Kaneko-Zagier equations for Jacobi forms and curve counting on CHL manifolds

Georg Oberdieck (Universität Bonn)

May 7, 2021
Quantum Gravity \& Modularity Workshop

Based on the joint works: arXiv:1811.06102 (with Jim Bryan), arXiv:2007.03489 (with Jan-Willem van Ittersum and Aaron Pixton), arXiv:1411.1514 (with Rahul Pandharipande)

Short Overview

Abstract

I will discuss counting curves on $K 3 \times \mathbb{P}^{1}$ with relative conditions at $K 3 \times 0$ and $K 3 \times \infty$. Main features:

- Structure constants are quasi-Jacobi forms
- g-twisted traces \rightsquigarrow CHL geometry
- Relations to Conway Moonshine VOAs (??)

Short Overview

Abstract

I will discuss counting curves on $K 3 \times \mathbb{P}^{1}$ with relative conditions at $K 3 \times 0$ and $K 3 \times \infty$. Main features:

- Structure constants are quasi-Jacobi forms
- g-twisted traces \rightsquigarrow CHL geometry
- Relations to Conway Moonshine VOAs (??)

Table of Contents

1a) Kaneko-Zagier equation for modular forms (classical case)
1b) Kaneko-Zagier equation for Jacobi forms (new case)
2) Fock space and the operator ω_{β}
3) Traces and CHL geometry

Kaneko-Zagier equation

Let $q=e^{2 \pi i \tau}$ where $\tau \in \mathbb{H}$. Given $k>2$ consider the Serre derivative

$$
\vartheta_{k}=D_{\tau}-\frac{k}{12} E_{2}(\tau)
$$

where $D_{\tau}=q \frac{d}{d q}$ and $E_{2}=1-24 \sum_{n \geq 1} \sigma(n) q^{n}$.

Kaneko-Zagier equation

Let $q=e^{2 \pi i \tau}$ where $\tau \in \mathbb{H}$. Given $k>2$ consider the Serre derivative

$$
\vartheta_{k}=D_{\tau}-\frac{k}{12} E_{2}(\tau)
$$

where $D_{\tau}=q \frac{d}{d q}$ and $E_{2}=1-24 \sum_{n \geq 1} \sigma(n) q^{n}$.

Lemma

$\vartheta_{k}: \operatorname{Mod}_{k} \rightarrow \operatorname{Mod}_{k+2}$

Proof.

The transformation law $E_{2}(-1 / \tau)=\tau^{2} E_{2}(\tau)-6 i \tau / \pi$ cancels the quasi-modularity arising by differentiating by τ.

Kaneko-Zagier equation

Let $q=e^{2 \pi i \tau}$ where $\tau \in \mathbb{H}$. Given $k>2$ consider the Serre derivative

$$
\vartheta_{k}=D_{\tau}-\frac{k}{12} E_{2}(\tau)
$$

where $D_{\tau}=q \frac{d}{d q}$ and $E_{2}=1-24 \sum_{n \geq 1} \sigma(n) q^{n}$.

Lemma

$\vartheta_{k}: \operatorname{Mod}_{k} \rightarrow \operatorname{Mod}_{k+2}$

Proof.

The transformation law $E_{2}(-1 / \tau)=\tau^{2} E_{2}(\tau)-6 i \tau / \pi$ cancels the quasi-modularity arising by differentiating by τ.

Definition (Kaneko-Zagier equation)

$$
\vartheta_{k+2} \vartheta_{k} f_{k}(\tau)=\frac{k(k+2)}{144} E_{4}(\tau) f_{k}(\tau)
$$

Theorem (Kaneko-Zagier)

For every $k \not \equiv 2(\bmod 3)$, the solution $f_{k}=1+\ldots$ to the $K Z$ equation is a modular form of weight k.

Theorem (Kaneko-Zagier)

For every $k \not \equiv 2(\bmod 3)$, the solution $f_{k}=1+\ldots$ to the $K Z$ equation is a modular form of weight k.

Proof.

