Kaneko-Zagier equations for Jacobi forms and curve counting on CHL manifolds

> Georg Oberdieck (Universität Bonn)

> > May 7, 2021

Quantum Gravity & Modularity Workshop

Based on the joint works: arXiv:1811.06102 (with Jim Bryan), arXiv:2007.03489 (with Jan-Willem van Ittersum and Aaron Pixton), arXiv:1411.1514 (with Rahul Pandharipande)

- 4 回 5 - 4 三 5 - 4 三 5 - - -

Short Overview

Abstract

I will discuss counting curves on $K3 \times \mathbb{P}^1$ with relative conditions at $K3 \times 0$ and $K3 \times \infty$. Main features:

- Structure constants are quasi-Jacobi forms
- g-twisted traces ~→ CHL geometry
- Relations to Conway Moonshine VOAs (??)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Short Overview

Abstract

I will discuss counting curves on $K3 \times \mathbb{P}^1$ with relative conditions at $K3 \times 0$ and $K3 \times \infty$. Main features:

- Structure constants are quasi-Jacobi forms
- *g*-twisted traces ~→ CHL geometry
- Relations to Conway Moonshine VOAs (??)

Table of Contents

- 1a) Kaneko-Zagier equation for modular forms (classical case)
- 1b) Kaneko-Zagier equation for Jacobi forms (new case)
 - 2) Fock space and the operator ω_{β}
 - 3) Traces and CHL geometry

- 不同 ト イラト イラト

Kaneko-Zagier equation

Let $q = e^{2\pi i \tau}$ where $\tau \in \mathbb{H}$. Given k > 2 consider the Serre derivative

$$\vartheta_k = D_\tau - \frac{k}{12} E_2(\tau)$$

where $D_{\tau} = q \frac{d}{dq}$ and $E_2 = 1 - 24 \sum_{n \ge 1} \sigma(n) q^n$.

Kaneko-Zagier equation

Let $q = e^{2\pi i \tau}$ where $\tau \in \mathbb{H}$. Given k > 2 consider the Serre derivative

$$\vartheta_k = D_\tau - \frac{k}{12} E_2(\tau)$$

where $D_{\tau} = q \frac{d}{dq}$ and $E_2 = 1 - 24 \sum_{n \ge 1} \sigma(n) q^n$.

Lemma

 $\vartheta_k: \mathsf{Mod}_k \to \mathsf{Mod}_{k+2}$

Proof.

The transformation law $E_2(-1/\tau) = \tau^2 E_2(\tau) - 6i\tau/\pi$ cancels the quasi-modularity arising by differentiating by τ .

Kaneko-Zagier equation

Let $q = e^{2\pi i \tau}$ where $\tau \in \mathbb{H}$. Given k > 2 consider the Serre derivative

$$\vartheta_k = D_\tau - \frac{k}{12} E_2(\tau)$$

where $D_{\tau} = q \frac{d}{dq}$ and $E_2 = 1 - 24 \sum_{n \ge 1} \sigma(n) q^n$.

Lemma

 $\vartheta_k : \mathsf{Mod}_k \to \mathsf{Mod}_{k+2}$

Proof.

The transformation law $E_2(-1/\tau) = \tau^2 E_2(\tau) - 6i\tau/\pi$ cancels the quasi-modularity arising by differentiating by τ .

Definition (Kaneko-Zagier equation)

$$\vartheta_{k+2}\vartheta_kf_k(\tau)=\frac{k(k+2)}{144}E_4(\tau)f_k(\tau)$$

Kaneko-Zagier equations for Jacobi forms and curve counting on CHL manifol

Theorem (Kaneko-Zagier)

For every $k \not\equiv 2 \pmod{3}$, the solution $f_k = 1 + \dots$ to the KZ equation is a modular form of weight k.

Theorem (Kaneko-Zagier)

For every $k \not\equiv 2 \pmod{3}$, the solution $f_k = 1 + \dots$ to the KZ equation is a modular form of weight k.

Proof.

Let $\wp(x,\tau)$ be the Weierstraß function and define the formal power series

$$f(x) = \left(\frac{\wp'(x)}{-2}\right)^{-1/3}$$

Let $\Phi(y)$ be formal inverse of f in x, i.e. $\Phi(f(x)) = x$. Then the coefficients of the expansion

$$\Phi(y) = \sum_{k \ge 1} \frac{f_{k-1}}{k} y^k$$

are modular forms and the desired solutions (invert the diff eqn).

