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Abstract

We prove that the complex cobordism class of any hyper-Kéhler manifold of di-
mension 2n is a unique combination with rational coefficients of classes of products
of punctual Hilbert schemes of K3 surfaces. We also prove a similar result using the
generalized Kummer varieties instead of punctual Hilbert schemes. As a key step, we
establish a closed formula for the top Chern character of their tangent bundles.

0 Introduction

The cobordism ring denoted MU*(pt) in [26] and 2* in [13] has the following easy description
(which is not the original Milnor definition), see [25]. In degree 4, consider the free abelian
group Z* generated by i-dimensional compact manifolds M equipped with a stable complex
structure a, namely a complex vector bundle structure on the real bundle Ty & R*, where
R is the trivial real vector bundle of rank k on M. It contains the subgroup Zg generated
by boundaries, namely, for any real i + 1-fold N with boundary equipped with a stable
complex structure «, as Tyjgn = Ton @ R, the stable complex structure on N induces a
stable complex structure on the boundary 9N, defining the boundary 9(NV,«). The group
MU*(pt) is then defined as the quotient Z¢/Z{. The ring structure comes from the addition
given by the disjoint union, and the product is given by the geometric product. It is proved
in [13] that MU (pt) is trivial in odd degree * and torsion free in even degrees *. Furthermore
it is also known that the cobordism class of a pair (M, a), with dim M = 2i is determined
by the Chern numbers

/ P[(CZ(M, a)),
M

where we use the orientation of M defined by a to compute the integral, the Chern classes
ci(M, ) are those of the complex vector bundle Ty @ R* equipped with the stable complex
structure «, and the P; generate the space of degree 2i weighted homogeneous polynomials
in the ¢; where degc¢; = 2j. We will in fact work with the Q-vector space MU (pt) ® Q that
we will denote MU™(pt) for convenience.

If we consider hyper-Kéhler manifolds of dimension 2n, or more generally compact com-
plex 2n-folds X having an everywhere nondegenerate (2,0)-form ox (not necessarily closed,
not necessarily holomorphic), the existence of the isomorphism of complex vector bundles

Ty (@)

given by ox implies that ¢;(X) = 0 for [ odd. It follows that the cobordism classes of such
complex manifolds are determined by the Chern numbers

| Plea(x),
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where we use the complex orientation of X to compute the integrals, and the polynomials
P generate the space of degree 4n weighted homogeneous polynomials in the cg;, where
deg co; = 4l. These polynomials are generated by monomials M; indexed by partitions I of
n, namely to a partition I given by the decomposition n = nj + ...+ ny, one associates the
monomial

M[ = C2ny -+ -C2ny -

Starting with a K3 surface S, we can construct in each even dimension 2n the following
set of symplectic holomorphic manifolds, also indexed by partitions I of n, namely, to a
partition I as above one associates

SUl .= glml o 5 glnel,

Similarly, using the generalized Kummer varieties Kum;(A) associated with a 2-dimensional
complex torus or abelian surface (see [1]) instead of the Hilbert schemes of K3 surfaces, we
associate to a partition I as above the symplectic holomorphic 2n-fold

Kum;(A) := Kum,, (A) x ...Kum,, (A).
The main result of this paper can be formulated as follows.

Theorem 0.1. (a) The complex cobordism class of any compact complex manifold X with
trivial odd Chern classes is a unique combination with rational coefficients of classes S,
where S is a K3 surface.

(b) The same result holds if one replaces the varieties SU by the varieties Kum;y(A).

In fact, the theorem that we will prove is even more general, namely our results apply
as well to any compact complex manifold X or complex cobordism class whose Chern num-
bers [ < Mi(ci, ..., ¢n), for any monomial M; involving nontrivially an odd Chern class, are
zero. For example, any complex fourfold X with trivial first Chern class satisfies this prop-
erty, while it can have ¢3(X) # 0. Similarly, complex n-folds with no nonzero odd degree
Chern classes in degree < 3 satisfy this property. More generally, the rational subalgebra
MU* (pt)even of MU*(pt) consisting of cobordism classes with “trivial odd Chern numbers”
in the above sense is a free polynomial algebra over Q with one generator in each even
dimension, and Theorem 0.1 says that the cobordism classes of punctual Hilbert schemes
of K3 surfaces, or of the generalized Kummer varieties form a system of generators of this
algebra.

Remark 0.2. Tt is known by [3] that the cobordism class of S 7] for a compact complex surface
S depends only on the Chern numbers c2(S), ¢1(S)?. Hence we can replace in Theorem 0.1
the K3 surface S by any surface S’ with ¢;1(S")? = 0, co(S’) # 0, for example we can take
for S’ the blow-up of P2 in 9 points.

We will give a quick proof of Theorem 0.1 (a) in low dimension in Section 1. In higher
dimension, we will follow the following strategy, already used by topologists. The Milnor
genus of a complex or almost complex manifold of complex dimension m is defined as

M(X) = /X chon(T), (1)

where ch(Tx) = ), ch;(Tx) is the Chern character of X (see [8]). As is classical in complex
cobordism theory (see [13], [10]) and will be recalled in Section 2, Theorem 0.1 is equivalent
to the following result concerning the Milnor genus of K3 and Kum,, (4).

