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Abstract

We conjecture that the relative Gromov—Witten potentials of ellip-
tic fibrations are (cycle-valued) lattice quasi-Jacobi forms and satisfy a
holomorphic anomaly equation. We prove the conjecture for the rational
elliptic surface in all genera and curve classes numerically. The generating
series are quasi-Jacobi forms for the lattice Fs. We also show the com-
patibility of the conjecture with the degeneration formula. As Corollary
we deduce that the Gromov—Witten potentials of the Schoen Calabi—Yau
threefold (relative to P') are Es x Fs quasi-bi-Jacobi forms and satisfy
a holomorphic anomaly equation. This yields a partial verification of
the BCOV holomorphic anomaly equation for Calabi—Yau threefolds. For
abelian surfaces the holomorphic anomaly equation is proven numerically
in primitive classes. The theory of lattice quasi-Jacobi forms is reviewed.

In the Appendix the conjectural holomorphic anomaly equation is ex-
pressed as a matrix action on the space of (generalized) cohomological
field theories. The compatibility of the matrix action with the Jacobi Lie
algebra is proven. Holomorphic anomaly equations for K3 fibrations are
discussed in an example.
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0 Introduction

0.1 Holomorphic anomaly equations

Gromov—Witten invariants of a non-singular compact Calabi—Yau threefold X
are defined by the integrals

oo [
[Mg(X,B)]vir

where M ,(X, 3) is the moduli space of stable maps from connected genus g
curves to X of degree B € Hy(X,Z), and [ — "' is its virtual fundamental class.
Mirror symmetry [2,|3/14] makes the following predictions about the genus g

potentials
Fy(q) = Z Ng”@qﬁ.
B

(i) There exists a finitely generated subring of quasi-modular objects
R C Q[[¢"]]

(depending on X) which contains all F4(q).

(ii) The series F4(q) satisfy holomorphic anomaly equations, i.e. recursive
formulas for the derivative of the modular completion of F, with respect
to the non-holomorphic variablesﬂ

Here, the precise modular interpretation of F,(¢) is part of the problem and
not well understood in general. Mathematically, the predictions (i, ii) are not
known yet for any (compact) Calabi-Yau threefoldﬂ

0.2 The Schoen Calabi—Yau threefold

A rational elliptic surface R — P is the successive blowup of P? along the base
points of a pencil of cubics containing a smooth member. Its second cohomology
group admits the splitting

1
Hz(Ra Z) = SpanZ(Bv F) @ E8(71)
where B, F' are the classes of a fixed section and a fiber respectively. Let also
1
W =B+ §F

Let R, Ry be rational elliptic surfaces with disjoint sets of basepoints of
singular fibers. The Schoen Calabi—Yau threefold [40| is the fiber product

X:R1 Xleg.

I In many cases R can be described explicitly by generators and relations, and (ii) is
equivalent to formulas for the formal derivative of F4 with respect to distinguished generators
of the ring.

2 The (non-compact) local P? case was recently established in [28].



We have the commutative diagram of fibrations
X
RN

Ry w Rs (1)

Nl

P!
where 7; are the elliptic fibrations induced by p; : R; — P, Let
Wi, F, € H*(R;,Q), E{’(~1) C H*(R;,Z)
denote the classes W, F' and the Ejg-lattice on R; respectively. We have
HA(X,Q) = (D) & ((niWa) & n{ B (1)) @ ((msWh) & m3BLY (-1)q)

where we let (-) denote the Q-linear span and D is the class of a fiber of .
For all (g, k) ¢ {(0,0),(1,0)} deﬁneﬂthe w-relative Gromov—Witten potential

Fok(21,22,q1,q2) = Z Ng,,Bqlwl'quVTﬁe(Zl - Be(z2 - B) (2)
T B=k[P']

where the sum is over all curve classes 3 € Ho(X,Z) of degree k over P!, we
have suppressed pullbacks by 7;, we write e(z) = exp(2wiz) for all z € C, and

Z; € Eél)(fl) ® C

is the (formal) coordinate on the Ejg lattice of R;.
A (weak) Eg-Jacobi form is a holomorphic function of variables

g=e"" rcH and ze€E;®C

which is semi-invariant under the action of the Jacobi group, invariant under
the Weyl group of Eg and satisfies a growth condition at the cusp; we refer to
Section [I] for an introduction to Jacobi forms. The ring of weak Fg-Jacobi forms
Jacg, carries a bigrading by weight ¢ € Z and index m € Z>,

Jacg, = @JacES,g,m.
Zm

Recall the second Eisenstein series

Ca(q) = —i + Z qu”.

n>1 d|n

By assigning C5 index 0 and weight 2 we have the bigraded extension

j;EEg = JacE8 [Cg} = @EEEg,E,m- (3)
£,m

3 The cases (g, k) € {(0,0),(1,0)} are excluded since Ng ¢ is not defined for g € {0, 1}.



The ring in the variables ¢ = ¢; and z; € Eéi) is denoted by 3522’;’“)

Recall also the modular discriminant

Alg)=q [T =gm?*.

m>1
We prove the following basic quasi-modularity result.
Theorem 1. Every relative potential Fy ) is a Eg X Eg bi-quasi-Jacobi form.:

N(Ql,zl) 1 N(qz’z2)
Fox(21,22,q1,02) € WJaCES,Z,k ®WJacEg,e,k

where { = 2g — 2 + 6k.

The appearance of Eg x Fg bi-quasi-Jacobi forms is in perfect agreement
with predictions made using mirror symmetry [15.(16}37].

The elements in Jacg, are Jacobi forms and therefore modular objects. The
only source of non-modularity in Jac Es and hence in F ; arises from the strictly
quasi-modular series C2(q). We state a holomorphic anomaly equation which
determines the dependence on Cy explicitly.

Identify the lattice EE(;) with the pair (Z%, Qp,) where Qg, is the (positive
definite) Cartan matrix of Es, see Section [[.5.4] For j € {1,2} consider the

differentiation operators with respect to ¢; and z; = (2;,1,...,2;3):
1 d 4 1 d
% omidry % dg;” " 2midzj,

Theorem 2. Every Fg i, satisfies the holomorphic anomaly equation

8
d L
ACalg) o+ = 2kDq, — ”zzjl (QBy); Dari Doy +24kCo(qr) | ok
8
+ Z 2k1F91:k1 "D, Fga ke — Z (QE;L)Z] DZl.i(th,kl) ) Dzl,j(F927k2)
9=9g1+g2 4,j=1

k=k1+k2

Since X is symmetric in Ry, Ry up to a deformation, the potentials F ;, are
symmetric under interchanging (z;, ¢;):

Fox(21,22,q1,q2) = Fyr(22,21,92,q1).

Hence Theorem [2| determines also the dependence of F, 5 on Ca(¢1).

Theorems |1| and [2] show quasi-modularity and the holomorphic anomaly
equation for the Gromov-Witten potentials of X relative to P'. This provides a
partial verification of the absolute case (i,ii). It also leads to modular properties
when the Gromov—Witten potentials are summed over the genus as follows.
Consider the topological string partition function (i.e. the generating series of
disconnected Gromov—Witten invariants) of the Schoen geometry

Z(tv u,21,22,q1, QQ) = exp Z Z Ng,ﬁu2972tD.Bq¥Vl.ﬁqy2.ﬁ6(z1 : /B)e(z2 : 5)
g>0p3>0



Under a variable change, Z is the generating series of Donaldson—Thomas /
Pandharipande-Thomas invariants of the threefold X [36]. For any curve class
a € Hy(Ry,7Z) of some degree k over the base P! consider the coefficient

Zo(u,22,q2) = Z(t,u7Z1,Z2,(J1,%)]tkqwl_%(zm).
We write (z,q) for (z2,¢2), and work under the variable change v = 27z and
q = e*™™. We then have the following.

Corollary 1. Under the variable change u = 2wz and q¢ = e*™" the series
Z,(z,2,7) satisfies the modular transformation law of Jacobi forms of weight
—6 and index (3(o— c1(R1), ) & £Qp,, that is for all v = (¢ 2) € SLo(Z)

7 z Z at +b
“Ner+d er+d er+d

= " er ) (2(CTC+ d)

{kZTQESZ + Z2<Oé —c1(Ry), a>}) Z,(2,2,7)

where () € {£1} is determined by Az (y7) = &(7) (et + d)S Az (7).

By Theorem [1| the series Z,, also satisfies the elliptic transformation law of
Jacobi forms in the variable z. The elliptic transformation law in the genus
variable u is conjectured by Huang—Katz—Klemm [17] and corresponds to the
expected symmetry of Donaldson—-Thomas invariants under the Fourier—Mukai
transforms by the Poincaré sheaf of ma, see [34]. Hence conjecturally we find
that Z, is a meromorphic Jacobi form (of weight and index as in Corollary .

We end our discussion with two concrete examples. Expend the partition
function Z by the degree over the base P*:

o
Z(taua 71,73, (Z1»Q2) = Z Zk(U,ZhZQ, Q17Q2)tk-
k=0

By a basic degeneration argument in degree 0 we have
1
A(Ql)%A(QQ)% .

In degree 1 the Igusa cusp form conjecture [33, Thm.1] and an analysis of the
sections of 7 : X — P! yields

Zo =

7 OR, (21, 91)O 5, (22, ¢2)
1= n
XlO(ezuvqlan)

where 19 is the Igusa cusp form, a Siegel modular form, defined by

2
X0 q,q) =paga [ (1—phgitggr) ther)

(k,dy,d2)>0

(with ¢(n) being coefficients of a certain I'g(4)-modular form, see [33, Sec.0.2]),
and .
O, (z,7) = Z q%’y @rsTe (ZTQESV) )
YEZ8
is the Riemann theta function of the Fg-lattice. The general relationship of Zj,
to Siegel modular forms for k > 1 is yet to be found.



0.3 Beyond Calabi—Yau threefolds and the proof

Recently it became clear that we should expect properties (i, ii) not only for
Calabi—Yau threefolds but also for varieties X (of arbitrary dimension) which
are Calabi—Yau relative to a base B, i.e. those which admit a fibration

m: X —> B

whose generic fiber has trivial canonical class. The potential Fy(q) is replaced
here by a m-relative Gromov—Witten potential which takes values in cycles on
M, (B, k), the moduli space of stable maps to the base. In this paper we
conjecture and develop such a theory for elliptic fibrations with section. Our
main theoretical result is a conjectural link between the Gromov—-Witten theory
of elliptic fibrations and the theory of lattice quasi-Jacobi forms. This framework
allows us to conjecture a holomorphic anomaly equationﬂ

The elliptic curve (or more generally, trivial elliptic fibrations) is the simplest
case of our conjecture and was proven in [33]. In this paper we prove the
following new cases (see Section :

(a) The P!-relative Gromov—Witten potentials of the rational elliptic surface
are Fg-quasi-Jacobi forms numericall

(b) The holomorphic anomaly equation holds for the rational elliptic surface
numerically.

In particular, (a) solves the complete descendent Gromov—Witten theory of the
rational elliptic surface in terms of Eg-quasi-Jacobi forms. We also show:

(¢) The quasi-Jacobi form property and the holomorphic anomaly equation
are compatible with the degeneration formula (Section [£.6)).

These results directly lead to a proof of Theorem [I] and [2] as follows. The
Schoen Calabi-Yau X admits a degeneration

X ~ (R1 X EQ) UE1><E2 (E1 X Rg),

where E; C R; are smooth elliptic fibers. By the degeneration formula [27] we
are reduced to studying the case R; x E;. By the product formula [25] the claim
then follows from the holomorphic anomaly equation for the rational elliptic
surface and the elliptic curve [33].

For completeness we also prove the following case:

(d) The holomorphic anomaly equation holds for the reduced Gromov-Witten
theory of the abelian surface in primitive classes numerically.

An overview of the state of the art on holomorphic anomaly equations and the
results of the paper is given in Table

4See Section [2| for details on the conjectures.
5i.e. after specialization to Q-valued Gromov-Witten invariants



’ dim‘

Geometry

‘ Modularity

‘ HAE ‘ Comments

1 Elliptic curves SLa(Z)-quasimod. Yes | cycle-valued [33]
Elliptic  orbifold | I'(n)-quasimod. Yes | cycle-valued  [32]
Pls (except case (2%))
K3 surfaces SLs(Z)-quasimod. Yes | numerically, primi-

2 tive only [31133]
Abelian surfaces SLo(Z)-quasimod. Yes | numerically, primi-

tive only [5]

Rational elliptic | Eg-quasi-Jacobi Yes | numerically, rela-
surface forms tive P!
Local P? Explicit generators | Yes | cycle-valued [28]

3 Formal Quintic Explicit generators Yes | cycle-valued [2§]
Schoen CY3 Eg x Eg bi-quasi- | Yes | numerically, rela-

Jacobi forms tive P!

Table 1: List of geometries for which modularity and holomorphic anomaly
equations (HAE) are known. The bold entries are proven in this paper. Cycle-
valued = as Gromov—Witten classes on Hg,n; numerically = as numerical
Gromov—Witten invariants; primitive = for primitive curve classes only; rel-
ative B = relative to the base B of a Calabi—Yau fibration.

0.4 Overview of the paper

In Section[I]we review the theory of lattice quasi-Jacobi forms. We introduce the
derivations induced by the non-holomorphic completions, prove some structure
results, and discuss examples. In Section [2] we present the main conjectures
of the paper. We conjecture that the m-relative Gromov-Witten theory of an
elliptic fibration is expressed by quasi-Jacobi forms and satisfies a holomorphic
anomaly equation with respect to the modular parameter. In Section [3| we
discuss implications of the conjectures of Section In particular, we deduce
the weight of the quasi-Jacobi form, present a holomorphic anomaly equation
with respect to the elliptic parameter, and prove that under good conditions
the Gromov—Witten potentials satisfy the elliptic transformation law of Jacobi
forms. The relationship to higher level quasi-modular forms is discussed. In
Section [] we extend the conjectures of Section [2] to the Gromov—Witten theory
of X relative to a divisor D, when both admit compatible elliptic fibrations. We
show that the conjectural holomorphic anomaly equation is compatible with the
degeneration formula. In Section [5| we study the rational elliptic surface. We
show that the conjecture holds in all degrees and genera after specializing to
numerical Gromov—Witten invariants; in particular we show that the Gromov—
Witten potentials are Eg quasi-Jacobi forms (Section . The idea of the
proof is to adapt a calculation scheme of Maulik-Pandharipande-Thomas [31]
and show every step preserves the conjectured properties. In Section [6] we
prove Theorems [I] and [2] and Corollary [l In Section [7] we numerically prove
a holomorphic anomaly equation for the reduced Gromov—Witten theory of
abelian surfaces in primitive classes.

In Appendix[A]we introduce weak B-valued field theories and define a matrix
action on the space of these theories. This generalizes the Givental R-matrix
action on cohomological field theories. We express the conjectural holomorphic



anomaly equation as a matrix action and discuss the compatibility with the
Jacobi Lie algebra. In Appendix [B| we discuss relative holomorphic anomaly
equations for K3 fibrations in an example.