Remark. KZ equation is essentially unique second-order ODE with modular solution. Relations to characters of simple modules for rational vertex operator algebras (Kaneko,Nagatomo, Sakai, 2013)

Kaneko-Zagier equations for Jacobi forms and curve counting on CHL manifol

Jacobi KZ equation (with van Ittersum, Aaron Pixton)

Let $z \in \mathbb{C}$ elliptic variable, $p = e^{2\pi i z}$. Define the theta function $\vartheta_1(z,\tau) = \sum_{\nu \in \mathbb{Z} + \frac{1}{2}} (-1)^{\lfloor \nu \rfloor} p^{\nu} q^{\nu^2/2}$

1

and the renormalization

$$\Theta(z,\tau) = rac{\vartheta_1(z,\tau)}{\eta^3(\tau)}.$$

Let

$$F(z) := rac{D_{\tau}^2 \Theta(z)}{\Theta(z)} = -\sum_{n \geq 1} \sum_{d \mid n} (n/d)^3 (p^{d/2} - p^{-d/2})^2 q^n,$$

不得る イモン イモン・モ

Jacobi KZ equation (with van Ittersum, Aaron Pixton)

Let $z \in \mathbb{C}$ elliptic variable, $p = e^{2\pi i z}$. Define the theta function $\vartheta_1(z,\tau) = \sum_{\nu \in \mathbb{Z} + \frac{1}{2}} (-1)^{\lfloor \nu \rfloor} p^{\nu} q^{\nu^2/2}$

and the renormalization

$$\Theta(z,\tau) = rac{\vartheta_1(z,\tau)}{\eta^3(\tau)}.$$

Let

$$F(z) := rac{D_{\tau}^2 \Theta(z)}{\Theta(z)} = -\sum_{n \geq 1} \sum_{d \mid n} (n/d)^3 (p^{d/2} - p^{-d/2})^2 q^n,$$

Definition (vIOP, Kaneko-Zagier equation for Jacobi forms)

For any $m \in \mathbb{Z}$ we consider:

$$\begin{cases} D_{ au}^2 arphi_m = m^2 F arphi_m \ arphi_m = (p^{m/2} - p^{-m/2}) + O(q) \end{cases}$$

Kaneko-Zagier equations for Jacobi forms and curve counting on CHL manifol

The solutions

. . .

With $A = D_z \Theta/\Theta$ one has $\varphi_1 = \Theta$ $\varphi_2 = 2\Theta^2 A$ $\varphi_3 = \frac{9}{2}\Theta^3 A^2 - \frac{3}{2}\Theta^3 \wp$ $\varphi_4 = \frac{32}{3}\Theta^4 A^3 - 8\Theta^4 A \wp - \frac{2}{3}\Theta^4 D_z(\wp)$ $\varphi_5 = \frac{625}{24}\Theta^5 A^4 - \frac{125}{4}\Theta^5 A^2 \wp + \frac{15}{8}\Theta^5 \wp^2 - \frac{25}{6}\Theta^5 A D_z(\wp) + \frac{5}{2}\Theta^5 G_4$

General solution

Define the series

$$f(x) = \frac{\Theta(x)}{\Theta(x+z)} = \frac{x}{\Theta(z)} + \dots$$

Let $\Phi(y)$ be formal inverse of f in x, i.e. $\Phi(f(x)) = x$. Consider the expansion

$$\Phi(y) = \sum_{m=1}^{\infty} \frac{\varphi_m}{m} y^m$$

Theorem (vIOP)

The functions φ_m defined above are solutions of the Jacobi KZ equation.

Corollary

Every φ_m is a quasi-Jacobi form of index |m|/2 and weight -1.

・ロト ・回ト ・ヨト ・ヨト

Second differential equation

Define a second set of functions $\varphi_{m,n}(z,\tau)$ for $m,n\in\mathbb{Z}$ as follows:

$$\begin{cases} D_{\tau}\varphi_{m,n} = mn\varphi_m\varphi_nF + (D_{\tau}\varphi_m)(D_{\tau}\varphi_n)\\ \varphi_{m,n} = O(q) \end{cases}$$

Theorem (vIOP)

For all $m, n \in \mathbb{Z}$ the difference

$$\varphi_{m,n} - |n|\delta_{m+n,0}$$

is a quasi-Jacobi form of weight 0 and index $\frac{1}{2}(|m| + |n|)$.