Theorem 0.3. (a) The Milnor genus M(S™) is nonzero for all n.
(b) The Milnor genus M(Kum, (A)) is nonzero for all n.

Theorem 0.3 will be proved in Section 3, where an explicit formula for M(S!"™) and
M (Kum,, (A)) will be established (see Theorems 3.1 and 3.2). In Section 2, which is mostly



introductory, we will explain the equivalence between Theorems 0.1 and 0.3. In the last
section of the paper, we will present a few natural questions left open by our results.

Thanks. We thank Olivier Debarre for interesting discussions that led us to this collabora-
tion.

1 Theorem 0.1 in small dimension

In complex dimensions 2n = 2, 4 and 6, the ring MU*"(pt) is very simple. Indeed, for
n = 2, the only class to integrate is co. In dimension 4, we get only ¢, and cZ. Finally, in
dimension 3, we get only c3, cacy, cg. In all three cases, the space has dimension n, which
is not true anymore in higher dimensions (for example, in dimension 8, there is an extra
monomial ¢3). In this case, there are natural Chern numbers on S[¥! that are enough to test
the independence of the classes Sl in MU*(pt)eyen, namely the n numbers

Xk(X) = x(X, %),

for £ < n, 2n = dim X. We observe that, by Serre duality, the other holomorphic Euler-
Poincaré characteristics y(X,Q%) for k& > n do not bring further information. By the
Hirzebruch-Riemann-Roch formula, xj(X) is a polynomial of degree 2n in the Chern classes
of X. There is nothing to say in dimension 2. In dimensions 4 and 6, in order to prove
Theorem 0.1, or equivalently Theorem 0.3 by Corollary 2.4, it suffices to prove the following,
for S a K3 surface:

Proposition 1.1. (1) (dim4) The matrix <X(Q§[2]) X(QQSXS)) has nonzero determinant.
X(Qslz]) X(QSXS)
(2) (dim6) The matriz
X(2sm)  x(Qseics)  x(2s2)

X(Qs[S]) (Qz[z]xs) X(QQSS)
X(Qg[s]) X(Q‘Z[z]xs) X(Qgs)

= =

has nonzero determinant.

Proof. 1t is equivalent by Remark 0.2, and in fact easier to prove the same result for the
surface ¥ obtained as the blow-up of P2 in 9 points. Indeed, in this case, the whole co-
homology of the Hilbert scheme is of type (p,p) and similarly for their products. Thus we
have x(X, Q%) = (—1)*byy,(X) for these varieties. The Betti numbers of X2 and X are
computed by [2] or [4]. One has

ba(%) = 10, ba(£P)) = 11, by(2P)) = 66,

ba (2B =11, by(2F)) = 77, b(2F)) = 342.

—11 -20

66 102) in case (1), and this matrix

By Kiinneth decomposition, our matrices are thus (
has nonzero determinant and
-1  -21 —30

T 177 303
—342 —682 —1060

in case (2), and this matrix has nonzero determinant. O



2 Reduction to Theorem 0.3

The Chern character ch(E) of a complex vector bundle of rank r on a topological space X
is defined as

Ch(E) = ZeXpAi S HQ*(Xa Q)v

i=1
where the \; are the formal roots of the Chern polynomial of E (see [8]). Its main properties
are

ch(E @ F) = ch(E) + ch(F) (2)
and, when X is a manifold of real dimension k,
ch;(E) =0 for 2i > k. (3)

For a complex manifold X we will use the notation ch(X) = ch(Tx). Let X be a compact
complex manifold of dimension n which is a product

XY xW

of complex manifolds of respective dimensions ny, ny < n. Then, as Tx = priTy & prslw,
where pr; denotes the projection on the i-th factor, we get by (2) and (3)

ch; (X) = prich; (V') + prich, (W), (4)

hence
ch;(X) = 0 for i > max(ny, nw).

The Milnor genus M (X) defined in (1) thus satisfies the following property

Lemma 2.1. We have M (X) =0 if X is a product of two complex manifolds of dimension
smaller than n.

The formal properties above give the following criterion

Proposition 2.2. Let Xy,..., X;,..., X, be compact complex manifolds of dimension 2i
with vanishing odd Chern classes : co41(X;) = 0. Then, A\; := M(X;) is nonzero for any
i, if and only if any complex cobordism class of even dimension < 2n with vanishing “odd
Chern numbers” can be written uniquely as a rational combination of products

X[ ::Xil ><...>(,Xvik7 ZZ[STL
l

Proof. The “only if” follows from Lemma 2.1 which says that che; can have a nonzero integral
on X;, X ...x X, only for I = {i}, that is, when X;, x ... x X;, = Xj.