Let $\wp(x, \tau)$ be the Weierstraß function and define the formal power series

$$
f(x)=\left(\frac{\wp^{\prime}(x)}{-2}\right)^{-1 / 3} .
$$

Let $\Phi(y)$ be formal inverse of f in x, i.e. $\Phi(f(x))=x$. Then the coefficients of the expansion

$$
\Phi(y)=\sum_{k \geq 1} \frac{f_{k-1}}{k} y^{k}
$$

are modular forms and the desired solutions (invert the diff eqn).
Remark. KZ equation is essentially unique second-order ODE with modular solution. Relations to characters of simple modules for rational vertex operator algebras (Kaneko,Nagatomo, Sakai, 2013)

Jacobi KZ equation (with van Ittersum, Aaron Pixton)

Let $z \in \mathbb{C}$ elliptic variable, $p=e^{2 \pi i z}$. Define the theta function

$$
\vartheta_{1}(z, \tau)=\sum_{\nu \in \mathbb{Z}+\frac{1}{2}}(-1)^{\lfloor\nu\rfloor} p^{\nu} q^{\nu^{2} / 2}
$$

and the renormalization

$$
\Theta(z, \tau)=\frac{\vartheta_{1}(z, \tau)}{\eta^{3}(\tau)}
$$

Let

$$
F(z):=\frac{D_{\tau}^{2} \Theta(z)}{\Theta(z)}=-\sum_{n \geq 1} \sum_{d \mid n}(n / d)^{3}\left(p^{d / 2}-p^{-d / 2}\right)^{2} q^{n}
$$

Jacobi KZ equation (with van Ittersum, Aaron Pixton)

Let $z \in \mathbb{C}$ elliptic variable, $p=e^{2 \pi i z}$. Define the theta function

$$
\vartheta_{1}(z, \tau)=\sum_{\nu \in \mathbb{Z}+\frac{1}{2}}(-1)^{\lfloor\nu\rfloor} p^{\nu} q^{\nu^{2} / 2}
$$

and the renormalization

$$
\Theta(z, \tau)=\frac{\vartheta_{1}(z, \tau)}{\eta^{3}(\tau)} .
$$

Let

$$
F(z):=\frac{D_{\tau}^{2} \Theta(z)}{\Theta(z)}=-\sum_{n \geq 1} \sum_{d \mid n}(n / d)^{3}\left(p^{d / 2}-p^{-d / 2}\right)^{2} q^{n}
$$

Definition (vIOP, Kaneko-Zagier equation for Jacobi forms)

For any $m \in \mathbb{Z}$ we consider:

$$
\left\{\begin{array}{l}
D_{\tau}^{2} \varphi_{m}=m^{2} F \varphi_{m} \\
\varphi_{m}=\left(p^{m / 2}-p^{-m / 2}\right)+O(q)
\end{array}\right.
$$

The solutions

With $A=D_{z} \Theta / \Theta$ one has

$$
\begin{aligned}
& \varphi_{1}=\Theta \\
& \varphi_{2}=2 \Theta^{2} A \\
& \varphi_{3}=\frac{9}{2} \Theta^{3} A^{2}-\frac{3}{2} \Theta^{3} \wp \\
& \varphi_{4}=\frac{32}{3} \Theta^{4} A^{3}-8 \Theta^{4} A \wp-\frac{2}{3} \Theta^{4} D_{z}(\wp) \\
& \varphi_{5}=\frac{625}{24} \Theta^{5} A^{4}-\frac{125}{4} \Theta^{5} A^{2} \wp+\frac{15}{8} \Theta^{5} \wp^{2}-\frac{25}{6} \Theta^{5} A D_{z}(\wp)+\frac{5}{2} \Theta^{5} G_{4}
\end{aligned}
$$

General solution

Define the series

$$
f(x)=\frac{\Theta(x)}{\Theta(x+z)}=\frac{x}{\Theta(z)}+\ldots
$$

Let $\Phi(y)$ be formal inverse of f in x, i.e. $\Phi(f(x))=x$. Consider the expansion

$$
\Phi(y)=\sum_{m=1}^{\infty} \frac{\varphi_{m}}{m} y^{m}
$$

Theorem (vIOP)

The functions φ_{m} defined above are solutions of the Jacobi KZ equation.
Corollary
Every φ_{m} is a quasi-Jacobi form of index $|m| / 2$ and weight -1 .