Proof.

For $m \neq -n$ this is easy:

$$\varphi_{m,n} = \frac{m}{m+n} \varphi_m D_\tau(\varphi_n) + \frac{n}{m+n} D_\tau(\varphi_m) \varphi_n$$

For m = -n this becomes extremely subtle.

Back to geometry: Overview

Let $g: S \rightarrow S$ be a symplectic automorphism of order N of a K3 surface. The associated CHL Calabi-Yau threefold is:

$$X_g = (S \times E)/\langle g \times \tau_N \rangle.$$

String theory of X_g studied by David, Jatkar, Sen, ... many others. Our strategy to evaluate its Gromov-Witten theory mathematically:

• Degenerate one period of the torus *E*:

$$X_g \rightsquigarrow (S imes \mathbb{P}^1) / \sim, (s, 0) \sim (gs, \infty)$$

- Express GW theory of $K3 \times \mathbb{P}^1$ as operator on Fock space
- g-twisted traces give topological string partition function

イヨン イヨン イヨン

Fock Space

Consider the (negative) K3 lattice

$$\Lambda = U^{\oplus 4} \oplus E_8^{\oplus 2}$$

and the associated Fock space

$$\mathcal{F}_{K3} = \bigotimes_{m \geq 1} \operatorname{Sym}^{\bullet}(\Lambda_{\mathbb{Q}}q^{i}).$$

It is acted on by the Heisenberg operators $\alpha_i(\gamma)$ for $i \in \mathbb{Z}$ and $\gamma \in \Lambda$ subject to the commutation rule:

$$[\alpha_m(\gamma), \alpha_n(\gamma')] = m\delta_{m+n,0}(\gamma, \gamma') \mathrm{id}_{\mathcal{F}}.$$

The Fock space \mathcal{F}_{K3} is freely generated from the action of the creation operators $\alpha_i(\gamma)$, i < 0 on the vaccuum vector $|\varnothing>$.

Operators (based on 1406.1139)

For every element $\beta \in \Lambda$ define the 'vertex operator'

$$\omega_{eta}:\mathcal{F}_{\mathcal{K}3}
ightarrow\mathcal{F}_{\mathcal{K}3}\otimesrac{\mathbb{Q}[p^{\pm 1/2}]}{(p^{1/2}-p^{-1/2})^2}$$