We have to prove that the products X;, x ... x X;, form a basis over Q of the sub-
ring MU (pt)even Of the cobordism ring of classes a with vanishing “odd Chern numbers”
fa Mi(c;), where the monomial M; involves an odd Chern class. Equivalently, we have to
show that for any such class & € MUY (pt)eyen, there are unique rational coefficients o
indexed by partitions of n, such that

/QP(CQ,...,%):XI:QI /XI P(ca(X7),. .., con(X1))

for any degree 2n weighted polynomial P in the variables co;. Instead of using the Chern
classes co; as generators, we can use the Chern characters classes chy; which are related to



the Chern classes by the Newton formulas. We argue by induction on the dimension and
conclude that for any ¢ < n, there exists a combination

Yi=Xi+ Y arX;e€MU*(pt), (5)
1i(I)>2
where, in the above sum, I runs through the partitions ¢ = Zle iy of ¢ and (1) := k,

with the following property : for any degree 2¢ monomial Mg = chg2 e chgfi in the Chern
characters ch; with [ even, one has

Mg (Y;) = Mg (X;) + z ag M (cha(Xr),...,chy(Xy)) = 0if Mg # chy;.  (6)
1(I)>2 Xr

Furthermore, equation (5), Lemma 2.1 and our assumptions show that M(Y;) = A\; # 0.
Formulas (4) and (6) then imply that for any product Y, =[], , .. _,Yj with [ > 2
(hence all j; smaller than i), and any monomial My as above of weighted degree 2i, one
has Mk (Yy) =0 for K # J, Mk (Yk) # 0. Finally, we have by assumption chy;(X;) # 0, so
X; and the Y for the partitions .J of i such that I(.J) > 2 form a basis of MU* (pt)eyen. [

Remark 2.3. The same criterion (without assumption on the odd Chern classes) was used by
topologists to prove that the complex cobordism ring with rational coefficients is generated
in degree n by products of projective spaces P with >k ik = n. It suffices to prove that
M(P") # 0, which is quite easy using the Euler exact sequence which gives

ch(P") = (r 4+ 1)exp(h) — 1,
with h = Cl(O]pr(l)).
We now get in particular

Corollary 2.4. Theorem 0.3 is equivalent to Theorem 0.1.

3 Proof of Theorem 0.3

The proof of Theorem 0.3 will use the description of the cohomology of Hilbert schemes of
points of surfaces in terms of Nakajima operators. In particular, we will use a result of Li,
Qin and Wang [12] which for K-trivial surfaces expresses the operator of multiplication by
tautological classes in terms of the Nakajima basis. We refer to [15] for an overview of the
main definitions in the subject, and for the conventions that we follow.

We will prove the following closed evaluations, which imply Theorem 0.3.

Theorem 3.1. For any surface S with ¢1(S) = 0 in H*(S,Q), we have for allm > 1:

/S[n] chan(Tsi) = (=1 = i — 1y

Theorem 3.2. For any abelian surface A, we have for all n > 1:

(2n +2)!

cha, (T umy, = (="
/Kumn(A) 2 ( K (A)) ( ) nl4

3.1 Combinatorial identities

Lemma 3.1. For k,n € N, we have the following identities:
(1) T (D)= ()
(2) Sioi()” = 50



n . 2 n? 2nY\ .
(3) Yisoi®(7) = 2(2n—1) ()
k i (n n—
(4) o1 () = (=1 (")s
k i-(n n—
(5) Yino(=1)'i(}) = (=D*n(32).
Proof. For (1), one can compare the degree-n coefficient of the polynomial (1 + x)?": the
left hand side is obtained using the identity (1 4+ x)?" = (1 + z)"(1 + )", while the right

hand side is simply the binomial coefficient. For (2) and (3), we consider the polynomials

(I4+z)" L(14z)" and (1+z)"- (%)2(1 + )", and follow the same idea as (1).

For (4), we consider the degree-k coefficient of the polynomial (1 —x)"~!: the right hand
side is again just the binomial coefficient, while the left hand side is obtained using the
Taylor expansion (1—z)" ' =L . (1—-2)"=(1+z+2?+---)- (1 —=)". Similarly, for

(5) we consider —n(1 —z)" "2 = 1. (1 —z)". O

Proposition 3.2. We have the following identity

n I[—-1 . ) I—m . (2n)'
;T;O(fl) T ) (=1 = 2@n — 1) nlh

Proof. We rewrite the left hand side using the combinatorial identities from Lemma 3.1

— m l—m
Z (=1) +l+1m!l!(n —m)l(n—1)!

(take out 1) = % Z(—l)l

(
(i) = o0 (7) (Coa (32 )) o (123))
(

(using Lemma 3.1) _ :
@ and 3) )7 9(2p — 1) nlt

3.2 Hilbert schemes of points

Let Z ¢ SI" x S be the universal subscheme and let 7, 7g be the projections of S x S to
the factors. For any v € H*(S) and d € Z let

®4(7) : H'(SM) — H* (5"

be the operator of multiplication with the class m,(chqg(Oz — Oginixg) - T5(7))-
Let from now on S be a surface with ¢1(S) = 0 in H?(S,Q). Then by a result of Li, Qin
and Wang [12, Thm.4.6] we have that

s =- Y Bam+ Y 2Naa.-as) @
(o S i



where e(S) € H*(S) is the Euler class of S and q,,(a) are the Nakajima Heisenberg opera-
tors; the other notations here follow [15, Section 4].!

