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Abstract

Let S be a K3 surface. We study the reduced Donaldson-Thomas theory of the cap
(S × P1)/S∞ by a second cosection argument. We obtain four main results:
(i) A multiple cover formula for the rank 1 Donaldson-Thomas theory of S×E, leading
to a complete solution of this theory. (ii) Evaluation of the wall-crossing term in Nes-
terov’s quasimap wall-crossing between the punctual Hilbert schemes and Donaldson-
Thomas theory of S × Curve. (iii) A multiple cover formula for the genus 0 Gromov-
Witten theory of punctual Hilbert schemes. (iv) Explicit evaluations of virtual Euler
numbers of Quot schemes of stable sheaves on K3 surfaces.

1 Introduction

1.1 Overview

Let S be a K3 surface. In this paper we consider three different types of counting theories:

• Gromov-Witten theory of moduli spaces of stable sheaves on S,

• Donaldson-Thomas theory of S × E, where E is an elliptic curve,

• Virtual Euler characteristics of Quot schemes of stable sheaves.

As usual for K3 geometries, in all three theories the standard virtual fundamental classes
of the moduli spaces vanish. Instead the counting theories are defined by a reduced virtual
class. This deviation from the standard theory leads to surprising additional structure of
the invariants. Two of them are taken up in this work. First, one expects a multiple cover
formula that expresses counts in imprimitive (curve) classes in terms of those for primitive
classes [13, 16, 41, 33, 27]. In this paper we prove such multiple cover formulas for the genus
0 Gromov-Witten theory of the punctual Hilbert schemes and the rank 1 Donaldson-Thomas
theory of S×E. In particular, together with the results of [34] the latter determines all rank
1 reduced Donaldson-Thomas invariants of the (non-strict) Calabi-Yau threefold S×E. The
second structural result concerns wall-crossing formulas, where due to ε-calculus [35, 32], one
expects the vanishing of almost all wall-crossing contributions. We will consider the case
of Nesterov’s quasimap wall-crossing between moduli spaces of sheaves on K3 surfaces, in
particular the punctual Hilbert schemes, and Donaldson-Thomas theory. Nesterov shows
that these theories are related by a single wall-crossing term. We prove that this single term
is precisely the virtual Euler number of the Quot scheme. We then use this connection to
determine these virtual Euler numbers explicitly. The outcome is an intimate connection
between all three counting theories above.

1.2 Three theories

1.2.1 Punctual Hilbert schemes

For the first geometry, consider the Hilbert scheme S[n] of n points on the K3 surface S.
There exists a canonical isomorphism

H2(S[n],Z) ∼= H2(S,Z)⊕ ZA
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where A is the extremal curve of the Hilbert-Chow morphism S[n] → Symn(S), [26, Sec.1.2].
Let β ∈ H2(S,Z) be an effective curve class, and let ME(S[n], β + mA) be the moduli

space of (unmarked) degree β + mA stable maps from nodal degenerations of the elliptic
curve E to S[n], see [33, 24, 39] for details. The moduli space is of reduced1 virtual dimension
0. We define the Gromov-Witten count of elliptic curves in S[n] of class β +mA with fixed
j-invariant by

GWS[n]

E,β,m =

∫
[ME(S[n],β+mA)]vir

1. (1)

The invariant GWS[n]

E,β,m is related to the actual enumerative count of elliptic curves with
fixed j-invariant by a (conjectural) genus 0 correction term, see [24].

1.2.2 S × E

In this second geometry we consider the Hilbert scheme of curves in S × E:

Hilbm(S × E, (β, n)) = {Z ⊂ S × E | ch3(OZ) = m, [Z] = (β, n)},

where we use the identification given by the Künneth decomposition

H2(S × E,Z) ∼= H2(S,Z)⊕ ZE.

The elliptic curve (viewed as a group) acts on the Hilbert scheme by translation. The stack
quotient Hilbm(S × E, (β, n))/E is of reduced virtual dimension 0 (in fact, an étale cover
carries a symmetric perfect obstruction theory [28]), so we can define:

DTS×Em,(β,n) =

∫
[Hilbm(S×E,(β,n))/E]vir

1.

The number DTn,β,m ∈ Q is the Donaldson-Thomas count of curves in S × E in class
(β, n[P1]) up to translation.

1.2.3 Quot schemes

Out third geometries are the Quot schemes. Let F ∈ Coh(S) be a coherent sheaf of positive
rank which is Gieseker stable with respect to some polarization. We consider the Quot
scheme

Quot(F, u) = {F � Q | v(Q) = u}

where v(Q) := ch(Q)
√

tdS is the Mukai vector. The moduli space has a reduced perfect
obstruction theory with virtual tangent bundle T vir = RHomS(K,Q) +O, see Section 3.2.
The virtual Euler characteristic of the moduli space is defined after Fantechi and Göttsche
[6] to be:

evir(Quot(F, u)) =

∫
[Quot(F,u)]vir

cvd(T
vir)

where vd = rk(T vir) is the virtual dimension. If F is the structure sheaf these Euler char-
acteristics were studied by Oprea and Pandharipande in [36] and are related to the Kawai-
Yoshioka formula [14]. If F = Iη is the ideal sheaf of a length n subscheme η ∈ S[n], and
u = (0, β,m) we write

Qn,(β,m) := evir (Quot(Iη, (0, β,m))) .

1We will denote the reduced virtual fundamental classes in this paper by [−]vir. The (almost always
vanishing) ordinary virtual class associated to the standard perfect obstruction theory will be denoted by
[−]std.
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1.2.4 Wall-crossing

Denis Nesterov in [22, 23] uses quasimaps to prove that

DTS×Em,(β,n) = GWS[n]

E,β,m + (Wall-crossing correction),

where the wall-crossing term is the contribution from the extremal component in the relative
Donaldson-Thomas theory of S×P1/S∞. Our first main result is to make this wall-crossing
term more explicit and relate it to the Quot scheme.

Theorem 1.1.

DTS×Em,(β,n) = GWS[n]

E,β,m − χ(S[n])
∑

r|(β,m)

1

r
(−1)mQn, 1r (β,m)

Our second result is a complete evaluation of the wall-crossing term:

Theorem 1.2. The invariant Qn,(β,m) only depends on the square β ·β = 2h−2. Moreover,
if we write Qn,h,m := Qn,(β,m) for this value, we have

∑
h≥0

∑
m∈Z

Qn,h,mp
mqh−1 =

G(p, q)n

Θ(p, q)2∆(q)

where we let

Θ(p, q) = (p1/2 − p−1/2)
∏
m≥1

(1− pqm)(1− p−1qm)

(1− qm)2

∆(τ) = q
∏
n≥1

(1− qn)24

and G(p, q) = −Θ(p, q)2
(
p d
dp

)2

log(Θ(p, q)).

Remark 1.1. The case n = 0 has been obtained previously in [36, Thm 21].

Remark 1.2. Let βh ∈ Pic(S) be a primitive effective class of square 2h − 2. Consider the
generating series

DTn(p, q) =
∑
h≥0

∑
m∈Z

DTS×Em,(βh,n
qh−1(−p)m

Hn(p, q) =
∑
h≥0

∑
m∈Z

GWS[n]

E,βh+mAq
h−1(−p)m

(2)

The following evaluation was proven in [34]:∑
n≥0

DTn(p, q)q̃n−1 = − 1

χ10(p, q, q̃)
(3)

where χ10 is the Igusa cusp form (as in [33, Eqn. (12)]). We obtain the complete evaluation∑
n≥0

Hn(p, q)q̃h−1 = − 1

χ10(p, q, q̃)
+

1

Θ2∆

1

q̃

∏
n≥1

1

(1− (q̃G)n)24

which was conjectured in [33, Conj.A].
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1.3 Multiple cover formula: S × E

The main tool we will employ in this paper is a second-cosection argument for the Donaldson-
Thomas theory of the cap (S × P1)/S∞. It will also imply the following multiple cover
formula, conjectured on the Gromov-Witten side in [33, Conj. B].

Define the (Fourier) coefficients of the Igusa cusp form by

c(h, n,m) :=

[
1

χ10(p, q, q̃)

]
qhq̃npm

.

By the evaluation (3) it is given up to a (confusing) index shift by the Donaldson-Thomas
theory of S × E for a primitive class βh of square 2h− 2,

DTS×Em,(βh,n) = (−1)m+1c(h− 1, n− 1,m)

Theorem 1.3. For any effective class β ∈ Pic(S),

DTS×Em,(β,n) = (−1)m+1
∑

r|(m,β)

1

r
c

(
1

2
(β/r)2, n− 1, m/r

)

1.4 Multiple cover formula: Hilb

We consider Gromov-Witten invariants of the Hilbert scheme S[n] more generally. For classes
γ1, . . . , γN ∈ H∗(S[n]) and a tautological class α ∈ H∗(Mg,N ) they are defined by〈

α; γ1, . . . γN
〉S[n]

g,β+mA
=

∫
[Mg,n(S[n],β+mA)]

π∗(α)
∏
i

ev∗i (γi).

where the integral is over the reduced virtual class and π is the forgetful morphism to the
moduli space Mg,N of stable curves. A general multiple cover formula for these counts
was conjectured in [27, Conj.B]. We state an equivalent special case of the conjecture here:
(The special case is equivalent to the general case by the deformation theory of hyperkähler
varieties, see [27, Lemma.3].) For every divisor r|β let Sr be a K3 surface and let

ϕr : H2(S,R)→ H2(Sr,R)

be a real isometry such that ϕr(β/r) ∈ H2(Sr,Z) is a primitive effective curve class. We
extend ϕr to the full cohomology lattice by ϕr(p) = p and ϕr(1) = 1, where p ∈ H4(S,Z) is
the class of a point. By acting factorwise in the Nakajima operators, the isometry ϕr then
naturally induces an isomorphism on the cohomology of the Hilbert schemes (see (28) below
for details):

ϕr : H∗(S[n])→ H∗(S[n]
r ).

Conjecture 1.3. We have〈
α; γ1, . . . γN

〉S[n]

g,β+mA
=

∑
r|(β,m)

r3g−3+N−deg(α)(−1)m+m
r

〈
α;ϕr(γ1), . . . ϕr(γN )

〉S[n]

g,ϕr( βr )+m
r A
.

Our main result here is the following:

Theorem 1.4. Conjecture 1.3 holds for g = 0 and N ≤ 3.

