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Abstract. Bryan computed the Donaldson-Thomas invariants of the Banana-Calabi-Yau
threefold X → P1 in fiber classes. We explain in this note how this determines the 2-
dimensional generalized Donaldson-Thomas invariants counting semi-stable sheaves sup-
ported on fibers of X → P1 in terms of the modular form 12η(τ)2/η(4τ)6η(2τ) and a
multiple cover rule.

1. Introduction

Let πR : R → P1 be a generic rational elliptic surface with fixed section B ⊂ R. The

Banana Calabi-Yau threefold is the fibered product

X = Bl∆(R×P1 R).

Let πi : X → R for i = 1, 2 be the projections to the factors. Consider the fibration

π := πR ◦ π1 = πR ◦ π2 : X → P1.

The smooth fibers of π are the self-product of the corresponding fibers of πR, hence the self

product of an elliptic curve. The singular fibers of π correspond to the 12 singular fibers of

πR, and are of Banana type [2]. We see that π is a 1-parameter family of abelian surfaces

with 12 banana fibers. There exists a lattice polarization of the fibers of π by

L = Zω1 ⊕ Zω2 ⊕ Zω3 ⊂ Pic(X)

where

ω1 = π∗1(B), ω2 = π∗2(B), ω3 = [∆̃]

with ∆̃ the proper transform of the diagonal. The intersection form of these divisor classes

restricted to a generic fiber is given by the matrix0 1 1
1 0 1
1 1 0


Dually, let

H2(X,Z)π ⊂ H2(X,Z)

be the sublattice generated effective classes contracted under π. One has that

H2(X,Z)π = Z[C1]⊕ Z[C2]⊕ Z[C3]

where Ci are the banana curves (of any singular fiber). There is a natural isomorphism

H2(X,Z)π ∼= L∗

and the Ci are the dual basis of the ωi. The induced intersection form on H2(X,Z) has

matrix

(1.1)
1

2

 −1 1 1
1 −1 1
1 1 −1

 .


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We define thus a quadratic form on H2(X,Z)π by letting β = d1C1 +d2C2 +d3C3 have norm

||β|| = 2d1d2 + 2d1d3 + 2d2d3 − d2
1 − d2

2 − d2
3

Let Hilbn,β(X) be the Hilbert scheme of 1-dimensional subschemes Z ⊂ X with [Z] = β

and χ(OZ) = n. Consider the Donaldson-Thomas invariants of the Calabi-Yau threefold X:

DTn,β :=

∫
[Hilbn,β(X)]vir

1.

The following beautiful result was proven by Bryan in [2]:

Theorem 1.1 ([2]). We have the equality of formal power series∑
β∈H2(X,Z)π

∑
n∈Z

DTn,β(−p)ntβ =
∏

(β,n)>0

(1− pntβ)−12c(||β||,n)

where

• tβ is the basis element in the group ring C[H2(X,Z)π], completed along the cone of

effective curves,

• (β, n) > 0 stands for β > 0 (i.e. effective) or β = 0 and n > 0,

• the coefficients c(d, n) are given by∑
d,n

c(d, n)pnqd =
−p

q(1− p)2

∏
n≥1

(1− q2n)(1− pq2n−1)(1− p−1q2n−1)

(1− q4n)2(1− pq4n)2(1− p−1q4n)2

For r ≥ 0, β ∈ H2(X,Z)π, and n ∈ Z let

DT(r, β, n)

be the generalized Donaldson-Thomas invariant, definded by Joyce-Song [3], counting 2-

dimensional Gieseker semistable sheaves E (with respect to some polarization) with Chern

character

ch1(E) = r[F ], ch2(E) = β, ch3(E) = n,

where F ⊂ X stands for any fiber of π. The condition on the Chern character hence implies

that E is supported on fibers of π.

The goal of this note is to explain that Theorem 1.1 determines these invariants. Consider

Λ := Z⊕H2(X,Z)π ⊕ Z.

We define the Mukai pairing on Λ by

(r, β, n) · (r′, β′, n′) = β · β′ − rn′ − r′n

where β · β′ stands for the pairing dual to the pairing on L, that is which is given by the

matrix (1.1). Hence for v = (r, β, n) we have

2v · v = ||β|| − 4rn.

Clearly, Λ is just the Mukai lattice of the abelian surface given by a generic fiber of π.

We call v = (r, β, n) effective if

• r ≥ 0, or

• r = 0, β > 0, or

• r = 0, β = 0, n > 0.
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Define the coefficients a(n) by∑
n

a(n)qn =
η(τ)2

η(4τ)6η(2τ)

=
1

q

∏
m≥1

(1− qm)2

(1− q4m)6(1− q2m)

=
1

q
− 2 + 8q3 − 12q4 + 39q7 − 56q8 + 152q11 − 208q12 +O(q15)

Theorem 1.2. For any effective v = (r, β, n) ∈ Λ we have

DT(v) = 12
∑
k|v
k≥1

1

k2
a

(
2v · v
k2

)
.

Another way to state the formula is as follows: Define invariants dt(v) by subtracting

formally multiple cover contributions, that is inductively by the equality:

(1.2) DT(v) =
∑
k|v
k≥1

1

k2
dt(v/k).

Then Theorem 1.2 is equivalent to:

Corollary 1.3. dt(v) = a(2v · v).

That the invariant dt(v) only depends on the square v · v is pretty remarkable.

The invariants DT(v) have been computed for K3 fibrations also in three other instances:

(i) For the product S × C where S is a K3 surface in [4].

(ii) For K3 fibered Calabi-Yau threefolds π : X → C with nodal singular fibers (i.e. K3

surfaces with ADE singularieties) in [1].