The tangent bundle of the Hilbert scheme can be expressed as an relative Ext sheaf
of the universal ideal sheaves [3, Prop 2.2]. This gives an expression for the operator of
multiplication with chg(T) in terms of the &’s as follows

mlten, (7., = D (—1>J'“05i®j<A>+‘321f) > CD)TEPs; ) ()

i+j=k+2 i+j=k

where k > 1 and p € H%(.9) is the class of a point on S; see also [15, 4.9]. Hence Theorem 3.1
is implied by the following two lemmas:

Lemma 3.3.

2 (_1)j+1/ Bi(p)&,(p)Lstn = (—1)" (2n)!

14
n n.
i+j=2n st

Proof. In the Nakajima basis the unit of H*(S™) is q1(1)"1g0 where we let 1g0 denote

the unit in the cohomology of S0 = {x} (the subscript SI° is usually dropped in what
follows). We hence have to evaluate

> (—1)3'“/ ®i(p)®j(p)%q1(1)”1

i+j=2n Stn]
, A.(p)) 45 (A (p) | @ (1)"
— -1 J+1/ 7’:')‘( AV 1
z_: =) Sinl ,Z _ Al - Z~ ! n! )
i+j=2n L(A)=i,|A|=0 1(XN)=4,|x|=0

The (complex?) cohomological degree of a Nakajima cycle qg, (1) - - - qx, ()1 lying in H*(S™)
isn—r+ ), degc(v;). Hence for the integral of such a cycle to be non-zero, we need k; = 1
and degq(7y;) = 2 for all i. In particular, the term q;(1)™ appearing in (9) has to be trans-
formed into a multiple of qi(p)™ under the operators &;(p)®;(p). Hence among the gy
and g5 we must have n operators of the form q_; and n operators q;. Since this accounts
for all possible Nakajima operators which can appear, we need that A = (—1)%(1)® and
A= (=1)’(1)® where i = 2a and j = 2b. The above expression thus evaluates to

=(-1 > le;!?/m a1 () a-1(p)a1 ()01 () L 1

n!
a+b=n
1 n

= (_1) Z al2p!2 (_1)

a+b=n
B 4+1(2n)!
=0T

where in the last equality we used the first part of Lemma 3.1. O

Lemma 3.4.

> |

itj=2n+2 S

2n)! [n n
] ®;8;(A)1gm = c2(5)(-1)" (n!4) {12 - 2(2”—1)]

[n

Proof. We insert the expansion (7) for ®,. The contribution from the second term in (7)
can be computed by the same methods which were used in Lemma 3.3. The result is

IThere is one exception: our definition for ®4(v) agrees with [15] in case d > 1, while for d = 0 we have
®o(7) = — (f5~) id (instead of Go(v) = 0 in [15]). The advantage is that (7) holds now for all d € Z.
2The complex degree deg(7y) is half the real degree, i.e. v € H? dege (7)),



e(S)/24% , p—n(—1)"2a/(a!*b!?). The same applies to the contribution from the second
term in &;. Inserting this and using part (2) of Lemma 3.1 we find that:

an2(2n —1)!
6-nl4

Yo @85(A) g = T+ ea(S)(~1)
itj—2n+2 Sin]

where I is the contribution from the first terms in &; and &, that is

j A (A 5(A(A2)) ) qi(1)"
7= Z (_1)4+1/S[n] Z qx( )\'( ) Z qx al q1(1) 1

o . ! _ Al n!
i+j=2n+2 L(N)=1,|A|=0 L(N)=4,|x|=0

where Aq, As stands for summing over the Kiinneth factors of the diagonal in H*(S x .5).
With similar reasoning as before (i.e. among the gy and q5 we need n operators q; and q_;
each) we now compute:

n £—1 n—m n—~¢ m 4 n
a9 () Ge—md TS (D) eqa (1)
I= -1 1
> [ b BT

with
b, — mllli(n—m)ln—20)! ifm<l-1
ET 02 (- 0+ 1)1 if mo=0— 1.

Commuting the negative Nakajima operators to the right and using the Nakajima commu-
tation relations for cases m = ¢ — 1 and m < ¢ — 1 separately, we get

£—1

I=e(s)(—r Y (e Eom) S 20)]

=1 m=0 mlll(n —m)!(n — £)! 2(2n—1) nl4

where we applied Proposition 3.2 in the last step. O

3.3 Generalized Kummer varieties
We first compute the class of Kum,, (A) in the Nakajima basis of A"+1],

Lemma 3.5. In H*(A"*1) we have
[Kumy, (A)] = &3(a)B2(8)B2(7)G2(6)1 gm-+u
for any o, B,~,6 € H'(A) such that [, afyd = 1.
Proof. Let o : A"t 5 A be the sum map. We have
[Kumy, (4)] = " (p).

