Problem Set 5, Algebraic Stacks Lecturer: Georg Oberdieck

Due date: Friday, Dec 4. Weights: 20 points each.

Reminder: No class on Wednesday, Dec 2 (Dies Academicus)

Problem 1.(Warm-Up) Let $n \ge 0$. Let \mathbb{G}_m act on \mathbb{A}^{n+1} by $t \cdot (x_0, \ldots, x_n) =$ (tx_0,\ldots,tx_n) . Show that the natural map

$$\mathbb{P}^n \cong [\mathbb{A}^{n+1} \setminus \{0\}/\mathbb{G}_m] \to [\mathbb{A}^{n+1}/\mathbb{G}_m]$$

is an open embedding.

Recall that we can associate to any algebraic stack \mathcal{X} a topological space $|\mathcal{X}|$ as follows. The points of $|\mathcal{X}|$ are the morphisms $f: \operatorname{Spec}(k) \to \mathcal{X}$ for k a field, modulo the smallest equivalence relation that identifies 2-isomorphic maps and identifies $f: \operatorname{Spec}(k) \to \mathcal{X}$ with the composition $\operatorname{Spec}(k') \to$ $\operatorname{Spec}(k) \to \mathcal{X}$ for any field extension $k \subset k'$. If $U \to \mathcal{X}$ is a smooth surjective morphism from a scheme U then the image of $|U \times_{\mathcal{X}} U| \to |U| \times |U|$ is an equivalence relation with quotient $|\mathcal{X}|$. We hence endow $|\mathcal{X}|$ with the quotient topological, i.e. a subset $V \subset |\mathcal{X}|$ is open if and only its preimage in |U| is open.

Problem 2. Find the \mathbb{C} -valued points of the following stacks, their stabilizer groups and the topological space $|\mathcal{X}|$. Which points are in the closure of the others? Draw a picture of the stacks.

(a) $\Theta = [\mathbb{A}^1/\mathbb{G}_m]$ where \mathbb{G}_m acts on \mathbb{A}^1 by scaling. (b) $\mathrm{ST} = [\mathbb{A}^2/\mathbb{G}_m]$, where \mathbb{G}_m acts by $t \cdot (x, y) = (tx, t^{-1}y)$.

Addendum (Optional): As we will see later on the stack Θ plays an important role in defining a notion of stability for points of algebraic stack. Roughly a map from Θ to an algebraic stack \mathcal{X} should be thought of as an object together with a filtration. For now use the Rees construction to show the following: Let Bun(C) be the stack of locally free sheaves of finite rank on a smooth projective curve C. Then there is a bijective correspondence between the set of morphisms $f: \Theta \to \mathsf{Bun}(C)$ and the set of vector bundles on C and together with a filtration. (Hint: Use that such a morphism correspond to graded $\mathcal{O}_C[t]$ -modules).

3. (Slogan: A Deligne-Mumford stack is more than a scheme with automorphisms attached to each point) Consider the following two C-stacks:

(a) $\mathcal{X}_1 = [\mathbb{A}^1/\mathbb{Z}_2]$ where \mathbb{Z}_2 acts by $x \mapsto -x$ (b) $\mathcal{X}_2 = T/\mathbb{Z}_2$ where $T = \operatorname{Spec}(\mathbb{C}[x, y]/(xy))$ and \mathbb{Z}_2 acts by $x \mapsto y$.

Show that the stacks \mathcal{X}_i have identical geometric points and stabilizer groups, but that $\mathcal{X}_1 \ncong \mathcal{X}_2$.

4. (Halpern-Leistner, Exercise 5.2) A representable morphism $f : \mathcal{X} \to \mathcal{Y}$ of algebraic stacks is smooth (resp. surjective) if for any morphism $Y \to \mathcal{Y}$ from a scheme Y the fiber product $\mathcal{X} \times_{\mathcal{Y}} Y \to Y$ is smooth (resp. surjective).

Show that if $f : \mathcal{X} \to \mathcal{Y}$ is smooth and surjective, then for any $T \in \operatorname{Sch}/S$ and $y \in \mathcal{Y}(T)$ there exists an étale cover $\pi : T' \to T$ of S-schemes and an element $x \in \mathcal{X}(T)$ such that $\pi^*(y) = f(x)$.

5. Olsson, 8.A

6. (optional) Olsson, 8.B.