0.5 Conventions

We always work with integral cohomology modulo torsion, in particular H* (X, Z)
will stand for singular cohomology of X modulo torsion. On smooth connected
projective varieties we identify cohomology with homology classes via Poincaré
duality. A curve class is the homology class of a (possibly empty) algebraic
curve. Given z € C we write e(x) = €2™%. Results conditional on conjectures
are denoted by Lemma*, Proposition*, etc.
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Forschungsinstitut fiir Mathematik for support. The second author was sup-
ported by a fellowship from the Clay Mathematics Institute.

1 Lattice Jacobi forms

1.1 Overview

In Section [1.2] we briefly recall quasi-modular forms following Kaneko-Zagier
[20] and Bloch-Okounkov [4]. Subsequently we give a modest introduction to
lattice quasi-Jacobi forms. Lattice Jacobi forms were defined in [45] and an
introduction can be found in [43]. A definition of quasi-Jacobi forms of rank 1
appeared in [29], and for higher rank can be found in [24].

1.2 Modular forms
1.2.1 Definition

Let H = {r € C|Im(7) > 0} be the upper half plane and set ¢ = ™7, A
modular form of weight k is a holomorphic function f(7) on H satisfying

() =+ s (1)

ct+d

for all (¢ s) € SLy(Z) and admitting a Fourier expansion in |¢| < 1 of the form

f(r) = Z anq", an € C. (5)
n=0
An almost holomorphic function is a function

F(r)=Y fi(T)i, y = Im(7)
=0



on H such that every f; has a Fourier expansion in |¢| < 1 of the form .

An almost holomorphic modular form of weight k is an almost holomorphic
function which satisfies the transformation law .

A quasi-modular form of weight k is a function f(7) for which there exists
an almost holomorphic modular form }_, fiy~? of weight k with fo = f.

We let AHM, (resp. QMod,) be the ring of almost holomorphic modular
forms (resp. quasi-modular forms) graded by weight. The ’constant term’ map

AHM — QMod, > fiy™" + fo (6)
is well-defined and an isomorphism [4}/20].

1.2.2 Differential operators

The non-holomorphic variable
1

v=—
8Ty

transforms under the action of (¢ Z) € SLy(Z) on H as

(7) = o rarvn + S22 g

We consider 7 and v here as independent variables and define operators

1 d d d

= 5 dr qdj}’ Du=E~
Since 7 and v are independent we have
D,v=0, D,7=0.
A direct calculation using @ shows the ring AHM, admits the derivations
D, = (D, — 2kv +2°D,)): AHM}, — AHM

.

D":dy'

AHMk — AHMk_Q.

Since ﬁq acts as D, on the constant term in y we conclude that D, preserves
quasi-modular forms:

D, : QMod;, — QMody, 5.
Similarly, define the anomaly operator
Tq . QMOdk — QMOdk_Q

to be the map which acts by D, under the constant term isomorphism @ The
following diagrams therefore commute:

QMod, —— AHM; QMod,, —— AHM,
b e [
QMod;» —— AHM} o, QMod, 5, —— AHM;_,.



The commutator relation [Dl,, ﬁq] |amm, = —2k - idamw, yields

[Ty, D = —2k - idQmod, -

Q] |QMod,c

The operators T, allows us to describe the modular transformation of quasi-
modular forms.

Lemma 1. For any f(7) € QMod;, we have

at +b 1 c\*¢ _
Hora) 2o (o) (v T

£=0

Proof. Let F(1) = >_1" fi(T)v* be the almost holomorphic modular form with

associated quasi-modular form f(7) = fo(). Let A = (¢ 3), j =cr+d and
a = 1=. We claim

fo(dr) = 3 ey (1) nt)

r

l=r
for all 7. The left-hand side is uniquely determined from F(Ar) = j*F(7) by
solving recursively from the highest v coefficients on. One checks the given
equation is compatible with this constraint. O
1.2.3 Eisenstein Series
Let By be the Bernoulli numbers. The Eisenstein series

B 2 .
Oulr) = T 4

n>1 d|n

are modular forms of weight k for every even k > 2. In case k = 2 we have

ar +b\ 9 cler +d)
Cy (CT+d> = (eT +d)°Cs(7) g

for all (¢ ) € SL2(Z). Hence

ab
cd
Co(7) = Co(r,v) = Co(1) + v (8)

is almost holomorphic and Cs is quasi-modular (of weight 2).
It is well-known that

QMod = Q[Cs,C4,Cg], AHM = Q[Cs, C4, Cg] (9)

and the inverse to the constant term map @ is
QMod — AHM, f(C5,C4, Cg) = [ = f(Ca, Cu, C).

In particular,
4
dCy’
Remark 1. Once the structure result @ is known we can immediately work with
d%éz and we do not need to talk about transformation laws. However, below in
the context of quasi-Jacobi forms we do not have such strong results at hands
and we will use an abstract definition of T, instead (though see Section m

- d
for a version of 4&-).

T, =

10



1.3 Jacobi forms
1.3.1 Definition

Consider variables z = (z1,...,2,) € C*, let k € Z, and let L be a rational
n X n-matrix such that 2L is integral and has even diagonalﬁ

A weak Jacobi form of weight k and index L is a holomorphic function ¢(z, 7)
on C" x H satisfying

z  ar+0b\ v [ 2Lz
¢(M7M> = (et +d)%e <CT+d> o(z,7)

¢ (z+ AT+ p,7) =e(=ANLAT — 2)'Lz) ¢(z,7)

(10)

for all (¢ 2) € SLy(Z) and A, p € Z™ and admitting a Fourier expansion of the

form
o(z,7) = Z Z c(n,r)g"¢" (11)

n>0rezn

in |¢| < 1; here we used the notation

("=e(z-r)=¢e <Zzzrl> :HQ”

with ¢; = e(z;).

We will call the first equation in the modular, and the second equation
in the elliptic transformation law of Jacobi forms.

By definition weak Jacobi forms are allowed to have poles at cusps. If the
index L is positive definite then a (holomorphic) Jacobi form is a weak Jacobi
form which is holomorphic at cusps, or equivalently, satisfies ¢(n,r) = 0 unless
r*L=1r < 4n. We will not use this stronger notion and all the Jacobi forms are
considered here to be weak.

1.3.2 Quasi-Jacobi forms

For every i consider the real analytic function

and define

We have the transformations
z atr+b
«
ct+d er+d
a(z+ A+ p,7)=alz,7)+ A

) = (cr + d)alz,7) — cz

for all (¢ s) € SLo(Z) and A, € Z™.

6This is the weakest condition on L for which the second equation in (10) can be nontrivially
satisfied. Indeed, if the condition is violated then AT L)X is not integral in general and hence
the g-expansion of ¢ is fractional which contradicts (11]).

11



An almost holomorphic function on C"™ x H is a function

o) = > pimnvied, o =afad

120 j=(j1,---,Jn) E(Z>0)"

such that each of the finitely many non-zero ¢; ;(z, 7) is holomorphic and admits
a Fourier expansion of the form in the region |gq| < 1.

An almost holomorphic weak Jacobi form of weight k and index L is an
almost holomorphic function ®(z, 7) which satisfies the transformation law
of weak Jacobi forms of weight k and index L.

A quasi-Jacobi form of weight k and index L is a function ¢(z,7) on C* x H
such that there exists an almost holomorphic weak Jacobi form Zz j ®ij viad of
weight k and index L with ¢g 0 = ¢.

We let AHJy 1 (resp. QJacy, 1) be the vector space of almost holomorphic
weak (resp. quasi-) Jacobi forms of weight & and index L. The vector space of
index L quasi-Jacobi forms is denoted by

QJacy, = @ QJacy, .

k€EZ

Multiplication of functions endows the direct sum

QJac = @ QJacy,
L

where L runs over all rational n x n-matrices such that 2L is integral and has
even diagonals, with a commutative ring structure. We call QJac the algebra of
quasi-Jacobi forms on n variables.

Lemma 2. The constant term map
AHJy = Qlacy 1, Y dijv'ed = oo
(2]
s well-defined and an isomorphism.

Proof. Parallel to the rank 1 case in [29). O

1.3.3 Differential operators

Consider 7,v, z;,a; as independent variables and recall the Fourier variables
g = e®>™7 and ¢; = e>™"#i. Define the differential operators

1 d d d
D = —— = q— DV:—
17 omidr  Ydg dv
1 d d d

D= —— = (G Dy, = —.
S omidz Czdg % oy

A direct check using the transformation laws shows

Dl, : AHJkyL — AHJ}C72_’L, Dai : AHJ;@L — AHJ}C,LL.

12



Define anomaly operators T, and T,, by the commutative diagrams

QJaCk7L <T AHJk QJaCk7L <T AHJk
I Jp- g 2
QJaCk72’L T AHJk727L QJaCkil’L T AHkaLL

where the horizontal maps are the ’constant term’ maps.
Similarly, we have operator{]

D, = (Dq —2kv+ 202D, + Y oD, + aTLa> cAHJg L — AHJp 01
i=1
D¢, = (D¢, + 20T Le; — 2vDy,) : AHJ, 1, — AHJ41 1

where e; = (0;;); is the i-th standard basis vector in C”. Since ﬁq,ﬁci act
as Dy and D¢, on the constant term, we find that Dy, D¢, act on quasi-Jacobi
forms:

Dy : QJacy, , — QJacy o 1, De, : Qlacy , — QJacy g 1.

For A = (A1,...,A,) € Z" we will write

Dy = ixipgi, Ty = En:)\iTai.
i=1 i=1

The commutation relations of the above operators reacﬁ

[Ty, Dy = —2k -idqJac, , [Tx,Dy] = Dy

} | Jac
QJacy, (12)

[Ta, =2(A"Ly) - idqyac, , [Ty, Da] = —2T»

DF“} |QJack’L

and
[Dg; DAl = [Dx, Dy) = [Tg, Ta] = [Tx, T,] = 0
for all A\, p € Z"™.

Lemma 3. Let ¢ € QJac;. Then

Pz + AT+ p, 7) = e (—=A'LAT — 2" L2) Z (_1,1)2 Lo(z,7)
>0

=e (=A'LA\ = 2X"Lz) exp (= T») ¢(2, 7)

Proof. Since the claimed formula is compatible with addition on Z", we may
assume A = e¢;. Let ® be the non-holomorphic completion of ¢. We expand

b = qujaf

=0

"See [7}, Sec.2] for a Lie algebra presentation of these operators.

8The operators Tq, T, Dgq, Dy as well as the weight and index grading operators define an
action of the Lie algebra of the semi-direct product of SLa(C) with a Heisenberg group on the
space QJacy,, see |45, Sec.1], |7, Sec.2] and also |8, Thm.1.4].

13



where ¢; depends on all variables except a; (these variables are invariant under
z +— z+e¢;7). Then a direct check shows that the claimed formula is determined
by, and compatible with the relation

(2 + ¢;7) = e (—elLe;T — 2¢;Lz) ®(2). O
Lemma 4. Let ¢ € QJacy, ; such that Tx¢ =0 for all A € Z". Then

ar+b\  (cz'Lz 1 ¢ \* e Ot
¢(CT+d> _e(CT+d>Z€!(_4m') (o7 +d)" Ty 6(r).

>0

Proof. Since Ty¢ = 0 for all A, the non-holomorphic completion of ¢ is of the
form ®(z,7) = 3,5, ¢i(z, 7)v' where ¢; are holomorphic and in NyKer(T)).
The same proof as Lemma [I] applies now. O

ope d
1.3.4 Rewriting T, as Ton
Define the vector space of quasi-Jacobi forms which are annihilated by T,:
QJacy, = Ker (T, : QJac, — QJacy).

We have the following structure result whose proof is essentially identical to [4,
Prop.3.5] and which we therefore omit.

Lemma 5. QJac; = QJac} ®@c C[Cy].

By the Lemma every quasi-Jacobi form can be uniquely written as a polyno-
mial in Cy. In particular, the formal derivative —4- is well-defined. Comparing

ac'
with we conclude that :

d
T, = icy 1 QJac, — QJacy.

1.3.5 Specialization to quasi-modular forms

By setting z = 0 the quasi-Jacobi forms of weight k and index L specialize to
weight k& quasi-modular forms:

AHJk’L — AHNI]€7 F(Z,T) — F(O,’T)
QJaCk,L - QMOdk7 f(sz) = f(07T)

The specialization maps commute with the operators T,.

1.4 Theta decomposition and periods

We discuss theta decompositions of quasi-Jacobi forms if the index L is positive
definite. For this we will need to work with several more general notions of
modular forms than what we have defined above (e.g. for congruence subgroups,
of half-integral weight, or vector-valued). Since we do not need the results of
this section for the main arguments of the paper we will not introduce these
notions here and instead refer to 39,143 ]

9 The results of Section are essential only for Section which is not used later on.
Proposition [2| also appears in Section but in this case the lattice 2L is unimodular and
hence we can use Proposition @ to re-prove Proposition El without additional theory.
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Assume L is positive definite, and for every x € Z"/2LZ" define the index
L theta function

1
Vpz(2,7) = g e (T47”TL_1’I“ + rTz> .
rez”
r=x mod 2LZ"

Let Mp,(Z) be the metaplectic double cover of SLa(Z) and consider the ring

Jacy,, = ﬂ Ker (Ty : QJac;, ;, — QJac,,, 1) -
rezn

Proposition 1. Assume L is positive definite and let f € QJacy, ,,.

(i) There exist (finitely many) unique quasi-Jacobi forms fq € EE,C_ZZ, L
where d = (di, . ..,d,) € Z%, such that

flz.r)=> DD fa(z,7).
d

(i) Fvery fq(z,7) above can be expanded as

fd(z77—) = Z hk,z(T)'&L,:v(ZaT)

z€Zn J2LI"

where (hi.g)s 1S a vector-valued weakly-holomorphic quasi-modular form
for the dual of the Weil representation of Mpy(Z) on Z™/2L7Z".

The quasi-modular forms (hg ), of (ii) are weakly holomorphic (i.e. have
poles at cusps) since we define our quasi-Jacobi forms as almost-holomorphic
versions of weak-Jacobi forms. The quasi-Jacobi forms for which (hy ), are
holomorphic correspond to holomorphic Jacobi forms (which require a stronger
vanishing condition on their Fourier coefficients).

Proof of Proposition[l (i) Let F be the completion of f and consider the ex-
pansion

F= Z fi(z,m,v)al.

J=(F1,---sJn)
Let j be a maximal index, i.e. fjie, = 0 for every i where e; is the standard
basis. Then Ty f; = 0 for every A and hence f; € Jac,_|; - Replacing f by

f-= (D%L—lel) (D%L—len)jn fj

the claim follows by induction.
(ii) The existence of hy, ,(7) follows from the elliptic transformation law. For
the modularity see |43l Sec.4]. O

The level of L is the smallest positive integer ¢ such that %ZLil has integral
entries and even diagonal entries. Let

['(€)" € Mp,(Z)
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be the lift of the congruence subgroup I'(¢) to Mpy(Z) defined in |43, Sec.2].
Given a function f =3, . ¢ (7)¢" with (" = e(2"r), let

[flex = ea(7)
denote the coefficient of ¢*.
Proposition 2. Assume L is positive definite of level £ and let f € QJacy, .