Hence it suffices to show that o*(a) = Ga(a) for any a € H'(A), where we let Ga(a) =
B2(a)1 gns1. Consider z € H3(A,Z) = H1(A,Z) and let L(z) = q1(x)q1(p)"1. When z is
represented by a singular chain, than L(x) is represented by the chain obtained from the
former by adding n — 1 distinct points to it. This shows that o, L(z) = x, and hence

./sm o*(a) - L(z) = /Aa -0, L(z) = /Aax.

On the other hand, a direct calculation using the Nakajima operators also shows [ Ga(a) -
L(z) = [, ax. Since the L(z) generate Hy (A1) this yields the claim. O



Since [G2(z),q1(y)] = q1(xy) for all z,y € H*(S) one finds that

Kumo(A)] = 32 on ey ,Hm(H ) LML (10)

m={m;} TET;
with the following notation:

e 7 runs over all set partitions of {a, 8,7,0} with I(7) parts,

e 0, € {£1} is the sign obtained from bringing ], [] x into the order afvd,

xTeETT;

e in case n < 2 we sum only over set partitions with I(7) <n + 1.
The first terms read:

Kuum, (4)] = s (0)a1 (1)L + = (@)ar (B50)a (1)1

bt g @m (B () (F)as (1)1

Lemma 3.6.
/A[ 1] a1 (A) [Kum, (4)] = (n+1)*

Proof. Using Lemma 3.5, equation (10) and the straightforward evaluation

(T7r/ aptg™ HCI1 (H :U) ()M = (—1) (4 1)!
A[n+1]

TET;

for every 7, we find that

(n+ D=+

/A . a7 g T (A) [Kum, (4)] = Y CESRSIE

(
=(=D""Mn+ 1)1+ +6nn—1)+nn—1)(n—2)
= () ()

Proof of Theorem 3.2. We have the exact sequence
0 = Txkum,(4) = Tam+1lkum,4) = 0 (Ta)lkum, a) = 0

which together with (7) and (8) (using e(A) = 0) shows that

/ chon (Ticum, (4)) = / chon(Tymsnr) 1 [Kumi (A)]
Kum,, (A) Aln+1]

S0 [ 6o Kum, (4)
it+j—2n+2 Alnt1]

Consider the expansion &;8;(A) =3, _; 15)=; 4xq5(A)/(AIN). Since g5 acics on (10)
which consists only of terms of the form [, q1(z;) 1, for a summand to contribute, A can only
have negative parts equal to —1. Assume A has a positive part k£ > 1. Then A has to have a

corresponding negative part —k, and these two parts have to interact when commuting all
negative Nakajima operators to the right. However, this will yield the term

[q,k,qk]q)\/q;\, (7T12*(A12A12...(l(>\)+l(j\)))) = —kqA/q;\,(e(A)A) =0



where 715 is the projection away from the first two factors and )\, X are the partitions A, A
without the parts k, —k. We conclude that only the summands with A = (—=1)%(1)* and
A = (—=1)°(1)” where i = 2a and j = 2b can contribute to the integral. Moreover, applying
a similar argument we have q¢q%,q%q% 1 (A) = q¢Pq*1P(A).

We thus find the following expression:

- 2 Cf@;!)g /A o A () [Kumy, (4)

a+b=n+1
(_1) n+1 4
- Z a12b12 (=) (n+1)
a+b=n+1 s
(2n+2)!
_ (_1\n
where we used the first part of Lemma 3.1. O

The computations above can be generalized to arbitrary products of Chern characters.
The following qualitative result is almost immediate:

Proposition 3.7. Let n > 1. For any partition n = k1 + ko + ... + k. we have

(_1)71 / Ch2k1 (TKumT,,(A)) T Ch2kr (TKumT,,(A)) > 0.
Kum,, (A)

Proof. Let n —1 = k1 + ...+ k, be a partition of n — 1. Then

/ Chgkl (T) s Chgkr (T)
Kum,,—1(A)

= Y (uptetet [ 6,6, (A) - 6,6, (A)[Kum,_ (A))
i1+j1=2k1+2 Al
it Gir=2kn+2

We express the &, in terms of Nakajima operators via (7), which produces a sum consisting
of summands with precisely

D it i =Y (2ks+2) =2n+2(r 1)
s=1

S

Nakajima factors acting on the class of Kum,,_;(A). When commuting all negative Nakajima
operators to the right, we see that for a term to contribute there have to be at least r — 1
Nakajima interactions between these 2n+2(r—1) factors. Moreover, since e(4) = 0 (compare
the proof of Theorem 3.2) only the following is allowed:

(a) There can be no Nakajima interactions between factors belonging to the same &, & (A).

(b) There can be at most one Nakajima interaction between factors belonging to &; &, (A)
and &; ,&; ,(A) for s # 5.