as the $q^{-rac{1}{2}(eta,eta)}$ coefficient of

$$\pm \frac{1}{\Theta^2 \eta^{24}} \exp\left(\sum_{m \neq 0} \alpha_m(\beta) \frac{\varphi_m}{m}\right) \exp\left(\frac{1}{2} \sum_{m,n \in \mathbb{Z} \setminus \{0\}} \alpha_m \alpha_n(\Delta) \frac{\varphi_{m,n}}{mn}\right) \pm \frac{1}{2} \exp\left(\frac{1}{2} \sum_{m,n \in \mathbb{Z} \setminus \{0\}} \alpha_m \alpha_n(\Delta) \frac{\varphi_{m,n}}{mn}\right) + \frac{1}{2} \exp\left(\frac{1}{2} \sum_{m,n \in \mathbb{Z} \setminus \{0\}} \alpha_m \alpha_n(\Delta) \frac{\varphi_{m,n}}{mn}\right) + \frac{1}{2} \exp\left(\frac{1}{2} \sum_{m,n \in \mathbb{Z} \setminus \{0\}} \alpha_m \alpha_n(\Delta) \frac{\varphi_{m,n}}{mn}\right) + \frac{1}{2} \exp\left(\frac{1}{2} \sum_{m,n \in \mathbb{Z} \setminus \{0\}} \alpha_m \alpha_n(\Delta) \frac{\varphi_{m,n}}{mn}\right) + \frac{1}{2} \exp\left(\frac{1}{2} \sum_{m,n \in \mathbb{Z} \setminus \{0\}} \alpha_m \alpha_n(\Delta) \frac{\varphi_{m,n}}{mn}\right) + \frac{1}{2} \exp\left(\frac{1}{2} \sum_{m,n \in \mathbb{Z} \setminus \{0\}} \alpha_m \alpha_n(\Delta) \frac{\varphi_{m,n}}{mn}\right) + \frac{1}{2} \exp\left(\frac{1}{2} \sum_{m,n \in \mathbb{Z} \setminus \{0\}} \alpha_m \alpha_n(\Delta) \frac{\varphi_{m,n}}{mn}\right) + \frac{1}{2} \exp\left(\frac{1}{2} \sum_{m,n \in \mathbb{Z} \setminus \{0\}} \alpha_m \alpha_n(\Delta) \frac{\varphi_{m,n}}{mn}\right) + \frac{1}{2} \exp\left(\frac{1}{2} \sum_{m,n \in \mathbb{Z} \setminus \{0\}} \alpha_m \alpha_n(\Delta) \frac{\varphi_{m,n}}{mn}\right) + \frac{1}{2} \exp\left(\frac{1}{2} \sum_{m,n \in \mathbb{Z} \setminus \{0\}} \alpha_m \alpha_n(\Delta) \frac{\varphi_{m,n}}{mn}\right) + \frac{1}{2} \exp\left(\frac{1}{2} \sum_{m,n \in \mathbb{Z} \setminus \{0\}} \alpha_m \alpha_n(\Delta) \frac{\varphi_{m,n}}{mn}\right) + \frac{1}{2} \exp\left(\frac{1}{2} \sum_{m,n \in \mathbb{Z} \setminus \{0\}} \alpha_m \alpha_n(\Delta) \frac{\varphi_{m,n}}{mn}\right) + \frac{1}{2} \exp\left(\frac{1}{2} \sum_{m,n \in \mathbb{Z} \setminus \{0\}} \alpha_m \alpha_n(\Delta) \frac{\varphi_{m,n}}{mn}\right) + \frac{1}{2} \exp\left(\frac{1}{2} \sum_{m,n \in \mathbb{Z} \setminus \{0\}} \alpha_m \alpha_n(\Delta) \frac{\varphi_{m,n}}{mn}\right) + \frac{1}{2} \exp\left(\frac{1}{2} \sum_{m,n \in \mathbb{Z} \setminus \{0\}} \alpha_m \alpha_n(\Delta) \frac{\varphi_{m,n}}{mn}\right) + \frac{1}{2} \exp\left(\frac{1}{2} \sum_{m,n \in \mathbb{Z} \setminus \{0\}} \alpha_m \alpha_n(\Delta) \frac{\varphi_{m,n}}{mn}\right) + \frac{1}{2} \exp\left(\frac{1}{2} \sum_{m,n \in \mathbb{Z} \setminus \{0\}} \alpha_m \alpha_n(\Delta) \frac{\varphi_{m,n}}{mn}\right) + \frac{1}{2} \exp\left(\frac{1}{2} \sum_{m,n \in \mathbb{Z} \setminus \{0\}} \alpha_m \alpha_n(\Delta) \frac{\varphi_{m,n}}{mn}\right) + \frac{1}{2} \exp\left(\frac{1}{2} \sum_{m,n \in \mathbb{Z} \setminus \{0\}} \alpha_m \alpha_n(\Delta) \frac{\varphi_{m,n}}{mn}\right) + \frac{1}{2} \exp\left(\frac{1}{2} \sum_{m,n \in \mathbb{Z} \setminus \{0\}} \alpha_m \alpha_n(\Delta) \frac{\varphi_{m,n}}{mn}\right) + \frac{1}{2} \exp\left(\frac{1}{2} \sum_{m,n \in \mathbb{Z} \setminus \{0\}} \alpha_m \alpha_n(\Delta) \frac{\varphi_{m,n}}{mn}\right) + \frac{1}{2} \exp\left(\frac{1}{2} \sum_{m,n \in \mathbb{Z} \setminus \{0\}} \alpha_m \alpha_n(\Delta) \frac{\varphi_{m,n}}{mn}\right) + \frac{1}{2} \exp\left(\frac{1}{2} \sum_{m,n \in \mathbb{Z} \setminus \{0\}} \alpha_m \alpha_n(\Delta) \frac{\varphi_{m,n}}{mn}\right) + \frac{1}{2} \exp\left(\frac{1}{2} \sum_{m,n \in \mathbb{Z} \setminus \{0\}} \alpha_m \alpha_n(\Delta) \frac{\varphi_{m,n}}{mn}\right) + \frac{1}{2} \exp\left(\frac{1}{2} \sum_{m,n \in \mathbb{Z} \setminus \{0\}} \alpha_m \alpha_n(\Delta) \frac{\varphi_{m,n}}{mn}\right) + \frac{1}{2} \exp\left(\frac{1}{2} \sum_{m,n \in \mathbb{Z} \setminus \{0\}} \alpha_m \alpha_n(\Delta) \frac{\varphi_{m,n}}{mn}\right) + \frac{1}{2} \exp\left(\frac{1}{2} \sum_{m,n \in \mathbb{Z} \setminus \{0\}} \alpha_m \alpha_n(\Delta) \frac{\varphi_{m,n}}{mn}\right) + \frac{1}{2} \exp\left(\frac{1}{2} \sum_{m,n \in \mathbb{Z} \setminus \{0\}} \alpha$$