(i) For every A € Z™, the coefficient

[flx:= Q%ATLilA[f]O

is a weakly-holomorphic quasi-modular form for T'(€)* of weight <k — %.
If X =0 then [ f]x is homogeneous of weight k — %

(i) We have

T = (Tl + 5 30 (17, [T Tad ]y

In (ii) of Proposition 2| we used an extension of the operator T, to quasi-
modular forms for congruence subgroups. The existence of this operator follows
parallel to Section [1.2] from the arguments of [20].

The (*-coefficients of Jacobi forms are sometimes referred to as periods. A
quasi-modularity result for the periods of certain multivariable elliptic functions
(certain meromorphic Jacobi forms of index L = 0) has been obtained in [33]
App.A]. The formula in [33] Thm.7] is similar to the above but requires a much
more delicate argument.

Proof of Proposition[2 (i) The Weil representation restricts to the trivial rep-
resentation on I'(¢), see |39, Prop.4.3]. Hence the hy, , are I'(¢)*-quasi-modular
by Proposition [If(ii).

(ii) For the second part we consider the expansion

fer)= Y > ha(r)DE - DE 9L (2, 7) (13)
x€Zn/2LI" d
which follows from combining both parts of Proposition [I} Let

n

Ta = (L), Te. Te,-

a,b=1

By we have [Ty, D] = — [Ta, D,] for every A. Since ¥r, , is a Jacobi form
(for a congruence Subgrou@ we also have Ty » = TaV¥L , = 0. This implies

T D Dy, o (2,7) = =TaDE -+ D 4 (2, 7).

10We extend the operators Tg, Ty here to quasi-Jacobi forms for congruence subgroups.
The commutation relations are identical.
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Hence applying T, to yields

Tef = Z (Tq(hk,x)D?j "'D?:19L,3: - hk,mTADgll e D?:ﬂL,x>
x,d

= | Y Tylhka)DE - DI, | = Taf.
x,d

The claim follows by taking the coefficient of ¢*. O

Corollary 2. QJacy, ; is finite-dimensional for every weight k and positive
definite index L.

Proof. By Proposition |1| the space Ek, 1, is isomorphic to a space of meromor-
phic vector-valued quasi-modular forms of some fixed weight k for which the
order of poles at the cusps is bounded by a constant depending only on L. In
particular, it is finite dimensional and vanishes for k& < 0. The claim now follows
from the first part of Proposition O

1.5 Examples
1.5.1 Rank 0

If the lattice A has rank zero, a quasi-Jacobi form of weight k is a quasi-modular
form of the same weight.

1.5.2 Rank 1 lattice

The ring of quasi-Jacobi forms in the rank 1 case has been determined and
studied by Libgober in [29].

1.5.3 Half-unimodular index

Let @ be positive definite and unimodular of rank n. We describe the ring of
quasi-Jacobi forms of index L = %Q. The main example is the Riemann theta
function

Oq(z, 1) = Z q%WTQ“’e (zTny) , (14)

YEL™
which is a Jacobi form|E| of weight n/2 and index Q/2,
Oq(z,7) € Jacy 14-

The following structure result shows that this is essentially the only Jacobi
form that we need to consider in this index.

Proposition 3. Let Q be positive definite and unimodular. Then every f €
QJac,, @ can be uniquely written as a finite sum
' 2

f= > far)DE .- DiOg(z )
d=(dy,...,dn)

1 Since @ is unimodular the theta function satisfies the transformation laws for the full
modular group and not just a subgroup |45, Sec.3].
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where fq € QMody,_s~ 4, for every d. In particular, for every A € Z™ we have

_1,\T

q 4 Qil)\[f}(k EQMOdSk

Proof. Parallel to the proof of Proposition O

1.5.4 The FEjg lattice and Fg-Jacobi forms

Consider the Cartan matrix of the Eg lattice

2 -1 0 0 0 0 0 0
-1 2 -1 0 0 0 0 0

0 -1 2 -1 0 0 0 0

o o -1 2 -1 0 0 o0
Qo= o 0 -1 2 -1 0 -1
0 0 0 0 -1 2 -1 0

o 0 0 0 0 -1 2 0

0O 0 0 0 -1 0 0 2

We define a natural subspace of the space of Jacobi forms of index T Qg,.
A weak Eg-Jacobi form of weight k and index m is a weak Jacobi form ¢ of
weight & and index L = 5 Q g, which satisfies

¢(w(z)7 T) = ¢(z7 T)
for all w € W(Ejg), where W (Ejs) is the Weyl group of Es. We let
JacEs,k,m C Jack’%QEs

be the ring of weak FEg-Jacobi forms.

Practically the subspace of Eg-Jacobi forms is much smaller than the large
space of Jacobi forms of index T Qg;. The first example of an Fg-Jacobi form
is the theta function ©p, defined in . Further examples and a conjectural
structure result for the ring of weak FEg-Jacobi forms can be found in [3§].

2 Elliptic fibrations and conjectures

2.1 Elliptic fibrations

2.1.1 Definition

Let X and B be non-singular projective varieties and let
m: X —B

be an elliptic fibration, i.e. a flat morphism with fibers connected curves of
arithmetic genus 1. We always assume 7 satisfies the following propertieﬂ

(i) All fibers of 7 are integral.
(ii) There exists a section ¢ : B — X.
(iii) H?°(X,C) = H°(X,0%) =0.

12 After Conjecture [B| we discuss how these assumptions can be removed.
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2.1.2 Cohomology

Let By € H?(X) be the class of the section ¢, and let N, be the normal bundle
of 1. We define the divisor class

W =By — %W*Cl(NL).
Consider the endomorphisms of H*(X) defined by
Ti(a) = (m'ma) UW, T_(a) =7n"m(a UW),
for all « € H*(X). The maps T4 satisfy the relations
T2=T,, T2=T., T,T-=T-T;=0.
The cohomology of X therefore splits aﬂ
H*(X)=H: o H* ® H} (15)

where H} =Im(7%) and H} = Ker(T}) N Ker(7-).
We have the relation

(Ty(a), @) = (0, T_(a)), a0’ € HY(X)
where (, ) is the intersection pairing on H*(X). Therefore
(HY,HY)=(H" ,H*)=(HL,H})=0.
Consider the isomorphisms

H*(B) = H*, aw— 1" (a)
H*(B) = HY, a— () UW.

The pairing between HY and H* is determined by the compatibility
/ a~o/:/ () (7*(a/) - W)  for all o, € H*(B).
B X

2.1.3 The lattice A
Let F' € Hy(X,Z) be the class of a fiber of 7 and consider the Z-lattice
ZF @ 1. Hy(B,Z) C Hy(X,Z).

Its orthogonal complement in the dual space H?(X,Z) is the Z-lattice

1
A= (QF ® L*Hz(B,Z)) C HX(X,Z). (16)

13 The subspaces Hy,H_,H, are the +1,—1, 0-eigenspaces respectively of the endomor-
phism of H*(X) defined by

a— WU, m*m]a=WUr (o) — 7" me (WU ).
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Since QF @ 1. Hy(B,Z) generates Hy @ Ha _ over Q, we have
ACH?, A®Q=HI.

Let ki, ..., k, be an integral basiﬁ of Hy(B,Z) and let k¥ € H*(B,Z) be a
dual basis. The projection

pL: H*(X,Q) — H?

with respect to the splitting acts on a € H?(X) by

T

pila)=a—(a-F)By—Y ((a —(a- F)By) - L*ki)ﬂ'*kf.

i=1

and is therefore defined over Z. Hence the inclusion splits.

2.1.4 Variables
Consider a fixed integral basis of the free abelian group A,
bi,...,b, € AL

We will identify an element z = (z1,...,2,) € C" with the element Y . | 2;b;.
Hence we obtain the identification

C"~2A®C=H(X,0).

Given a class § € Hyo(X,Z), we write
(P =exp(z-B) = HC?"B (17)
i=1

where (; = e(z;) and - is the intersection pairing.

2.1.5 Pairings and intersection matrices

Every element k € Ho(B,Z) defines a symmetric (possibly degenerate) bilinear
form on HJ2_ by

(C%O/)kZ/Bm(an/)-k.

The restriction of (-, )k to A takes integral values.

Lemma 6. For every curve class k € Hy(B,Z) the quadratic form (-, )k is even
on A, that is (o, )k € 2Z for every a € A,

Proof. Since the pairing is linear in k it suffices to prove (-, )ks¢ and (-, )¢
are even for a suitable class ¢ € H(B,Z). Let C C B be a curve in class
k. We can assume C is reduced and irreducible (otherwise prove the claim for
each reduced irreducible component). By embedding B into a projective space

MRecall we always work modulo torsion as per Section
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and choosing suitable hyperplane sections we can ﬁncﬂ a curve D C B not
containing C and a deformation of C'U D to a curve D’, such that D, D’ are
smooth and Xp and Xp/ are smooth elliptic surfaces over D, D’ respectively;
here we let Xy, = 7~ 1(¥) for ¥ C B. Hence it suffices to show (-, -) is even if k
is represented by a smooth curve C' such that X¢ is smooth. Let o € A. Since
a|x. is of type (1,1) and orthogonal to the section and fiber class the claim
now follows from the adjunction formula, see e.g. |42, Thm.7.4]. O

The matrix of —(-,-)x with respect to the basis {b;} is denoted by

Qk S Mnxn(Z)

Hence for all v = (v1,...,v,) and v/ = (v],...,v}) in Q" we have

( Z Uibi y Z ’U;bz) . = 7UTQk1}’.
K3 K3
If k is a curve class, the matrix Qy has even diagonal entries.

2.2 Gromov—Witten classes and conjectures
2.2.1 Definition
Let 8 € Ho(X,Z) be a curve class, let k = 7.0 € Ha(B,Z) and let

Mgn(X,P)

be the moduli space of genus g stable maps to X in class 8 with n markings.
For all g, n, k such that|

k>0 or 29—2+n>0
the elliptic fibration 7 induces a morphism
7 My n(X,8) = My, (B,k).
Consider cohomology classes
Y,y € H*(X).

We define the mw-relative Gromov—Witten class

C () = 7o | [Mgn(X, )] [ evi(n) | € Ho(Myn(B,K)).
i=1

15 Assume C' C B C P?, and let Ky be the the kernel of H?(Opn (d)) — HO(Opn (d)|c) for
d > 0. For generic sections f1,..., fm € K4, m = dim B — 1 the intersection ¥ = Bn; V(f;)
is a curve which contains C. The key step is to show ¥ = C + D for a smooth curve D
which does not contain C; all other conditions follow from a usual Bertini argument. To show
that ¥ is of multiplicity 1 at C, let p € C be a point at which C' is smooth and consider the
projectivized normal bundle P of C inside B at p. The set of f1,..., fim which vanish at some
v € P simultaneously is a closed co-dimension m subset. Since dim(P) = m — 1, by choosing
fi generic we can guarantee the tangent spaces to X(f) and C are the same at p; hence the
multiplicity of C in ¥ is 1.

16 If k = 0 and 29 — 2 + n < 0 the moduli space M4, (B, k) is empty, but Mg (X, 8) for
some S > 0 with 7«8 = k may be non-empty. In this case no induced morphism exists.
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2.2.2 Quasi-Jacobi forms

Let k € Hy(B,Z) be a fixed class. Consider the generating series
C;:k(’)/lv e 7’Yn) = Z C;Tﬁ(’yh - ’,Yn)qWﬂCﬁ
7 B=k

where the sum is over all curve classes 8 € Ho(X,Z) with 7,8 = k. By definition,

Cri(1s--s7m) € Ho(Myn(B, k) © Qllg?, ¢*]).

Recall the space QJac;, of quasi-Jacobi forms of index L, and let
Alg)=q J[J(1-g™*
m>1

be the modular discriminant. The following is a refinement of [33, Conj.A].

Conjecture A. The series C;r’k(fh, ey Yn) 18 a cycle-valued quasi-Jacobi form

of index Qx/2:

” 1
Cg,k('}/l, ce v’yn) € H*(Mgvn(B5 k)) ® WQJ&CQk/2

where m = —L1ci(N,) - k.

2.2.3 Holomorphic anomaly equation

Recall the differential operator on QJac; induced by the non-holomorphic vari-
able v,

Tq:d

Since A(q) is a modular form, we have

T,A(g) = 0.

%2 1 QJacy, — QJacy.

We conjecture a holomorphic anomaly equation for the classes C§7k. The equa-
tion is exactly the same as in |33, Conj.B].
Consider the diagram

Mg (B, k) +—— Ma M 4—1n+2(B,k)

J/ levn+1 XeVnp42

B—2 .BxB

where A is the diagonal, M is the fiber product and ¢ is the gluing map along
the last two points. Similarly, for every splitting ¢ = g1 +g¢2, {1,...,n} = S1US;
and k = k; + ko consider

Mg-,n(B’ k) <j7 MA,k1,k2 — Mgl,s’ll_l{O} (B7 kl) X Mgz,SZU{O}(B7 k2)

| [

B A B x B

where Ma k, k, is the fiber product and j is the gluing map along the marked
points labeled by e.
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Conjecture B. On M, (B, k),

chg,k(’yla cee a’yn) = L*Alcgfl,k(’ylv <oy Ins 1, 1)
+ Z j*A! (C;rl,kl (7513 1) X C;rg,kg (752a 1))

9g=g1+g2
{1,...,n}=51US5>
k=k1 +k2

n
- 2ZC§,k(%, e Yim 1 T Y Vi 1s - -+ V) Wi
i=1

where ¢; € H?*(M ;.,(B,k)) is the cotangent line class at the i-th marking.

Since the moduli space of stable maps in negative genus is empty, the corre-
sponding terms in Conjecture |B| vanish. Further, the sum in the second term on
the right runs over all splittings for which the moduli spaces Mgi)‘ si1+1(B;ks)
are stable, or equivalently, for which the classes C;,ki (vs;,1) are defined. In
particular, if g; = 0 and k; = 0 we require |.S;| > 2.

By Section [I.3.5] quasi-Jacobi forms specialize to quasi-modular forms under
¢ =1, and the specialization map commutes with T,. Hence Conjectures |§| and
generalize and are compatible with [33, Conj.A and B].

We have always assumed here that the elliptic fibration has integral fibers,
a section, and h?9(X) = 0, see (i-iii) in Section We expect Conjectures
and [B] hold without these assumption if some modifications are made: It is
plausible (i) can be removed without any modifications. If we remove (ii) we
need to work with a multi-section of the fibration, which leads to quasi-Jacobi
forms which are modular with respect to I'(N) where N is the degree of a
multisection over the base. If (iii) is violated then the Gromov—Witten theory of
X mostly vanishes by a Noether—Lefschetz argument. Using instead a nontrivial
reduced Gromov—Witten theory (such as [23] for algebraic surfaces satisfying
h%0% > 0) forces then some basic modifications to the holomorphic anomaly
equation, see e.g. Section [7] for the case of the abelian surface.

3 Consequences of the conjectures

3.1 A weight refinement
Define a modified degree function deg() on H*(X) by the assignment
2 ify € Im(T,)
deg(y) =91 ify e Ker(T}) NKer(T-)
0 ifyeIm(T-)
The following is parallel to |33, Appendix B].

