y and eiu, respec-
tively. The latter we view as a subring of functions in the variable u. The
quantum cohomologies are isomorphic by Corollary 4.5.4,

QL : QH∗
orb(S(n)) ∼= QH∗(S[n]),

where QL is given by a linear extension of L, defined in Proposition 4.5.1,
from H∗

orb(S(n),C) to H∗
orb(S(n),C) ⊗C C[[qγ ]] and by a change of variables

y = −eiu. In particular,

QL(α · qγ · yk) = (−1)kL(α) · qγ · eiku

for an element α ∈ H∗
orb(S(n),C). Ideally, one would also like to specialise

to y = 0 and y = −1, because in this way we recover the classical multi-
plications on H∗

orb(S(n),C) and H∗(S[n],C), respectively. To do so, a more
careful choice of coefficients is needed - we have to take rational functions
with no poles at y = 0 and y = −1.
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Appendix A

Stability of fibers

The aim of this section is to prove Proposition A.0.4, the converse of Lemma
2.2.17. The proof is inspired by the proof of [Tho00, Proposition 4.2], which,
however, contains a mistake in the direction

stability =⇒ stability of a general fiber,

because a sheaf F on a threefold restricts to stable sheaf on the hyperplane
section with respect to the stability that defines the hyperplane section,
which is not necessarily suitable. If one adds fiber classes to the polarisa-
tion to make it suitable, then one has to take a hyperplane section of bigger
degree, for which suitable polarisation may be different.

Let X := S × C → C be a trivial surface fibration over a connected
nodal curve C. Let us fix a very ample line bundle OS(1). We denote a
line bundle with specified degrees on each irreducible components OS(1) ⊠
OC(k1, . . . , km) by Lki

, and the degree of a sheaf F with respect to Lki

by degki
(F ). Recall that for a possibly singular scheme X, the slope of a

torsion-free sheaf F can be defined as follows

µ(F ) =
adim(X)−1(F )
adim(X)(F ) ,

where ai(F )’s are the coefficients in a Hilbert polynomial

P (F,m) =
∑

ai(F )m
i

i! .

In what follows, by stability we will mean slope stability.
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Proposition A.0.1. Assume C is smooth. Fix a class β ∈ H∗(S × C,Q),
such that rk(β) = 2. There exists n0 ∈ N, such that for all n ≥ n0 and for
all torsion free sheaves F with ch(F ) = β the following statement holds: F
is Ln-stable, if Fp is stable for a general p ∈ C.

Proof. We will prove the proposition by restricting to a hyperplane
section and then applying [HL97, Theorem 5.3.2], see also [Yos99, Lemma
1.2].

Firstly, consider the Künneth’s decomposition,

H2(S × C,Q) = H2(S,Q)⊕H1(S,Q)⊗H1(C,Q)⊕ Q,

the first Chern class of a sheaf can be expressed accordingly

c1(F ) = c1(Fp)⊕ α⊕ k(F ),

where each summand is in a corresponding Künneth component and Fp is a
general fiber of F over p ∈ C. The intersection numbers with Ln’s take the
following form

c1(F ) · Ln · Lm = d · k(F ) + (n+m) · deg(F )f , (A.1)

where d = OS(1)2 and deg(F )f = deg(Fp). In particular, slope-stability with
respect to a curve class L1 ·L2n−1 coincides with slope-stability with respect
to a curve class Ln · Ln.

Consider now a general hyperplane section H ∈ |OS(1) ⊠ OC(1)|, let
2n0 − 1 be the smallest odd integer such that [HL97, Theorem 5.3.2] holds
for H → C, the class β|H and a polarisation L2n0−1|H .