Here

- $\Delta \in \Lambda \otimes \Lambda$ is the class of the diagonal,
- \bullet : : stands is the normal ordered product,
- $\varphi_m, \varphi_{m,n}$ are the functions defined previously.
- dependence on *p*, *q* is surpressed

・吊り イラト イラト

Example

- If $(\beta, \beta) > 2$, then $\omega_{\beta} = 0$.
- If $(\beta, \beta) = 2$

$$\omega_{eta} = : \left[rac{1}{(s-s^{-1})^2} \exp\left(\sum_{m
eq 0} rac{(s^m-s^{-m})}{m} lpha_m(eta)
ight)
ight] :$$

where $p = s^2$. This can be expressed in terms of action of $\hat{gl}(2)$ (Maulik-Oblomkov).

• If $(\beta, \beta) = 0$,

$$egin{aligned} \omega_eta &=: \exp\left(\sum_{m
eq 0}rac{s^m-s^{-m}}{m}lpha_m(eta)
ight)\cdot \left[(2s^{-2}+20+2s^2)/(s-s^{-1})^2
ight.\ &-\sum_{m
eq 0}m(s^m-s^{-m})lpha_m(eta)
ight.\ &-rac{1}{2}\sum_{\ell,m
eq 0}(s^\ell-s^{-\ell})(s^m-s^{-m})lpha_\elllpha_m(\Delta)
ight]: \end{aligned}$$

Kaneko-Zagier equations for Jacobi forms and curve counting on CHL manifol

-

Conjecture

Assume β primitive. For any $\mu, \nu \in \mathcal{F}_n$ we have

$$\operatorname{Coeff}_{p^{k}}\left(\mu \mid \omega_{\beta}\nu\right)_{\mathcal{F}_{n}} = (-1)^{k-1} \mathsf{PT}_{k+n,(\beta,n)}^{K3 \times \mathbb{P}^{1}}(\mu,\nu)$$

under suitable identification of boundary conditions: $H^*(Hilb_n K3) \cong \mathcal{F}_n$.

Conjecturally this yields full solution to Pandharipande-Thomas theory of $K3 \times \mathbb{P}^1$ relative to the divisors $K3 \times 0$ and $K3 \times \infty$.

イボト イラト イラト

-

Conjecture

Assume β primitive. For any $\mu, \nu \in \mathcal{F}_n$ we have

$$\operatorname{Coeff}_{p^{k}}\left(\mu \mid \omega_{\beta}\nu\right)_{\mathcal{F}_{n}} = (-1)^{k-1} \mathsf{PT}_{k+n,(\beta,n)}^{K3 \times \mathbb{P}^{1}}(\mu,\nu)$$

under suitable identification of boundary conditions: $H^*(Hilb_n K3) \cong \mathcal{F}_n$.

Conjecturally this yields full solution to Pandharipande-Thomas theory of $K3 \times \mathbb{P}^1$ relative to the divisors $K3 \times 0$ and $K3 \times \infty$.