Second differential equation

Define a second set of functions $\varphi_{m, n}(z, \tau)$ for $m, n \in \mathbb{Z}$ as follows:

$$
\left\{\begin{array}{l}
D_{\tau} \varphi_{m, n}=m n \varphi_{m} \varphi_{n} F+\left(D_{\tau} \varphi_{m}\right)\left(D_{\tau} \varphi_{n}\right) \\
\varphi_{m, n}=O(q)
\end{array}\right.
$$

Theorem (vIOP)

For all $m, n \in \mathbb{Z}$ the difference

$$
\varphi_{m, n}-|n| \delta_{m+n, 0}
$$

is a quasi-Jacobi form of weight 0 and index $\frac{1}{2}(|m|+|n|)$.

Proof.

For $m \neq-n$ this is easy:

$$
\varphi_{m, n}=\frac{m}{m+n} \varphi_{m} D_{\tau}\left(\varphi_{n}\right)+\frac{n}{m+n} D_{\tau}\left(\varphi_{m}\right) \varphi_{n}
$$

For $m=-n$ this becomes extremely subtle.

Back to geometry: Overview

Let $g: S \rightarrow S$ be a symplectic automorphism of order N of a K3 surface. The associated CHL Calabi-Yau threefold is:

$$
X_{g}=(S \times E) /\left\langle g \times \tau_{N}\right\rangle
$$

String theory of X_{g} studied by David, Jatkar, Sen, .. many others. Our strategy to evaluate its Gromov-Witten theory mathematically:

- Degenerate one period of the torus E :

$$
X_{g} \rightsquigarrow\left(S \times \mathbb{P}^{1}\right) / \sim, \quad(s, 0) \sim(g s, \infty)
$$

- Express GW theory of $K 3 \times \mathbb{P}^{1}$ as operator on Fock space
- g-twisted traces give topological string partition function

Fock Space

Consider the (negative) K3 lattice

$$
\Lambda=U^{\oplus 4} \oplus E_{8}^{\oplus 2}
$$

and the associated Fock space

$$
\mathcal{F}_{K 3}=\bigotimes_{m \geq 1} \operatorname{Sym}^{\bullet}\left(\Lambda_{\mathbb{Q}} q^{i}\right)
$$

It is acted on by the Heisenberg operators $\alpha_{i}(\gamma)$ for $i \in \mathbb{Z}$ and $\gamma \in \Lambda$ subject to the commutation rule:

$$
\left[\alpha_{m}(\gamma), \alpha_{n}\left(\gamma^{\prime}\right)\right]=m \delta_{m+n, 0}\left(\gamma, \gamma^{\prime}\right) \operatorname{id}_{\mathcal{F}} .
$$

The Fock space $\mathcal{F}_{K 3}$ is freely generated from the action of the creation operators $\alpha_{i}(\gamma), i<0$ on the vaccuum vector $\mid \varnothing>$.

Operators (based on 1406.1139)

For every element $\beta \in \Lambda$ define the 'vertex operator'

$$
\omega_{\beta}: \mathcal{F}_{K 3} \rightarrow \mathcal{F}_{K 3} \otimes \frac{\mathbb{Q}\left[p^{ \pm 1 / 2}\right]}{\left(p^{1 / 2}-p^{-1 / 2}\right)^{2}}
$$

as the $q^{-\frac{1}{2}(\beta, \beta)}$ coefficient of

$$
: \frac{1}{\Theta^{2} \eta^{24}} \exp \left(\sum_{m \neq 0} \alpha_{m}(\beta) \frac{\varphi_{m}}{m}\right) \exp \left(\frac{1}{2} \sum_{m, n \in \mathbb{Z} \backslash\{0\}} \alpha_{m} \alpha_{n}(\Delta) \frac{\varphi_{m, n}}{m n}\right):
$$

Here

- $\Delta \in \Lambda \otimes \Lambda$ is the class of the diagonal,
- : - : stands is the normal ordered product,
- $\varphi_{m}, \varphi_{m, n}$ are the functions defined previously.
- dependence on p, q is surpressed

Example

- If $(\beta, \beta)>2$, then $\omega_{\beta}=0$.
- If $(\beta, \beta)=2$

$$
\omega_{\beta}=:\left[\frac{1}{\left(s-s^{-1}\right)^{2}} \exp \left(\sum_{m \neq 0} \frac{\left(s^{m}-s^{-m}\right)}{m} \alpha_{m}(\beta)\right)\right]:
$$

where $p=s^{2}$. This can be expressed in terms of action of $\hat{g} /(2)$ (Maulik-Oblomkov).