This shows that there can be at most r—1 Nakajima interactions. The total sign contribution
from these Nakajima interactions is (—1)"~! and the outcome will be a multiple of the
operator q7q”;(A). By Lemma 3.6 the degree of q7q™(A)[Kum,_1(A4)] yields a sign of
(—=1)™. Since there always is at least one summand that contributes with a non-zero value,
the claim now follows as soon as we can prove that j; + ...+ j, is even.
IfA=(...(=2)2(=1)"(1)"(2)"2...) is a generalized partition of size [A| = 3", il; =0,
then by considering this equality mod 2 we get that the number of odd parts loqq 1= Y j loj41
is even, and hence that I(}) is equal to the number of even parts leven(A) 1= 3_; l2; modulo

2. Let Ay, A be the generalized partitions appearing in a given summand of &; &, . We see

(_1)j1+<.-+]% — (_1)leven(/\1)+-~leven(kr)'

10



Moreover, since is + js is even, for every s we have loven(As) + leven(As) is even. This
shows that there is always an even number of even Nakajima factors in &; &; (A). Let m
be the number of s € {1,...,r} such that there exists even Nakajima factors in &, &, (A).
Since all even Nakajima factors have to interact with each other, we see that there are at
least m Nakajima interactions between these m factors, This implies that either (a) or (b)
above is violated, and the corresponding contribution vanishes. Hence for any non-zero
summand contributing to the Chern character number, all Nakajima factors are odd, so we
have j, = 0(2) and therefore (—1)%1FTi even. O

Remark 3.8. Arbitrary Chern character numbers of Kum,, (A) can be computed in a parallel
manner, however the expressions become more complicated. For example, the double Chern
character numbers of the generalized Kummer for 0 < k < n are given as

/ chagchay, o,
Kum,, (A)

k .
=4(=1)"(n+ 12k + D)2 — 2k + 1)) 21

— (k=) k+i+DIn—k—i)(n—k+i+ 12
where chy, = chi(Tkum, (4)) are the Chern characters of the tangent bundle. For k£ = 1 one
gets
2n)!
/ chochg,_9 = (—1)”( 74) (4n(n + 1)*(n* +n+1)).
Kum,, (A) n:

4 Remarks and open questions

A first obvious question is the following
Question 4.1. Compute M (X)) for any smooth projective surface .

More precisely, it is a consequence of [3] that we have a formula
M(E[n]) = Oéncl(E)2 +Bnc2(2)v (11)

so the question is to compute a,, and S,. Formula (11) follows from the main result of [3]
which says that M (X)) depends only on ¢;(£)? and c3(X) and from the formula

ninl — Uk+z:n2[1k] > 2[21]

when X = 31 LU X5, which by Lemma 2.1 gives
M) = m(sl) + M),

proving that M (X)) is a linear function of ¢;(X)? and ¢2(X). Equation (11) suggests that
another approach to Theorem 0.3 would be by computing the Milnor genus of X" for two
conveniently chosen surfaces ¥, in the spirit of [27].

Theorem 3.1 shows that 3, = (—1)"%. The Milnor genus of (P?)[" can be
numerically computed using Bott’s residue formula for small values of n, so we get the
following list of .
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Qp,
1/2
~5/12
91/540
—67/1680
5599,/907200
—8047/11975040
295381/5448643200
—17616097/5230697472000
797006281,/4801780279296000
10 —404188861/60822550204416000
11 | 15479922001 ,/70250045486100480000
12 | —8942373821/1454175941562279936000

© 00O Ui W =3

Turning to hyper-Kéhler geometry, an obvious open question, that was our original
motivation for formulating Theorem 0.1, is

Question 4.2. What are the constraints on the complex cobordism classes of hyper-Kdhler
manifolds?

In view of Theorem 0.1, we can rephrase this question in terms of inequalities or equalities
between the coefficients ar(X) (resp. fr) given by Theorem 0.1, expressing the class of X
as a combination of classes of the SUI (resp. Kumj(A)). One obvious restriction is the affine
relation given by the fact that x(X,Ox) = n+1 for X hyper-Kéhler of dimension 2n. Using
the Hirzebruch-Riemann-Roch formula, this gives a relation between the Chern numbers of
X, but we can express it more simply using the a; since x(SU), Ogin) = (n1+1)... (np+1)
for the partition I of n given by n =nj + ...+ ng. The relation is thus

n+1=> ar(n+1)...(n+1) (12)
I

and similarly for the ;. For example, in dimension 4, the Hirzebruch-Riemann-Roch formula
provides the relation (see [22])

1 1
3= —(c2(X)? — sea(X 13
S (%) = Sea (X)), (13)
while in our setting, it writes
3o + 40(171 =3.

