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Let X be a complex variety with an action by a torus T = (C∗)n. Since
the topological Euler characteristic of C∗ vanishes, the Euler characteristic
of X is the Euler characteristic of the fixed locus XT under the torus action:

e(X) = e(XT ).

More generally, the cohomology of X is determined by the cohomology of
XT together with the restriction maps on cohomology, given that the co-
homology is taken equivariantly with respect to the torus T . This yields
a practical and powerful tool to understand the cohomology of algebraic
varieties with torus actions.

The seminar discusses the cohomology of symplectic varieties with torus
actions and their relation to quantum groups. The key is to understand the
equivariant restriction morphisms

H∗T (X)→ H∗T (XT )

and to construct suitable maps in the other direction called stable envelopes.
Understanding this in detail for Nakajima quiver varieties will lead to in-
tresting R-matrices out of which one can construct a Yangian. The Yangian
naturally act on the cohomology of these varieties, and one part of it acts
by multiplication with Chern classes of tautological bundles.

A further enhancement of the theory is obtained by considering the quan-
tum cohomology of the symplectic varieties. Quantum cohomology is a
commutative and associate deformation of the cohomology of a smooth pro-
jective variety whose structure constants encode counts of rational curves
on the underlying variety. Formally it is defined in terms of the Gromov–
Witten theory of the variety. For Nakajima quiver varieties we will see that
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the operators of quantum multiplication with tautological classes are also
expressible through the action of the Yangian.

The main reference for the course is the book [10] by Maulik and Ok-
ounkov.

The theory presented here is best understood through concrete examples.
Already the case of T ∗P1, the cotangent bundle of P1, showcases many of the
properties of the general theory. Hence the T ∗P1 case should be discussed
in every talk. More general examples include:

• Cotangent bundle of the Grassmannian: T ∗Gr(k, n) or more generally
of flag varieties.

• Hilbert scheme of points on the affine plane, Hilb(C2), or on ADE
surfaces

• Springer resolution T ∗(G/B)

• Moduli space of framed rank r sheaves on the plane M(r, n)

The schedule for the talks is as follows:

Oct. 8: Skipped.

Oct. 15: Equivariant Cohomology I (Speaker: Travis Schedler)
Basic definition of equivariant cohomology using the Borel construction.

Approximation via algebraic spaces. Formality [1, Section 2.4]. Functorial-
ity (pullback and pusforward).

The main focus should be to explain how it works practically in various
examples such as the point, projective space, and the Grassmannian. In
particular, describe explicitly the equivariant cohomology of P1, including
presentation of generators, chern classes of the line bundles O(n) and of
the tangent bundle, and the classes of fixed points [0] and [∞]. What does
formality say in this case? Find the image of the restriction maps

H∗T (X)→ H∗T (XT ) (1)

for X = P1, and show it is an isomorphism after inverting equivariant pa-
rameters. Discuss the restriction (1) and in particular the fixed points for
Pn and the Grassmannian. If time permits explain the second localization
formula ([1, Thm.2.13]). Good reference: [1] Lecture 1, part of Lecture 2.
See also [5] and the classical [2]. For algebraic geometers [7].

Oct. 22: Equivariant Cohomology II: Localization formula (Speaker:
Johannes Schmitt)
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This talk focuses on the Atiyah-Bott localization formula and its appli-
cation. Discuss the statement and give examples. For example evaluate the
basic integral ∫

P1

c1(OP1(1))

using the localization formula. More generally, perform an integral over Pn,
e.g. find some Chern numbers on P2. Give also applications of the local-
ization formula where the fixed locus has positive-dimension, e.g. integrate
over C × P1 where C is a higher genus curve. Define integration on non-
compact spaces by the localization and perform some example calculations,
e.g. over C2. Explain the following crucial property: If the total space is
compact or the cycle you integrate has compact support, then the value of
the equivariant integral does not have poles in the equivariant cohomology
of the point, or in other words it is a polynomial.

Sketch a proof of the Localization formula.
More generally, apply the localization formula to an integral over a Grass-

mannian, for examply use the fixed point formula to determine the number
of lines on a cubic surface along the lines of [11, Section 1]. This requires
you to talk about the tangent weights at fixed points of the Grassmannian.

Good reference: [1] and see also the reference for the first talk.

Oct. 29: Stable envelopes I (Speaker: Mauri Mirko)
The main reference for this and the next talk is Section 3 of [10]. The gen-

eral setup is Section 3.1.2. The chapter on Signs and adjoints 3.1.3 should be
skipped. Attracting manifolds. Partial/Absolute order determined by choice
of chamber, Introduce stable envelopes by their characterization (Theorem
3.3.4). Discuss the case of T ∗P1 in all details, in particular give the map for
both choices of chambers c1, c2. Compare the corresponding maps and note
that

Stab−1c1 ◦ Stabc2

is non-trivial. If time permits, discuss the relationship between stable en-
velope for the cotangent bundle of a Grassmannian with classical Schubert
cycles, compare in particular the positivity in [1, Section 3] with the condi-
tions of Theorem 3.3.4. Sketch the uniqueness of stable envelopes.