In particular, the theorem expresses the structure constants of the reduced quantum
cohomology of S[n] for arbitrary degree in terms of those for primitive degree. Moreover,
the counts GWE

E,β,m in (1) can be computed in terms of genus 0 invariants (by degenerating
E), and so Theorem 1.4 also implies a multiple cover formula for these types of invariants.
Since the Gromov-Witten theory of S[n] vanishes for g > 1 if n ≥ 3 (and for g > 2 if n = 2)
by dimension reasons, this proves a large chunk of the general conjecture.

Theorem 1.4 also gives a new proof of the classical Yau-Zaslow formula governing genus
0 counts on K3 surfaces. The previous proofs given in [16] and [41] both relied on the
Gromov-Witten/Noether-Lefschetz correspondence while ours does not.
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1.5 Higher rank

Nesterov’s wall-crossing also applies to moduli spaces of higher rank sheaves. Consider the
lattice Λ = H∗(S,Z) endowed with the Mukai pairing

(x · y) := −
∫
S

x∨y,

where, if we decompose an element x ∈ Λ according to degree as (ρ,D, n), we have written
x∨ = (ρ,−D,n). Let M(v) be a moduli space of Gieseker stable sheaves F on S of positive
rank and Mukai vector v(F ) = ch(F )

√
tdS = v. We assume that stability and semi-stability

agrees for sheaves in class v, so that M(v) is proper. Assume also that there exists an
algebraic class y ∈ Kalg(S) such that v · v(y) = 1, which implies that M(v) is fine.2 We
refer to [11, Sec.6] for the construction and the properties of M(v). By work of Mukai there
exists a canonical isomorphism (see Section 2):

θ : (v⊥)∨
∼=−−−→ H2(M(v),Z).

For w′ ∈ H2(M(v),Z) we define parallel to before:

GW
M(v)
E,w′ =

∫
[ME(M(v),w′)]vir

1

Following [22, Section 3], let also Mv,w(S×E) be the moduli space parametrizing torsion
free sheaves G of fixed determinant on S ×E whose restriction to the generic fiber over the
elliptic curve is Gieseker-stable, and which have Mukai vector

ch(G)
√

tdS = v + w · ω.

Here ω ∈ H2(E,Z) is the point class and we have suppressed pullbacks by the projections
to S and E. We assume that w 6= 0 and define the counts:

DTS×E(v,w) =

∫
[M(v,w)(S×E)/E]vir

1.

Theorem 1.5. Assume that w · v(y) = 0. For any fixed F ∈M(v) we have that

DTS×E(v,w) = GW
M(v)
E,w′ − χ(S[n])

∑
r|w

1

r
(−1)w·vevir(Quot(F, ur))

where

• w′ = −〈w,−〉 : v⊥ → Z is the homology class induced by w,

• ur = −w/r − srv for the unique integer sr ∈ Z such that 0 ≤ rk(ur) ≤ rk(v)− 1.

Because v ·v(y) = 1, the condition w ·v(y) = 0 can always be achieved by replacing w by
w + `v for some ` ∈ Z. Since the stability condition on S × E is invariant under tensoring
by line bundles pulled back from E, DTS×E(v,w) is invariant under this replacement.

1.6 Open questions

Let S be a smooth projective surface with H0(S,O(−KS)) 6= 0. Let F ∈ Coh(S) be a
Gieseker stable sheaf (with respect to some polarization). Then the Quot schemes Quot(F, u)
carry a perfect obstruction theory, see Section 3.1.

Problem 1.4. Compute the virtual Euler number evir(Quot(F, u)).

2We expect that this condition can be removed eventually.
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Even for F the ideal sheaf of a length n subscheme this question needs (to the best of the
authors knowledge) further investigation. In case n = 0, that is quotients of the structure
sheaf, we refer to [36] for some results. More generally, we can ask for the computation of
the wall-crossing corrections in Nesterov’s wall-crossing formula [22].

For K3 surfaces in upcoming work [25] the higher rank Donaldson-Thomas theory of
S×E is related to the rank 1 theory by derived auto-equivalences and wall-crossing. It will
show that DTS×E(v,w) as we defined it above only depends on the pairings v · v, v ·w w ·w and

the divisibility div(v ∧ w). Moreover, by deformation theory of hyperkähler varieties (the

global Torelli theorem) the counts GW
M(v)
E,w′ also only depends on the same data. Hence by

Theorem 1.5 one finds the following:

Theorem 1.6. (Dependent on [25]) Let F be a Gieseker stable sheaf of positive rank and
primitive Mukai vector v = v(F ) on a K3 surface S. Assume there exists a class y ∈ Kalg(S)
such that v · y = 1, and that Quot(F, u) is non-empty. Then the virtual Euler characteristic
evir(Quot(F, u)) only depends on the following pairings in the Mukai lattice:

v · v, u · v, u · u.

Together with Theorem 1.2 this determines the Euler numbers evir(Quot(F, u)) (since
any such pair (v, w) is isometric to a pair ((1, 0, 1 − n), (0, β,m)). However, it would be
useful to have a more direct way to prove Theorem 1.6, since this would give another way
to relate higher rank DT theory of S × E to rank 1. The natural pathway to proving the
theorem is to apply an auto-equivalence which identifies Quot(F, u) with a Quot scheme
of a rank 1 object in the derived category, where the quotients are taken in the heart of
some Bridgeland stability conditions. The theorem would then boil down to showing that
the virtual Euler number of the Quot scheme stays invariant under change of hearts (the
invariance under changing F is provided already by deformation equivalence).

The paper [33] proposed 8 different conjectures related to counting in K3 geometries.
They were labeled

A, B, C1, C2, D, E, F, G.

This paper here in combination with [22, 23, 34] tackles Conjectures A and B of [33]. (Strictly
speaking, we obtain Conjecture B only for DT invariants.) The same results also immedi-
ately imply Conjecture G. Conjecture C1 was proven by T. Buelles [4]. The most difficult
of the conjectures appear to be Conjectures C2 (multiple cover formula for Gromov-Witten
theory of K3 surfaces, divisibility 2 solved in [1]), and Conjecture D (GW/DT correspon-
dence for imprimitive classes). The remaining conjectures concern the matrix of quantum
multiplication with a divisor on S[n]. Conjecture E here was partially resolved in the work
[12], which provided an explicit candidate for the matrix. This makes Conjecture F now the
most accessible candidate on the list.

1.7 Plan of the paper

In Section 2 we discuss our conventions for degree and prove a few basic lemmas about it. In
Section 3 we explain a basic universality result for descendent integrals over nested Hilbert
schemes (based on work of Gholampour and Thomas). We then express the virtual numbers
of the Quot schemes Quot(F, u) in rank 1 as tautological integrals over the Hilbert scheme
and use a degeneration argument to show that their generating series is of a certain form.
Section 4 concern the Donaldson-Thomas theory of the cap S × P1/S∞ and is the heart of
the paper. We analyze the obstruction theory on the extremal component of the fixed locus
by proving both vanishing of the contribution of most components and relate the remaining
terms to the Quot integrals. The multiple cover formulas are taken up in Section 5. In
Section 6 we put everything together and prove the theorems announced above.
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2 Definitions of degree

2.1 Mukai vector on K3 surfaces

Let S be a K3 surface and consider the lattice Λ = H∗(S,Z) endowed with the Mukai pairing

(x · y) := −
∫
S

x∨y,

where, if we decompose an element x ∈ Λ according to degree as (ρ,D, n), we have written
x∨ = (ρ,−D,n). We will also write

rk(x) = ρ, c1(x) = D, v2(x) = n.

Given a sheaf or complex E on S the Mukai vector of E is defined by

v(E) =
√

tdS · ch(E) ∈ Λ.

The relationship to the Euler characteristic is χ(E,F ) = −v(E) · v(F ).

2.2 Mukai vector on S × C

Let C be a smooth curve. We naturally decompose the even cohomology

H2∗(S × C,Z) = H∗(S,Z)1C ⊕H∗(S,Z)ω

where 1C , ω ∈ H∗(C) is the unit and the class of a point respectively. We denote the Mukai
vector of a sheaf F on S × C by

ch(F )
√

tdS = v(F ) + w(F )ω = (v(F ), w(F )).

2.3 Quasimap degree

Let M(v) be a proper moduli space of Gieseker-stable sheaves in Mukai vector v and let
M(v) ⊂ Cohr(v) be the rigidified stack of coherent sheaves of Mukai vector v in which it
M(v) is embedded as an open substack. We assume that we are given an algebraic class
y ∈ Kalg(S) with v · v(y) = 1. The class y defines canonically a universal family G over
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Cohr(v), which has the following property3: If we define the morphism

λ : Kalg(S)→ Pic(Cohr(v)), λ(u) = detπ∗(G⊗ π∗S(u))

where π, πS are the projections of Cohr(v)× S onto the factors, then

λ(−y∨) = O. (4)

From a hyperkähler point of view the most natural way to construct cohomology classes
on the stack Cohr(v) is given by the Mukai morphism

θ : v⊥ → H2(Cohr(v)), x 7→
[
π∗

(
ch(G)

√
tdS · x∨

)]
1
,

where [−]k stands for taking the complex degree k component of a cohomology class, i.e. the
component in H2k. By restricting the image to M(v) we obtain an isomorphism of lattices:

θ : v⊥
∼=−→ H2(M(v),Z),

where the right hand side carries the Beauville-Bogomolov-Fujiki form, see [11, Sec.6.2].
We define the degree of a map f : C → Cohr(v) to be the morphism

deg(f) : v⊥ → Z

given by deg(f)(y) =
∫
C
f∗(θ(y)).

Lemma 2.1. Let f : C → Cohr(v) be a quasimap (see [22, Sec.3.1]) and let F be the
associated sheaf on S × C determined by the pullback of the universal family G.

Then v(F ) = v and the class w(F ) is determined by

deg(f) = −〈w(F ),−〉 ∈ Hom(v⊥,Z), (5)

where 〈x,−〉 is the operator of pairing with x in the Mukai lattice, and

w(F ) · v(y) = 0.

Proof. By restricting F to a fiber over C, we find v(F ) = v. Let x ∈ v⊥. Then

deg(f)(x) =

∫
S×C

ch(F )π∗S(x∨)
√

tdS

=

∫
S×C

(v(F ) + w(F )ω)π∗S(x∨)

=

∫
S

w(F )x∨

= −(w(F ) · x).

This shows (5). Similarly, by (4) we have

0 =

∫
C

c1(f∗λ(−y∨)) =

∫
S×C

ch(F ⊗ π∗S(−y∨))tdS =

∫
S

w(F ) · v(−y∨) = w(F ) · v(y).