In the case of dimension 4 we have two topological models, the Hilbert scheme S and
the generalized Kummer variety K5(A) and they clearly have independent classes, since
otherwise by (12) their classes would be equal, hence also their topological Euler-Poincaré
characteristic ¢4, which is not the case. In dimension 6, we have 3 topological models,
namely SBl, K3(A) and OG6 constructed in [20], and their classes are linearly independent,
as proves the following computation. The Chern numbers 3, cacy, cg of K 3! are computed
in [3], those of K3(A) are computed in [17], and those of OG6 are computed in [14]. Thanks
to these works, the matrix of Chern numbers for these three varieties takes the form (where
the first line indicates the Chern numbers of K3[!, the second line those of K3(A), and the
third line those of OG6):

36800 14720 3200

30208 6784 448

30720 7680 1920

The determinant of this matrix is nonzero, proving the independence of the three classes.
Thus, up to dimension 6, the classes of hyper-Kéahler manifolds generate the affine space
defined by (12). It is likely that there are linear relations in higher dimension.

Other contraints are given by inequalities. For example, the class ¢y has positivity
properties related to the existence of Kéahler-Einstein metrics. Positivity results for some

12



Chern numbers have been also obtained by Jiang [9] who proves that the coefficients of the
Riemann-Roch polynomial of a line bundle L on X, expressed as a polynomial in ¢(L), has
positive coefficients. It is proved in [16] that for an adequate normalization of the Beauville-
Bogomolov form ¢, these coefficients are given by Chern numbers of X (depending only on
the dimension). In dimension 4, work of Guan [7] gives inequalities on c4(X) that come
from the study of the cohomology algebra of X. In higher dimension 2n, work of [5] also
predicts bounds on Betti numbers which in turn gives conjectural bounds on the topological
Euler-Poincaré characteristic co,(X). It would be very interesting to have an idea of the
convex set generated by classes of hyper-Kéhler manifolds. Let us now mention three specific
questions in this direction.

(a) The numbers x(X,Q%). In the case of the varieties SI” and Kum,,(A), we have
the following result.

Lemma 4.3. Let S be a K3 surface. Then the numbers (—1)ix(5’["]7QiS[7L]) are increasing
i the range 0 <1 < n.
Similarly, for n fized, the numbers (—1)"x(Kum,(A), Qi{umn(A)) are increasing.

Proof. We argue as in Section 1. As these numbers are Chern numbers by the Hirzebruch-
Riemann-Roch formula, we can replace by [3] the K3 surface S by the disjoint union ¥ of
two copies of P? blown-up in 9 points. Then (—1)*x (X[, QL) = bai (X1 s0 the statement
is that bgi(Z["]) is increasing in the range 0 < ¢ < n and this follows from the hard Lefschetz
theorem since dim X" = 2n.

For the second statement, the numbers (—1)"x(Kum,(A4), ., (1)) are computed in
[6] which gives the following formula

D (=1 x(Kumy, (A), Qg )y =1 d3 14y + .+ gy 2y,
% dn

from which it immediately follows that these numbers are increasing in the range 0 < ¢ <
n.

O

We also computed these numbers for OG6 and OG10 and got
(—1)'x(0G6, Q5 qs) = 4, 24, 348, 1168
respectively for i =0, 1, 2, 3 and
(—1)"x(0G10, Q5 q10) = 6, 111, 1062, 7173, 33534, 93132,

respectively for ¢ = 0, 1, 2, 3, 4, 5. In the two cases, these numbers are increasing. This
raises the following question.

Question 4.4. Is it true that the numbers (—1)"x (X, Q%) are increasing in the range 0 <
i < n for any hyper-Kdahler manifold X of dimension 2n?

(b) Chern character numbers. Theorems 3.1 and 3.2 prove that the two numbers
(=1)" [gpm chan (SI) and (—1)" Jicum, () Ch2n (Kumy, (A)) are positive for any n.
This suggests the following question.

Question 4.5. Is it true that (—1)"M(X) = (=1)" [ cha,(X) is positive for any hyper-
Kahler manifold X of dimension 2n?

The following lemma gives an affirmative answer in dimension 4.

Lemma 4.6. Let X a a hyper-Kdihler fourfold. Then M(X) = [, chy(X) > 0.

13



Proof. We have chy(X) = 5 (2¢3(X) —4c4(X)) so the statement is equivalent to [, (c3(X)—
2¢4(X)) > 0. Formula (13) gives us [, c2(X)? =720+ 1 [, ca(X), so the desired inequality
is equivalent to

9-240
/ C4(X) - Xtop(X) < T = 432. (14)
X
Inequality (14) now follows from work of Salamon [23] and Guan [7]. By [23], b3(X)+b4(X) =
46 + 10b2(X), hence xiop(X) = ba(X) — 2b3(X) 4 2b2(X) + 2 < 48+ 12b3(X). Guan proves
that by (X) < 23, so we get

Xtop (X) < 48 + 1223 = 324,
proving (14). O

Proposition 3.7 shows that (—1)" fKum (4) chag, ....chag, > 0 for any choice of partition
n =) . k;. This suggests the following question

Question 4.7. Is it true that (—1)" fX choy, ....chag,. is positive for any hyper-Kdhler man-
ifold X of dimension 2n and any choice of partition n =3, k;?