Assume Fp is unstable for all p ∈ C. Let G ↪→ F be a relative destabil-
ising subsheaf (strictly speaking, it exists over some non-empty open sub-
scheme U ⊆ C, we then extend over the entire C). Consider now the
restriction to a general hyperplane section G|H ↪→ F|H , it is destabilising
by the proof of [HL97, Theorem 5.3.2] with respect to L2n0−1|H , therefore
G ↪→ F is Ln0-destabilising.
Remark A.0.2. The reason for the failure of the proof of Proposition A.0.1
for rk > 2 is already present at the level of fibered surfaces. For a fibred
surface the difference between rk = 2 and rk > 2 cases is that for the
former a suitable polarisation has a stronger property, namely, a subsheaf is
destabilising, if and only if it is destabilising on a fiber as it is shown in [HL97,
Theorem 5.3.2]. However, the author couldn’t establish such property of a
suitable polarisation for rk > 2. In this case one can show that there are
no walls between the fiber stability and Ln-stability for n ≫ 0, which is a
weaker statement.

140



Corollary A.0.3. Assume we are in the setting of Proposition A.0.1 and F
is unstable at a general fiber, let G ⊂ F be a relatively destabilising subsheaf,
then

rk(G) degn(F )− rk(F ) degn(G) < 2(n0 − n),
for all n ≥ n0, i.e. the difference of slopes can be made arbitrary negative by
increasing n.

Proof. By the proof of Proposition A.0.1, G ⊂ F is Ln-destabilising for
all n ≥ n0, therefore

rk(G) degn(F )− rk(F ) degn(G)
< rk(G) degn(F )− rk(F ) degn(G)− (rk(G) degN (F )− rk(F ) degn0(G))

≤ 2(n0 − n),

where for the last inequality we used (A.1).

Now let C be a connected nodal curve and C̃ be its normalisation, by
C̃i we will denote its connected components. For a sheaf F on a threefold
S × C we denote its pullback to Xi := S × C̃i by Fi.

Proposition A.0.4. Fix classes βi ∈ H∗(S × C̃i,Q) with the same fiber
component, such that rk(βi) = 2. There exists n0 ∈ N, such that for all
n ≥ n0 and for all sheaves F flat over C with ch(Fi) = βi the following
statement holds: F is Lnki

-stable, if Fp is stable for a general p ∈ C.

We will prove the proposition for the case of C with one node, splitting
the proof into two parts depending on whether the node is separating or
non-separating. The proof easily generalises to the case of C with more
nodes.

Proof (non-separating node). Let C be a connected nodal curve with one
non-separating node s ∈ C and π : S×C̃ → S×C be the normalization map
of the product. The sheaves F and π∗F are related by the normalisation
sequence

0→ F → π∗π
∗F → Fs → 0,

from which we obtain

a3(F ) = a3(π∗F ), a2(F ) = a2(π∗F )− a2(Fs).

Now let G ⊂ π∗F be a relatively destabilising subsheaf and G̃ be the kernel
of the following composition

π∗G ↪→ π∗π
∗F → Fs,
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by construction G̃ is a subsheaf of F and

a3(G̃) = a3(G), a2(G̃) ≤ a2(G).

The difference of slopes of F and G̃ can then be bounded from above as
follows

a2(F )
a3(F ) −

a2(G̃)
a3(G̃)

≥ a2(π∗F )
a3(π∗F ) −

a2(G)
a3(G) −

a2(Fs)
a3(π∗F ) .

After multiplying by denominators, the right-hand side of the expression
above is equal to

a3(G) · a2(π∗F )− a3(π∗F ) · a2(G)− a3(G) · a2(Fs) (∗)

Recall that

a2(F ) = degk(F ) + rk(F ) · a2(OX),
a3(F ) = rk(F ) · a3(OX).

Substituting the above expressions into the summands of (∗), we obtain

(∗) = a3(OX) · (rk(G) · degk(π∗F )− rk(F ) · degk(G)− d · rk(F ) · rk(G)),

where we also used that

a2(Fs) = d · rk(Fs) = d · rk(F ),

because F is flat over C. By Corollary A.0.3 the term

rk(G) · degk(π∗F )− rk(F ) · degk(G)

can be made arbitrary negative by taking big enough power of OC(k),
thereby making the difference of slopes negative. Moreover, the choice of
the power is uniform for all F .