Since v(y) · v = 1, we see that w(F ) is determined by deg(f) and w(F ) · v(y) = 0.

Remark 2.2. The divisibility div(α) of a vector α ∈ (v⊥)∨ is the largest positive integer k
such that α/k ∈ (v⊥)∨. Since H∗(S,Z) ∼= v⊥ ⊕ Zv(y) we have div(deg(f)) = div(w(F )).

3Let Coh(v) be the stack of coherent sheaves on S and consider the Gm-gerbe Coh(v) → Cohr(v). Let
F be the universal sheaf on Coh(v) × S (which always exists and is canonical) and for u ∈ Kalg(S) let
λF(u) = detπ∗(F⊗π∗S(u)) ∈ Pic(Coh(S)). Then F⊗λF(−y∨)−1 has Gm-weight zero and hence descends as
the universal sheaf G to Cohr(v)× S.

There is a subtle point: The construction of the line bundles λF(u) and the universal sheaves G require
a resolution of π∗(F ⊗ π∗S(u)) which exists a priori only over finite type subschemes. Hence G can be
defined only over finite type open substacks of Cohr(v), therefore globally only in an inductive way. Since
the quasimaps we consider have fixed degree, they can be shown to map to a sufficiently large finite type
substack of Cohr(v) [22]. Hence for our purposes we may assume that G and λ(u) are globally defined. We
refer to [22] for a discussion on this point and the exact conventions that we follow.
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3 Quot scheme integrals

3.1 Perfect obstruction theory

Let S be a smooth projective surface and let F ∈ Coh(S) be a coherent sheaf which is
of positive rank and Gieseker stable with respect to some ample class. Consider the Quot
scheme Quot(F ) and let π, πS be the projections of Quot(F )× S to the factors. We denote
the universal quotient sequence on Quot(F )× S by

0→ K → π∗S(F )→ Q→ 0.

For sheaves (or complexes, or K-theory classes) F1,F2 on Quot(F )× S we write

RHomS(F1,F2) = Rπ∗RHom(F1,F2).

Lemma 3.1. Assume that H0(O(−KS)) 6= 0. Then the Quot scheme Quot(F ) admits a
(canonical) perfect obstruction theory with virtual tangent bundle T std = RHomS(K,Q).

Proof. (Sketch) Consider a short exact sequence 0→ K → F → Q→ 0 defining a point in
Quot(F ), where Q 6= F , and apply Hom(−, Q). This gives

Ext1(K,Q)→ Ext2(Q,Q)→ Ext2(F,Q)→ Ext2(K,Q)→ 0. (6)

Given a morphism s : Q→ F we have a surjection F � Q� Im(s) ⊂ F , which by stability
of F shows that Im(s) = 0, so s = 0. Hence Hom(Q,F ) = 0. By our assumption on S there
exists an effective divisor D ∈ |−KS |. Applying Hom(−, F ) to 0→ Q→ Q(D)→ Q|D → 0
implies then that Hom(Q(D), F ) = 0. We conclude that Ext2(F,Q) = Hom(Q,F ⊗KS)∨ =
Hom(Q(D), F )∨ vanishes. The existence then follows by standard methods, e.g. [19, 36].

Remark 3.2. The same argument works for any surface S if F is the ideal sheaf of a zero-
dimensional subscheme.

3.2 K3 surfaces

From now on let S be a K3 surface. Let Quot(F, u) be the Quot scheme parametrizing
quotients F → Q with Mukai vector v(Q) = u. We always assume that u is chosen such
that the Quot scheme is non-empty and that u /∈ {v(F ), 0}.

Lemma 3.3. The canonical perfect obstruction theory on Quot(F, u) admits a surjective
cosection h1(T std)→ O.

Proof. We compose the first map in (6) with the trace map

H1(RHom(K,Q)) = Ext1(K,Q)→ Ext2(Q,Q)
tr−→ H2(S,OS) = O.

Since the trace map is Serre dual to the inclusion H0(S,OS) ↪→ Hom(Q,Q), it is surjective.

Hence the standard virtual class [Quot(F, u)]std which is of dimension χ(K,Q) = u·(u−v)
vanishes. Using co-section localization by Kiem-Li [15] we obtain a reduced virtual cycle:

[Quot(F, u)]vir ∈ Avd(Quot(F, u)).

It is associated to the (reduced) virtual tangent bundle T vir
Quot(F,u) = RHomS(K,Q) + O,

and hence of dimension vd = rk(T vir
Quot(F,u)) = u · (u− v) + 1. We write

evir(Quot(F, u)) =

∫
[Quot(F,u)]vir

cvd(T
vir
Quot(F,u))

for the virtual Euler characteristic of the moduli space in the sense of Fantechi–Göttsche [6].
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3.3 Nested Hilbert schemes

Let β ∈ NS(S) be an effective curve class and let n1, n2 ≥ 0 be integers. Consider the nested
Hilbert scheme, where we follow the notation of [9],

S
[n1,n2]
β = {I1(−D) ⊆ I2 ⊂ OS : [D] = β, length(OS/Ii) = ni.}.

There exists a natural embedding

j : S
[n1,n2]
β ↪→ S[n1] × S[n2] × P (7)

where the linear system in class β is denoted by

P = P(H0(O(β)))

Let Ii ⊂ O be the ideal sheaf of the universal subscheme Zi ⊂ S[ni] × S.

Theorem 3.1 ([9]). There exists a (reduced) perfect obstruction theory on S
[n1,n2]
β with

virtual tangent bundle

T vir

S
[n1,n2]

β

= −RHomS(I1, I1)0 −RHomS(I2, I2)0 +RHomS(I1, I2 ⊗O(β))⊗OP(1)−O

where RHomS(Ii, Ii)0 = Cone(RΓ(S,OS)→ RHomS(Ii, Ii)).
The associated virtual cycle [S

[n1,n2]
β ]vir is of dimension n1 + n2 + β2/2 + 1 and satisfies

j∗[S
[n1,n2]
β ]vir

= cn1+n2

(
RΓ(O(β))⊗OP(1)−RHomS(I1, I2 ⊗O(β))⊗OP(1)

)
· c1(OP1(1))h

1(O(β))

Proof. The first claim follows directly from Theorem 4.16 in [9], which also shows the second
claim whenever H1(O(β)) = 0 (we can take A = 0). In the general case, where H1(O(β))
may be non-zero4, we apply Corollary 4.22 of [9] which gives:

j∗[S
[n1,n2]
β ]vir = cn1+n2

(RΓ(O(β))⊗OP(1)−RHomS(I1, I2 ⊗O(β))⊗OP(1)) · [Sβ ]vir (8)

where for a class γ ∈ NS(S) we write Sγ = P(H0(O(γ))) for the Hilbert scheme of curves in
class γ (which of course for a K3 surface is just the linear system). The virtual class [Sβ ]vir

in (8) is the natural one appearing in Seiberg-Witten theory and can be identified with the
first degeneracy locus of the complex RΓ(O(β)). Concretely, it is described as follows (see
also [17, Sec.2]). Choose a fixed ample divisor A ⊂ S such that H≥1(O(β + A)) = 0. Let
γ = β + [A] ∈ NS(S). There exists an embedding

Sβ → Sγ , C 7→ C +A.

Its image consists of those divisors D = {s = 0} which contain A, or equivalently, for

which the composition OS
s−→ OS(γ)→ OS(γ)|A vanishes. Globally, let D ⊂ Sγ × S be the

universal divisor and let π : Sγ ×S → Sγ be the projection. There exists a universal section
s : O → O(D) which yields the sequence O → O(D) → O(D)|Sγ×A. Pushing forward, and
using that O(D) = π∗S(O(γ))⊗OSγ (1) we find that Sβ is naturally cut out by a section of

π∗(O(D)|Sγ×A) = H0(O(β +A)|A)⊗O(1).

The associated virtual class [Sβ ]vir is the localized Euler class. Using the sequence

0→ H0(O(β))
f−→ H0(O(β +A))→ H0(O(β +A)|A)→ H1(O(β))→ 0

and that Sβ is cut out by Cokernel(f)⊗O(1) one obtains that

Svir
β = e(H1(O(β))⊗O(1)) ∩ [Sβ ].

This shows the claim.
4A basic example is an elliptic K3 surface S → P1 and β = mf where f is the fiber class. The linear

system |O(β)| is of dimension m, while χ(O(β)) = 1.
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Let Z ⊂ S[n]×S be the universal subscheme of the Hilbert scheme of points S[n]. Given
α ∈ H∗(S) we define the descendants

τS
[n]

k (α) := π∗(ch2+k(OZ)π∗S(α))

where π, πS are the projections of S[n] × S to the factors.

We consider integrals over S
[n1,n2]
β of polynomials in the pullback of the classes

τS
[n1]

k1 (α1), τS
[n2]

k2 (α2), z = c1(OP(1)), ki ≥ 0, αi ∈ H∗(S),

where the pullback is by the composition of the inclusion (7) with the projection to the
factors. By Theorem 3.1 we can reduce any such integral to an integral of such type of
classes on S[n1] × S[n2] × P. Integrating out P and using [5] one obtains:

Theorem 3.2. (Universality) Let P be a polynomial. Let αi,1, αj2 ∈ H∗(S) be homogeneous
classes and let ki,1, kj,2 ≥ 0 be integers. Then the integral∫

[
S

[n1,n2]

β

]vir P (τS
[n1]

ki,1 (αi,1), τS
[n2]

kj,2 (αj,2), z)

depends upon (S, β, αi,1, αj,2) only through the intersection pairings of the classes β, αi1 , αj2 , 1, p.

3.4 Universality

Let η ∈ S[n] be a fixed length n subscheme and let Iη ⊂ OS be its ideal sheaf. We consider
the Quot scheme Quot(Iη, u) for Mukai vector u = (0, β,m) with β ∈ NS(S) effective.

The Quot scheme Quot(Iη, u) parametrizes sequences of the form

0→ Iz(−β)→ Iη → Q→ 0

for some z ∈ S[n1], where one computes that

n1 = m+ n+ β2/2.

Hence the Quot scheme is naturally a subscheme of the nested Hilbert scheme:

Quot(Iη, (0, β,m)) = π−1
2 (η) ⊂ S[n1,n2]

β (9)

where π2 : S
[n1,n2]
β → S[n2] is the projection and n2 = n.