Nov. 5: Stable envelopes II (Speaker: Isabell Hellmann)
Review stable envelopes. Introduce Lagrangian correspondences (3.2.5),

Lagrangian residues (3.4) and prove the existence of stable envelopes (3.5).
Discuss Symplectic resolutions and Steinberg correspondences (Section 3.6
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and 3.7). In particular show that for symplectic resolutions the stable en-
velope is the spezialization of the attractor manifold to the special fiber
(Theorem 3.7.4). As an example discuss again T ∗P1.

The name ’Steinberg correspondence’ Z originates from Steinberg’s study
of the Springer resolution T ∗(G/B). Concretely we have

Z = T ∗(G/B)×N T ∗(G/B)

= {(x, F•, F ′•)|x nilpotent, xFi ⊂ Fi+1 and xF ′i ⊂ F ′i+1 for all i}

where N is the nilpotent cone, see the book Chris-Ginzburg [4] and also [3]
If time permits explain this case,

Nov. 12: Quantum groups and Yang-Baxter equations (Till Wer-
hahn)

A quantum group is a Hopf algebra deformation of the universal envelop-
ing algebra of a Lie algebra g. Explain the basics of quantum groups: Defini-
tion, R-matrices, and the Yang-Baxter equation. Explain how the quantum
group can be reconstructed from the R-matrices using the RTT = TTR
construction. In this lecture use the Lie algebra g = gl(2) as your leading
example. In particular, perform the RTT = TTR construction explicitly
Uq(gl(2)). Reference is [8], in particular Prop. VIII.3.1, Thm. VIII.6.1 and
Thm. VIII.6.4.

Nov. 19: The Yangian Y (glN ) (Speaker: Thorsten Heidersdorff)
Introduce and study the Yangian of gl(n) explicitly in several ways (via

the RTT=TTR construction, via R-matrices ,.. ).

Nov. 26: Nakajima quiver varieties and their fixed points (Speaker:
Pieter Belmans)

Explain their basic construction as in Section 2.1 of [10]. See also [16]
Section 4 for a more friendly introduction, see [15] for more details, and also
[12, 13] for the original papers. Another good reference is [9]. The con-
struction of the GIT quotient should be taken as a blackbox here. Explain
how the various examples we discussed so far arise as a Nakajima variety.
In particular describe the quiver for T ∗P1, T ∗Pn and the cotangent bundle
of the Grassmannian and show it gives the desired varieties. Introduce the
Hilbert scheme of points of C2 and its representation as a quiver variety, see
[14] and the ADHM Construction.

In the second half of the talk focus on the torus fixed points of Nakajima
quiver varieties. These are given as products of smaller Nakajima quiver
varieties, see Section 2.3 and 2.4 of [10]. The general result is Proposi-
tion 2.3.1. For most of our application the presentation of equation (2.14) is
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more relevant. Discuss a bit the general theory but spend most of the time
to explain the fixed loci for the various examples discussed above: T ∗P1,
T ∗Pn, cotangent of Grassmannian. If time permits, another interesting case
is the moduli of framed sheaves discussed in Section 12.1.

Dec. 17: The Yangian of the Grassmannian (Catharina Stroppel)
Explicit discussion of the Yangian in the Grassmannian case (quiver

Q = pt).

Dec. 17: The Maulik-Okounkov Yangian in general (Georg Oberdieck)
Section 4 and 5 in [10]. First we recall that for every chamber c we have

the stable envelope,
Stabc : H∗(XA)→ H∗(X)

which we can view as defining for us a natural basis of the cohomology
H∗(X) in terms of attracting cycles. The associated change-of-basis matrix
is the R-matrix

Rc′c = Stab−1c′ ◦ Stabc.

We follow Sections 4.1.4-9 to show that for Nakajima quiver varieties this
naturally leads to a set of endomorphisms Rij satisfying the Yang-Baxter
equations. Intuitively, the stable envelopes are similar to charts of a vector
bundle, and the Yang-Baxter equations are the cocycle condition for these
charts. The key here is Lemma 3.6.1/Corollary 4.1.2 which says that the
R-matrix for two adjacent chambers (with respect to the full torus A) is
given by the R-matrix Rα of a single C∗-action determined by the root α
defining the wall between the chambers. In particular, every R-matrix is a
combination of such elementary R-matrices satisfying the YBE equation.