Lemma* 7. Assume Conjectures and@ hold. Then for any deg-homogeneous
classes ¥1,...,vn € H*(X) and k € Hy(B,Z) we have

- 1
Cox(11y--sm) € Ho(Mgn(B k) ® WQJaCe,Qk

where m = —1cy(N,) -k and £ =29 — 2+ 12m + Y, deg(v;).
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3.2 Disconnected Gromov—Witten classes

We reformulate the holomorphic anomaly equation of Conjecture [B] for discon-
nected Gromov—Witten classes. Let

M, (B, k)

be the moduli space of stable maps f : C — B from possibly disconnected curves
of genus g in class k, with the requirement that for every connected component
C' C C at least one of the following holds:

(i) flcs is non-constant, or
(ii) C’ has genus ¢’ and carries n’ markings with 2¢’ — 2 +n’ > 0.

Let M;’H(X,ﬁ) be the moduli space of stable maps f : C — X from possibly
disconnected curves of genus ¢ in class 3, with the requirement that for every
connected component C’ C C' at least one of the following holds:

(i) 7o f|er is non-constant, or
(ii) C’ has genus ¢’ and carries n’ markings with 2¢’ — 2 +n’ > 0.
For alﬂ g € Z and curve classes k the fibration 7 induces a map
— —e
m: M, (X,8) = M, (B, k).
Define the disconnected Gromov—Witten classes by
e ) —_ vir "
Cg,k (717 (RS 7771) = Z CﬁqW ,87(* <|:Mg,n(X7 ﬁ)i| Hevi (77,)) .
T B=k %

The right hand side is a series with coefficients in the homology of M;’R(B7 k).

Since the disconnected classes C; » can be expressed in terms of connected
classes C;, . and vice versa, Conjecture |E| is equivalent to the quasi-Jacobi prop-
erty of the disconnected theory:

e i 1
Cg,k (’ylv s 7771) € H*(Mg,n(B? k)) ® WQJ&CQK/Q

where m = —%cl (N,) - k. Similarly, Conjecture [Bfis equivalent to the following

disconnected version of the holomorphic anomaly equation:

Lemma* 8. Conjecture[B is equivalent to
TqC;r;k. (’71; c. 77n) = L*AIC;TL.Lk(’yh ey Yn ]_7 1)

n
=23 i Coe (Vs Vit T i Vit -5 V)
i=1

1"Here M;YH(B, k) is empty if and only if M;,R(X, B) is empty, so we do not need to exclude
any values of (g, k).
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3.3 Elliptic holomorphic anomaly equation
Recall the anomaly operator with respect to the elliptic parameter:
T)\ . QJaCk’L — QJaCkil’L, )\ S A

(recall we identify A with Z™ here). The anomaly equation of C4(...) with
respect to the operator Ty reads as follows.

Lemma* 9. Assume Conjectures[A] and [B hold. Then

n

TAC k() = D Co (s Yie 1, AV, Vig1s - V)

i=1
for any A € A, where A(\) : H*(X) — H*(X) is defined by
ANy =AU " (y) = m*m(AU7), ~€ H*(X).
Proof. Let A € A and recall from Section the commutation relation
[Tq, DAl = —2T,.

Let p: M ni1(B,k) = M, (B, k) be the map that forgets the last marked
point. We have

D)\C;T,k(’YIa e 777’7,) = p*C;T,k(’)/l? B (7 )\)
Hence we obtain
=2TACy (V155 n) = P TgCyu (V15 -+ s Yy A) — DaToCy (715 -+ -5 n)-

Only two terms contribute in this difference. The first arises from the second
term in the holomorphic anomaly equation on Mg ,41(B,k). The summand
with g; =0 and n + 1 € S; with |S;| = 2 contributes

2203,k(%, T T (U, )
=1

The second contribution arises from the third term of the holomorphic anomaly
equation when comparing the classes v; under pullback by p. It is

=2 Cr (Y1s - AUT T (W), - - Tn)-
i=1

Adding up yields the claim. O
Consider the exponential exp(A(\)) which acts on v € H*(X) by

(exp ANy = 7+ AUT T (7) = 7'M (AU) = 27 (ma() (7))

Lemma* [9] then yields

exp(TA)Cq (71, -+, n) = Cyu(exp(A(N)71, - - -, exp(A(N))¥n).

We will see in Section how in good situations this is related to the automor-
phism defined by adding the section corresponding to the class A.
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3.4 The elliptic transformation law

Recall the projection p; to the lattice A from Section Throughout Sec-
tion[3:4 we assume that the fibration  : X — B satisfies the following condition,
which holds for example for the rational elliptic surface:

Assumption (x). For every A € A there is a unique section By C X such that
pi([Bx]) = A
Let A € A and consider the morphism

th: X = X, x— (z+ Bx(n(x)))
of fiberwise addition with B). Since 7 oty = 7 this implies

C;r,mg(t,\*%, co b)) = C;,ﬁ(')/la ooy Yn)-

Let us write CJJ\ (...)(2) to denote the dependence of C7,(...) on the variable
z € A ® C. From the last equation we obtain

Cor(vs -5 7m)(2)

= D Craltarns o b)) g Pe((tanz) - B)
7« B=k

-
=e (—571'*()\2) ck—m(z-A) - k) Cor(ExsV1s - - s tasyn) (2 + AT)

=e (g)\TQk/\ + /\Tka) Cor(trav1y - tawyn) (2 + AT).

Rearranging the terms slightly yields

C;T,k(’yla cee 7’771)(2 + /\T)

1
=e (—QATQkA — )\TQkZ> C;k(t,)\*’yl, . ,t,A*'yn)(z). (18)

We obtain the following.

Lemma 10. Assume w : X — B satisfies Assumption (x). If every ~; is
translation invariant, i.e. txsy; = v; for all X € A, then C;‘yk('yl, ..oy Yn) Satisfies
the elliptic transformation law of Jacobi forms:

1
Cox(s -, mm)(z+AT) =€ (2/\TQk)\ - )\Tka> Cok(r1, ) (2)

for all A € A.

Even if the «; are not translation invariant we have the following relationship
to the transformation law of quasi-Jacobi forms. Recall the endomorphism A(\)
from Section For the rational elliptic surface we havd|

tax = exp A(N) (19)

181t would be interesting to know for which elliptic fibrations holds.
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for all A € A. Assuming Conjectures [A| and [B| we can rewrite as
C;T,k(’Yla v arYn)(Z + AT)

=e (—;)\TQk)\ - )\Tka> Cor(exp(A(=A)1, - -, exp(A(=A))yn)

1
—e (2/\TQk)\ — )\Tka> exp(=TA)Co (V15 - -+ )
which is the elliptic transformation law of quasi-Jacobi forms stated in Lemmal[3]

3.5 Quasi-modular forms

The elliptic periods (i.e. (*-coeflicients) of a quasi-Jacobi form are quasimodular
forms, see Proposition[2] Together with Conjecture[A]this leads to a basic quasi-
modularity statement for elliptic fibrations as follows. Let k € Hy(B,Z) be a
curve class, and consider the pairing on H?(X,Z) defined by

(a, ) = /’R'*(Oé o) forall a,0 € H*(X, 7). (20)
k

Throughout Section [3.5] we make the following assumption which is equivalent
to the positive definiteness of Qx and holds in many cases of interesﬂ

Assumption (7). The restriction of (-, )k to A is negative-definite.

Consider the cohomology classes on B orthogonal to k,
kt ={y e H*B,Z)| (7,k) = 0}

where (-,-) is the pairing between cohomology and homology on B. Consider
also the null space of (-, )k,

Ny ={ve H*X,Z)| (v, H*(X,Z))c = 0}.
We have 7kt C Ni. By assumption () this inclusion is an equality,
Nk =x" kL,

and the induced pairing on H?(X,Z)/Ny is of signature (1,7 + 1) %]
The dual of H?(X,Z)/N is naturally identified with the lattice

Ly ={p € Hy(X,Z) | 7.3 = ¢k for some c € Q}.

The non-degenerate pairing on H?(X,Z)/Ny induces a non-degenerate pairing
on Ly which we denote by (-, -)x as well.
For any a € Hy(X,Z)/QF with m.a = k consider the theta series

C_Z]T,Oc(’ylv e a’Yn) = Z C;T’B(’Y17 e 7’>/n)q7%<575>k
[Bl=a

where the sum is over all curve classes 8 with residue class « in Ho(X,Z)/QF.

190n an elliptic surface satisfying h2:0 = 0 the assumption holds by the Hodge index theorem
whenever k # 0.
20The combination of both statements is equivalent to Assumption ().
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Lemma* 11. Assume Conjecture and@ and Assumption (). Let £ be the
smallest positive integer such that éQ;l has integral entries and even diagonal.

s

Then every Cg (Y1, -+ yYn) 18 a cycle-valued weakly-holomorphic quasi-modular
form of level £.

The Lemma shows that although the elliptic fibration 7 : X — B has a
section, we should expect the generating series of Gromov—Witten invariants
in the fiber direction to be quasi-modular of higher level (with pole at cusps).
It is remarkable that these higher-index quasi-modular forms when arranged
together appropriately should form SLs(Z)-quasi-Jacobi forms.

If Qk is unimodular then we obtain level 1, hence SLs(Z)-quasi-modular
forms in Lemma* For the rational elliptic surface the level of the quasi-
modular form is exactly the degree over the base curve. This compares well
with the conjectural quasi-modularity of the Gromov—Witten invariants of K3
surfaces in inprimitive classes, see [31} Sec.7.5].

Using Proposition [2] (ii) the holomorphic anomaly equation for the quasi-
Jacobi classes CJ\(...) yields a holomorphic anomaly equation for the theta-
series CJf ,(...). However, in the non-unimodular case the result is rather com-
plicated and difficult to handle@ The holomorphic anomaly equation takes its
simplest form for quasi-Jacobi forms.

Proof of Lemma[Idl Let A be the image of a in Hs ;. A computation yields

_1,\Tp -1
C;r,oz(ryl""a’yn):q b )\[ ;r,k(rylv"'v’yn)]cx

which implies the Lemma by Proposition [2] O

3.6 Calabi—Yau threefolds

Let # : X — B be an elliptically fibered Calabi—Yau threefold with section
t: B — X and h?%(X) = 0. The moduli space of stable maps is of virtual
dimension 0. For all (g, k) ¢ {(0,0), (1,0)} define the Gromov—Witten potential

Fysla,O) = /ﬁ G= 3 /ﬁ 1

. B=k [Mg(X,B)]vir

By the Calabi-Yau condition we have N, = wp. Hence Conjecture [A] implies

1

A(g) ok e

Fg,k(q) €

We have the following holomorphic anomaly equation (see also [33} 0.5]).

Proposition* 4. Assume Conjectures [A| and @ Then we have

0420k
TeFgx = (k+ Kp,k)Fg_1x + Z (k1. k2)Fgi ki Fgoko + 2 (KB, Kp).
9=g1+92
k=k1+ka
where we let (—,—) denote the intersection pairing on B, the first term on the

right is defined to vanish if (g,k) = (2,0), and the sum is over all values (g;, k;)
for which Fy, k, is defined.

21The unimodular case is further discussed in Section E
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Proof. If k > 0 or g > 2 Conjecture [B] implies

TqFgx :/Cg 1k(m*Ap) + Z Z/ gk (T AR j) - /ng,kz(W*Aé,j)

=g1+tg2 J
k ki+ka
= (ko k)Fg i+ Y (ki ko)Fg, ko Faak
=g1+9g2
k:k1+k2
k1,k2>0
+2§ :/Cgfl,k(W*AB,j)'/i ) eVT(W*AE,j)
i [M1,1(X,0)]vr

where we have written
Ap=>Y Ap; WA}, € H(B?)
J
for the Kiinneth decomposition of the diagonal of B. By [12] we have
[M11(X,0)]"" = (c3(X) — c2(X)M) N [M1,1 x X]
and by [1, Sec.4] we have
c2(X) = 7*(ca(B) + ¢1(B)?) + 12t,.¢1(B).

Hence we find
1
| evi(nAY,) = ~3(Apa(B)
[M1,1(X,0)]vir

from which we obtain

T(Ingk = <k + Kp, k>F9—17k + Z <k1’ k2>F91,k1 F92,k2'

If (g,k) = (2,0) Conjecture B yields

TR =3 [ eidny)- [ erilrap)
§ 7 M (X0)) [M1,1(X,0)]

= E/Bcl(B)Z. O

It will be useful later on to consider the disconnected case as well. For any
g €7Z and k € Hy(B,Z) let
= S OEAACY .
M (B k) . B=k M, (X,8)]vir
The connected and disconnected potentials are related by
Z F;vku2972tk = exp Z Fg,ku2g72tk . (21)

g:k (9:k)€{(0,0),(1,0)}

A direct calculation using and Proposition* [4] implies the following discon-
nected holomorphic anomaly equation

1 1
Tngkf <k+2KB,k+2KB> F_(.]—l,k' (22)
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4 Relative geometries

4.1 Relative divisor

Let m : X — B be an elliptic fibration with section and integral fibers such that
H?9(X) =0. Let
D cCX.
be a non-singular divisor. We assume 7 restricts to an elliptic fibration
mp: D — A

for a non-singular divisor A C B. The section of 7 restricts to a section of mp.
Since 7 has integral fibers, so does mp. We have the fibered diagram

D——X

[

A —— B.

4.2 Relative classes
Let n = (7:)i=1,...i(y) be an ordered partition. Let
M, (X/D, B;n)

be the moduli space parametrizing stable maps from connected genus g curves
to X relative to D with ordered ramification profile n over the relative divisor
D, see [261)27] for definitions and [13] Sec.2] for an introduction to relative stable
maps. We have evaluation maps at the n interior and the I(n) relative marked
points. The latter are denoted by

eviel s My(X/D, Bim) = D, i = 1,...,1(n).
Since D is non-singular, we have the induced morphism
7 My n(X/D,B;n) = My n(B/A k;n)

where k = 7, 3.
Let v1,...,7 € H*(X), let k € Ho(B,Z) be a curve class and let

= ((771751)’~~~7(77l(77)76l(n)))7 51 GH*(D)v
be an ordered cohomology weighted partition. Define the relative potential

D
C;T,{( (’717 cee 7'7n777)

.on U(n)
= > VP | [Myn(X/D, 8] [ evi(v) [ [ evict ()
7 B=k i=1 i=1

where as before W = [1(B)] — 37*¢1(N,) and ¢ = e(z - B) with z € A® C.
In line with the rest of the paper we conjecture the following.

Conjecture C. The series C;{(D('yl, oy Yns 1) 48 a cycle-valued quasi-Jacobi
form of index Q\/2:
/D =7 1
Cg,{( (V15 1min) € Ho(Mgn(B/A ki) @ WQJaCQk/Q

where m = —1c1(N,) - k.
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4.3 Rubber classes

Stating the holomorphic anomaly equation for relative classes requires rubber
classes. Let N be the normal bundle of D in X, and consider the projective
bundle

P(N D OD) — D.

We let
Dy, Do CP(N @ Op)

be the sections corresponding to the summands Op and N respectively.