Lemma 3.4. We have the following comparison of virtual cycles:

[Quot(Iη, u)]vir = ι!η[S
[n1,n2]
β ]vir.

where ιη : {η} → S[n2] is the inclusion.

Proof. Let I denote the universal ideal sheaf on S[n] × S and let π : S[n] × S → S[n] be the
projection. We can identify the π-relative Quot scheme Quot(I/S[n], u) (whose fiber over a
point η ∈ S[n] is Quot(Iη, u)) with the nested Hilbert scheme:

Quot(I/S[n], u) = S
[n1,n2]
β . (10)

The left hand side carries the natural perfect obstruction theory of Lemma 3.1 taken relative
to the base S[n]. Its virtual tangent bundle is

T vir
Quot(I/S[n],u) = RHomS(K,Q) +O + Ext1

S(I, I)
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and its virtual class satisfies

ι!η[Quot(I/S[n], u)]vir = [Quot(Iη, u)]vir.

Under the identification (10) we have

K = I1(−β)⊗OP(−1), Q = I2 −K. (11)

By the first claim in Theorem 3.1 a small calculation shows that

T vir
Quot(I/S[n],u) = T vir

S
[n1,n2]

β

.

Since the virtual class depends on the perfect obstruction theory only through the K-theory
class of the virtual tangent bundle we get

[Quot(I/S[n], u)]vir = [S
[n1,n2]
β ]vir.

By Theorem 3.1, the above lemma and (11) we obtain:

evir(Quot(Iη, u)) =

∫
[Quot(F,u)]vir

cβ2+m+1 (RHomS(K,Q) +O)

=

∫
[S

[n1,n2]

β ]vir
cβ2+m+1 (RHomS(K,Q) +O)π∗2 [F ]. (12)

Applying Grothendieck-Riemann-Roch to rewrite the term e (RHomS(K,Q) +O) in de-
scendants, and applying Theorem 3.2 we conclude the following:

Proposition 3.5. The integrals Qn,(β,m) = evir(Quot(Iη, u)) only depends on β via the
square β · β = 2h− 2. We write Qn,h,m := Qn,β,m from now on.

Remark 3.6. One can be more explicit in what kind of tautological integral over S[n1] one
obtains when computing Qn,(β,m). By similar arguments as in [36] one proves:

ered(Quot(Iη, u)) = Coefftn1+n2z−1

∫
S[n1]

c(TS[n1])
ct(x

[n1] ⊗ ez)
c(x[n1] ⊗ ez)

(
1 + z

z

)h+1−n2

(z−1 + t)n2

where z, t are formal variables, x = OS(−β)−Oη, and x[n] = π∗(π
∗
S(x)⊗OZ) ∈ Kalg(S[n]) is

the tautological class associated to x. If n2 = 0, the above discussion specializes to Section
5.2 in [36]. We do not need this expression later on.

3.5 Multiplicativity

Our goal here is to prove the following structural statement for Qn,h,m. Define the series

Qn(p, q) =
∑
h≥0

∑
m∈Z

Qn,h,mq
h−1pm

Proposition 3.7. There exists power series F1 ∈ Q((p, p−1))[[q]] and F2 ∈ q−1Q((p, p−1))[[q]]
such that for any n ≥ 0 we have

Qn(p, q) = Fn1 F2.

Proof. Let S → P1 be an elliptic K3 surface with section B ⊂ S and take βh = B + hF .
Let E ⊂ S be a fixed smooth fiber over the point x ∈ P1. We apply the Li-Wu degeneration
formula [18] to the degeneration

S  S ∪E (P1 × E) ∪E . . . ∪E (P1 × E) (13)
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where there are n+ 1 copies of P1 × E and the i-th copy is glued along the divisor5 E∞ to
the divisor E0 in the (i+ 1)-th copy (for i = 1, . . . , n). Moreover, S is glued along E to E0

in the first copy. This type of degeneration plays a crucial role in [20].
Let p ∈ P1 ×E be a point disjoint from the relative divisor E0,∞ = {0,∞}×E, and let

vd,m = (0, [P1] + d[E],m). Let QuotP1×E/E0,∞
(Ip, vd,m) be the Quot scheme of the relative

pair (P1×E,E0,∞). It parametrizes quotients r∗Ip � Q where r∗ch(Q) = vd,m and r is the
canonical projection from an expanded degeneration to P1 × E along E0,∞, see [18]. Since
the support of Q meets the relative divisor E0 with multiplicity 1 there exists evaluation
morphisms ev0 : QuotP1×E/E0,∞

(Ip, vd,m) → E0. Using the obstruction theory of Lemma
3.1, the fiber

QuotP1×E/E0,∞
(Ip, vd,m)0 = ev−1

0 (0E)

is seen to have virtual tangent bundle RHomP1×E(K,Q)−O. Define the generating series:

Qp(P1 × E/E0,∞) =
∑
d≥0

∑
m∈Z

qdpmevir
(

QuotP1×E/E0,∞
(Ip, vd,m)0

)
Similarly, let QuotP1×E/E0

(OP1×E , vd,m)0 be the relative Quot scheme on P1 × E/E0

which parametrizes quotients O → Q with r∗ch(Q) = vd,m such that the restriction to the
relative fiber (OP1×E → Q)|E0

is isomorphic to OE0
→ O0. Define

Q(P1 × E/E0) =
∑
d≥0

∑
m∈Z

qdpmevir
(

QuotP1×E/E0
(OP1×E , vd,m)0

)
.

Finally, let QuotS/E(OS , (0, βh,m) parametrize quotients O � Q on the pair (S,E) with
ch(Q) = (0, βh,m). Define

Q(S/E) =
∑
h≥0

∑
m∈Z

qh−1pmevir
(

QuotS/E(OS , (0, βh,m))
)
.

Let Iη be the ideal sheaf of a length n subscheme η = x1 + . . . + xn for distinct points
xi ∈ S. We can choose a simple degeneration π : S → C over a smooth curve C together
with disjoint sections pi : C → S such that

(i) Over the point c0 ∈ C, (π−1(c0), p1(c0), . . . , pn(c0)) = (S, x1, . . . , xn)

(ii) Over the point c1 ∈ C, the fiber π−1(c1) is the surface on the right of (13), and pi(c1)
is a point on the i-th copy of P1 × E away from the relative divisors.

We then apply the Li-Wu degeneration formula to QuotS→C(I, (0, βh,m)), the Quot scheme
relative to the base C, where I is the ideal sheaf of the union ∪ipi(C). One finds that:

Qn(p, q) = Q(S/E) ·
(
Qp(P1 × E/E0,∞)

)n · Q(P1 × E/E0),

which implies the claim. (The main point is that the integrand splits nicely: If 0 → K →
Ip1,...,pn → Q → 0 is a quotient sequence on the right side of (13), and Qi,Ki are the
restriction to the i-th component (with S the 0-th component), then by applying Hom(K,−)

to the sequence 0→ Q→
∑n+1
i=0 Qi →

∑n
j=0Q|xj → 0 and using adjunction one finds that

RHom(K,Q) +O = (RHom(K0, Q0) +O) +

n+1∑
i=1

(RHom(Ki, Qi)−O). )

5We write Ez to denote the fiber over z ∈ P1 of the projection E × P1 → P1.
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4 Analysis of the cap geometry

4.1 Overview

Let S be a K3 surface and let Λ = H∗(S,Z) be the Mukai lattice, see Section 2. Let v ∈ Λ
be a primitive vector of positive rank satisfying v · v = 2n− 2. Let H be a polarization on
S and assume that the moduli space of H-Gieseker stable sheaves M(v) is proper. We also
fix a class y ∈ Kalg(S) such that y · v = 1, which implies that M(v) is fine and admits a
canonical universal family (see Section 2.3).

Consider the moduli space
Mv,w(S × P1/S∞)

parametrizing torsion-free, generically H-stable sheaves E of fixed determinant6 on the
relative geometry (S × P1, S∞) with Mukai vector v(E) = (v, w). By [22] the moduli space
is proper, and because of the existence of the class y, it is fine and admits a canonical
universal family. By Lemma 2.1 the class w satisfies

w · v(y) = 0. (14)

Let E be the universal sheaf over Mv,w(S×P1/S∞). The standard (non-reduced) perfect
obstruction theory of Mv,w(S × P1/S∞) has virtual tangent bundle

T vir = RHomS×P1(E , E)0[1]

and is of virtual dimension v2 + χ(S,OS) = 2n. The associated standard virtual class
vanishes because of the existence of a cosection [23]. By work of Kiem-Li [15] there exists a
reduced virtual class. The reduced virtual dimension is 2n+ 1.

The group C∗ acts on the base P1 with tangent weight −t at the point 0 ∈ P1, where we
let t be the trivial line bundle with C∗-action of weight 1 and set t = c1(t). We obtain an
induced action on the moduli space Mv,w(S × P1/S∞). Let

Mext ⊂Mv,w(S × P1/S∞)C
∗

(15)

be the component of the fixed locus which parametrizes sheaves on S × P1 (i.e. sheaves on
an expanded degeneration are excluded). We call Mext the extremal component.

The goal of this section is to analyze the contribution of this extremal component to the
Donaldson-Thomas invariant. We first prove that only ’single-jump’ loci contribute to the
invariants, and then relate these contributions to Quot scheme integrals. This determines
the wall-crossing term in the quasimap wall-crossing.

4.2 Virtual class

Let E ∈Mext and write
P1 = A1

∞ ∪ A1

where A1
∞,A1 is the standard affine chart around∞ and 0 respectively. Since E is generically

stable and its restriction to S∞ is stable, we have

E|S×A1
∞

= π∗S(F )

for some stable sheaf F ∈ M(v). Over 0, we identify the equivariant sheaf E|S×A1 with a
graded OS [x]-module on S,

E|S×A1 =
⊕
i≥i0

Eit
i (16)

6We refer to [22, Section 3] for the precise definition of generically H-stable and how the determinant is
fixed. Essentially, generically H-stable is the condition that the restriction of the sheaf to the generic fiber
over P1 (or in case that the sheaf is defined over a degeneration of P1, the restrictions to all generic fibers of
this degeneration) is H-stable. The sheaf E has fixed determinant if det p∗(E · π∗S(y)) ∼= O, where p is the
projection to the curve.
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for some Ei ∈ Coh(S) and i0 ∈ Z. Since E|S×A1 is finitely generated, there exists r such
that Ei0+r = Ei0+r+1 = . . . =: F . Hence our sheaf takes the form

E|S×A1 = Ei0 t
i0 ⊕Ei0+1t

i0+1 ⊕ · · · ⊕Ei0+r−1t
i0+r−1 ⊕ F ti0+r ⊕ F ti0+r+1 ⊕ F ti0+r+2 ⊕ . . . .

