Problem Set 6, Algebraic Stacks

Lecturer: Georg Oberdieck

Due date: Friday, Dec 18. Weights: 25 points each.

Problem 0. Let \mathcal{X}, \mathcal{Y} be stacks over Sch/S with respect to the étale topology. Recall that a morphism $f: \mathcal{X} \to \mathcal{Y}$ is called representable (by algebraic spaces) if for every S-scheme T and for every morphism $T \to Y$ the fiber product $\mathcal{X} \times_{\mathcal{Y}} T$ is an algebraic space.

Show that if $f: \mathcal{X} \to \mathcal{Y}$ is representable by an algebraic space, then for every algebraic space F over S and every morphism $F \to \mathcal{Y}$ the fiber product $\mathcal{X} \times_{\mathcal{Y}} F$ is an algebraic space.

Problem 1. (Frobenius on algebraic stacks) Olsson, 8.H

Problem 2.(Functoriality of stack quotients) Olsson, 10.F

Problem 3.(Root stacks) A generalized effective Cartier divisor on a scheme X is a pair (L,s) where L is a line bundle and $s:L\to \mathcal{O}_X$ is a morphism. Every effective Cartier divisor $D\subset X$ gives rise to such a pair by setting $L=\mathcal{O}(-D)$ and s the canonical inclusion. A morphism of generalized effective Cartier divisors $(L,s)\to (L',s')$ is a morphism $\varphi:L\to L'$ such that $s'\circ\varphi=s$.

Let (L, s) be a generalized effective Cartier divisor on a scheme X. The n-th root stack \mathcal{X}_n is the stack over the category of X-schemes defined by:

objects: $(f: T \to X, (\mathcal{M}, \lambda), \varphi)$ where (\mathcal{M}, λ) is an generalized effective Cartier divisor on T and φ is an isomorphism

$$\varphi: (\mathcal{M}^{\otimes n}, \lambda^{\otimes n}) \to (f^*\mathcal{L}, f^*s).$$

morphisms: A morphism $(f:T\to X,(\mathcal{M},\lambda),\varphi)\to (f':T'\to X,(\mathcal{M}',\lambda'),\varphi')$ is a pair of a morphism of X-schemes $g:T\to T'$ and an isomorphism of generalized effective Cartier-divisors $\tilde{g}:(\mathcal{M},\lambda)\to (g^*(\mathcal{M}'),g^*(\lambda'))$ such that the following diagram commutes:

$$M^{\otimes n} \xrightarrow{\tilde{g}^{\otimes n}} (g^*M')^{\otimes n}$$

$$f^*\mathcal{L}$$

$$f^*\mathcal{L}$$

Show the following:

(a) Let $a_n : [\mathbb{A}^1/\mathbb{G}_m] \to [\mathbb{A}^1/\mathbb{G}_m]$ induced by the maps $\mathbb{A}^1 \to \mathbb{A}^1, z \mapsto z^n$ and $\mathbb{G}_m \to \mathbb{G}_m, u \mapsto u^n$. Show that we have a fiber diagram

$$\begin{array}{ccc}
\mathcal{X}_n & \longrightarrow & [\mathbb{A}^1/\mathbb{G}_m] \\
\downarrow^{\pi_n} & & \downarrow^{a_n} \\
X & \xrightarrow{(L,s)} & [\mathbb{A}^1/\mathbb{G}_m]
\end{array}$$

- Conclude that \mathcal{X}_n is an algebraic stack. (Use that $[\mathbb{A}^1/\mathbb{G}_m]$ is equivalent to the stack parametrizing a line bundle with a section.)
- (b) If $L = \mathcal{O}_X$ and s is given by an element $f \in \Gamma(X, \mathcal{O}_X)$, then \mathcal{X}_n is the stack quotient of $\operatorname{Spec}_X(\mathcal{O}_X[t]/(t^n f))$ by the cyclic action of μ_n (group scheme of n-th roots of unity) given by $t \mapsto \zeta t$.
- (c) The map π_n is an isomorphism over the open subset $U = \{s \neq 0\} \subset X$.
- (d) If X is smooth over \mathbb{C} and V(s) is smooth, show that \mathcal{X}_n is smooth for all $n \geq 1$.

We conclude that the stack \mathcal{X}_n is isomorphic to X away from the divisor D defined by s, but has 'stacky structure' along D.

Problem 4.(Optional) (Stack of vector bundles) Olsson, 8.J. You can assume that X is a scheme and that $X \to S$ is projective.