Upshot: The PT theory of all CHL models becomes computable:

$$\begin{aligned} \mathsf{PT}_{k,(\beta,n)}^{X_g} &= \frac{1}{N} \sum_{\substack{\tilde{\beta} \in H_2(S,\mathbb{Z}) \\ P(\tilde{\beta}) = \beta}} \mathsf{PT}_{k+n,(\tilde{\beta},n)}^{K3 \times \mathbb{P}^1} (\Gamma_g) \\ &= \frac{1}{N} \sum_{\substack{P(\tilde{\beta}) = \beta}} (-1)^{k+1} \mathrm{Coeff}_{p^k} \Big((\Gamma_g)_1 \, \Big| \, \omega_{\tilde{\beta}}(\Gamma_g)_2 \Big)_{\mathcal{F}_n} \\ &= (-1)^{k+1} \frac{1}{N} \mathrm{Coeff}_{p^k} \sum_{\substack{P(\tilde{\beta}) = \beta}} \mathrm{Tr}_{\mathcal{F}_n}(g \omega_{\tilde{\beta}}). \end{aligned}$$

Kaneko-Zagier equations for Jacobi forms and curve counting on CHL manifol

Back to CHL models

Given $g: S \rightarrow S$ symplectic automorphism, let:

•
$$P = \frac{1}{N} \sum_{i=0}^{N-1} g^i$$

$$H_2(X_g, \mathbb{Z})/\text{torsion} \cong \text{Im}(P: L \to L \otimes \mathbb{Q}) \oplus \mathbb{Z}$$

 $\cong (L^g)^{\vee} \oplus \mathbb{Z}$

Lemma

Assume $\gamma \in (L^g)^{\vee}$ primitive. Then $\mathsf{PT}_{k,(\gamma,n)}^{X_g}$ only depends on (X_g, γ) via $s = \gamma^2, \qquad \alpha = [\gamma] \in (L^g)^{\vee}/L^g,$

and $g: L \to L$ up to conjugation. We write $\mathsf{PT}_{k,s,n,\alpha}$ instead.

CHL models II

Definition

Given $\alpha \in (L^g)^{\vee}/L^g$ define

$$Z_{\alpha} = \sum_{k,s,n} \mathsf{PT}_{k,s,n,\alpha} (-1)^{k+1} p^k t^{n-1} q^{s/2}.$$

Conjecture

Every Z_{α} is a Siegel modular form of genus 2 (for a congruence subgroup).

Computation scheme:

$$Z_lpha = rac{1}{N} \sum_s \sum_{P(ildeeta) = eta_s} \mathrm{Tr}_\mathcal{F}(g \omega_{ ildeeta} t^{\mathbb{N}-1}).$$

where \mathbb{N} is the energy operator: $\mathbb{N}|_{\mathcal{F}_n} = n \cdot \mathrm{id}_{\mathcal{F}_n}$, and $\beta_s \in (L^g)^{\vee}$ is a primitive class of square $\beta_s^2 = s$ and $[\beta_s] = \alpha$.

Example: N = 1

Simplest case: g = id, then $X_g = K3 \times E$. It is well-known:

$$Z^{K3\times E} = \frac{1}{\chi_{10} \begin{pmatrix} \tau & z \\ z & \tilde{\tau} \end{pmatrix}}$$

where $p = e^{2\pi i z}$, $q = e^{2\pi i \tau}$ and $t = e^{2\pi i \tilde{\tau}}$. Hence on expects:

$$\operatorname{Tr}_{\mathcal{F}} t^{\mathbb{N}-1} \omega_{\beta} = \operatorname{Coeff}_{q^{\beta^{2}/2}} \left[\frac{1}{\chi_{10}(\Omega)} \right]$$

 \rightarrow Strong evidence available (exact expressions later)

Example: N = 2

In order 2 the involution g interchanging the E_8 factors.

$$L^g = E_8(-2) \oplus U^3$$

$$D(L^g) = (L^g)^{\vee}/L^g = D(E_8(2)) = \mathbb{Z}_2^8$$

The Weyl group acts on the discriminant group with three orbits $0, \alpha_1, \alpha_2$. If $[\gamma] \neq 0$, then its orbit is determined by γ^2 . Hence we obtain two cases:

- If $[\gamma] = 0$ (untwisted case) $Z_{\text{untwisted}} = Z_0^{N=2}$
- If $[\gamma] \neq 0$ (twisted case) $Z_{\text{twisted}} = Z_{\alpha_1}^{N=2} + Z_{\alpha_2}^{N=2}$

Example: N = 2

In order 2 the involution g interchanging the E_8 factors.

$$L^g = E_8(-2) \oplus U^3$$

$$D(L^g) = (L^g)^{\vee}/L^g = D(E_8(2)) = \mathbb{Z}_2^8$$

The Weyl group acts on the discriminant group with three orbits $0, \alpha_1, \alpha_2$. If $[\gamma] \neq 0$, then its orbit is determined by γ^2 . Hence we obtain two cases:

• If $[\gamma] = 0$ (untwisted case) $Z_{\text{untwisted}} = Z_0^{N=2}$ • If $[\gamma] \neq 0$ (twisted case) $Z_{\text{twisted}} = Z_{\alpha_1}^{N=2} + Z_{\alpha_2}^{N=2}$

$$Z_{ ext{twisted}} = rac{1}{2^4} rac{1}{\Phi_{6,3}(\Omega)}$$

(Ref: Jatkar and A. Sen, Dyon spectrum in CHL models; David, D. P. Jatkar and A. Sen Product Representation of Dyon Partition Function in CHL Models)

Example: N = 2 continued

By joint work with Bryan one has:

$$Z_{ ext{untwisted}} = -rac{1}{2} \left(rac{1}{\Phi_{6,0}} + rac{1}{2^4 \, \Phi_{6,3}} + rac{1}{2^4 \, \Phi_{6,4}}
ight)$$

(the simplified formula here is from [Fischbach, Klemm, Nega - Lost Chapters in CHL Black Holes ..])

$$\frac{1}{\Phi_{6,0}} = \frac{\theta_{0000}^2 \theta_{0010}^2 \theta_{0010}^2 \theta_{0011}^2}{\chi_{10}}$$
(1)
$$\frac{1}{\Phi_{6,3}} = \frac{\theta_{0000}^2 \theta_{0010}^2 \theta_{0100}^2 \theta_{0110}^2}{\chi_{10}}$$
(2)
$$\frac{1}{\Phi_{6,4}} = -\frac{\theta_{0001}^2 \theta_{0011}^2 \theta_{0100}^2 \theta_{0110}^2}{\chi_{10}} .$$
(3)

-

The computation scheme

$$Z^N_{lpha} = rac{1}{N} \sum_s \sum_{P(ilde{eta}) = eta_s} \operatorname{Tr}_{\mathcal{F}}(g \omega_{eta} t^{\mathbb{N}-1}).$$

yields conjectural identities relating Siegel modular forms with the functions φ_{mn} . Already g = id is very interesting, it gives the following: Define functions $L(z, \tau, \tilde{\tau})$ and $M(z, \tau, \tilde{\tau})$ by

$$\begin{split} L &= \sum_{r \ge 1} (-1)^{r-1} \sum_{d_1, \dots, d_r \in \mathbb{Z} \setminus 0} \frac{1}{|d_1| \cdots |d_r|} \frac{\tilde{q}^{|d_1|}}{1 - \tilde{q}^{|d_1|}} \cdots \frac{\tilde{q}^{|d_r|}}{1 - \tilde{q}^{|d_r|}} \varphi_{d_1} \varphi_{-d_1, d_2} \cdots \varphi_{-d_{r-1}, d_r} \varphi_{-d_r} \\ \mathcal{M} &= \sum_{r \ge 1} \frac{(-1)^{r-1}}{r} \sum_{d_1, \dots, d_r \in \mathbb{Z} \setminus 0} \frac{1}{|d_1| \cdots |d_r|} \frac{\tilde{q}^{|d_1|}}{1 - \tilde{q}^{|d_1|}} \cdots \frac{\tilde{q}^{|d_r|}}{1 - \tilde{q}^{|d_r|}} \varphi_{d_1, -d_2} \cdots \varphi_{d_r, -d_1} \end{split}$$

$$\sum_{k \ge 0} \frac{1}{k!} D_{\tau}^{k} \left(\frac{\mathcal{L}^{k}}{\exp(\mathcal{M})^{12} \Theta(z,\tau)^{2} \Delta(\tau) \Delta(\tilde{\tau})} \right) = \frac{1}{\chi_{10} \begin{pmatrix} \tau & z \\ z & \tilde{\tau} \end{pmatrix}}$$

Kaneko-Zagier equations for Jacobi forms and curve counting on CHL manifol

Main open questions:

- What is the algebra structure of the operators ω_{β} ?
- Are there relations to the Conway Moonshine VOA?
- Mathematical proofs
- Non-commutative CHL models

-

Main open questions:

- What is the algebra structure of the operators ω_{β} ?
- Are there relations to the Conway Moonshine VOA?
- Mathematical proofs
- Non-commutative CHL models

Thank you! (the end)

(Kummer K3 surface, source:mo-labs.com)

くぼう くまり くまり