By the assumption that E is torsion-free, multiplication by x yields the injective morphisms

fi : Ei ↪→ Ei+1.

Thus associated to E we have the flag of subsheaves

E• = (Ei0 ⊆ Ei0+1 ⊆ Ei0+2 ⊆ . . . ⊆ Ei0+r = F ) .

The stabilization parameter r can be chosen uniformly on each connected component of
Mext (because it only depends on the Chern classes ch(Ei)). Since there are only finitely
many connected components, we hence may choose an r that is a stabilization parameter
for all sheaves E ∈Mext.

Proposition 4.1. (a) The fixed part of the restriction of T vir to Mext is given by

(
T vir|Mext

)fixed ∼= Cone

(
i0+r⊕
i=i0

RHomS(Ei, Ei)0
δ−→
i0+r−1⊕
i=i0

RHomS(Ei, Ei+1)0

)
(17)

where

RHomS(Ei, Ei)0 = Cone(RΓ(S,OS)
id−→ RHomS(Ei, Ei)) (18)

RHomS(Ei, Ei+1)0 = Cone(RΓ(S,OS)
id−→ RHomS(Ei, Ei)

fi◦(−)−−−−→ RHomS(Ei, Ei+1))
(19)

and δ is induced by the map that sends a tuple (αi)i ∈ ⊕iRHom(Ei, Ei) to (αi+1◦fi−fi◦αi)i
where fi : Ei → Ei+1 is the inclusion map.

(b) The K-theory class of the moving part of the restriction of T vir to Mext is

(
T vir|Mext

)mov
=
∑
i≥i0

∑
k≥1

(
−t−k ⊗RHomS(Ei+k − Ei+k−1, Ei)
+tk ⊗RHomS(Ei+k+1 − Ei+k, Ei)∨

)
.

Remark 4.2. Here and in what follows in this section, we will denote the sheaves on the
moduli space by its fibers over closed points. So RHomS(Ei, Ei) stands for RHomS(Ei, Ei)
where Ei is the i-th summand in the decomposition of the universal sheaf E|Mext×S×A1 under
the decomposition (16). As before we write RHomS(−,−) = π∗Hom(−,−) where π is the
projection away from S.

Remark 4.3. The right hand side of (17) is the natural perfect obstruction theory appearing
in the deformation theory of flags of sheaves E•. Indeed, assuming i0 = 0 for simplicity and
taking the long exact sequence in cohomology yields:

r−1⊕
i=0

Hom(Ei, Ei+1)/Cfi → T vir
Mext,[E]

γ−→
r⊕
i=0

Ext1(Ei, Ei)

δ−→
r−1⊕
i=0

Ext1(Ei, Ei+1)0 → ObsvirMext,[E] → . . . .

The first term parametrize deformations of the maps fi : Ei → Ei+1. The map γ sends a
deformation of the flag E• to the deformation of the individual terms Ei in the flag. Given
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a deformation of the individual terms (αi) ∈ ⊕i Ext1(Ei, Ei), its image under δ vanishes if
and only if the diagram

Ei Ei+1

Ei[1] Ei+1[1]

fi

αi αi+1

fi

commutes, hence if and only if the deformations are compatible with fi. We refer to [8] for
a discussion.

Proof. We linearize the line bundle OP1(−1) such that it has weight t over 0 ∈ P1 (and hence
weight 0 over ∞ ∈ P1). By replacing E by E(k) for appropriate k (and raising r if needed)
we can assume that

E|S×A1 = E0 ⊕ E1t
1 ⊕ · · · ⊕ Er−1t

r−1 ⊗ F tr ⊕ F tr+1 ⊕ F tr+2 ⊕ . . . .

for the restriction of the universal family to Mext.
Let ι : S → X := S × P1 be the inclusion of the fiber over 0. We argue now similarly

to [7, Prop.3.12]. The idea is to peel off one factor of Ei at a time. Concretely, define a
sequence of sheaves E(j) inductively by E(0) := E and by the short exact sequence

0→ E(j+1)(−1)→ E(j) → ι∗Ej → 0. (20)

Since the flag E• stabilizes at the r-th step, we have

E(r) = π∗S(F ).

Lemma 4.4. For any A ∈ Db(S) we have

RHomX(E(j), ι∗A) = RHomS(Ej , A) +
∑
k≥1

t−k ⊗RHomS(Ej+k − Ej+k−1, A).

Proof. Since E• stabilizes the sum on the right hand side has only finitely many non-zero
terms, so the claim is well-defined. We argue by induction. First apply RHom(−, ι∗A) to
the sequence (20), then we use adjunction with respect to ι and the well-known fact (e.g.
[10, Cor.11.4]) that for any B ∈ Db(S) we have the distinguished triangle

B(−S0)[1]→ Lι∗ι∗B → B → B(−S0)[2].

This yields:

RHomX(E(j), ι∗A) = RHomS(Ej , A)−RHomS(Ej , A)⊗ t−1 + t−1⊗RHomX(E(j+1), ι∗A)

from which the claim follows by induction.

Lemma 4.5. For any A ∈ Db(S) and j we have

RHomX(ι∗A,E
(j)) = (RHomX(E(j), ι∗A[3])⊗ t)∨.

Proof. By Serre duality we have

RHomX(ι∗A,E
(j)) = RHomX(E(j), ι∗A⊗ ωX [3])∨ = (RHomX(E(j), ι∗A[3])⊗ t)∨,

where we used that ωX |S0
= ΩP1,0 ⊗OS = t⊗OS .

Lemma 4.6.

RHomX(E(j), E(j))fixed[1] ∼= Cone

 r⊕
i=j

RHomS(Ei, Ei)
δ−→

r−1⊕
i=j

RHomS(Ei, Ei+1)

 .
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Proof. By applying RHom(E(j),−) to (20) we obtain the distinguished triangle

RHomX(E(j), ι∗Ej)→ RHomX(E(j), E(j+1)(−1))[1]→ RHomX(E(j), E(j))[1].

By Lemma 4.4 we have

RHomX(E(j), ι∗Ej)
fixed = RHomS(Ej , Ej).

For the second term we apply RHom(−, E(j+1)(−1)) to (20) and obtain the distinguished
triangle

RHomX(E(j+1), E(j+1))→ RHomX(ι∗Ej , E
(j+1)(−1))[1]→ RHomX(E(j), E(j+1)(−1))[1].

By Lemma 4.5 we have

RHomX(ι∗Ej , E
(j+1)(−1)) = RHomX(ι∗Ej(1), E(j+1))

= RHomX(ι∗Ej , E
(j+1))⊗ t

= RHomX(E(j+1), ι∗Ej [3])∨.

Taking the fixed part, using Lemma 4.4 and Serre duality on S we get

RHomX(ι∗Ej , E
(j+1)(−1))fixed[1] = RHom(Ej , Ej+1).

Taking both statements together we end up with the distinguished triangle:

RHomS(Ej , Ej)⊕RHomX(E(j+1), E(j+1))fixed

→ RHom(Ej , Ej+1)→ RHomX(E(j), E(j))fixed[1].

The last piece of information we need is that

RHomX(E(r), E(r)) = RHomS(F, π∗π
∗(F )) = HomS(F, F ).

Hence by iterating the above argument, the claim now follows by induction, see also [7, 8, 9]
for a discussion of the maps.

Lemma 4.7. In K-theory we have:

RHomX(E(j), E(j))mov[1] =
∑
i≥j

∑
k≥1

(
−t−k ⊗RHomS(Ei+k − Ei+k−1, Ei)
+tk ⊗RHomS(Ei+k+1 − Ei+k, Ei)∨

)
.

Proof. By the same argument as in Lemma 4.6 but now taking the moving part.

We complete the proof of Proposition 4.1. The first part follows from Lemma 4.6, taking
the tracefree part and arguing as in [8, Proof Thm.7.1]. The second part follows directly from
Lemma 4.7 by taking j = 0 (since the trance part RΓ(X,OX) = RΓ(S,OS) is C∗-fixed).

4.3 Second cosection

Proposition 4.8. Let N ⊂ Mext be a connected component and let s = |{i : Ei 6= Ei+1}|
be the number of non-trivial steps in the flag E•. If s ≥ 2, then the virtual class of the fixed
perfect-obstruction theory on N vanishes:

[N ]vir = 0.
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Proof. The strategy is to construct a second, linearly independent cosection of the fixed
obstruction theory of the component N . Since there is then a second trivial piece in the
obstruction theory, the virtual class vanishes: [N ]vir = 0. This idea was pioneered in the
proof of the Katz-Klemm-Vafa conjecture by Pandharipande and Thomas in [41]. It can be
viewed as the source of all multiple cover behaviour on the sheaf side.

In rank 1 the existence of a cosection can be seen quite easily. Indeed, if rk(v) = 1, we
can assume that v is the Mukai vector of the ideal sheaf of some length zero subscheme,
so that Er ⊂ OS is an ideal sheaf, and hence all Ei are ideal sheaves of some curves. By
definition (see (19)) we have the exact sequence

0→ Ext1(Ei, Ei+1)→ Ext1(Ei, Ei+1)0

hi−→ H2(S,OS)→ Ext2(Ei, Ei+1)→ Ext2(Ei, Ei+1)0 → 0.
(21)

Since the Ei are stable one has that

Ext2(Ei, Ei+1) = Hom(Ei+1, Ei)
∨ =

{
0 if Ei 6= Ei+1

C if Ei = Ei+1.
.

If Ei 6= Ei+1 we hence find that hi is surjective. Consider the diagram:⊕r
i=0RHomS(Ei, Ei)0

⊕r−1
i=0 RHomS(Ei, Ei+1)0 h1(T vir

N ) 0

O⊕s .

δ

h
∃

where h = ⊕i:Ei 6=Ei+1
(hi ◦ pri) and pri is the projection to the i-th summand. By the

previous argument h is surjective. By the claim below, the map above factors through a
surjection h1(T vir

N ) → Os. We see that the obstruction sheaf has s trivial summands. The
reduced obstruction theory removes one of these summands. Hence if s ≥ 2, there is a
positive number of trivial summands and the virtual class vanishes.

Claim. The composition h ◦ δ vanishes.

