Problem Set 2, Algebraic Stacks, due Nov 11, 2020

Lecturer: Georg Oberdieck

1. Check (with proof) which of the following functors $p:F\to C$ define fibered categories. Which of them are fibered in sets, which are fibered in groupoids? See also Problem 2.

- (a) Let C be a category and consider $p:C/X\to C$ sending $f:T\to X$ to T. Here C/X is the localized category, see [Olsson, 3.A] or the lecture for the definition.
- (b) Let C be a category and let Arr(C) be the category of arrows in C, i.e. the objects of Arr(C) are arbitrary morphisms $f: T \to X$ in C, and a morphism in Arr(C) from $(f: T \to X)$ to $(g: U \to Y)$ is a commutative diagram

$$\begin{array}{ccc}
T & \longrightarrow U \\
\downarrow & & \downarrow \\
X & \longrightarrow Y.
\end{array}$$

The functor $p: \operatorname{Arr}(C) \to C$ sends $T \to X$ to X and the morphism given by the commutative diagram above to the morphism $X \to Y$.

- (c) Let Set be the category and sets and let Top be the category of topological spaces (with morphisms the continuous maps). Let p: Top \rightarrow Set be the functor that sends a topological space (U,τ) to its underlying set U, and a continuous morphism to itself.
- (d) Let Set \to Top that sends a set U to the pair (U, τ_{discr}) , where τ_{discr} is the discrete topology.
- (e) Let G be the topological group and define BG to be the category whose objects are principle G-bundles $P \to T$, and whose morphisms from $P \to T$ to $P' \to T'$ are commutative diagrams

$$P \xrightarrow{h} P'$$

$$\downarrow \qquad \qquad \downarrow$$

$$T \longrightarrow T'$$

such that h is G-equivariant and the diagram is cartesion. Let $p:BG\to {\rm Top}$ be the map that sends $P\to T$ to T.

Remark. This example can be generalized to the case where the group G acts on a topological space X, and we obtain the quotient stack [X/G]. We will also see the algebraic analog of the above construction later on.

- (f) $p: \mathcal{M}_g \to \text{Schemes}$, the moduli space of smooth curves of genus g.
- (g) Let G be a finite group and let $\operatorname{Rep}_{G,\mathbb{C}}$ be the category of finite-dimensional representations of G (over the base \mathbb{C}). Consider the forgetful map $\operatorname{Rep}_{G,\mathbb{C}} \to \operatorname{Vec}_{\mathbb{C}}$ to the category of \mathbb{C} -vector spaces.

- 2. (Olsson, 3.D) Show that a fibered category $p:F\to C$ is a category fibered in groupoids if and only if every morphism in F is cartesian.
- 3. Olsson, Exercise 2.M (This requires you to read up a bit on Olsson about cohomology on sites, see Section 2.3)
- 4. (Optional) Olsson Exercise 2.C.