The group C* acts naturally on P(N @ Op) by scaling in the fiber direction,
and induces an action on the moduli space of stable maps relative to both
divisors denoted by

M&L"(P(N D OD)/{DOa Doo}vﬂ7 )‘7}14)

where the ordered partitions A, are the ramification profiles at Dy and Dy,
respectively. We let

M . (P(N @ Op)/{Dy, Do}, B A, 1)

denote the corresponding space of stable maps to the rubber target [30].
Let N’ be the normal bundle to A in B and consider the relative geometry

P(N' & 04)/{Ao, Asc }-
Since D is non-singular the fibration 7 induces a well-defined map
p:P(N&Op) = PN @& 0Oy)
which is an elliptic fibration with section and integral fibers. Let
p: My, (P(N @ Op)/{Do, Do}, B; A, 1)
— M, ,,(P(N' @ 0.a)/{Ao, Asc}, ki A, 11)

be the induced map. We also let evi®! ¥ and evi® > denote the evaluation maps
at the relative marked points mapping to Dy and D, respectively. Because
of the rubber target, the evaluation maps of the moduli space at the interior
marked points take value in D.

For any v1,...,7, € H*(D) and any ordered weighted partitions

A= (()\“51'))1‘:1’,“’[(,\)7 M= ((,u”ia ei))izl,...,l(u)’ 0;, € € H*(D)

we define
S CONED W)
=y Cﬂqw.ﬁp*< [M, . (P(N & Op)/{Do, Do}, B; \, )]
pxB=k

n I(N) I(p)
L evi o) [T vt @ ) [ et °°*(q>) .
=1 =1 =1
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4.4 Disconnected classes

To simplify the notation we will work with disconnected classes. The discon-
nected versions of moduli spaces and the classes C will be denoted by a ’e’
resp. a dash, following the conventions of Section [3.2] Since connected and
disconnected invariants may be expressed in terms of each other, Conjecture [C]
is equivalent to the quasi-Jacobi form property for the disconnected theory:

T L[] 1
Col O i) € Ho (M, (BJA ki) @ s Qlacq,

where m = —%cl (N,) -k. The holomorphic anomaly equation conjectured below

for disconnected relative classes (Conjecture @ is equivalent to a corresponding
version for connected classes.

4.5 Holomorphic anomaly equation for relative classes

Consider the diagram

M;,n(B/A’ k7 77) : MA M;—l,n-‘rQ(B/Av k, 7’])
J/ J/6V7L+1 XeVp42
B2 . BxB

where B is the stack of target degenerations of B relative to A, the map Ag is
the diagonal, Ma is the fiber product and £ is the gluing map along the final
two marked points. For simplicity, we will write

w/D,e T
Cgil,k ('717 s a,Y’nvAB/A;ﬂ) = ABC / (717' - Ins ]-a 17ﬂ)

We state the relative holomorphic anomaly equation.

Conjecture D. On M;’n(B/A, k;n) we have

w/D,e
L CONEAY))
:L*Cg/lk(le"'a’ynvAB/A;n)

+2 Y > Hl q f*l ;1/,%'(751;((b,AA,e),(bnAD,a)?L))

{1,...,n}=851U85 b;b1,....bpm
m>0 L1, lm
g=g1+g2+m
1,k2

X Cgp;ok;«ubber (752? ((ba A\f/l,[)a (bi’ AB,& ):11) ) 7]>‘|

7T D,e *
*221/11 gﬁ (V1w vy Yim s T TNy Yig 1y - - Yr3 )

l(n
7221;[}7“8[ CW/D (717"-577L;((771761)5--'a(niaﬂ'*DTrD*éi)w"7(7]”35%)))

i-th
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with the following notation. We let ¢;,yr € H*(M,,(B/A,k;n)) denote the
cotangent line classes at the i-th interior and relative marked points respectively.
The first sum is over all ky € Ha(B,Z) and ke € Ha(P(N' ® O4),Z) satisfying

ki-A=ky- A and ki +7r.ko =k

where r : P(N' & O4) — B is the composition of the projection to A followed
by the natural inclusion into B. The b,by, ..., by, run over all positive integers
such that b+ . b; = ki - A = ko - A, and the £,¢; run over the splitting of the
diagonals of A and D respectively:

Ax=> Aae@A%, Vit Ap=> Apy @A},
l I

The map & is the gluing map to M;W(B/A, k;n) along the common relative
marking with ramification profile (b,by, ..., by). Since we cup with the diagonal
classes of A and D, the gluing map £ is well-defined.

The relative product formula of [25] together with [33] Thms. 2 and 3] yields
the following.

Proposition 5. Conjectures[(] and[D hold if X = Bx E and D = Ax E, and
w: X — B is the projection onto the first factor.

4.6 Compatibility with the degeneration formula

A degeneration of X compatible with the elliptic fibration 7 : X — B is a flat
family
€e:X > A

over a disk A C C satisfying:
(i) €is a flat projective morphism, smooth away from 0.
(i) e1(1) = X.
(iii) €71(0) = X3 Up X2 is a normal crossing divisor.
)

(iv) There exists a flat morphism € : B — A satisfying (i-iii) with é-*(1) = B
and €~ ( ) Bi Uy Bs.

(v) There is an elliptic fibration X — B with section and integral fiber that
restricts to elliptic fibrations with integral fibers:

m:X—=B, m:X;—B;,i=12 p:D— A
We further assume that the canonical map
H*(X;Up X5) —» H*(X) (23)
determined by € yields an inclusion Ay ® Ay C A where A; = HJQ_ (X, Z). Let
z; e \,@C

denote the coordinate on the i-th summand.
Consider cohomology classes

717 A 77’”/ E H*(X)
which lift to the total space of the degeneration or equivalently@ which lie in the

22We assume the disk is sufficiently small.
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image of . Below let p always denote the forgetful morphism from various
moduli spaces of stable maps to the moduli space of stable curves, for example

p: Mg,n(B/Aa ka 77) - Mg,n'

The application of the degeneration formula [26}27] to € yields

P<Coie (V155 7m)

Z:(thz)
IL; m D, D,
= ) > G (T (s RCS (rsasn”) | (24)
{1,...,n}=S183 M>-->Im :
ki ,ko L1yeeslm
m>0
g=g1+g2t+m—1
where ki, ko run over all possible splittings of the curve class k, the n1,...,7m

run over all positive integers such that

Zni:kl'A:k2'A7
§

the ¢; run over the splitting of the diagonals of D, and we have written

n= (ni7 AD%&)ZTZI? Qv = (771‘7 AE,&);YLI'

Moreover, the map ¢ is the gluing map along the relative point (well-defined
since we inserted the diagonal).

Assume Conjectures|A|and [C|hold, so that is an equality of quasi-Jacobi
forms. Then Conjectures [B] and [D] each give a way to compute the clas{®|
d
—0.C7% (Y1, Y
dCQp g,k (’71 it )
as follows:

(a) Apply T, to the left-hand side of 7 use Conjecture (B} and apply the
degeneration formula to each term of the result.

(b) Apply T, to the right-hand side of and use Conjecture @

We say Conjectures [B] and [D] are compatible with the degeneration formula
if methods (a) and (b) yield the same result.

Proposition 6. Assume Conjectures[A] and[C. Conjectures[B and[D| are com-
patible with the degeneration formula.

Proof. After pushforward to the moduli space of stable curves, we apply the

23We will omit the restriction of z to the pair (z1,z2) in the notation from now on.
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degeneration formula to the right-hand side of Lemma* 8, The result is
qu*c;r:k. (717 cee 7'7n)

an 71/D,e . n2/D,e v
- Z T:L' {p*ﬁ* (Cgl,h (7517A31/A’ﬂ)®cg2,k2 (7527ﬂ)
{1>~~<7n}:S1USQ :
ki,k2; m>0
Ny Mm s lm
g—1=g1+g2+m—1

m1/D,e m2/D,e
+ e (Cgf,/kl (vs,3m) RC2. (732,ABQ/A;77V)>]

_9 Z M
m!
{1,‘“,’!7,}231\_132
ki,kz;m>0
Nyeeesm 1o esbm
g—1=g1+g2+m—1

7w1/D,e * w2 /D,e
-lzp*i*(wicgf,/kl (vsa\(ip ™ T (): ) B2 (m;ﬂv))
i€S1

w1/D,e 7o /D,e *
+ § P& (Cgf,{q (751;@@%0922,{(2 (Vso\{i}> T m(%);nv))]
1€Ss

where the sums are over the same data as in .

We need to compare this expression with the relative holomorphic anomaly
equation applied to the right-hand side of . In Conjecture |§| we have four
terms on the right-hand side. The first and third term of Conjecture |D| applied
to yield exactly the four terms above. Hence we are left to show that the
second and fourth terms of Conjecture |§| applied to vanish.

We consider first the second term applied to the first factor in plus the
fourth term applied to the second factor in (24)). The result is

Hi Ci Hz i T 0 ,8,Tu m K
2> T P {C 2 (vsps A) 3o (vsp3 A, ) Kl ('782§ﬂv)}

m! 91K
2 - Hjnj Cﬂ'l/Dﬁ . X relcﬂ'z/D,' .V
- ZZ m)! P { g1,k1 (’ysl’ﬂ) wl g2,ka (752’ﬂ ‘ﬁi»—m*m&i)}’
=1

(25)
where the sum in the second line is over the same data as in , and the
sums in the first line run additionally also over the following data: splittings
of k; into ki, kY, decompositions S; = S LI S{, positive integers ¢;cq, ..., ¢,
r > 0 summing up to kj - A, splittings g1 = g} + ¢¢ + r, and diagonal splittings
Iz 571, . ,ET in the weighted partitions

A= (eap(endpp)izn) . A= (A ) (e A )i ) -

Also, we write Q} 5, if the i-th cohomology class in 7 is replaced by some .
We use Lemma [12] below to remove the relative 1-class in the second line of

. When doing that, the second term on the right in Lemma |12| (the bubble

term) precisely cancels with the expression in the first line (switch n — A\, p — 7
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and trade the sum )~ for a factor of m). Hence we find that is equal to

l(n) 11 )
j#i i m1/D,e ) 72/D,e v
2 Z Z m! P [C9117k1 ('YSNQ) gcg;kz (732’ﬂ |5i*—)7\'*7T*(5i)Cl(NA/B2)> ] ’
i=1
(26)
where the first sum is over the same data as in .

By a parallel discussion, the second term of Conjecture [D| applied to the
second factor in plus the fourth term applied to the first factor is
Y
6il—>7r*7T*(6i)Cl(NA/Bl)>® g2,k (7527ﬂ )

1(n)
222 Hj;éi N5 ¢ C7r1/D,o ( .
ml PsSx [Lygy g ETRR
=1
(27)

The term agrees exactly with except for the i-th relative insertion.
We consider the i-th relative insertion more closely. Using

wa/D,e

([dXR7*m)Ap = Ay
and the balancing condition
Na/p, ® Nayp, = Oa
the i-th relative insertion in is
(1 X cl(NA/B2)) -(dX r¥*m)Ap = (1 X cl(NA/BQ)) Ay

= (c1(Naysp,) ®1) - Ay
= *(Cl(NA/Bl) X 1) VAP

Since this is precisely the negative of the i-th relative insertion in (27)), the sum

of and vanishes. O

Lemma 12. Let n = {(1:,0:)} be a cohomology weighted partition and let v =
(Y1, -y ym) with v; € H*(X) be a list of cohomology classes. We have

17/ D, D.
ni - pe (VTP (i) = =pu (CHAP* i mls osier v o))
Hul /D,.’ b /D,.
+ ) > Wt g Jempemt o 1) BEE* (rs0i0”)
{1,..., Lll}iflu&uiz"::u:
s>0

g=g1+g2+s—1

where the sum is over the splittings of k into ky € Hao(P(N' @ O4),Z) and
ke € Hy(B,Z), all positive integers 1, ... pus summing up to ky - A, and over
indices of diagonal splittings {1, ...,Ls for the cohomology weighted partitions

w=A{(ui Ape)izat, p =i AD g )iz}
As before we write Q‘&Ha if the class 6; is replaced by some class .

Proof. We will remove the class ¢! by an argument parallel to |5, Sec.4.5, End
of Case (ii-a)]. Let X be the stack of target degenerations of the pair (X, D)
and let

f:C—=X
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be a stable map parametrized by the moduli space M = My (X/D, ;7).

Let ¢ : X = X be the canonical map contracting the bubbles. Let p?l eC
be the i-th relative point and let

g = c(f(pi) € D
rel

be its image in X. If the irreducible component of C' containing p;* maps into

a bubble of X, then the composition c o f vanishes to infinite order at p in the
direction normal to D. If the component containing pi®! maps into X, then by
the tangency condition the composition co f vanishes to order exactly 7; in the
normal direction. In either case, the differential in the normal direction induces
a map

NI\S/X,%: — m" /mni+17

where m is the maximal ideal of the point pi®! € C. See also |35, Proof of Prop.
1.1] for a similar argument. Considering this map in family yields a map of line
bundles on M:

ViV x = (L)

where Lzr»el is the cotangent line bundle on M. Dualizing we obtain a section
O — (Li*)" ® evi™ Np x.

The vanishing locus of this section is the boundary divisor of the moduli space
M corresponding to the first bubble of D (compare [5]). Expressing the class

1 ((Lgel)ni ® eV,I;EI*ND/X) — mlﬁfel + eviel*cl (ND/X)

through the vanishing locus of the section and using the splitting formula, as
well as the relation
Np,x =7pNays,

then yields the claimed formula. O

5 The rational elliptic surface

5.1 Definition and cohomology

Let R be a rational elliptic surface defined by a pencil of cubics. We assume the
pencil is generic, so the induced elliptic fibration

R — P!

has 12 rational nodal fibers. Let H, E1, ..., Fy be the class of a line in P? and
the exceptional classes of blowup R — P? respectively. We let B = Ey be the
zero-section of the elliptic fibration, and let F' be the class of a fiber:

9
B=Ey, F=3H-) E.
i=1

We measure the degree in the fiber direction against the class

1
W:B+§F.
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The orthogonal complement of B, F in H?(R,Z) is a negative-definite uni-
modular lattice of rank 8 and hence is isomorphic to Fg(—1),

H*(R,Z) = ZB ® ZF @ Eg(-1).

As in Section [2 we identify the lattice Eg(—1) with Z® by picking a basis
bi,...,b,. We may assume the basis is chosen such that

Qps = (/ biUbj)
R ij=1,...,8

is the (positive definite) Cartan matrix of Es. In the notation of Section m
the matrix Qj, for k € Ho(P!,Z) = Z is then

Qr = kQE,.

5.2 The tautological ring and a convention

If29g—2+n>0,let p: M, (P!, k) — M, be the forgetful map to the moduli
space of stable curves, and let

R*(Mgy) C H" (M)

be the tautological subring spanned by push-forwards of products of ¢ and
classes on boundary strata [10].

We extend both definitions to the unstable case as follows. If g,n > 0 but
29 —2+n <0, we define Hg,n to be a point, p to be the canonical projection,

and R*(My ) =H"(M,,) = Q.

5.3 Statement of results

The following result shows that Conjecture [A] holds for rational elliptic surfaces
numerically, i.e. after integration against any tautological class pulled back
from M, ,, (with the convention of Section in the unstable cases).