Proof (separating node). Let C = C1 ∪ C2 be a connected nodal curve
with one separating node s ∈ C, and let OC(k1, k2) be the ample line bundle
with prescribed degrees on each component. The restrictions of F to S×Ci
are related to F by the normalisation sequence

0→ F → F1 ⊕ F2 → Fs → 0,

from which we obtain

a3(F ) = a3(F1) + a3(F2), a2(F ) = a2(F1) + a2(F2)− a2(Fs).

142



Now let Gi ⊂ Fi be relatively destabilising subsheaves and G̃ be the kernel
of the following composition

G1 ⊕G2 ↪→ F1 ⊕ F2 → Fs,

by construction G̃ is a subsheaf of F and

a3(G̃) = a3(G1) + a3(G2), a2(G̃) ≤ a2(G1) + a2(G2).

The difference of slopes of F and G̃ then takes the following form

a2(F )
a3(F ) −

a2(G̃)
a3(G̃)

≥
∑
a2(Fi)∑
a3(Fi)

−
∑
a2(Gi)∑
a3(Gi)

− a2(Fs)∑
a3(Fi)

.

After multiplying by denominators, the right-hand side of the the expression
above is equal to

a2(F1) · (a3(G1) + a3(G2))− a2(G1) · (a3(F1) + a3(F2))
+a2(F2) · (a3(G1) + a3(G2))− a2(G2) · (a3(F1) + a3(F2))
−a2(Fs) ·

∑
a3(Gi)

We now group the summands in the following way

a2(F1) · a3(G1)− a2(G1) · a3(F1) + a2(F2) · a3(G2)− a2(G2) · a3(F2)
−a2(Fs) ·

∑
a3(Gi)

(a)

+a2(F1) · a3(G2)− a2(G2) · a3(F1) + a2(F2) · a3(G1)− a2(G1) · a3(F2) (b)

We will analyse terms (a) and (b) separately.

Term (a). The term (a) is simple to deal, substituting

a2(Fi) = degki
(Fi) + rk(Fi) · a2(OXi)

a3(Fi) = rk(Fi) · a3(OXi)

into (a) we obtain that

(a) =
∑

a3(OXi) ·
(
rk(Gi) · degki

(Fi)− rk(F ) · degki
(Gi)− rk(F ) · rk(Gi)

)
,

since F is stable at a general fiber, the right-hand side can be made negative
taking big enough power of OC(k1, k2) by Corollary A.0.3.
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Term (b). Making the same substitution into (b) we obtain

rk(G2) · degk1(F1) · a3(OX2)− rk(F2) · degk1(G1) · a3(OX2)
+rk(G1) · degk2(F2) · a3(OX1)− rk(F1) · degk2(G2) · a3(OX1) (b.1)
+rk(F1) · rk(G2) · a2(OX1) · a3(OX2)− rk(F1) · rk(G2) · a2(OX2) · a3(OX1)
+rk(F2) · rk(G1) · a2(OX2) · a3(OX1)− rk(F2) · rk(G1) · a2(OX1) · a3(OX2)

(b.2)

We again split the analysis in two parts. For the term (b.1) we use that

degki
(Fi) = d · k(Fi) + 2ki · deg(Fi)f

a3(OXi) = d · ki

to obtain

2d · k1 · k2 · rk(G2) · deg(F1)f − 2d · k1 · k2 · rk(F2) · deg(G1)f

+2d · k1 · k2 · rk(G1) · deg(F2)f − 2d · k1 · k2 · rk(F1) · deg(G2)f

+d · k2 · d · rk(G2) · k(F1)− d · k2 · d · rk(F2) · k(G1)
+d · k1 · d · rk(G1) · k(F2)− d · k1 · d · rk(F1) · k(G2)

Let Ki be the smallest integer for which the proposition holds, then by (A.1)

d ·rk(F ) ·k(Gi) > 2Ki ·(·rk(Gi) ·deg(F )f−rk(F ) ·deg(Gi)f)+d ·rk(Gi) ·k(Fi),

where we also used that

rk(F1) = rk(F2) = rk(F ).