- If $(\beta, \beta)=0$,

$$
\begin{array}{r}
\omega_{\beta}=: \exp \left(\sum_{m \neq 0} \frac{s^{m}-s^{-m}}{m} \alpha_{m}(\beta)\right) \cdot\left[\left(2 s^{-2}+20+2 s^{2}\right) /\left(s-s^{-1}\right)^{2}\right. \\
\quad-\sum_{m \neq 0} m\left(s^{m}-s^{-m}\right) \alpha_{m}(\beta) \\
\left.-\frac{1}{2} \sum_{\ell, m \neq 0}\left(s^{\ell}-s^{-\ell}\right)\left(s^{m}-s^{-m}\right) \alpha_{\ell} \alpha_{m}(\Delta)\right]:
\end{array}
$$

Conjecture

Assume β primitive. For any $\mu, \nu \in \mathcal{F}_{n}$ we have

$$
\operatorname{Coeff}_{p^{k}}\left(\mu \mid \omega_{\beta} \nu\right)_{\mathcal{F}_{n}}=(-1)^{k-1} \mathrm{PT}_{k+n,(\beta, n)}^{K 3 \times \mathbb{P}^{1}}(\mu, \nu)
$$

under suitable identification of boundary conditions: $H^{*}\left(\operatorname{Hilb}_{n} K 3\right) \cong \mathcal{F}_{n}$.
Conjecturally this yields full solution to Pandharipande-Thomas theory of $K 3 \times \mathbb{P}^{1}$ relative to the divisors $K 3 \times 0$ and $K 3 \times \infty$.

Conjecture

Assume β primitive. For any $\mu, \nu \in \mathcal{F}_{n}$ we have

$$
\operatorname{Coeff}_{p^{k}}\left(\mu \mid \omega_{\beta} \nu\right)_{\mathcal{F}_{n}}=(-1)^{k-1} \mathrm{PT}_{k+n,(\beta, n)}^{K 3 \times \mathbb{P}^{1}}(\mu, \nu)
$$

under suitable identification of boundary conditions: $H^{*}\left(\operatorname{Hilb}_{n} K 3\right) \cong \mathcal{F}_{n}$.
Conjecturally this yields full solution to Pandharipande-Thomas theory of $K 3 \times \mathbb{P}^{1}$ relative to the divisors $K 3 \times 0$ and $K 3 \times \infty$.
Upshot: The PT theory of all CHL models becomes computable:

$$
\begin{aligned}
\mathrm{PT}_{k,(\beta, n)}^{X_{g}} & =\frac{1}{N} \sum_{\tilde{\tilde{\beta} \in H_{2}(S, \mathbb{Z})}} \mathrm{PT}_{\substack{P(\tilde{\beta})=\beta}}^{K 3 \times \mathbb{P}^{1}}\left(\Gamma_{g}\right) \\
& =\frac{1}{N} \sum_{P(\tilde{\beta})=\beta}(-1)^{k+1} \operatorname{Coeff}_{p^{k}}\left(\left(\Gamma_{g}\right)_{1} \mid \omega_{\tilde{\beta}}\left(\Gamma_{g}\right)_{2}\right)_{\mathcal{F}_{n}} \\
& =(-1)^{k+1} \frac{1}{N} \operatorname{Coeff}_{p^{k}} \sum_{P(\tilde{\beta})=\beta} \operatorname{Tr}_{\mathcal{F}_{n}}\left(g \omega_{\tilde{\beta}}\right)
\end{aligned}
$$

Back to CHL models

Given $g: S \rightarrow S$ symplectic automorphism, let:

- $\Lambda=H^{*}(S, \mathbb{Z})$ as before.
- $L=H^{2}(S, \mathbb{Z})^{g}$ invariant lattice
- $P=\frac{1}{N} \sum_{i=0}^{N-1} g^{i}$

$$
\begin{aligned}
H_{2}\left(X_{g}, \mathbb{Z}\right) / \text { torsion } & \cong \operatorname{Im}(P: L \rightarrow L \otimes \mathbb{Q}) \oplus \mathbb{Z} \\
& \cong\left(L^{g}\right)^{\vee} \oplus \mathbb{Z}
\end{aligned}
$$

Lemma

Assume $\gamma \in\left(L^{g}\right)^{\vee}$ primitive. Then $\mathrm{PT}_{k,(\gamma, n)}^{X_{g}}$ only depends on $\left(X_{g}, \gamma\right)$ via

$$
s=\gamma^{2}, \quad \alpha=[\gamma] \in\left(L^{g}\right)^{\vee} / L^{g},
$$

and $g: L \rightarrow L$ up to conjugation. We write $\mathrm{PT}_{k, s, n, \alpha}$ instead.