Theorem 3. Let : R — P! be a rational elliptic surface. For all g,k > 0 and
V5., € H*(R) and for every tautological class « € R* (Mg ),

1
p () NCl (71, oy Yn) € ——=QJack, . -
/Mg,n(nm,k) (@) NG ) A(q)k/? 29ms

By trading descendent insertions for tautological classes Theorem [3|implies
that the generating series of descendent invariants of a rational elliptic surface
(for base degree k and genus g) are quasi-Jacobi forms of index %Q Eg-

An inspection of the proof actually yields a slightly sharper result: the ring
of quasi-Jacobi forms @, QJac EQp, in Theoremmay be replaced by the QMod-
algebra generated by the theta function © g, and all its derivatives.
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We show that the holomorphic anomaly equation holds for the rational el-
liptic surface numerically. Consider the right-hand side of Conjecture

Hok(y1, . s9m) = L*A!C;_Lk('yl, ceyYny 1, 1)

+ Z j*A' (C;Tl,kl (73171) |Z|C52,k2 (75271))

9=9g1+g2
{1,...,n}=51U55
k=k1+ka

n
- 2ZC;—,k(’717 LR a’Yz‘71>7T*7T*'Yia’Yi+1a R 7771) . wi-
1=1

Theorem 4. For every tautological class o € R* (Mg,n),
d * T *
T@ p (a)mcg,k(717'-'77n) = P (a)mHg,k(’yla"w’Yn)-

In the remainder of Section [5] we present the proof of Theorems [3|and @ In
Section we recall a few basic results on the group of sections of a rational
elliptic surface. This leads to the genus 0 case of Theorem [3| in Section [5.5
In Section we discuss the invariants of R relative to a non-singular elliptic
fiber of 7. In the last two sections we present the proofs of the general cases of
Theorems [3] and [4

5.4 Sections

Recall from [42] the 1-to-1 correspondence between sections of R — P! and
elements in the lattice Eg(—1). A section s yields an element in Fg(—1) by
projecting its class [s] onto the Eg(—1) lattice. Conversely, an element A €
Eg(—1) € H%(R,Z) has a unique lift A € H2(R, Z) such that \2 = —1, A\-F = 1
and \ pairs positively with any ample class. By Grothendieck-Riemann-Roch A
is the cohomology class of a unique section B). Explicitly,

[B,\]:W—(W\gH>F+)\

where (a,b) = [, aUb for all a,b € H*(R) is the intersection pairing.

By fiberwise addition and multiplication by —1 the set of sections of R — P!
form a group, the Mordell-Weil group. The correspondence between sections and
classes in Fg(—1) is a group homomorphism,

Byi, =B\®B,, B_)=0B)

where we have written @, & for the addition resp. subtraction on the elliptic
fibers. The translation by a section A € Eg(—1),

tx: R— R, z— x+ By(r(z)),

acts on a cohomology class v € H*(X) by

* * 1 *
sy =7+ AUT T (y) — 7 m(AU7y) — 3 (me(A?) - e (v)) -
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5.5 Genus zero
5.5.1 Overview

Consider the genus 0 stationary invariants

Mi(C.q) = / C7 (")

k—1
- > e [ Tlevitw
7. B=k [Mo,k—1(R,8)]¥r ;4

for all k > 1, where p € H*(R,Z) is the class Poincaré dual to a point.

Proposition 7. M, € WQJ%%_%Q% for all k> 1.

In the remainder of Section [5.5] we prove Proposition [7}

5.5.2 The Eg theta function

All curve classes on R of degree 1 over P! are of the form By + dF for some
section A € Eg(—1) and d > 0. Using Section [5.4] and [6, Sec.6] we find

Ml(q) _ qW>(B,\+dF)<-)\/ 1
/\EEzs(:—l) d%% [Mo,0(R, Bx+dF)]*

1

- e [Am)de;

AEEg(—1) d>0

_ 1 Z AN A

AEEs(—1)

1
= ——0g/(%,7).
A(g)? =)

By Section Of, is a Jacobi form of index %QEs and weight 4.

5.5.3 WDVYV equation

For any 71,...,v, € H*(R) define the quantum bracket

(Y Wmdoe = D qW'BCB/i [Tevi(n).

7. B=k [Mo,n(R,B)]vir =

Recall the WDVV equation from [11]: For all vy,...,v, € H*(R) with

> deg(yi) =n+k—2

=1
we have
Z Z<7517’7a7’7b7A€>07k1 <73277€77daA2/>0’k2
k=ki+ko 14

{1,...,n—4}=5,15,

Z Z<7317’7a77C7A€>0’k1 <’YSm’Yb7’YdaAz/>0)k2»

k=ki+ko l
{1,...,n—4}=S1US>
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where Y, Ay ® AY is the Kiinneth decomposition of the diagonal class A €
H*(R x R). Let also

1 d

D=D S
271 dz;

¢ Di=Dy, = D¢, =
We solve for the remaining series My, by applying the WDVV equation.

5.5.4 Proof of Proposition [7]
The case k = 1 holds by Section [5.5.2} For k = 2 recall the basis {b;} of A and
apply the WDVV equation for (v;)7_; = (F, F,b;,b;). The result is

4(bi, bj) My = Di(A1)o,1 - Dj{Az)o,1 — (A1)o,1 - DiDj(A2)o1

where Ap, Ay indicates that we sum over the diagonal splitting. Choosing i, j
such that (b;,b;) # 0 and applying the divisor equation on the right-hand side
we find My expressed as a sum of products of derivatives of M;. Checking the
weight and index yields the claim for Ms.

Similarly, the WDVV equation for (v;)_, = (p, F, F, W) yields

8
3Ms = M, - D*My — 4D>M; - My + Y (D;DM - 2D; My — D; My - D;DMs,)
i=1

which completes the case k = 3.
If k£ > 4 we apply the WDVV equation for (v,...,7x) = (p¥72,¢1,{3) for
some {1, 0> € H?(R). The result is

k—4
(1 -52)<Pk71>o kT Z ( ) (<pa+17€1,A1>o,a+2<pb+17£27A2>o,b+2

’ a+b=k—4 ¢
_ <|°a+2’Al >0,a+3<pbv 1, £z, A2>07b+1) '

Taking /7 - £ = 1 and using an induction argument the proof is complete. [

5.6 Relative in terms of absolute
Let < be the lexicographic order on the set of pairs (k, g), i.e.
(k,g) < (K,g) <= k<Kor(k=kKandg<g). (28)
Let E C R be a non-singular fiber of 7 : R — P! over the point 0 € P!, and
recall from Section [l the E-relative Gromov—Witten classes

CoE (1, i) € Ho (W g (B0, ki) © Qllg* 2, ¢

where 7 is the ordered cohomology weighted partition

n= ((771,61),...,(m(n),(Sl(n))), 0; € H*(E) (29)

We show the (numerical) quasi-Jacobi form property and holomorphic anomaly
equation in the absolute case imply the corresponding relative case. For the
statement and the proof we use the convention of Section [5.2
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Proposition 8. Let K,G > 0 be fized. Assume

1
* NCr yersYn) € — 75 Jack
/Mg,n(ﬂ”l,k)p (@) N Can,-- ) A(q)’“/zQ “san

for all (k,g) < (K,G),n >0, a € R*(My,) and v1,...,v, € H*(R). Then

* 7w/ E 1
/ p (a)mcgjg (713"'7777.;7’) S 7QJ&C%QE8

Mg n(P1/0,k;n) - A(Q)k/Q

for all (k,g) < (K,G),n>0,a € R*(Mg,), V1,7 € H*(R) and cohomol-
ogy weighted partitions n.

Similarly, if the holomorphic anomaly equation holds numerically for all
Cor(11s-- o) with (k,g) < (K,G), then the relative holomorphic anomaly

equation of C’onjecture@ holds numerically for allC;ng (Y1, Yni ) with (k, g) <
(K,G).

Proof. The degeneration formula applied to the normal cone degeneration
R~ RUg (P' x E) (30)

expresses the absolute invariants of R in terms of the relative invariants of R/E
and (P! x E)/Ey. The quasi-modularity of the invariants of (P! x E')/Ej relative
to P! follows from the product formula [25] and [33, Thm.2]. We may hence
view the degeneration formula as a matrix between the absolute and relative
(numerical) invariants of R with coefficients that are quasi-modular forms. By
[30, Thm.2] it is known that the matrix is non-singular: The absolute invariants
determine the relative invariants of R. We only need to check that the absolute
terms with (k,g) < (K, G) determine the relative ones of the same constraint,
and that the quasi-Jacobi form property is preserved by this operation. Since
QJac EQp, is a module over QMod, the second statement is immediate from the
induction argument used to prove the first. The first follows from scrutinizing
the algorithm in [30, Sec.2] and we only sketch the argument here.

Given (k,g) < (K,G), a cohomological weighted partition 1 as in ,
insertions 1, ...,v, € H*(R), and a tautological class o € R*(M,,,), consider
the absolute invariant

n 1(n) R
<04; [17o() HTm—l(j*5i)>g i
i=1 i=1 o
1(n)

- > e v [Levitw [[wrevitius) (1)

7. B=k [M g nti(n) (X,B)]ViF i=1

where we used the Gromov—Witten bracket notation of [30], j : E — R is the
inclusion, and ; are the cotangent line classes on the moduli space of stable
maps to R. By trading the 1); classes for tautological classes (modulo lower
order terms) and using the assumption on absolute invariants, we see that the
series is a quasi-Jacobi form of index gQ Es- We apply the degeneration
formula with respect to to the invariant . The cohomology classes are
lifted to the total space of the degeneration as in [30, Sec.2], i.e. the ~; are
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lifted by pullback and the j.6; are lifted by inclusion of the proper transform of
E x C. Using a bracket notation for relative invariants parallel to the abovd®?}
the degeneration formula yields

i(n)

G0 ) KICOR § EERRER D)

> HT:L:/i <a1; To(7s,)

m>0 : gL i=1
VisesVml, s lm
g=g1+gatm—1
{1,....,n}=51US>

1,002

R
g,k

g2,k

where 11, ..., run over all positive integers with sum k, ¢1,...,¢,, run over
all diagonal splittings in the cohomology weighted partitions

v = (Vi7 AE7€1:);'117 Zv = (Viv A\é,éi);‘zlv

and a1, as run over all splittings of the tautological class a. The sum is taken
only over those configurations of disconnected curves which yield a connected
domain after gluing.

We argue now by an induction over the relative invariants of R/E with
respect to the lexicographic ordering on (k,g,n). If the invariants of R/E in
(132) (the first factor on the right) are disconnected, each connected component
is of lower degree over P!, and therefore these contributions are determined
by lower order terms. Hence we may assume that the invariants of R/E are
connected. By induction over the genus we may further assume g; = g in ,
or equivalently go = 1 —m. Consider a stable relative map in the corresponding
moduli space and let

f:Cy— (P! x E)[a]

be the component which maps to an expanded pair of (P! x E, Ey). Since
g2 = 1 — m the curve Cy has at least m connected components of genus 0.
Since each of these meets the relative divisor and I(v) = m, the curve Cs is a
disjoint union of genus 0 curves. The rational curves in P! x E are fibers of the
projection to E. Hence we find the right-hand side in is a fiber class integral
(in the language of [30]). Finally, by induction over n we may assume Sp = &.
As in [30} Sec.2.3] we make a further induction over deg(n) = >, deg(d;) and a
lexicographic ordering of the partition parts 7. Arguing as in [30, Sec.1, Relation
1]@ we finally arrive at

l(n) R R/E
(a:]Tro0) - TTrm1Ge0))  =e- (@] mGil) =+
i i=1 9 i 9
where ¢ € Q is non-zero and ’..." is a sum of a product of quasi-modular forms

and relative invariants of R/FE of lower order. By induction the lower order

24The bracket notation is explained in more detail in [30] with the difference that the ram-
ification profiles v are ordered here. This yields slightly different factors in the degeneration
formula than in [30] but is otherwise not important.

25 Using the dimension constraint the class ag only increases the parts vy, and hence by
induction we may assume ag = 1.
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R/E,e (P'XE)/E,e
z> . <a2§7'0(’752)H7'm71(j*5i) zv>
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terms are quasi-Jacobi forms of index %kQ s Which completes the proof of the

quasi-Jacobi property of the invariants of R/E.
The relative holomorphic anomaly equation follows immediately from this
algorithm and the compatibility with the degeneration formula (Proposition @
O

5.7 Proof of Theorem [3|

Assume that the classes vi,...,7, € H*(S) and « € R*(M,,,) are homogene-
nous. We consider the dimension constraint

k4+g—1+n=deg(a)+ Z deg(v:) (33)
i=1

where deg() denotes half the real cohomological degree. The left-hand side in
is the virtual dimension of M, (S, 8) where m.3 = k. If the dimension
constraint is violated, the left-hand side in Theorem [3] vanishes and the claim
holds. Hence we may assume (33]).

We argue by induction on (k, g, n) with respect to the lexicographic ordering

(kl,gl,nl) < (kz,gg,ng) <~ kl < kz

or (k:l = ko and g1 < gg)
or (k1 = ko and g1 = g2 and n; < ng)

Case (i): ¢ =0.
(i-a) If k = 0 all invariants vanish, so we may assume k > 0.

(i-b) If deg(a) > 0 then « is the pushforward of a cohomology class from the
boundary ¢ : OMg , — Mo p:

o=,
Using o’ and the compatibility of the virtual class with boundary restric-
tions we can replace the left-hand side of Theorem [3| by terms of lower
order (see [33, Sec.3] for a parallel argument).

(i-c) If deg(er) = 0 but deg(~;) < 1 for some 4, then either the series is zero (if
deg(v;) = 0) and the claim holds, or we can apply the divisor equation to
reduce to lower order terms. Since derivatives of quasi-Jacobi forms are
quasi-Jacobi forms of the same index the claim follows from the induction
hypothesis.

(i-d) If deg(a)) = 0 and ~; = p for all 4 the claim follows by Proposition

Case (ii): g > 0 and deg(a) > g.

By 9, Prop.2] we have
a =10

for some o where ¢ : 9M,, — M, is the inclusion of the boundary. By
restriction to the boundary we are reduced to lower order terms.
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Case (iii): g > 0 and deg(o) < g.

By the dimension constraint we have

Zdeg(’yi) —n >k

i=1

Hence after reordering we may assume v; = ... = 7, = p. Consider the
degeneration of R to the normal cone of a non-singular fiber E,

R~ RUg (P' x E).

We let p : P! x E — P! be the projection to the first factor and let Ey denote
the fiber of p over 0 € P*. We apply the degeneration formula [26,27] where we
specialize the insertions 71, ...,V to the component P! x E and lift the other
insertions by pullback. In the notation of Section [4] the result is

P*C;T,k(’ha cee 7777,)

Hznl conn w/E,e Eo,®/ Lk \
= > DS (Cgl/,k (v5:5m) BCOLE* (08, 15,3 )) (34)
m>0 ’
N1seeesm L1y lm
{k+1,...,n}=5,US>
g=g1+g2+m—1

where 71, ..., 7, run over all positive integers summing up to k, ¢1,..., ¢, run
over all diagonal splittings in the partitions

n=iApe)t 1 =0, AL ),

the map £ is the gluing map along the relative markings, and & is pushfor-
ward by ¢ followed by taking the summands with connected domain curve.
We will show that the right-hand side of , when integrated against any
tautological class, is a quasi-Jacobi form of index %Q Eg-
By the product formula [25] and [33, Thm.2], each term

conn
*

Ey,e
ol (0" v

is a cycle-valued quasi-modular form. We consider the first factor

RMCERD) (35)

after integration against any tautological class. We make two reduction steps:

(1) We may assume are connected Gromov-Witten invariants.