Regrouping the summands and applying the above inequality, we obtain
that

(b.1) <
∑

d · ki+1 · (ki −Ki) · (rk(Gi) · deg(F )f − rk(F ) · deg(Gi)f)

+
∑

d · ki+1 · d · k(Fi) · (rk(Gi)− rk(Gi+1)).

For the term (b.2) we use that

a2(OXi) = d · gi + ki · c1(OS(1)) · c1(S)
2 ,

where gi = g(Ci), then after some cancellations we obtain

(b.2) =
∑

d · ki · d · gi+1 · rk(F ) · (rk(Gi)− rk(Gi+1)),

144



now putting (b.1) and (b.2) together we see that if

(ki −Ki) · (rk(Gi) · deg(F )f − rk(F ) · deg(Gi)f)
< d · (rk(Gi)− rk(Gi+1)) · (gi+1 · rk(F )− k(Fi)),

then (b.1) + (b.2) is negative. The right-hand side of the above inequality
can be bounded independently of F , therefore by taking high enough power
of OC(k1, k2) the term (b) is negative independently of F .

145



Appendix B

Reduced obstruction theory

Let (E•
red)∨ be the cone of the dual of the relative semiregularity map sr∨

from (3.4). In this section, we will show existence of the obstruction-theory
morphism

(E•
red)∨ → LQϵ

g,N (M,β)/Mg,N
,

under certain assumptions. The proof closely follows [KT18].

Proposition B.0.1. Given (v, β̌) ∈ Λ⊕Λ, assume a first-order deformation
κS ∈ HT 2(S) ∼= HH2(S) from Proposition 3.1.3 is represented by a C[ϵ]/ϵ2-
linear admissible subcategory

C ⊆ Dperf(Y),

where Y→ B = Spec C[ϵ]/ϵ2 is flat. Then there exists an obstruction theory
morphism

(E•
red)∨ → LQϵ

g,N (M,β)/Mg,N
.

Proof. Firstly, by taking the central fiber, we get that

Dperf(S) ⊆ Dperf(Y )

is an admissible subcategory, where Y is the central fiber of Y. Therefore
there is an isomorphism of moduli stacks

Coh(S) ∼= DCoh(S)(Y ), (B.1)

where DCoh(S)(Y ) is the moduli stack of objects on Y which are contained in
the subcategory Coh(S). This also implies that the quasimap moduli stacks
are isomorphic,

Qϵg,N (M,Coh(S), β) ∼= Qϵg,N (M,DCoh(S)(Y ), β).

146



Let

MY := M ϵ
v,β̌(Y × Cg,N/Mg,N ) ∼= M ϵ

v,β̌(S × Cg,N/Mg,N ) =: MS

be the relative moduli of sheaves corresponding to Qϵg,N (M,DCoh(S)(Y ), β)
and Qϵg,N (M,Coh(S), β), respectively.

Secondly, the inclusion

Db(S) ↪→ Dperf(Y )

induces a map between Hochschild cohomologies

HH2(Y )→ HH2(S), (B.2)

given by restricting the natural transformation of functors

idDperf(Y) → [2].

This map sends κY to κS (see e.g. [Per, Lemma 4.6]), where κY is the
class associated to the deformation Y → B. Moreover, for a complex F ∈
Db(S × C) the class

κ(F ) ∈ Ext2(F, F ),
which is given by applying the natural transformation associated to κ ∈
HH2(S) to F , is the obstruction to deform F in κ-direction, and by [Tod09,
Proposition 5.2] and [C0̆5], it agrees with obstruction class given by com-
posing Kodaira-Spencer class with Atiyah class

κ(F ) = κ · exp(−At(F ))

after applying HKR isomorphism

HH2(S) ∼= HT 2(S).