CHL models II

Definition

Given $\alpha \in\left(L^{g}\right)^{\vee} / L^{g}$ define

$$
Z_{\alpha}=\sum_{k, s, n} \mathrm{PT}_{k, s, n, \alpha}(-1)^{k+1} p^{k} t^{n-1} q^{s / 2}
$$

Conjecture

Every Z_{α} is a Siegel modular form of genus 2 (for a congruence subgroup).

Computation scheme:

$$
Z_{\alpha}=\frac{1}{N} \sum_{s} \sum_{P(\tilde{\beta})=\beta_{s}} \operatorname{Tr}_{\mathcal{F}}\left(g \omega_{\tilde{\beta}} t^{\mathbb{N}-1}\right) .
$$

where \mathbb{N} is the energy operator: $\left.\mathbb{N}\right|_{\mathcal{F}_{n}}=n \cdot \mathrm{id}_{\mathcal{F}_{n}}$, and $\beta_{s} \in\left(L^{g}\right)^{\vee}$ is a primitive class of square $\beta_{s}^{2}=s$ and $\left[\beta_{s}\right]=\alpha$.

Example: $N=1$

Simplest case: $g=\mathrm{id}$, then $X_{g}=K 3 \times E$. It is well-known:

$$
Z^{K 3 \times E}=\frac{1}{\chi_{10}\left(\begin{array}{c}
\tau \\
z \\
\tilde{\tau}
\end{array}\right)}
$$

where $p=e^{2 \pi i z}, q=e^{2 \pi i \tau}$ and $t=e^{2 \pi i \tau}$.
Hence on expects:

$$
\operatorname{Tr}_{\mathcal{F}} t^{\mathbb{N}-1} \omega_{\beta}=\operatorname{Coeff}_{q^{\beta 2} / 2}\left[\frac{1}{\chi_{10}(\Omega)}\right]
$$

\rightarrow Strong evidence available (exact expressions later)

Example: $N=2$

In order 2 the involution g interchanging the E_{8} factors.

$$
\begin{gathered}
L^{g}=E_{8}(-2) \oplus U^{3} \\
D\left(L^{g}\right)=\left(L^{g}\right)^{\vee} / L^{g}=D\left(E_{8}(2)\right)=\mathbb{Z}_{2}^{8}
\end{gathered}
$$

The Weyl group acts on the discriminant group with three orbits $0, \alpha_{1}, \alpha_{2}$. If $[\gamma] \neq 0$, then its orbit is determined by γ^{2}. Hence we obtain two cases:

- If $[\gamma]=0$ (untwisted case) $Z_{\text {untwisted }}=Z_{0}^{N=2}$
- If $[\gamma] \neq 0$ (twisted case) $Z_{\text {twisted }}=Z_{\alpha_{1}}^{N=2}+Z_{\alpha_{2}}^{N=2}$

Example: $N=2$

In order 2 the involution g interchanging the E_{8} factors.

$$
\begin{gathered}
L^{g}=E_{8}(-2) \oplus U^{3} \\
D\left(L^{g}\right)=\left(L^{g}\right)^{\vee} / L^{g}=D\left(E_{8}(2)\right)=\mathbb{Z}_{2}^{8}
\end{gathered}
$$

The Weyl group acts on the discriminant group with three orbits $0, \alpha_{1}, \alpha_{2}$. If $[\gamma] \neq 0$, then its orbit is determined by γ^{2}. Hence we obtain two cases:

- If $[\gamma]=0$ (untwisted case) $Z_{\text {untwisted }}=Z_{0}^{N=2}$
- If $[\gamma] \neq 0$ (twisted case) $Z_{\text {twisted }}=Z_{\alpha_{1}}^{N=2}+Z_{\alpha_{2}}^{N=2}$

$$
Z_{\mathrm{twisted}}=\frac{1}{2^{4}} \frac{1}{\Phi_{6,3}(\Omega)}
$$

(Ref: Jatkar and A. Sen, Dyon spectrum in CHL models;
David, D. P. Jatkar and A. Sen Product Representation of Dyon Partition Function in CHL Models)