We now jump forward to Section 5.2.6 and explain the construction of
the Yangian. For the Grassmannian case (Q = pt) this reduced to the
previous talk on the Yangian of gl2; this can be done explicitly by matching
the R-matrix in 4.1.2 with the R-matrix for gl2. Then we go through several
properties of the Yangian (the proofs are mostly skipped): the TTR=RTT
relation of Section 5.2.9; that the Yangian acts naturally on H∗(M(w)) for
all w (no direct reference; this is not immediately if we use {Fi} = {H(δi)}
in the definition of the Yangian as in the book, but it follows by defining
the action in a ’chart’ Stabc : ⊗jFij → H(w) and then using the YBE to
show that this does not depend on the choice of chart); that we could have
defined the Yangian with {Fi} = {H(w)}w∈ZI instead (Section 5.2.14); the
definition of the coproduct as in Section 5.2.15 (if y lies in the Yangian then
it comes naturally with an action on W , W ′ and W ⊗W ′, and we define the
action of ∆y by the action y on W ⊗W ′).

5



At the end we discuss the structure of the Yangian (Thm 5.5.1). The Lie
Algebra gQ is generated by E(m0) where m0 are constants in u. The Cartan
of gQ is then generated by the operators vi,wi that act on H(M(v, w)) by vi
and wi respectively. The RTT=TTR relation shows that gQ is a Lie algebra.

= Holidays break =

Jan. 7: Quantum cohomology (Speaker: Denis Nesterov)
Definition, basic properties, virtual dimension. Compute the quantum

cohomology of Pn. The reference for these topics is [6]. We further discuss
the quantum cohomology of equivariant symplectic resolutions following the
article [3]. In particular, we consider the reduced virtual class and we show
that

(ev1 × ev2)∗[M0,2(X,β)]red

is a direct sum of components of the Steinberg varieties X×X0 X. State the
main conjecture of [3] and give the Example of T ∗P1.

Jan. 14: Quantum multiplication on Nakajima quiver varieties
(Speaker: Georg Oberdieck)

We use virtual localization to prove explicitly∫
[M0(T ∗P1,d)]red

1 =
~
d3
.

In doing so we learn about unbroken map and that only they contribute
non-trivially in localization computations for quantum multiplication with
a divisor. Reference is Section 7.3 and the references therein. Statement of
Theorem 1.3.2/Theorem 10.2.1 of [10].

In the second half we return to the interpretation of Maulik-Okounkov’s
result in terms of their Yangian. Define the Baxter (or Bethe) subalgebra
of Y following Section 6.5 and 1.2.2. We have two examples, the first one is
given by g ∈

∏
EndH(M(w)) where the w-component gw of g is given by the

projection onto the vacuum vector |w〉, i.e. gw = |w〉〈w|. Indeed, using that
vi is primitive, one has that ∆vi commutes with R (Proposition 5.3.1, which
follows from writing out E(m0) explicitly, and that the Yangian commutes
with R in the sense that yijRij = Rij ◦ swap◦sji ◦ swap), hence the action of
R on H(w)⊗H(w′) preserve the grading by vi+ v′i, which then implies that
[gw ⊗ gw′ , Rww′ ] = 0 as desired. Following Section 5.4.1 this example gives
the algebra of classical multiplication by chern characters of tautological
bundles (or at least it contains it). The second example is given by g =
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exp(vi) and yields the family of commuting Baxter subalgebras parametrized
by H := the torus with Lie algebra h = Span(vi). By Conjecture 1 this
family of Baxter subalgebras should precisely correspond to the algebra of
quantum multiplication by chern characters under the natural identification
(or map?) between H and H2(X,C)/2πiH2(X,Z). (Of course, we need
to work formally here as explained in Section 6.5). Finally we see in the
particular case of the Grassmannian that under a certain limit the quantum
algebra degenerates to the classical algebra (essentially, this is the calculation
limt7→−∞

(
1
et

)
=
(
1 0
0 0

)
on C2 = H∗(Gr(0, 1) tGr(1, 1)) = H(2)).

Jan. 21: No seminar.

Jan. 28: A tale of two Yangians (Sjoerd Beentjes)
Comparision of the Maulik-Okounkov Yangian with the Yangian ob-

tained from the Cohomological Hall Algebra (CoHA).

Further topics:
There are several direction one can go beyond [10]. For once, one can

consider quantum cohomology of symplectic varieties which are not Naka-
jima quiver varieties. Basic examples are hyper-toric varieties [17, 18] or
Springer resolutions [3]. Very interesting are also non-toric cases such as
the Hilbert scheme of points of the cotangent bundle of a curve, moduli of
Higgs bundles, or (compact) irreducible holomorphic-symplectic varieties.
An another generalization is to consider K-theoretic quantum cohomology,
see [16] for an introduction. Finally, the higher genus Gromov-Witten the-
ory of HilbnC2 has recently been determined by Pandharipande and Tzeng
[19].
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