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Abstract. Let π : X → B be an elliptically fibered threefold satisfying c3(TX ⊗ ωX) = 0.
We conjecture that the π-relative generating series of Pandharipande-Thomas invariants
of X are quasi-Jacobi forms and satisfy two holomorphic anomaly equations. For el-
liptic Calabi-Yau threefolds our conjectures specialize to the Huang-Katz-Klemm conjec-
ture. The proposed formulas constitute the first case of holomorphic anomaly equations in
Pandharipande-Thomas theory.

We prove our conjectures for the equivariant Pandharipande-Thomas theory of C2 × E
when specialized to the anti-diagonal action. For K3× C we state reduced versions of our
conjectures. As a corollary we find an explicit conjectural formula for the stationary theory
generalizing the Katz-Klemm-Vafa formula for K3 surfaces. Further evidence is available
for P2 × E based on earlier work of the second author.

To deal with elliptic threefolds with c3(TX ⊗ ωX) 6= 0 we show that the moduli space of
π-stable pairs is represented by a proper algebraic space. We conjecture that the associated
π-stable pair invariants form quasi-Jacobi forms.
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1. Introduction

1.1. Pandharipande-Thomas theory. Let X be a smooth complex projective threefold.

A stable pair (F, s) on X consists of

• a pure 1-dimensional sheaf F ,

• a section s ∈ H0(X,F ) with zero-dimensional cokernel.

Let Pn,β(X) be the fine projective moduli space of stable pairs with numerical data

ch2(F ) = β ∈ H2(X,Z), χ(F ) = n ∈ Z.

The moduli space carries naturally the descendent cohomology classes1

chk(γ) = πP∗(chk(F−O) ∪ π∗X(γ)), k ≥ 0, γ ∈ H∗(S,Q),

Date: August 18, 2023.
1By our conventions, we have ch0(γ) = −

∫
X
γ and ch1(γ) = 0.

1
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where πP , πX are the projections of Pn,β(X) × X to the factors and (F, s) is the universal

stable pair. Following [22] we will also use the modified descendents

c̃hk(γ) := chk(γ) +
1

24
chk−2(γ · c2(TX)).

The Pandharipande-Thomas (PT) invariants of X are defined in [36] by integrating these

classes over the virtual fundamental class of the moduli space:

〈chk1(γ1) · · · chkn(γn)〉X,PTn,β =

∫
[Pn,β(X)]vir

∏
i

chki(γi).

We often drop the supscripts X and PT from notation. We extend the bracket 〈−〉PTn,β linearly

to the algebra generated by the descendent classes chk(γ). We refer to [33] for an overview

of recent results and conjectures in PT theory.

1.2. Elliptic threefolds. Assume from now on that the threefold X admits an elliptic

fibration2 to a smooth projective surface B,

π : X → B.

We assume moreover that:

• π has a section ι : B → X with image the divisor B0 ⊂ X,

• π : X → B is a Weierstraß model [8].

Consider for any β ∈ H2(B,Z) the partial generating series

(1.1) 〈chk1(γ1) · · · chkn(γn)〉X,PT,πβ

:= q−
1
2
c1(NB/X)·β

∑
β̃∈H2(X,Z)
π∗β̃=β

∑
m∈ 1

2
Z

i2mpmqB0·β̃ 〈chk1(γ1) · · · chkn(γn)〉X,PT
m+ 1

2
d
β̃
,β̃

where

• p, q are formal variables and i =
√
−1,

• NB/X is the normal bundle of the section ι : B → X,

• d
β̃

=
∫
β̃
c1(TX).

Define also the normalized series

(1.2) Zβ (chk1(γ1) · · · chkn(γn)) :=
〈chk1(γ1) · · · chkn(γn)〉X,PT,πβ

〈1〉X,PT,π0

.

For elliptic Calabi-Yau threefolds X the moduli space Pn,β(X) is of virtual dimension zero

and all correlators for class β are determined by the single Laurent series

Zβ := Zβ(1) ∈ C((p))((q)).

The series Zβ were studied intensively in physics [2, 14, 1, 15, 10] which culminated in the

following beautiful conjecture by Huang, Katz and Klemm [11]:

Conjecture A (Huang-Katz-Klemm, [11]). Let X → B be an elliptic Calabi-Yau threefold.