We now identify a sheaf F ∈ Coh(S × C) with its image in Dperf(Y × C),
then the following triangle commutes

HH2(S) Ext2(F, F )

HH2(Y )

Hence by the choice of κS the deformation of sheaves in the class (v, β̌)
viewed as complexes on Y × C is obstructed in κY -direction, because the
obstruction class is non-zero by the construction of κS .
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We now closely follow [KT18, Section 3.2]. By the above discussion the
inclusion of the central fiber over B

MY ↪→MY/B

is an isomorphism. The obstruction complexes of MY and MS are isomor-
phic under the natural identifications of the moduli spaces

RHomπS (FS ,FS) ∼= RHomπY (FY ,FY ), (B.3)

because both complexes can be defined just in terms of Db(S), where FS/Y
are universal families of MS/Y with πS/Y being the obvious projections.
Note that the trace map on Y ×C has no effect on Ext2, since H2(OY×C) =
0. In certain sense, a semiregularity map σi on S × C corresponds to a
semiregularity map σi+1 on Y ×C, not σi. In particular, RHomπS (FS ,FS)0
and RHomπY (FY ,FY )0 are not isomorphic. Nevertheless, we claim that the
following holds.
Claim. The composition

(E•)∨ = (RHomπS (FS ,FS)0[−1])∨ → (RHomπY (FY ,FY )0[−1])∨

→ LMY/B/B (B.4)

where the first map is given by identification (B.3), while the second is by
the Atiyah class on Y×MY/B, is a perfect obstruction theory.

Proof of the Claim. For proof of the claim, we plan to use criteria
from [BF97, Theorem 4.5].

For any B-scheme Z0, a B-map Z0 → MY/B factors though the central
fiber. Hence the B-structure map Z0 → B factors through the closed point
of B. Let F0 be the sheaf associated to the map Z0 →MY/B. The morphism

(RHomπY (FY ,FY )0[−1])∨ → LMY/B/B

is an obstruction theory. By [BF97, Theorem 4.5], to prove that (B.4)
is an obstruction theory, it suffices to prove that the image of a non-zero
obstruction class ϖ(F0) ∈ Ext2

Y×Z0(F0,F0 ⊗ p∗
Y I) with respect to the map

Ext2
Y×Z0(F0,F0 ⊗ p∗

Y I) ∼= Ext2
S×Z0(F0,F0 ⊗ p∗

SI)
→ Ext2

S×Z0(F0,F0 ⊗ p∗
SI)0 (B.5)

is non-zero for any square-zero B-extension Z of Z0 given by an ideal I,
where pY : Y ×B Z0 = Y × Z0 → Z0 and pS : S × Z0 → Z0 are the natural
projections.

Given a square-zero B-extension Z of Z0 there are two possibilities:
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(i) the B-structure map Z → B factors through the closed point;

(ii) the B-structure map Z → B does not factor through the closed point.

(i) In this case the obstruction of lifting the map to Z → MY/B coincides
with the obstruction of lifting the map to Z → MY

∼= MS , hence if ϖ(F0)
is non-zero, its image with respect (B.5) is non-zero.
(ii) In this case a lift to Z → MY/B is always obstructed, and the obstruc-
tion is already present at a single fiber of pY in the following sense. By
assumption there exists a section B → Z which is an immersion (we can
find an open affine subscheme U ⊂ Z such that U → B is flat, but then
U ∼= U0 × B, because first-order deformations of affine schemes are trivial,
thereby we get a section). Let z ∈ Z be image of the closed point of B of
the section, then the restriction

Ext2
Y×S0(F0,F0 ⊗ p∗

Y I)→ Ext2
Y×z(F0,z,F0,z ⊗ p∗

Y Iz)

applied to the obstruction class ϖ(F0) is non-zero and is the obstruction
to lift the sheaf F0,z on Y to a sheaf on Y, hence due to the following
commutative diagram

Ext2
Y×Z0(F0,F0 ⊗ p∗

Y I) Ext2
Y×z(F0,z,F0,z ⊗ p∗

Y Iz)

Ext2
S×Z0(F0,F0 ⊗ p∗

SI)0 Ext2
S×z(F0,z,F0,z ⊗ p∗

SIz)0

we conclude that the image of ϖ(F0) in Ext2
S×Z0(F0,F0⊗ p∗I)0 is non-zero,

because the image of ϖ(F0,z) is non-zero in Ext2
S×z(F0,z,F0,z ⊗ p∗Iz)0. This

establishes claim.