(¢) Positivity of Chern numbers. We recall here for completeness that positiv-
ity properties had been observed already in [18], [24] for the monomial Chern numbers
Jx 2k, (X) ... cax, (X) of known hyper-Kéhler manifolds. The following question was asked
in [18]

Question 4.8. Is it true that [ co, (X)....car, (X) is positive for any hyper-Kdhler manifold
X of dimension 2n and any choice of partition n =), k;?

We note that, in the case of dimension 4, it is still unknown that xop(X) = [y ca(X) >
0. The questions (b) and (c) look very similar but they lead to very different convexity
inequalities and, in dimension 4, the two inequalities [y ¢4(X) > 0 (conjectured above) and
J + ¢hy(X) > 0 proved in Lemma 4.6 imply together the finiteness of the complex cobordism
classes of hyper-Kahler fourfolds.

We finish with two questions more specifically related to our results, concerning the
comparison of the two systems of linear generators S and Kumy(A). Tt would be interesting
to know more about the matrix comparing these two systems of linear generators in each
dimension.

Question 4.9. Is there a geometric way of understanding and computing this matriz?

Another intriguing fact concerns the shape of the coefficients of these matrices. Since
the Chern numbers of SI¥l and Kumy(A) are known for small values of k, and the Chern
numbers of a product X X Y can be expressed in terms of Chern numbers of X and Y, one
gets consequently the Chern numbers of SUI and Kum;(A) for all partitions I of k. One may
then study the linear relations among the classes of these manifolds. Below is the explicit
expression giving the class of Sl as a Q-linear combination of the classes of Kumj(A) for
k <5.

S = 1/3Kumy(A4) 4 1/2Kum; ; (A)

SBl = 1/5Kums(A) 4 14/45Kumg 1 (A) + 1/6Kum; ; 1 (A)

S = 1/7Kumy(A) 4+ 7/40Kums 1 (A) + 1/21Kumg (A)

+ 47/315Kum2,1’1(A) + 1/24Kum1,1,171(A)
Sl = 1/9Kums(A) + 62/525Kumy 1 (A) + 4/75Kums o(A) + 49/600Kums ; 1 (A)
+ 23/525Kum2’2’1(A) + 151/3150Kum2 1.1 1(A) + 1/120KU.1’I11 1.1.1 1<A)

sdydy sy dsdy
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The leading coefficient being ﬁ can be explained by the difference in the expression of
Milnor genus for the two infinite series, since the other terms are products and do not
contribute to the Milnor genus.

Similarly, we computed the class of Kumg(A) as a Q-linear combination of the classes of
S for k < 5.

Kumy(A) = 3902 _ 3/25[1,1]

Kums(A4) = 558 — 14/3521 4 3/251.1.1]

Kumy(A) = 754 _ 49/85[3’1] _ 35022 4 67/125[2*17” _ 21/165[1’1’171] (16)
Kums(4) = 95 —186/2551 — 36/55% + 1287/2005111

+159/255221U _ 577/100812111 + 423 /400501111,
Equations (15) strongly suggest the following question.

Question 4.10. Is it true that for any n, the class of S is a linear combination with
positive coefficients of the classes of Kumj(A)?

There are only two known hyper-Ké&hler manifolds which do not belong to the two infinite
series discussed above, namely the 6-dimensional and 10-dimensional O’Grady manifolds
OGg and OGyg (see [20], [21]). Their cobordism classes are expressed as follows in the
generalized Kummer basis (showing in particular that not any hyper-Kahler manifold has
its class in the convex cone generated by products of generalized Kummer varieties).

0Gg = 6/5Kum3(A) — 16/45Kum2,1(A) + 1/61(1].1?[1171)1(14)7
0G1p = 25/168Kums(A) + 67/700Kumy ; (A) + 3/700Kums 5(A) + 163/1600Kums ; 1 (A)
+ 2617/378001{1111127271(‘4) + 493/126001(11111271,171(14) + 17/1920Kum171,17171(A).

Our last observation is the following. There is a mysterious link (in fact related to
mirror symmetry) between hyper-Kéhler manifolds of dimension 2n and rational homology
projective space CP™. It appears for example in [11] where it is proved that the dual complex
of the central fiber of a maximally unipotent dlt degeneration of a hyper-Kéahler 2n-fold is a
rational homology projective space CP". There is another mysterious and more precise link
between K3/ and projective space P", which comes from the study of the Riemann-Roch
polynomials. Indeed, one has the following result that can be formulated using the Chern
numbers of X by [16]. (This result is proved by looking at the natural Lagrangian fibration
of a variety SI" where S is a K3 surface equipped with an elliptic fibration.)

Theorem 4.11. [3] Let X be a hyper-Kdihler manifold of K3 _deformation type and q be
its Beauville-Bogomolov form. Then for any line bundle L on X with q(c1(L)) = 2k, one
has x(X, L) = x(P"*, Opn (k + 1)) = hO(P", Opn (k + 1)).

The formalism used in the present paper proposes a further analogy between K3" and
P™. Namely the classical complex cobordism gives the projective spaces P as multiplicative
rational generators of MU”(pt) while we proved that the K3 are multiplicative rational
generators of MU™(pt)even-
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