For β ∈ H2(X,Z) the relative partition function Zβ is a meromorphic Jacobi form of weight

0 and index 1
2β · (β +KB), which is of the form

Zβ = ∆(q)
1
2
KB ·β

∑
α=(β1,...,β`)

ϕα(p, q)∏`
i=1 Θ(pdiv(βi), q

)2
where

2i.e. a flat morphism with ωπ trivial on all fibers
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• α runs over all decompositions β = β1 + . . . βl into effective classes βi ∈ H2(B,Z)

which are of divisibility div(βi) in H2(B,Z), and

• ϕα ∈ Jac are (holomorphic) weak Jacobi forms.

In the statement above we used the weight 12 discriminant modular form

∆(q) = q
∏
n≥1

(1− qn)24 ∈ Mod12 := Jac12,0

and the index 1/2 weight −1 Jacobi theta function

(1.3) Θ(p, q) = (p1/2 − p−1/2)
∏
m≥1

(1− pqm)(1− p−1qm)

(1− qm)2
.

The bigraded algebra of weak Jacobi forms Jac is recalled in Section 2.3.

Example 1.1. Let π : X → P2 be the elliptic CY3 over P2 and identify Pic(P2) = Z. The

first non-reduced case in the base is degree 2. Conjecture A says

Z2 =
ϕ11(p, q)

∆3ϕ−2,1(p, t)2
+

ϕ2(p, q)

∆3ϕ−2,1(p2, t)
.

for ϕ11 ∈ Jac32,1 and ϕ2 ∈ Jac34,3 which are easily fixed by basic computations, see [11]. �

Conjecture A allows for efficient computations of Pandharipande-Thomas invariants in

these geometries. For every given class β one only has to fix a short list of coefficients to

determine the series Zβ. This has been used in [11] to determine the invariants of the elliptic

CY3 X → P2 up to degree 20 over the base. Partial evidence towards this conjecture on the

mathematical side can be found in [29, 4, 30].

In this paper, we investigate the generating series (1.1) for elliptic threefolds which are not

necessarily Calabi-Yau. The cohomological insertions chk(γ) are a new feature compared to

the Calabi-Yau case. We will conjecture the appearance of quasi-Jacobi forms and holomor-

phic anomaly equations. The outcome is similar to the situation for elliptic genera: Elliptic

genera of Calabi-Yau manifolds are Jacobi forms, while elliptic genera of complex manifolds

are quasi-Jacobi forms in general [19].

1.3. Main conjectures. We state our main conjectures.

Our first conjecture concerns the normalization factor:

Conjecture B (Normalization factor). We have

〈1〉X,PT,π0 =
∏
m≥1

(1− qm)−e(B)−c1(N)·(c1(TB)+c1(N))
∏
`,m≥1

(1− p`qm)−`·c3(TX⊗ωX)

where N = NB/X is the normal bundle of the section.

For elliptic Calabi-Yau threefolds Conjecture B is known by work of Toda [42, Thm 6.9].

We verify it below for the product of an elliptic surface with a curve, and for the trivial

elliptic fibration, see Proposition 2.6.

Next we consider non-zero classes β. We specialize to the case that

c3(TX ⊗ ωX) = 0

which is satisfied if and only if c1(NB/X)2 = 0, see Corollary 2.4. In particular, this applies

to the product of an elliptic surface with a curve or the trivial elliptic fibration.

Let QJac = ⊕k,nQJack,m be the algebra of quasi-Jacobi forms, bigraded by weight k and

index m with finite-dimensional summands QJack,m, see Section 2.3.
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We have the following (partial) generalization of the Huang-Katz-Klemm conjecture:3

Conjecture C. Let X → P1 be an elliptic threefold satisfying c3(TX ⊗ ωX) = 0. Then:

(a) (Quasi-Jacobi form property) Each Zβ(c̃hk1(γ1) · · · c̃hkn(γn)) is a meromorphic quasi-

Jacobi form of

weight KX · ι∗β +
n∑
i=1

(ki − 1 + wt(γi)),

index
1

2
β · (β + c1(NB/X)),

where wt(γi) are the eigenvalues of the eigenvectors γi ∈ H∗(X) under the weight

operator

WT := [B0∪, π∗π∗] : H∗(X)→ H∗(X).