Proof of Claim. Given (αi) ∈ ⊕i Ext1(Ei, Ei) we need to show that h(αi+1 ◦ fi − fi ◦ αi)
vanishes. By (19), fi ◦ α lies in the image of the map Ext1(Ei, Ei+1) → Ext1(Ei, Ei+1)0,
which using (21) shows that hi(fi ◦ α) = 0. Similarly, given αi+1 ∈ Ext1(Ei+1, Ei+1) the
composition αi+1 ◦ fi lies in Ext1(Ei, Ei+1).

In higher rank the above naive approach does not work since the individual sheaves
Ei can behave quite badly: they do not have to be semi-stable, and there can be maps
Ei+1 → Ei. Instead, we will imitate the arguments of [41]. If E ∈ Mext, there exists a
canonical injection E ↪→ π∗S(F ). Let Q be the cokernel. We can hence view E as the ’stable
pair’:

E = [π∗S(F )
ϕ−→ Q].

The cokernel Q is supported over S × Spec(C[x]/(xr)) and is identified there with

Q = F/E0 ⊕ F/E1t
1 ⊕ · · · ⊕ F/Er−1t

r−1 .

Then applying the construction of [41, Sec.5.4] to Q (and deforming the section ϕ as in
Sec.5.5 of loc.cit.) yields an explicit first-order deformation of Q of weight7 −1. Arguing as
in [41, Prop.12] shows that this vector field is linearly independent from the translational
shift (that gives the reduced obstruction theory), if and only if Q is uniformly r-times
thickened, hence if and only if E0 = . . . = Er−1, hence only if there is at most 1 step. By
Serre duality we hence obtain the second independent cosection whenever s ≥ 2.

7In [41] the vector field has weight 1. We have the sign difference to our case because we let out torus
act with tangent weight −1 at 0 ∈ A1 whereas in [41] it is with weight 1.
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4.4 The contributions from the single-step locus

We consider the components M1-step
r ⊂ Mext with a single step and a uniform thickened

sheaf of length r, i.e. the component parametrizing sheaves E of the form

E|S×A1 = Kti0 ⊕Kti0+1 ⊕ · · · ⊕Kti0+r−1 ⊕ F ti0+r ⊕ F ti0+r+1 ⊕ . . . . (22)

We have the (non-equivariant) exact sequence

0→ π∗S(F )⊗OP1(−r − i0)→ E|S×A1 → ιr∗π
∗
S(K)→ 0,

where ιr : S × Spec(k[x]/xr)→ S × P1 is the inclusion. We obtain that

w = rv(K)− (r + i0)v.

By taking the pairing with v(y) and using w · v(y) = 0 (see (14)) we find that 0 = rv(K) ·
v(y) − (r + i0), and hence that i0 = sr · r for some sr ∈ Z. This shows that w is divisibile
by r as well. We conclude that:

v(F ) = v, v(F/K) = −w
r
− srv =: u

Moreover, since F/K is a quotient of the torsion-free F it has to be of rank in the interval
[0, rk(v)− 1]. We see that sr is the unique integer such that

− rk(w)

r
− sr rk(v) ∈ [0, rk(v)− 1]. (23)

The inclusion K ⊂ F defines an element in the Quot scheme of F with quotients of
Mukai vector u. Let F ∈ Coh(M(v)× S) be the universal sheaf over the moduli space. We
conclude that the component is the relative Quot scheme:

M1-step
r = Quot(F/M(v), u).

By Proposition 4.1 we have the virtual normal bundle

Nvir = −RHomS(K,F −K)∨ ⊗ (t−1 + . . .+ t−r)

+RHomS(K,F −K)⊗ (t + . . .+ tr−1)

Moreover, we have

rkHomS(K,F −K) = −v(K) · v(F/K)

= v(F/K)2 − v(F ) · v(F/K)

= u2 − u · v
≡ u · v (modulo 2)

≡ w · v
r

(modulo 2).

We find that the contribution of M1-step
r to the virtual class of Mv,w(S × P1/S∞) in the

localization formula is given by:

1

eC∗(N vir)
· [M1-step

r ]vir

=
eC∗

(
RHom(K,F −K)∨ ⊗ (t−1 + . . .+ t−(r−1))

)
eC∗ ((RHom(K,F −K)⊗ (t + . . .+ tr−1)))

·

· eC∗
(
RHomS(K,F −K)∨ ⊗ t−r

)
· [Quot(F/M(v), u)]vir

= (−1)(r−1)·w·vr eC∗
(
RHomS(K,F −K)∨ ⊗ t−r

)
· [Quot(F/M(v), u)]vir

= (−1)(r−1)·w·vr
∑
k∈Z

(−rt)−kck+u·(u−v)(RHomS(K,F −K)∨) · [Quot(F/M(v), u)]vir

(24)

where we used that eC∗(V ) = (−1)rk(V )eC∗(V
∨).
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4.5 Contributions from mixed and pure-rubber components

Aside from the extremal locus Mext, there are two other types of components in the fixed
locus Mv,w(S × P1/S∞)C

∗
:

(i) Components W of the fixed locus which parametrize sheaves supported on an ex-
panded degeneration of S × P1, but whose restriction to S × P1|A1 is not the pullback
of a sheaf from S. We call these components W of mixed type. These components
are given as a fiber product over M(v) of an extremal component M ′ext (for different
Chern characters) and a rubber component Mv′,w′(S × P1/S0,∞)∼. The perfect ob-
struction theory decomposes according to this decomposition and one observes that
each summand admits a surjective cosection. Since the reduced class is formed by
removing one trivial O-summand, one trivial summand remains and the fixed virtual
class vanishes. Hence the contribution from this component vanishes.

(ii) The second type of component parametrizes sheaves on an expanded degeneration but
whose restriction to S × P1 is pulled back from S. We call it of pure rubber type. It is
given by the rubber space

W = Mv,w(S × P1/S0,∞)∼.

Because of the C∗-scaling action, the reduced virtual class of the fixed obstruction
theory is of dimension v2 + 2 = 2n. The virtual normal bundle is Nvir = TP1,∞ ⊗ L∨0
where L0 → W is the relative cotangent line bundle over the rubber space (of the
marking glued to P1). Hence one finds the contribution

1

eC∗(Nvir)
[W ]vir =

1

t− c1(L0)
[Mv,w(S × P1/S0,∞)∼]vir. (25)

Since the reduced virtual dimension of [W ]vir (which is 2n) is strictly smaller than
that of Mv,w(S ×P1/S∞)C

∗
(which is 2n+ 1), we will see below that the contribution

from [W ]vir to suitable integrals over the full moduli space will vanish.

4.6 Quasimap wall-crossing

We turn to the proof of the quasimap wall-crossing (Theorem 1.5):
Consider the pure rubber component Mv,w(S × P1/S0,∞)∼ and the evaluation map

ev∞ : Mv,w(S × P1/S0,∞)∼ →M(v)

given by intersection with the fiber over ∞ ∈ P1. Let pt ∈ H4n(M(v)) be the class of a
point and consider the integral:

〈pt, 1〉S×P
1/S0,∞

v,w :=

∫
[Mv,w(S×P1/S0,∞)∼]vir

ev∗∞(pt).

We have the following wall-crossing formula proven by Nesterov:

Theorem 4.1 ([23, Theorem 3.5]).

DTS×E(v,w) = GW
M(v)
E,w′ + χ(S[n])〈pt, 1〉S×P

1/S0,∞
v,w

where w′ = −〈w,−〉 : v⊥ → Z is the homology class induced by w,

We prove here the following evaluation of the wall-crossing term:

Theorem 4.2. For any F ∈M(v) we have

〈pt, 1〉S×P
1/S0,∞

v,w = −
∑
r|w

(−1)w·v

r
evir(Quot(F, ur))

where ur = −w/r − srv for the unique sr ∈ Z such that 0 ≤ rk(ur) ≤ rk(v)− 1
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Proof. The moduli spaceMv,w(S×P1/S∞) is proper and has a (reduced) virtual fundamental
class of dimension 2n+ 1. Hence for dimension reasons we have∫

[Mv,w(S×P1/S∞)]vir
ev∗∞(pt) = 0.

We lift the virtual class to an equivariant class and apply the virtual localization formula.
By the discussion in Section 4.5, only the extremal component and the component of pure
rubber type contributes in the localization formula, which gives:∫

[Mext]red

ev∗∞(pt)

eC∗(N vir)
+

∫
[Mv,w(S×P1/S0,∞)∼]vir

ev∗∞(pt)

t− c1(L0)
= 0

Taking the t−1-coefficient we obtain

〈pt, 1〉S×P
1/S0,∞

v,w = (−1) · Coefficientt−1

[∫
[Mext]red

ev∗∞(pt)

eC∗(N vir)

]
.

For any F ∈M(v) we have∫
[Mext]vir

1

eC∗(N vir)
ev∗∞(pt)

(∗)
=
∑
r|w

∫
[M1-step

r ]vir

1

eC∗(Nvir)
ev∗∞(pt)

(∗∗)
=
∑
r|w

(−1)(r−1)·w·vr
∑
k∈Z

(−rt)−k
∫

[Quot(F/M(v),ur)]vir
ck+ur·(ur−v)(RHomS(K,F −K)∨)ρ∗(pt)

(∗∗∗)
=
∑
r|w

1

−rt
(−1)(r−1)w·vr (−1)1+ur·(ur−v)

∫
[Quot(F,ur)]vir

c1+ur·(ur−v) (RHom(K,F −K) +O)

=
∑
r|w

1

rt
(−1)w·vevir(Quot(F, ur)).

where (∗) follows since only the 1-step locus contributes by Proposition 4.8, (∗∗) follows
from (24) and by checking that the K-theory class of the fixed obstruction theory given
in Proposition 4.1 equals the class of the reduced perfect obstruction theory of the relative
Quot scheme Quot(F/M(v)) and we let ρ : Quot(F/M(v))→M(v) denote the morphism to
the base, and (∗∗∗) follows since Quot(F, ur) has reduced virtual dimension ur · (ur−v)+1,
see Section 3.2. This yields the claim.

Proof of Theorem 1.5. This follows by combining Theorem 4.1 and Theorem 4.2.

4.7 Rank 1

Let n ≥ 0 and assume that
v = (1, 0, 1− n).