(Proof: The difference between connected and disconnected invariance is a
sum of products of connected invariants of R/E of degree lower than k over the
base. Hence by Proposition [§land the induction hypothesis they are quasi-Jacobi
forms after integration against tautological classes.)

(2) We may assume g1 = g.
(Proof: If g1 < g the series is a quasi-Jacobi form after integration by
Proposition 8| and induction. )
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By the above steps it remains to consider the terms of which are con-
nected and of genus g. We will show that the term

E Eo,
P&a (C;T{( (vs,3m) R CE/ P .(PkﬁSz%Qv))
is zero after integration against any tautological class. Consider a stable relative
map in the corresponding moduli space and let

f:Cy— (P! x E)[q]

be the component which maps to an expanded pair of (P! x E, Ey). Since
g =91 +g2+m—1 we have go = 1 — m, hence C5 has at least m connected
components of genus 0. Since each such component meets the relative divisor
E and moreover [(n) = m, the domain curve of the stable map to P! x E is
a disjoint union of m rational curves. Since rational curves are of degree 0
over the E-factor and the stable map to P! x E is incident to k given point
insertions, the Gromov—Witten invariant is zero unless m = k and 1 = (1,w)*
where w € H?(FE) is the point class. Case (iii) then follows from Lemma
below. O

Lemma 13. For all k >0 and v1,...,v, € H*(R) we have

/B
Cg,{< (fyl, e Y (l,w)k) =0
where w € H?(E) is the class of a point.

Proof. First we consider the case k > 0. Let 8 € Ha(R,Z) be a curve class with
3 = k. Let L € Pic(R) be the line bundle with ¢; (L) = 3. Consider a relative
stable map to an extended relative pair of (R, E) in class 3,

f:C — RJal.

Since R is rational, the universal family of curves on R in a given class is a linear
system. Hence the intersection of f(C') with the distinguished relative divisor
E C R|n] satisfies

Ou(f(C)NE) = Llp.

Let z1,...,2 € E be fixed points with Og(z1 + ... + 2x) # L|g. It follows
that no stable relative map in class 8 is incident to (z1,...,2x) at the relative
divisor. We conclude

(M (R/E, 55 (1)9)]) " [] evie™ (l2]) = 0
1=1

which implies the claim.
It remains to consider the case k = 0. We have the equality of moduli spaces

MQ,H(R/Ev dF; ()) = Mﬁ],n(Ra dF)

Under this identification the obstruction sheaf of stable maps to R relative to
E for a fixed source curve C' is

Obc,y = H'(C, f*Tg/E)
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where Tg/p = Qr(log E)Y is the log tangent bundle relative to E. Since Kg +
E = 0 there exists a meromorphic 2-form

o € H(R,Q%(E))

with a simple pole along E' and nowhere vanishing outside £. By the construc-
tion [41, Sec.4.1.1] the form o yields a surjection

ObC7f — C

which in turn induces a nowhere-vanishing cosection of the perfect obstruction
theory on the moduli space. By [21] we conclude

[M.n(R/E,dF; )] =0,

which implies the claim. O

5.8 Proof of Theorem [

The holomorphic anomaly equation is implied by the following compatibilitites
which cover all all steps in the algorithm used in the proof of Theorem

e The compatibility with boundary restrictions (parallel to [33} Sec.2.5]).
e The compatibility with the degeneration formula (Proposition .

e The compatibility with the WDVV equation (special case of (i)).

The compatibility with the divisor equation (follows by proving a refined
weight statement parallel to [33, Sec.3]).

The holomorphic anomaly equation holds for [ Co1() = @ESA*I/z. O

6 The Schoen Calabi—Yau threefold

6.1 Preliminaries

Let X = Ry Xp1 Ry be a Schoen Calabi-Yau and recall the notation from
Section [0.2] In particular we have the commutative diagram of fibrations

2N

Rl 0 R2 (36)

Nl

]P)I

Let o € Ho(R1,7Z) be a curve class. For all (g,a) ¢ {(0,0),(1,0)} define

Fraloa) = [€R0= 3 a7 [ 1

oyl My (X B
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For all (g, k) ¢ {(0,0),(1,0)} we have

For(2z1,22,q1,q2) = E Foa(22,q2)q] " “e(z1 - a). (37)
a€Hy(R1,Z)
prsa=k

We first prove a weaker version of Theorem [I]
Proposition 9. We have

1

Ay Vecar

%QES ’

QJ&C(ql’zl) ®

gQEs

pp—
RERNCADE

Proof. The Schoen Calabi—Yau can be written as a complete intersection
X CP' xP? x P?

cut out by sections of tri-degree (1,3,0) and (1,0, 3). Hence there exist smooth
elliptic fibers F; C R; of 7; for i = 1,2 and a degeneration

X ~ (Ry X By) Ug, xm, (E1 X Ry) (38)

which is compatible with the fibration structure of diagram .
The degeneration formula applied with respect to this degeneration yields

IL m (R1 X E3)/(E1x Es),e U\ (E1 X R2)/(E1 X Es),
F!]JC = Z T;L' <®}7>g1,k <®’ﬂ >g2,k
m>0
N1seeosMmsl1y s lm
g=g1+g2+1l(n)—1
(39)
where 71, ...,m,, run over all positive integers summing up to k, the ¢1,..., 4,

run over all diagonal splittings in the weighted partition

n= (UiaAElez,&)?;u ﬂv = (Uivﬁ\élez,ei)?;b

and the sum is over those disconnected stable maps on each sides which yield
a connected domain after gluing (the bullet e reminds us of the disconnected
invariants); moreover we have used

<®‘ﬂ>;}ilk><E2)/(E1 XFE3),e

R1xE32)/(E1xE>3),e w D), W<E2)~ﬁ
= <Qﬂﬂ>;h} D ErBe)e 0 W2 exp(ay - 8)

7« B=k
where we use the Gromov—Witten bracket notation on the right side and
W wiF) ¢ H2(Ry x Ey)

are the pullbacks of Wi € H?(R;) and the point class [0] € H?(E) respectively.
The definition of the second factor in is parallel.
We will show

(R1xEs2)/(E1XE3),e 1 (q1,21) (42)
<@}ﬂ>gl,k € WQJ&C%ES ® QMod'??/, (40)
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By an induction argument it is enough to prove the statement for connected
Gromov—Witten invariants. Let us write

ﬂz(m,ci(@di)ﬁl, CiGH*(El),diGH*(Eg)

Then the relative product formula [25] yields

(| ) T ) /ﬁ pCl P (@ (i ci)i) - CE2 (da ).

g1,k
where p is the forgetful map to M, ,,. By [18,33] the class C[>(dy, ..., dm)
is a linear combination of tautological classes with coefficients that are quasi-

modular forms. Using Theorem [3| and Proposition |8 we obtain .
By an identical argument for £; X Ry we conclude that

(q1,21) ® 1 (q2,22) 0

1
For € 7A(q1)’“/2 QJachE8 7A(q2)k/2 QJac%QE8 .

6.2 Proof of Theorem [

We first show that the classes Cgﬁl() satisfy the holomorphic anomaly equation
numerically, i.e. after taking degrees. Using the degeneration and the com-
patibility of the holomorphic anomaly equation with the degeneration formula
(Proposition [6) the holomorphic anomaly equation for [ Cg2, follows from the
holomorphic anomaly equations for the elliptic fibrations

pr12R1XE24)R1, idEIXp25E1XR2*>E1XIP1.

relative to Fp X E5. To show the holomorphic anomaly equation for Ry x Es
(relative to Ey x E3) we again apply the product formula [25] and use the
holomorphic anomaly equation for the elliptic curve [33]. For E; x Ry we apply
the product formula and Theorem Hence Cj2 () satisfies the holomorphic
anomaly equation numerically.

From Lemma* |§| after numerical specialization it follows that

Fga € ﬂ Ker(Ty)
reEP
or equivalently, that F, . satisfies the elliptic transformation lawﬁ By and
since Fg ; is symmetric under exchanging (z1,¢1) and (22, g2) we obtain
For € N Ker (Ty, ® Ty,).
neBM \eEd?

Similarly, the series Fg j is invariant under reflection along the elliptic fibers of
m and me. Since every reflection along a root can be written as a composition
of translation and reflection at the origin, we conclude that

1 —(q1,21) 1 (q2,22)
For € ———=J —=J
N UNCE aCgg e ® INCSEE aChg,k
Finally, the weight of the bi-quasi-Jacobi form follows from the holomorphic
anomaly equation, see Section [3.1] and [33] Sec.2.6]. O

26 Since Fg,o is invariant under translation by sections of 7o this also follows from Sec-

tion @
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6.3 Proof of Theorem 2]
Assume first g > 2 or k > 0. Using and Proposition* @ we find

_? ¢

dCs(qa)
= Y @ |(Er o, a)Fg 10t Y (a1,00)Fg 0,Fgya, |- (41)
pixa=k g=g1+g2

a=aitaz

We analyze the terms on the right side. If we write a = kW + dF 4 «q for some
d>0and qq € Eél) then we have

(o, @) = 2kd + (g, ), (Kpg,,0) = —k.
Hence the first term in the bracket on the right of can be written as

Z qW1 (KR, +a,)Fg_ 14

prea=k
8
= —k+2k‘Dq1 - Z (QES) DZ1 LDZI,j F9_17k'

ij=1

With a similar argument the sum

Z qW1 “ Z <O‘1ﬂ a2>F91,al F92,042

pira=k g=g1t+gz2,a=a1+oz
Vie{1,2}: gi>2 or pr.a; >0

yields exactly the second term on the right in Theorem 2] Using Lemma [T4]
below, the remaining terms are

2 > " D (e — LR L) Fy g i Forar,

prxa=k g’'€{0,1}
0>1
Wla O’(g)
=2 Y gy Zke-Fg_m_[Fl-uT
prea=k £>1

24k > o (0)qf | Fg1.k-

£>1
Putting all three expressions together yields the desired expression.
Finally, if g = 2 and k = 0 a similar analysis shows
d
dCs(q2)

Lemma 14. For all (¢1,¢3) # 0 we have

. 12600782 1 126,07 irg=1
9,01 F1+02Fy — 0 ng 7& 1.

27 In the proof of Theoremwe have shown that Conjectures [A] and |B|hold for the Schoen
Calabi—Yau numerically. Hence we may apply Proposition* [4| unconditionally.

F270 =0. OJ
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Proof. Using the degeneration we have

<®‘ >(R1><E2)/(E1><E2) <®’®> E1><R2)/(E1><E2)

X _
NQ7€1F1+62F2 o g,b1 F1+L2 > g,b1 F1+02F>

Because the surface F; X F» carries a holomorphic symplectic form, all Gromov—
Witten invariants of P! x E; x E, with non-trivial curve degree over E; x Es
vanish. Hence by a degeneration argument we have

(R1xE2)/(E1x E3) RixE
<®‘ >g€11;1—i€2F21X ’ _< >921><F13‘£‘2F2'

The expression for the second term is parallel. Now the result follows by adding
in markings, using the divisor equation and applying the product formula. [

6.4 Proof of Corollary

Since the series F, . satisfies the holomorphic anomaly equation, the discon-
nected series Fy , satisfies ([22). The claim now follows from Lemma

7 Abelian surfaces

7.1 Overview

We present (Section [7.2]) and prove numerically (Section [7.4)) the holomorphic
anomaly equation for the reduced Gromov—Witten theory of abelian surfaces
in primitive classes. The quasi-modularity of the theory was proven previously
in [5]. The result and strategy of proof is almost identical to the case of K3
surfaces which appeared in detail in [33 Sec.0.6] and we will be brief. Since
we work with reduced Gromov—Witten theory, an additional term appears in
the holomorphic anomaly equation for both abelian and K3 surfaces. This term
appeared somewhat mysteriously in [33] in the form of a certain operator o. In
Section we explain how it arises naturally from the theory of quasi-Jacobi
forms.
7.2 Results
Let E1, Es be non-singular elliptic curves and consider the abelian surface

A= E1 X E2
elliptically fibered over E; via the projection 7 to the first factor,

T:A— El.
Let Op, € E5 be the zero and fix the section

v By =FE; XOEQ%A.
A pair of integers (dy, ds) determines a class in Hy(A,Z) by
(d1,d2) = diti[Er] + daju[E2]

where 7 : Og, X E2 — A is the inclusion.
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‘Since A carries a holomorphic symplectic form, the virtual fundamental class
of My ,(A,pB) vanishes if 3 # 0. A nontrivial Gromov-Witten theory of A is

defined by the reduced virtual class [M, (A, 8)]**4, see 5] for details. For any
V1,50 € H*(A) define the reduced primitive potential

Ag('717 ce a'Yn) = Z qdﬂ'* ([ngn (A7 (1’ d))] red Hevf (71)>
d=0 =1

€ H(Mgn(E1,1))([qll-

By deformation invariance the classes A, determine the Gromov-Witten classes
of any abelian surface in primitive classes.

Conjecture E. A, ,,(71,...,7) € QMod ® H. (M4, (E1,1))

We state the reduced holomorphic anomaly equation. For any A € H*(A)
define the endomorphism A(X) : H*(A) — H*(A) by

ANy =AU T (y) — 7w (AU~y) for all v € H*(A).
Define the operator Ty by

n

T)\Ag,n(’yb e a’Y'rL) = ZAg,n(’yla .. 7A()‘)’727 e a’Y'rL)

i=1
Let V C H?(A,Q) be the orthogonal complement to [E1], [E2] and define

4
Ta=-Y (67, TuTh, (42)

ij=1
where {b;} is a basis of V and G = (<bivbj>)ij'
Recall also the virtual class on the moduli space of degree 0,

[Mo)nXA] lfg:O

Myn(A,0)]7" =
[Mg.n(A,0)] {o ifg>1,

where we used the identification M ,,(A,0) = M, ,, x A. We define

A;ir(fyl, CeeyYn) = T ([Mg,n(.%l7 0)]v™ Hev;‘ (%)> )

Consider the class in H.(M g, (E1,1)) defined by
H?(Vla s 7'7n) = L*A!Ag—l(’yla N 1’ 1)
20 ) A (A (s D RAT (02, 1))

9=g1+g2
{1,...,n}=51US5> (43)

- 22“49(717 s ,"}/1'_177'(*7'(‘*’}/2-,’)/1'_;'_1’ v ar)/n) U 1/}1
1=1

+ TAA!J(’YM .. 7771)
28 The notation T’ (serif) matches the expected value of the action of the anomaly operator
T, (sans-serif) given in Lemma* @ The operator T, is defined independently of the modular
properties of A.
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Conjecture F. %Ag(%, cesYn) = H;]“(q/h e Yn)-
Let p: ngn(El, 1) — Hg,n be the forgetful map, and recall the tautological

subring R*(My ) C H*(M,.). In the unstable cases we will use the convention
of Section By [5] Conjecture [E| holds numerically:

/7 P () N Ag(71,..., ) € QMod (44)
My n(E1,1)

for all tautological classes a@ € R* (Mg’n). We show the holomorphic anomaly
equation holds numerically as well.