(iii) For the Enriques Calabi-Yau threefold π : X → P1 which is an isotrivial K3 fibration

with 4 double Enriques fibers, in [6].

In all three instances the invariants DT(r, β, n), after subtracting multiple cover contributions

formally as in (1.2), do only depend on the square of (r, β, n). Moreover, they have modular

behaviour. Hence it is natural expect to find similar multiple cover and modular behaviour

for fiber class DT invariants of all K3/Abelian surface fibered Calabi-Yau threefolds.

Example 1.4. Before going to the proof, we give some examples of Theorem 1.2.

The simplest is:

DT(0, 0, 1) = −24 = −e(X).

Next we consider the genus zero Gopakumar-Vafa invariants of X. These are given by

DT(0, β, 1) = 12a(||β||).

This matches the results proven in [5] by the basic formula

ϕ−2,1(p, q) =
∑
d≥0

∑
r∈Z

a(4d− r2)prqd

where the left hand side is the classical weight −2 index 1 Jacobi form

ϕ−2,1(p, q) = (p1/2 − p−1/2)2
∏
m≥1

(1− pqm)2(1− p−1qm)2

(1− qm)4
.
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For the stable sheaves on fibers of π of rank 1 we get∑
n≥0

DT(1, 0,−n)qn = −24
η(q4)2

η(q2)η(q)6

For example, the equality DT(1, 0, 0) = −24 computes minus the topological Euler number

of the associated Jacobian fibration.

1.1. Acknowledgements. This note was inspired by a talk by Jim Bryan on ”The ge-

ometry and arithmetic of banana nano-manifolds” at the workshop ”Higher structures in

Enumerative Geometry” at IHP Paris, July 2023. I thank Jim for discussions.

2. Proof of Theorem 1.2

The idea of the proof is to apply Toda’s wall-crossing argument of [7]. This works perfectly

for the first two wall-crossings but fails in the last step. In any case, one obtains the following

structural result: Define the generating series of DT invariants

DTπ(p, t) =
∑

β∈H2(X,Z)π

∑
n∈Z

DTn,β(−p)ntβ.

Proposition 2.1. There exists a power series DTrest(t) (depending only on t) such that

DTπ(X) =
∏
r≥0
β≥0
n>0

r=0 if β=0

exp(−nDT(r, β, n)pntβ)
∏
r>0
β>0
n>0

exp(−nDT(r, β, n)p−ntβ)DTrest(t)

Proof. The term r = β = 0 and n > 0 is simply the DT/PT wall-crossing. Next we apply

the wall-crossing between PT invariants and the L-invariants of Toda, see [7, Eqn (13)],

which accounts for the r = 0 terms. Then we apply the wall-crossing formula in the category

Aω ⊂ D according to the notation of [7, Step 2 in 1.4]: This yields the remaining terms.

The semistable sheaves after this wall-crossing must have vanishing ch3, so the generating

series of the invariants only depend on t. This completes the proof. Note that there is a final

wall-crossing step in [7] which is done in the category Aω(1/2): This can not be done here

since it involves infinitely many walls. The issue is that for K3 surfaces DT(r, 0, 0) (where

we use the Chern character) becomes zero for r � 0 while in our case it does not. �

Taking log and using (1.2) this can be rewritten as

logDTπ(X) =
∑
k≥1

1

k
f0(pk) +

∑
β>0

∑
k≥1

1

k
tkβfβ(pk) + (series in t only)

where

f0(p) =
∑
n≥1

−ndt(0, 0, n)pn

and for β > 0 we let

fβ(p) =
∑
n≥1

−ndt(0, β, n)pn +
∑

r>0,n>0

−ndt(r, β, n)(pn + p−n).

On the other hand, taking the log of Theorem 1.1 we get

logDTπ(X) =
∑
β≥0

∑
k≥1

1

k
tkβ

∑
n∈Z

n>0 if β=0

12c(||β||, n)pkn.
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One has the basic identity

∑
d,n

c(d, n)qdpn = −f(q)

 p

(1− p)2
+
∑
k,n≥1

n(pn + p−n)q4kn −
∑
m≥1

∑
d|m

m/d odd

dqm


where

f(q) =
η(τ)2

η(4τ)6η(2τ)
=

1

q
− 2 + . . . .

Comparing we find:∑
n≥1

−ndt(0, 0, n)pn = 12
∑
n>0

c(0, n)pn = 24
p

(1− p)2

so dt(0, 0, n) = −24. For β > 0 we obtain modulo the p0-term:∑
n≥1

−ndt(0, β, n)pn +
∑

r>0,n>0

−ndt(r, β, n)(pn + p−n)

= Coefficientq||β||

−f(q)

 p

(1− p)2
+
∑
k,n≥1

n(pn + p−n)q4kn

+ (constant)

Using that dt(0, β, n) = dt(0, β, n+ gcd(β)) we get

dt(0, β, n) = dt(0, β, 1) = Coefficientq||β||(f(q))

and for r > 0, n 6= 0 and β > 0

dt(r, β, n) = a(||β|| − 4rn).

This proves the result for r = 0 fully, and for r > 0 if β > 0 and n 6= 0.

Now by the same argument as in [7] it follows that DT(r, β, n) is independent of the

polarization. This implies that the DT invariant is invariant under tensoring the sheaves by

a line bundles, that is: dt(r, β, n) = dt(r, β + rγ, n + β · γ + 1
2rγ

2) for all γ ∈ H2(X,Z)π.

Hence if r > 0 we can compute dt(r, β, n) by assuming β > 0 and n > 0. �
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