We fix the class y = −[Os] for a point s ∈ S which satisfies v · v(y) = 1. The condition
w · v(y) = 0 then says that w is of rank zero, so it is of the form

w = (0,−β,−m)

for some β ∈ Pic(S) and m ∈ Z.
We prove the quasimap wall-crossing in rank 1:
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Proof of Theorem 1.1. This follows by specializing Theorem 1.5 to v = (1, 0, 1 − n) and
w = (0,−β,−m). Indeed, in this case the equality of moduli spaces

M(v,w)(S × E) = Hilbm(S × E, (β, n))

shows
DTS×E(v,w) = DTS×Em,(β,n).

Moreover, the homology class induced by w,

w′ = −〈w,−〉 ∈ (v⊥)∗ ∼= H2(S[n],Z)

is precisely β +mA, see for example [31, Example 2.3].
Finally, for divisors r|(β,m) the condition (23) shows that sr = 0, so i0 = 0, and hence

ur = 1
r (0, β,m) in Theorem 1.5. Inserting everything we obtain

DTS×Em,(β,n) = GWS[n]

E,β,m − χ(S[n])
∑

r|(β,m)

1

r
(−1)mevir(Quot(Iz,

(0, β,m)

r
))

where Iz is the ideal sheaf of a subscheme z ∈ S[n], which is precisely what was claimed.

Remark 4.9. For later use we also remark that in rank 1 the 1-step component can be written
as the relative Hilbert scheme

M1-step
r = Quot(IZ/S[n], (0, β/r,m/r)) = S

[n1,n]
β/r

where n1 = n+ m
r + 1

2β
2/r2.

5 Multiple cover conjectures

5.1 Definitions

Let C be a smooth curve with distinct points z1, . . . , zk ∈ C and consider the Hilbert scheme

Hilb := Hilbn,β,m(S × C/Sz1,...,zk)

parametrizing 1-dimensional subschemes Z of the relative geometry

(S × C, Sz1,...,zk), Sz1,...zk =
⊔
S × {zi}.

The numerical invariants are determined by the Mukai vector:

ch(IZ)
√

tdS = (v(IZ), w(IZ)) = ((1, 0, 1− n), (0,−β,−m)).

In other words,
[Z] = ι∗β + n[C], ch3(OZ) = m,

where ι : S = S × {z} → S × C is the natural inclusion for some z ∈ C.
There exists evaluation maps at the markings

evzi : Hilbn,β,m(S × C/Sz1,...,zk)→ S[n].

Let Z ⊂ Hilb×S × C denote the universal subscheme, and consider the diagram

Hilb×S × C S × C

Hilb .

πX

π
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For any γ ∈ H∗(S × C) we define the descendants

τi(γ) = π∗(ch2+i(OZ)π∗X(γ)) ∈ H∗(Hilb).

If (β,m) 6= 0, then the moduli space carries a reduced virtual class [Hilb]vir of dimension
(2− 2g(C))n+ 1. Given λ1, . . . , λk ∈ H∗(S[n]) and β 6= 0 we define

Z
S×C/Sz1,...,zk
(β,n)

(∏
i

τki(γi)

∣∣∣∣∣λ1, . . . , λk

)
=
∑
m∈Z

(−p)m
∫

[Hilb]vir

∏
i

τki(γi)
∏
i

ev∗zi(λi).

For any (β,m) the moduli space Hilb carries also a standard (non-reduced) virtual class
[Hilb]std. By the existence of the non-trivial cosection it vanishes if (β,m) 6= (0, 0). If we
integrate over the standard virtual class on the right hand side above, we decorate Z with
a superscript std on the left. In this case, Zstd(. . .) ∈ Q.

We state the degeneration formula [18] in the setting of reduced invariants [20]. Related
discussions appear in [33, 29] and [26, App.A]. Let C  C1 ∪x C2 be a degeneration of C.
Let

{1, . . . , k} = A1 tA2

be a partition of the index set of points. We write z(Ai) = {zj |j ∈ Ai}. We choose that
the points in Ai specialize to the curve Ci. Fix also a partition of the index set of interior
markings

{1, . . . , `} = B1 tB2.

Then for any αi ∈ H∗(S) we have

Z
S×C/Sz1,...,zk
(β,n)

(∏̀
i=1

τki(ωαi)

∣∣∣∣∣λ1, . . . , λk

)
=

Z
S×C1/Sz(A1),x

(β,n)

(∏
i∈B1

τki(ωαi)

∣∣∣∣∣ ∏
i∈A1

λi,∆1

)
Z
S×C2/Sz(A2),x,std

(0,n)

(∏
i∈B2

τki(ωαi)

∣∣∣∣∣ ∏
i∈A2

λi,∆2

)

+Z
S×C1/Sz(A1),x,std

(0,n)

(∏
i∈B1

τki(ωαi)

∣∣∣∣∣ ∏
i∈A1

λi,∆1

)
Z
S×C2/Sz(A2),x

(β,n)

(∏
i∈B2

τki(ωαi)

∣∣∣∣∣ ∏
i∈A2

λi,∆2

)

where ∆1,∆2 stands for summing over the Künneth decomposition of the diagonal class

[∆] ∈ H∗(S[n] × S[n]).

Alternatively, we can also degenerate C to an irreducible nodal curve and resolve it by
a curve C ′. Let x1, x2 ∈ C ′ be the preimage of the node. Write z = (z1, . . . , zk). Then

Z
S×C/Sz
(β,n)

(∏̀
i=1

τki(ωαi)

∣∣∣∣∣λ1, . . . , λk

)
= Z

S×C′/Sz,x1,x2
(β,n)

(∏̀
i=1

τki(ωαi)

∣∣∣∣∣λ1, . . . , λk,∆1,∆2

)
.

Remark 5.1. We index the generating series Z by ch3(OZ) in order to avoid extra factors of
p in the degeneration formula above.

5.2 Induction scheme

Our goal here is to express invariants of the form

Z
S×C/Sz1,...,zk
(β,n) (I|λ1, . . . , λk), I =

∏̀
i=1

τki(ωαi) (26)
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in terms of invariants of the cap geometry of the form

Z
S×P1/S∞
(β,n) (I ′|λ′), I ′ =

∏
i

τk′i(ωα
′
i). (27)

The general strategy to do so is well-known and goes back at least to work of Okounkov and
Pandharipande in [37] or even [38]. The process is in general highly non-linear. However
for reduced theories as considered here the dependence becomes Q-linear. The linearity will
allow us to prove the compatibility of the multiple cover formula with this process.

This reduction is based on the following simple but useful lemma which relates descen-
dants and the Nakajima basis of S[n]. Given a cohomology weighted partition

µ = (µi, αi)
`
i=1, µi ≥ 0, αi ∈ H∗(S)

define the special monomial of descendants

τ [µ] :=
∏̀
i=1

τµi−1(αi · ω).

and the Nakajima cycle

µ :=
∏
i

qµi(γi)1S[0] ∈ H∗(S[
∑
i µi])

where qi(α) : H∗(S[a])→ H∗(S[a+i]) are the Nakajima creation operators in the convention
of [21] (actually the precise convention is not important). Let B be a basis of H∗(S). We
say µ is B-weighted if αi ∈ B for all i.

Lemma 5.2 ([40, Proposition 6]). The matrix indexed by B-weighted partitions of n with
coefficients

Z
S×P1/S∞,std
(0,n) (τ [µ], ν) ∈ Q

is invertible.

Proof. We give a sketch of the proof, see [40] for full details. For (β,m) = (0, 0), we have
that

Hilbn,(0,0)(S × P1/Sz1,...,zk) = S[n].

The virtual dimension matches the actual dimension, so the virtual class is just the funda-
mental class. Hence in this case one finds:

Z
S×P1/S∞,z1,...,zk,std
(0,n) (τ [µ]|ν1, . . . , νk) =

∫
S[n]

`(µ)∏
j=1

τS
n]

µj−1(αj) · ν1 · · · νk

where τS
n]

k (α) = π∗(ch2+k(OZ)π∗S(α)) are the descendants on the Hilbert scheme S[n] (where
Z ⊂ S[n] × S is the universal family). The claim hence follows from checking that certain
intersection numbers on the Hilbert scheme (determined by a suitable partial ordering)
between descendants and Nakajima cycles do not vanish.

The induction scheme: We reduce the general invariants (26) to invariants (27) by in-
duction on the genus g and the number of relative markings k. If g(C) > 0 we degenerate C
to a curve with a single node, and apply the degeneration formula in this case. If g(C) = 0
and k ≥ 2, we consider the invariant

Z
S×P1/Sz1,...,zk−1

(β,n) (I · τ [λk]|λ1, . . . , λk−1).
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which is known by the induction hypothesis. The degeneration formula yields:

Z
S×P1/Sz1,...,zk−1

(β,n) (Iτ [λk]|λ1, . . . , λk−1) =

Z
S×P1/Sz1,...,zk−1,x

(β,n) (I|λ1, . . . , λk−1,∆1)Z
S×P1/Sx,std
(0,n) (τ [λk]|∆2)

+Z
S×P1/Sz1,...,zk−1,x

,std

(0,n) (I|λ1, . . . , λk−1,∆1)Z
S×P1/Sx
(β,n) (τ [λk]|∆2).

By subtracting the second term on the right of the equality, and using Lemma 5.2 to invert
this relation, we see that (26) is a (Q-linear!) combination of terms which are lower in the
ordering. Since the base case is (g(C), k) = (0, 1), this concludes the scheme.

5.3 Statement and proof of multiple cover formula

Let β ∈ Pic(S) be an effective class and for every r|β let Sr be a K3 surface and

ϕr : H2(S,R)→ H2(Sr,R)

be a real isometry such that ϕr(β/r) ∈ H2(S′,Z) is a primitive effective curve class. We
extend ϕr to the full cohomology lattice by ϕr(p) = p and ϕr(1) = 1. We can further extend
ϕr to an action on the cohomology of the Hilbert scheme

ϕr : H∗(S[n])→ H∗(S[n]
r )

by letting it act on Nakajima cycles by:

ϕr(
∏
i

qµi(αi)1) =
∏
i

qµi(ϕr(αi))1. (28)

Then ϕr is an isometric ring isomorphism and satisfies8

ϕr(τi(α)) = τi(ϕr(α)).