Theorem 5. For any tautological class o € R* (Mgm),

diCz/p*(a)mAg(%,...,vn) :/P*(a)ﬂHf(%--”")'

7.3 Discussion of the anomaly equation

The holomorphic anomaly equation for abelian and K3 surfaces (see [33]) require
two modifications to Conjecture [Bl The first is the modified splitting term (the
second term on the right-hand side of ) It arises naturally from the formula
for the restriction of the reduced virtual class [-]*¢ to boundary components,
see e.g. |31} Sec.7.3].

The second modification in is the term TaAg(71, . . ., vn) which appears
for K3 surfaces in [33, Sec.0.6] in its explicit form. To explain its origin we
consider the difference in definition of the Gromov—Witten potentials C7, and
A. The class Cgk 1s defined by summing over all classes § on X which are of
degree k over the base, while for A we fix the base class [E1] and sum over the
fiber direction [E;] + d[Es]. The latter corresponds to taking the ¢°-coefficient
of the quasi-Jacobi form Cg)k. By Proposition [2| the Cs-derivative of this ¢°-
coefficient then naturally acquires an extra term which exactly matches ThA,.

To make the discussion more concrete consider a rational elliptic surface
7 : R — P! and consider the ¢%-coefficient of the class Cy k-1,

Rg(,)/lv"w’}/n) = [C;r,l(,)/l?"' ar}/n)]cn .

The class R, should roughly correspond to the classes A, for abelian and K4
for K3 surfaceﬁ Assuming Conjecture|A|land using Section we find R, is
a cycle-valued SLy(Z)-quasi-modular form. Assuming Conjecture [B| and using
Proposition |2 then yields the holomorphic anomaly equation

d

d—CbRg(fyl, ey Yn) :L*A!Rg_l(’yl, ceyYns 1, 1)

+2 Z ]*A' (Rgl (’7517 1) X C;TQ,O(’VSw 1))

9=91+g2
{1,...,n}:,5'1I_I52

n
- QZRQ(’yla cee 77i*1a7r*7r*’7i77i+17 e ,’Yn) le
i=1

+ TARg<’yla v a’Y’n)

where the operator T is defined as in but with V replaced by H?. Hence
we recover the same term as for abelian and K3 surfaces.

29The classes K4 are the analogues of Ay for K3 surfaces, see [33, Sec.1.6] for a definition.
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7.4 Proof of Theorem [5l

The quasi-modularity was proven in [5] by an effective calculation scheme
using the following ingredients: (i) an abelian vanishing equation, (ii) tautolog-
ical relations / restriction to boundary, (iii) divisor equation, (iv) degeneration
to the normal cone of an elliptic fiber. One checks that each such step is com-
patible with the holomorphic anomaly equation. For the K3 surface this was
done in detail in [33] and the abelian surface case is parallel. O

A Cohomological field theories

A.1 Introduction
A cohomological field theory (CohFT)  is a collection of classes

Qg,n(vla s 7vn) € H*(ngn’A)

satisfying certain splitting axioms with respect to the boundary divisors of M, ,
(see [19] for an introduction). Here the CohFT has coefficients in some com-
mutative Q-algebra A. Pushing forward the Gromov-Witten virtual class (after
capping with classes pulled back from the target space) is one of the main ways
of constructing cohomological field theories.

There are two important group actions on CohFTs. The first is by the au-
tomorphism group Aut(A) of the coefficient ring A. The second is Givental’s
R-matrix action, which involves the boundary geometry of ngn. Teleman [44]
proved that for semisimple CohFTs, any two CohFTs with the same values on
My 3 are related by the action of a unique R-matrix. This has the following con-
sequence relating the two actions. Suppose that €2 is a CohFT and ¢ € Aut(A) is
an automorphism fixing 29 3. Then there must exist a corresponding R-matrix
taking © to ¢(€2) under Givental’s action. For non-semisimple theories, such a
correspondence may still exist but is not guaranteed.

Now suppose that D is a derivation of A and we are interested in a formula
for D(€2). In this case, exp(tD) is an automorphism of A[[t]], so we may ask
whether Q@ and exp(tD)(2) are related by some R-matrix. If they are, then
taking the linear part of Givental’s R-matrix action gives a formula for D(().
In other words, derivations of the coefficient ring correspond sometimes to a
linearization of the R-matrix action.

In this appendix we will apply this perspective to the holomorphic anomaly
equations conjectured in this paper. Things are more difficult than in the dis-
cussion above because the m-relative Gromov-Witten generating series C7 dis-

cussed in this paper is not quite a CohFT (as it takes values in H,(M, ., (B,k)),
not in H*(M,,)). In Section we address this issue by defining weak B-
valued field theories, and then in Section we define an (infinitesimal) R-
matrix action on these theories. In Section we describe how our conjectured
holomorphic anomaly equations can be expressed via a function from the Jacobi
Lie algebra to the space of R-matrices satisfying a cocycle condition.
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A.2 Weak B-valued field theories

Let B be a non-singular projective variety. For convenience, let H = H*(B, Q).
Let V be a finitely generated H-module with a perfecﬂ pairing of H-modules
n:V xV — H and a distinguished element 1 € V. Let A be a commutative
Q-algebra. Then a weak B-valued field theorﬂ Q on (V,n,1) with coefficients
in A is a collection of maps

Qf, VO = H (Mg, (B,k)® A

(all tensor products taken over Q unless otherwise stated) defined for all g,n > 0
and k € Hy(B,Z) with 29 — 2+ n > 0 or k > 0, satisfying the following four
conditions:

(i) Each map Q;,n is H™-equivariant, where the i-th copy of H acts on the

i-th factor of V®" and by pulling back classes to M, (B, k) using the
evaluation map at the i-th marked point.

(ii) Each map Q;n is S,-equivariant, where S,, acts by pegluting the factors
of V®™ and permuting the labels of marked points in M ,,(B, k).

(iii) For any classes v,w € V,
ngg(l,v,w) = n(v,w)

under the isomorphism H, (M 3(B,0)) ® A~ H ® A.

For the fourth condition, we will need two further definitions. First, define
the quantum product * on V ® A by the property

9873(717 v,w) = n(u* v, w).

Second, suppose that ¢ : My ,41 — My ,42 is defined by replacing the marked
point py,41 by arational bubble containing two marked points py+1, Pny2. Let F'
be the fiber product of this map and the forgetful map M ,,42(B,k) = Mg n42.
One connected component of F' is naturally isomorphic to M ,+1(B, k). Given
any class a € H.(Mg,+2(B, k), let t!a € H (Mg ,41(B,k)) be the restriction
of t!a to this component. Then our fourth condition is:

(iv) For any g,n,k, and vy,...,v,40,
ﬁQk _ Qk
QY a1, Ung2) = Qp (V15 Uy Ungt * Unga).

It is straightforward to check that the w-relative Gromov-Witten generat-
ing series C;r,k discussed in this paper forms a weak B-valued field theory on
(H*(X,Q),n,1) with coefficients in Q[[q%,d], where the pairing is given by
n(a, B) := m(af). If we assume Conjecturethen we may take the coefficient
ring A to be the algebra QJac[A~1/2].

30 By Poincaré duality of B the pairing 7 is perfect if and only if the Q-valued pairing fB n
is perfect.

31 The word “weak” in this name refers to the fact that we only use a single boundary
divisor in condition (iv) of the definition. The analogous condition in the definition of a
cohomological field theory uses all boundary divisors of Mg,n.
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A.3 Matrix actions

In this section, we define a matrix action on weak B-valued field theories that
should be viewed as an infinitesimal analogue of Givental’s R-matrix action on
cohomological field theories. Fix the data (V,7,1) and the coefficient ring A as
before. Let R(V,n) be the (associative) algebra of formal Laurent series

M= ... +M_ 1z7' +My+ Mz+ ...,

where M; is an element of V ®g V for ¢ > 0 and an element of End(V) =
Homp (V,V) for ¢ < 0 (and vanishes for all ¢ sufficiently negative). The multi-
plication on R(V,n) is defined by contraction by the pairing n : V @y V — H
along with the homomorphism

V &y V — End(V)

defined by (a ® b)(v) = n(b,v)a.
Let M be an element of R(V,n) ® A satisfying the following two conditions:

(a) Let My € V @y V][z]] ® A be the part of M with nonnegative powers of
z. Then we require that

M (z) + M (—z) =0,
where M is defined by interchanging the two copies of V in V @y V.
(b) The principal part of M is of the form
M — My =myz71,

where v € V ® A and m,, € End(V) ® A is the operator of quantum
multiplication by v.

Given a weak B-valued theory €2 on the above data, we define new maps

(ruQ), :VE" = H (M, (B,k) ® A

by
(TMQ)Z,n(,Ula s avn)
1
= — §L*A!§2571)n+2(01, ey Uy E)
1 CoAl Kk 1 k 2
T2 Z JsAA (Qgi,lslm(vswg( ) gﬂgi,\sm(vsﬁ( ))>
9g=91+92
{1,...,7’7,}:31\_152
k=k1+ka

n
k
JrE Qg (1,0 vimg, Myvi, vigr, -, 0p)
i=1
k
7p*Qg,n+1(vla <oy Un, ZM1)7

where & is any lift of

M (2) + ML()
z+ 2

€e(VerV)z oA
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to (V ®q V)[[#,7']] @ A, we are using notation as in Conjecture [B| and all z
variables should be replaced by capping with the corresponding 1 classes.

We make some comments on 7,,€2:

1) If Q is a weak B-valued field theory with coefficients in A, then Q+t-73,Q
is a weak B-valued field theory with coefficients in A[t]/t2.

2) Our main holomorphic anomaly equation, Conjecture |B| can be restated
as saying that

T,C" = 7"72(1®1)zcﬂ7

where T, is the derivation defined in Section on the coeflicient ring A =
QJac[A~1/2].

3) If M = m, 2! for some v € V® A, then M, = 0 and the definition above
simplifies to

[(—" Q);”(Uh ey Un) = —p*Q;,n_,'_l(’Ul, ce s Un, V).
Then the divisor equation says that

DyC™ =1y s1C™, DAC™ =1_p, ,1C".

A.4 The derivation-matrix correspondence

The derivations T4, Dy, Dy on QJac generate the Jacobi Lie algebra. We have
seen above that the action of each of these derivations on C™ is given by some
matrix action rps. The following general result extends this to the entire Jacobi
Lie algebra.

Proposition 10. Let Q2 be a weak B-valued theory on (V,n,1) with coefficients
in A. Suppose that Dy, Dy are Q-linear derivations of A and My, Ms € R(V,n)®
A satisfy the conditions (a), (b) used to define rpr, Q,ra,Q above. If

DlQ = TMiQ
fori1=1,2, then
[D1, D2]§2 = (a1, My 4Dy (M) — Do (1) S2-

Sketch of proof. We can compute D1 Do) = D11y, Q2 by applying the derivation
D to the definition of 77,2, then replacing D2 in the result with rpy, €,
and finally expanding ras, € using its definition. Repeating this procedure for
D5 D4§2 and taking the difference, most terms cancel. The non-canceling terms
come from several different sources (applying D; to the coefficients of M;; M
and M> not necessarily commuting; p*¢); # 1;; Mo 2(B,0) being unstable) and
sum to the claimed matrix action. O

Assuming Conjecture [Bland applying this result to C™, we have the following
corollary:

Corollary* 3. Let J be the Jacobi Lie algebra of derivations of QJac generated
by Ty, Dq, Dy. Then there exists a function

f: =RV, QJac[A‘l/g]

such that
DC™ = ’I“f(D)C7T
for all D € J.
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It is straightforward to compute the function f above from the initial values,
the commutator formulas in , and the formula in Proposition

f(T) =—2(1®1)z f(T)=0@1-1®\)
f(Dy) = —mwz ! f(Dy) = —myz"! (45)
(3T D) =W ©1-10W) (10D = mren. 0™

Lemma*s E and |§| can be recovered from the values of f(—3[T4, D,y]) and
f(Tx). The fact that the function f satisfies the Lie algebra cocycle condition

F([A, B]) = [f(A), f(B)] + A(f(B)) — B(f(4))

can be viewed as a check on Conjecture [B]

B K3 fibrations

B.1 Definition

The second cohomology of a non-singular projective K3 surface S is a rank 22
lattice with intersection form

H*(S,2)2UaUaU & Eg(—1) @ Eg(—1)
where U = ((1) (1)) is the hyperbolic lattice. Consider a primitive embedding
A C H*(S,Z)

of signature (1,7 — 1) and let vq,...,v, € A be an integral basis.
Let X be a non-singular projective variety with line bundles

Ly,...,L, - X
A A-polarized K3 fibration is a flat morphism
m: X — B

with connected fibers satisfying the following propertieﬂ
(i) The smooth fibers X¢, ¢ € B of m are A-polarized K3 surfaces via
vi = Li|x,.
(ii) There exists a A € A which restricts to a quasi-polarization on all smooth
fibers of 7 simultaneously.

Given a curve class k € Hy(B,Z) and classes v1,...,7, € H*(X) we define
the m-relative Gromov—Witten potential

C;r,k('yla v 7'771) = Z Qflﬂ te 'Q£T'6W* ([Mg,n(X; 6)] v H eVzK (71)) .

T B=k i=1

32We refer to [22] for the definition of a A-polarized K3 surface.
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where 7 : M, (X, 8) = Mg, (B,k) is the morphism induced by .

Problem. Find a ring of quasi-modular objects R C Q[[qfl, ..., qF1]] (depend-
ing only on A) such that for all g,k and ~1,...,7, we have

Cok(V1s-++57n) € Hi(My (B, k) @ R.

By quasi-modular objects we mean here functions of ¢1,...,q, which have
modular properties after adding a dependence on non-holomorphic parameters.
We moreover ask the derivative along the non-holomorphic parameters to induce
a derivation on R. We expect the classes Cq k to be govenered by a holomorphic
anomaly equation taking a shape similar to Conjecture [B] We discuss a basic
example in the next Section.

B.2 An example

The STU model is a particular non-singular projective Calabi—Yau threefold X
which admits a K3 fibration
7: X > P!

polarized by the hyperbolic lattice U via line bundles L;,L, — X. Every
smooth fiber X¢ of m (£ € P') is an elliptic K3 surface with section. The line
bundles L; restrict to

Lilx,=F, La|x.,=S+F

where S, F' € H?(X¢,Z) are the section and fiber class respectively.
By [22, Prop.5] we have the following basic evaluation of the w-relative po-
tential of X:

Ey(q1)Es(q1)  Ealg2)
A(q) J(q1) — j(g2)

where Ey = 1+ O(q) are the Eisenstein series and j(q) = ¢~ + O(1) is the
j-function, and the expansion on the right-hand side is taken in the region
lg1] < |g2|. It is hence plausible for R to be the ring (of Laurent expansions
in the region |g1| < |g2|) of meromorphic functions of ¢1,¢e which are quasi-
modular in each variable and have poles only at ¢; = g2 and ¢; = 0 for ¢ € {1, 2}.
The modularity in each variable on the right-hand side of is in agreement
with the expected holomorphic anomaly equation.

(46)

/CO,O(L27L27L2) =2
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