Example: $N=2$ continued

By joint work with Bryan one has:

$$
Z_{\text {untwisted }}=-\frac{1}{2}\left(\frac{1}{\Phi_{6,0}}+\frac{1}{2^{4} \Phi_{6,3}}+\frac{1}{2^{4} \Phi_{6,4}}\right)
$$

(the simplified formula here is from [Fischbach, Klemm, Nega - Lost Chapters in CHL Black Holes ..])

$$
\begin{align*}
& \frac{1}{\Phi_{6,0}}=\frac{\theta_{0000}^{2} \theta_{0001}^{2} \theta_{0010}^{2} \theta_{0011}^{2}}{\chi_{10}} \tag{1}\\
& \frac{1}{\Phi_{6,3}}=\frac{\theta_{0000}^{2} \theta_{0010}^{2} \theta_{0100}^{2} \theta_{0110}^{2}}{\chi_{10}} \tag{2}\\
& \frac{1}{\Phi_{6,4}}=-\frac{\theta_{0001}^{2} \theta_{0011}^{2} \theta_{0100}^{2} \theta_{0110}^{2}}{\chi_{10}} . \tag{3}
\end{align*}
$$

The computation scheme

$$
Z_{\alpha}^{N}=\frac{1}{N} \sum_{s} \sum_{P(\tilde{\beta})=\beta_{s}} \operatorname{Tr}_{\mathcal{F}}\left(g \omega_{\beta} t^{\mathbb{N}-1}\right)
$$

yields conjectural identities relating Siegel modular forms with the functions $\varphi_{m n}$. Already $g=$ id is very interesting, it gives the following: Define functions $L(z, \tau, \tilde{\tau})$ and $M(z, \tau, \tilde{\tau})$ by

$$
\begin{aligned}
L & =\sum_{r \geq 1}(-1)^{r-1} \sum_{d_{1}, \ldots, d_{r} \in \mathbb{Z} \backslash 0} \frac{1}{\left|d_{1}\right| \cdots\left|d_{r}\right|} \frac{\tilde{q}^{\left|d_{1}\right|}}{1-\tilde{q}^{\left|d_{1}\right|}} \cdots \frac{\tilde{q}^{\left|d_{r}\right|}}{1-\tilde{q}^{\left|d_{r}\right|}} \varphi_{d_{1}} \varphi_{-d_{1}, d_{2}} \cdots \varphi_{-d_{r-1}, d_{r}} \varphi_{-d_{r}} \\
M & =\sum_{r \geq 1} \frac{(-1)^{r-1}}{r} \sum_{d_{1}, \ldots, d_{r} \in \mathbb{Z} \backslash 0} \frac{1}{\left|d_{1}\right| \cdots\left|d_{r}\right|} \frac{\tilde{q}^{\left|d_{1}\right|}}{1-\tilde{q}^{\left|d_{1}\right|}} \cdots \frac{\tilde{q}^{\left|d_{r}\right|}}{1-\tilde{q}^{\left|d_{r}\right|}} \varphi_{d_{1},-d_{2}} \cdots \varphi_{d_{r},-d_{1}}
\end{aligned}
$$

Conjecture

$$
\sum_{k \geq 0} \frac{1}{k!} D_{\tau}^{k}\left(\frac{L^{k}}{\exp (M)^{12} \Theta(z, \tau)^{2} \Delta(\tau) \Delta(\tilde{\tau})}\right)=\frac{1}{\chi_{10}\left(\begin{array}{cc}
\tau & z \\
z & \tilde{\tau}
\end{array}\right)}
$$

Main open questions:

- What is the algebra structure of the operators ω_{β} ?
- Are there relations to the Conway Moonshine VOA?
- Mathematical proofs
- Non-commutative CHL models

Main open questions:

- What is the algebra structure of the operators ω_{β} ?
- Are there relations to the Conway Moonshine VOA?
- Mathematical proofs
- Non-commutative CHL models

Thank you! (the end)

(Kummer K3 surface, source:mo-labs.com)