Theorem 5.1. We have

Z
S×C/Sz1,...,zk
(β,n)

(∏̀
i=1

τki(ωαi)

∣∣∣∣∣λ1, . . . , λk

)

=
∑
r|β

Z
Sr×C/Sz1,...,zk
(ϕr(β/r),n)

(∏̀
i=1

τki(ωϕr(αi))

∣∣∣∣∣ϕr(λ1), . . . , ϕr(λk)

)
(pk)

(29)

Proof. Since ϕr is an isometry the morphism

ϕr ⊗ ϕr : H∗(S[n])⊗H∗(S[n])→ H∗(S[n]
r )⊗H∗(S[n]

r )

sends [∆S[n] ] to [∆
S

[n]
r

]. From this one shows in straightforward manner that (29) is com-

patible with the degeneration formula. By the induction scheme of the previous section we
are hence reduced to proving the statement for the cap S × P1/S∞.

Consider a class λ ∈ H∗(S[n]) and descendants τki(ωαi), all homogeneous, such that

deg(λ) +
∑
i

deg τki(ωαi) = 2n+ 1 (30)

8This is clear if ϕr : H∗(S)→ H∗(Sr) is the parallel transport operator of a deformation from S to Sr,
and it follows in general by observing that the parallel transport operators are Zariski dense in the space of
isometries from H2(S,R)→ H2(Sr,R).
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where deg(γ) denotes the complex cohomology degree of a class γ, that is γ ∈ H2 deg(γ).
(Otherwise the invariants below will vanish, so there is nothing to prove.) We apply the
virtual localization formula to the series

Z
S×P1/S∞
(β,n)

(∏
i

τki(ωαi)

∣∣∣∣∣λ
)

with respect to the scaling action on the P1, where we lift all the point classes ω ∈ H2(P1)
to the equivariant class [0] ∈ H2

C∗(P1). The formula has contributions from the extremal,
the mixed and the pure-rubber components.

By the discussion in Section 4.5 the contribution from the mixed components vanishes.
The contribution from the pure-rubber components is

Z
S×P1/S0,∞,∼
(β,n)

(
1

t− c1(L0)

∣∣∣∣λ, γ)
where ∼ stands for rubber, and the second relative insertion is

γ =
∏̀
i=1

τS
[n]

ki (αi) ∈ H∗(S[n]).

Since we have the (non-equivariant) degree deg(γ)+deg(λ) = 2n+1 by (30) and the rubber
space is of (non-equivariant) virtual dimension 2n, the above integral vanishes. Only the
extremal component contributes in the virtual localization.

Moreover, Proposition 4.8 shows that from the extremal component only the 1-step
component can contribute.

We analyze now the contribution from the 1-step component. By equation (24) in Sec-
tion 4.4 and Remark 4.9 one finds that:

Z
S×P1/S∞
(β,n)

(∏
i

τki(ωαi)

∣∣∣∣∣λ
)

=
∑
m

(−p)m
∫

[Hilbn,β,m(S×P1/S∞)]vir

∏
i

τki(ωαi) ev∗∞(λ)

=
∑
m

(−p)m
∑
r|m

(−1)(r−1)mr

∫
[S

[n1,n]

β/r
]vir
eC∗

(
RHomS(K,F −K)∨ ⊗ t−r

)∏
i

τki([0]αi) · π∗2(λ)

where n1 = n+ m
r + 1

2β
2/r2. We analyze the descendent insertion in the next lemma.

Lemma 5.3. Under the identification M1-step
r

∼= S
[n1,n]
β/r we have that

τk([0]α)|M1-step
r

=
∑
d≥0

σd(α, β/r)(rt)
d

where σd(α, β
′) is a universal (i.e. independent of α, β′) polynomial of complex cohomological

degree deg σd(α, β
′) = deg τk(ωα)− d in the following variables:

τS
[n1]

j1 (αβ′s), τS
[n]

j2 (β′), z = c1(OP(1)),

∫
S

αβ′s, s ∈ {0, 1, 2}, j1, j2 ≥ 0.

Proof of Lemma 5.3. Let J denote the universal ideal sheaf over M1-step
r . It sits in an exact

sequence
0→ π∗S(I2)⊗O(−r)→ J → ιr∗π

∗
S(I1(−β/r)⊗OP(−1))→ 0,

where ιr : S × Spec(k[x]/xr)→ S × P1 is the inclusion. Since we have the exact sequence

0→ OP1(−r)→ OS×P1 → ιr∗O → 0

we obtain ch(ιr∗(1))|S0
= 1− e−rt and therefore

ch(J ) ∪ [0] =
(
ch(I2)⊗ e−rt + (1− e−rt)ch(I1)e−β/re−z

)
∪ [0].
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Cupping with π∗S(α) and pushing forward to M1-step
r we find

τk([0]α)|M1-step
r

= −π∗(ch2+k(J ) ∪ [0]π∗S(α))

= −
[
π

(2)
∗ (ch(I2)π∗S(α))e−rt + (1− e−rt)π(1)

∗

(
ch(I1)π∗S(e−β/rα)

)
e−z
]

deg(τk(αω))

=

[−(
∫
S
α)1 +

∑
j2≥0

τS
[n]

j2 (α)

 e−rt

+ (1− e−rt)

−(
∫
S
e−β/rα)1 +

∑
j1≥0

τS
[n1]

j1 (αe−β/r)

 e−z

]
deg(τk(αω))

where π(i) : S[ni] × S → S[ni] are the projections. This concludes the claim.

We continue the proof of Theorem 5.1. We have rkRHomS(K,F −K)∨ = (β/r)2 +m/r,
and hence can write

eC∗(RHomS(K,F −K)∨ ⊗ t−r) =
∑
j

c(β/r)2+m/r+j(RHomS(K,F −K))(−rt)−j . (31)

Moreover, [S
[n1,n]
β/r ]vir is of dimension 2n+ 1 +m/r+ β2/r2. By Lemma 5.3 and since by the

degree condition (30) the term (rt)−j coming from the expansion (31) cancels with the term
(rt)d1+...+dr coming from the expansion of the τki([0]αi), we conclude the following equality
of non-equivariant integrals:

Z
S×P1/S∞
(β,n)

(∏
i

τki(ωαi)

∣∣∣∣∣λ
)

=
∑
m

(−p)m
∑
r|m

(−1)(r−1)mr

∑
j

∑
d1+...+d`=j

(−1)j
∫

[S
[n1,n]

β/r
]vir
c(β/r)2+m/r+j(RHomS(K,F −K)∨)

∏
i

σdi(αi, β/r) · π∗2(λ)

By Theorem 3.2 this integral depends upon S, β/r, αi and λ =
∏
i qλi(δi) only through

the intersection pairings of the classes β/r, αi, δi, 1, p. Hence we may replace them by the
isometric data given by

ϕr(β/r), ϕr(αi), ϕr(δi), 1, p.

Inserting, and applying the above arguments backwards the above becomes

=
∑
m

(−p)m
∑
r|m

(−1)(r−1)mr
∑
j

∑
d1+...+d`=j∫

[S
[n1,n]

ϕr(β/r)
]vir
cϕr(β/r)2+m/r+j(RHomSr (K,F −K)∨)

∏
i

σdi(ϕr(αi), ϕr(β/r)) · π∗2(ϕr(λ))

=
∑
m

(−p)m
∑
r|m

(−1)(r−1)mr

∫
[Hilbn,ϕr(β/r),m/r(S×P1/S∞)]vir

∏
i

τki(ωϕr(αi)) ev∗∞(ϕr(λ))

=
∑
r|m

Z
S×P1/S∞
(ϕr(β/r),n)

(∏
i

τki(ωϕr(αi))

∣∣∣∣∣ϕr(λ)

)
(pr)

which was what we wanted to prove.

6 Proofs of the remaining main results

6.1 Proof of Theorem 1.2

The first part (the independence from the divisibility) follows by Proposition 3.5. We hence
need to evaluate Qn,h,m. Recall the generating series DTn(p, q) and Hn(p, q) from (2), and
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the series
Qn(p, q) =

∑
h≥0

∑
m∈Z

Qn,h,mq
h−1pm.

By Theorem 1.2 we have for all n the equality

DTn(p, q) = Hn(p, q)− χ(S[n])Qn(p, q). (32)

Since S[0] = pt and S[1] = S, by the Yau-Zaslow formula we have

H0 = 0, H1 = −2
E2(q)

∆(q)
.

On the other hand, by the Katz-Klemm-Vafa formula [20] for n = 0, and by [2] and [29] (see
also [34]) for n = 1 we have that

DT0 = − 1

Θ2∆
, DT1 = −24

℘(p, q)

∆(q)
.

where ℘(p, q) is the Weierstraß elliptic function (see [33, Sec.2]).
By Proposition 3.7 we have Qn(p, q) = Fn1 F2 for some F1, F2. So from case n = 0 we

conclude that:

F2 =
1

Θ2∆
.

For the n = 1 term we conclude

F1 =
1

24F2
(H1 − DT1) = Θ2 · (− 1

12
E2 + ℘) = G(p, q)

where we used that
(
p
dp

)2

log(Θ(p, q)) = −℘(p, q) + 1
12E2(q), see [33, Equation (11)].9

Remark 6.1. If one had the GW/DT correspondence for the cap geometry (S×P1)/S∞ the
above computation of F1 would also follow from the results of [29].10

6.2 Proof of Theorem 1.3

Define the series
Z
S×E/E
(β,n) =

∑
m∈Z

DTS×Em,(β,n)(−p)
m.

Choose a class D ∈ H2(S,Z) such that D · β 6= 0. By [28] we have that

Z
S×E/E
(β,n) =

1

β ·D
ZS×E(β,n)(τ0(ωD)).

By Theorem 5.1 we hence have that:

Z
S×E/E
(β,n) =

1

β ·D
ZS×E(β,n)(τ0(ωD))

=
1

D · β
∑
r|β

ZS×E(ϕr(β/r),n)(τ0(ωϕr(D)))(pr)

=
∑
r|β

ϕr(D) · ϕr(β/r)
D · β

Z
S×E/E
(ϕr(β/r),n)(p

r)

=
∑
r|β

1

r
Z
S×E/E
(ϕr(β/r),n)(p

r).

This implies the claim by taking coefficients.

9Note that F (z, τ) in [33] corresponds to −iΘ(p, q). The variable convention is the same.
10The GW/DT correspondence for (S × P1)/S∞ was recently proven in [30].
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6.3 Proof of Theorem 1.4

Since the multiple cover formula is compatible with the divisor equation and restriction of
Gromov-Witten classes to boundary components, it is enough to consider the case N = 3 and
α = 1. By [23, Cor. 4.2] these primary invariants are identical to the DT invariants of the
relative geometry S×P1/S0,1,∞. A small calculation shows that the multiple cover formula
given in Theorem 5.1 implies the form of the multiple cover formula given in Theorem 1.4.
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