The absolute perfect obstruction theory (H•)∨ is then defined by taking
the cone of (E•)∨ → ΩB[1], so that we have the following diagram

(H•)∨ (E•)∨ ΩB[1]

LMY
LMY/B/B ΩB[1]

By the same argument as in [KT18, Section 2.3], the composition

(H•)∨ → (E•)∨ → (E•
red)∨

is an isomorphism, hence the proposition follows.
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For example, if M = S[n] and c1(β̌) ̸= 0 (i.e. the curve class is not ex-
ceptional), we can use a commutative deformation given by the infinitesimal
twistor family S = Y→ B with respect to the class c1(β̌).

The situation becomes more complicated already in the case of S[n] and
c1(β̌) = 0 (i.e. an exceptional curve class), a commutative first-order de-
formation can no longer satisfy the property stated in Proposition 3.1.3. If
n = 2 and S[2] is isomorphic to a Fano variety of lines of some special cubic
fourfold (e.g. see [Has00, Theorem 1.0.3]), then

Dperf(Y ) = ⟨Dperf(S),O,O(1),O(2)⟩

and the family Y→ B is given by deformation of Y away from the Hassettt
divisor.
Remark B.0.2. In [Tod09], Toda constructed geometric realisations of in-
finitesimal non-commutative deformations in HH2(X) for a smooth projec-
tive X. However, it is not clear, if they are of the type required by Proposi-
tion B.0.1. In principle, there should be no problem in proving Proposition
B.0.1, dropping the assumption. For that, one has to show that Toda’s
infinitesimal deformations behave well under base change.
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Birkhäuser/Springer, 2016, pp. 245–278.

[OP18] G. Oberdieck and A. Pixton, Holomorphic anomaly equations
and the Igusa cusp form conjecture, Invent. Math. 213 (2018),
no. 2, 507–587.

[OS19] G. Oberdieck and J. Shen, Reduced Donaldson-Thomas invari-
ants and the ring of dual numbers, Proc. Lond. Math. Soc. (3)
118 (2019), no. 1, 191–220.

[OS20] , Curve counting on elliptic Calabi-Yau threefolds via
derived categories, J. Eur. Math. Soc. (JEMS) 22 (2020), no. 3,
967–1002.

[Per] A. Perry, The integral Hodge conjecture for two-dimensional
Calabi-Yau categories, arXiv:2004.03163 (2020).

157



[PP17] R. Pandharipande and A. Pixton, Gromov-Witten/Pairs corre-
spondence for the quintic 3-fold, J. Amer. Math. Soc. 30 (2017),
no. 2, 389–449. MR 3600040

[PT09] R. Pandharipande and R. P. Thomas, Curve counting via stable
pairs in the derived category, Invent. Math. 178 (2009), no. 2,
407–447.

[PT19a] R. Pandharipande and H.-H. Tseng, Higher genus Gromov-
Witten theory of Hilbn(C2) and CohFTs associated to local
curves, Forum Math. Pi 7 (2019), 63.

[PT19b] , The Hilb/Sym correspondence for C2: descendents and
Fourier-Mukai, Math. Ann. 375 (2019), no. 1-2, 509–540.

[Rua06] Y. Ruan, The cohomology ring of crepant resolutions of orb-
ifolds, Gromov-Witten theory of spin curves and orbifolds.
AMS special session, San Francisco, CA, USA, May 3–4, 2003,
Providence, RI: American Mathematical Society (AMS), 2006,
pp. 117–126.

[Sie04] B. Siebert, Virtual fundamental classes, global normal cones
and Fulton’s canonical classes, Frobenius manifolds. Quantum
cohomology and singularities. Proceedings of the workshop,
Bonn, Germany, July 8–19, 2002, Wiesbaden: Vieweg, 2004,
pp. 341–358.
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