Practice problem for the exam in Algebraic Stacks Lecturer: Georg Oberdieck

1.

- (a) Give a proof that $B\mathbb{G}_m$ is an algebraic stack.
- (b) Is $B\mathbb{G}_m$ an algebraic space? If not, why?
- (c) Describe a group presentation for $B\mathbb{G}_m$, and use it to compute the Picard group of $B\mathbb{G}_m$. Is it trivial?
- (d) Write down (with proof) an automorphism $B\mathbb{G}_m \to B\mathbb{G}_m$ that is not isomorphic to the identity. Can you write down an endomorphism, that is not invertible?
- (e) Compute the global sections of $\mathcal{O}_{B\mathbb{G}_m}$. If you found any other, do the same for the line bundles in (c). Do any line bundles on $B\mathbb{G}_m$ have higher sheaf cohomology?

2. Repeat problem 1 but for the stack $\mathcal{X} = [\mathbb{A}^1/\mathbb{G}_m]$. Can you still find automorphisms as in (d)?

3. Give an example (with proof) of an algebraic space that is not a scheme. Can you choose your algebraic space to be quasi-separated?

4. Let *E* be an elliptic curve over \mathbb{C} . Consider the stack $\mathcal{X} = [E/\mathbb{Z}_2]$ where \mathbb{Z}_2 acts by ± 1 .

- (a) Describe the \mathbb{C} -points of \mathcal{X} and its stabilizers groups.
- (b) Is \mathcal{X} a Deligne-Mumford stack?
- (c) Show that \mathcal{X} admits a coarse moduli space $\pi : \mathcal{X} \to Y$. Is it also a good moduli space (e.g. can you compute $\pi_* \mathcal{O}_{\mathcal{X}}$)?
- (d) Describe \mathcal{X} as the root stack over some smooth curve C.

5. Let \mathbb{G}_m act on \mathbb{C}^2 by $\lambda \cdot (x, y) = (\lambda x, y)$. Consider the induced action on \mathbb{P}^1 and equip $\mathcal{O}_{\mathbb{P}^1}(-1)$ with the natural \mathbb{G}_m -linearization. This induces a natural \mathbb{G}_m -linearization on $\mathcal{O}_{\mathbb{P}^1}(n)$. Compute $H^0([\mathbb{P}^1/\mathbb{G}_m], \mathcal{O}(n))$. (Remark: For an a more advanced example consider Olsson 10.G)

6. Let $\varphi : G \to H$ be a group homomorphism of smooth affine \mathbb{C} -schemes. Describe the natural induced map $f : BG \to BH$.

(a) If φ is surjective, show that f is a gerbe (in fact a $K = \text{Ker}(\varphi)$ gerbe if you know what that means). When is the gerbe trivial?

(b) If φ is not surjective, is f still a gerbe?

(c) Let H act on a variety X. The H-action on X induces a natural G-action on X (by acting through φ). If φ is surjective, show that $[X/H] \to [X/G]$ is a gerbe. When is it trivial?

Remark: This is very abstract, but for a start you may consider the group homomorphism $\mathbb{Z}_4 \to \mathbb{Z}_2$ or $\mathbb{Z}_2 \times \mathbb{Z}_2 \to \mathbb{Z}_2$, and we let \mathbb{Z}_2 act on E as in Problem 4. or by translation by a 2-torsion point. For an other example, consider $SL_2(\mathbb{Z}) \to PSL_2(\mathbb{Z})$ and the natural action on the upper half plane by Möbius transformations (in the analytic topology).

- 7. Let $C = \operatorname{Spec}\mathbb{C}[x, y]/(x^2 y^3)$ and consider the \mathbb{G}_m action on C given by $\lambda \cdot (x, y) = (\lambda^3 x, \lambda^2 y)$.
- a. Is the quotient stack $\mathcal{X} = [C/\mathbb{G}_m]$ smooth?
- b. Is the natural morphism $C \to \mathcal{X}$ smooth?

c. Can you find a finite morphism $f : \mathcal{Y} \to \mathcal{X}$ such that \mathcal{Y} is smooth and f induces an equivalence $\mathcal{Y}(\mathbb{C}) \to \mathcal{X}(\mathbb{C})$?

d. Does \mathcal{X} admit a good moduli space? If yes which one?

8. Write down the definition of the moduli stack of genus g curves \mathcal{M}_g . Check that it is a stack in the étale topology.

How would you go about checking that it is a Deligne-Mumford stack? (no details needed)