(b) (Pole structure) We have

Zβ

(
c̃hk1(γ1) · · · c̃hkn(γn)

)
= ∆(q)

1
2
c1(N)·β

∑
α=(β1,...,β`)

ϕα(p, q)∏`
i=1 Θ(pdiv(βi), q

)2
where

• α runs over all decompositions β = β1+. . . βl into effective classes βi ∈ H2(B,Z)

which are of divisibility div(βi) in H2(B,Z), and

• ϕα ∈ QJac are quasi-Jacobi forms.

The algebra QJac admits an embedding into the free polynomial ring of two particular

generators over the algebra of (weak) Jacobi forms,

QJac ⊂ Jac[A, G2].

The Eisenstein series G2(q) and the Weierstraß zeta function A(p, q) = p d
dp log Θ(p, q) are

recalled in Section 2.3. In particular, by viewing a quasi-Jacobi form as a polynomial in A

and G2 with coefficients in Jac, we can talk about the derivation operators:

d

dG2
: QJac→ QJac,

d

dA
: QJac→ QJac.

We state the holomorphic anomaly equations which fixes the dependence of the quasi-

Jacobi form Zβ

(
c̃hk1(γ1) · · · c̃hkn(γn)

)
on the quasi-parameters, and hence determines the

series up to a purely Jacobi form part.

Conjecture D (Holomorphic anomaly equations). Assume c3(TX⊗ωX) = 0 and the previous

conjecture. Then we have:

d

dA
Zβ

(
c̃hk1(γ1) · · · c̃hkn(γn)

)
=

n∑
i=1

σiZβ

c̃hki−1(γi∆B,1)c̃h2(∆B,2)
∏
`6=i

c̃hk`(γ`)


+

n∑
i=1

σiZβ

 c̃hki+1(π
∗π∗(γi))

∏
`6=i

c̃hk`(γ`)

 .

3For Calabi-Yau threefolds X we have NB/X ∼= ωX .
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and

d

dG2
Zβ

(
c̃hk1(γ1) · · · c̃hkn(γn)

)
=

− 2
∑
i<j

σijZβ

c̃hki−1(γi∆B,1)c̃hkj−1(γj∆B,2)
∏
6̀=i,j

c̃hk`(γ`)


−

n∑
i=1

σiZβ

c̃hki−2(γi · c2(B))
∏
` 6=i

c̃hk`(γ`)


+

n∑
i=1

∑
m1+m2=ki

σiZβ

(−1)(1+wtL)(1+wtR) (m1 − 1 + wtL)!(m2 − 1 + wtR)!

(ki − 2 + wt(γi))!
c̃hm1

c̃hm2
(E(KX · γi))

∏
` 6=i

c̃hk`(γ`)


− 2

∑
i<j

σij(−1)(1+wt(γi))(1+wt(γj))

(
ki + kj − 4 + wt(γi) + wt(γj)

ki − 2 + wt(γi), kj − 2 + wt(γj)

)
Zβ

c̃hki+kj−2(E(γi � γj))
∏
` 6=i,j

c̃hk`(γ`)

 ,

where

• (∆B,1,∆B,2) stands for summing over the Künneth decomposition of the diagonal

class ∆B ∈ H∗(B ×B),

• we let E ∈ H∗(X ×X ×X) be the correspondence defined by

E := ∆X,12 · π∗∆B,13 + ∆X,13 · π∗∆B,12 + ∆X,23 · π∗∆B,12

− π∗∆B,123

(
pr∗1W + pr∗2W + pr∗3W

)
,

• σi (resp. σij) are the signs obtained by permuting the i-th entry (resp. the i-th and

j-th entry) of (γ1, . . . , γn) to the left-most position,

• and several other conventions explained in Section 3.

For elliptic Calabi-Yau threefolds, Conjectures C and D together specialize to Conjec-

ture A. Evidence in non-Calabi-Yau geometries is given in Section 4 for P2 × E in degrees

d = 1, 2 based on work of the second author [40]. Then we consider the equivariant theory of

C2 ×E. Our conjectures do not apply here directly. However, in general we expect Conjec-

ture D to hold also when the target X admits a action by a torus T with Pn,β(X)T compact

and the PT theory is taken equivariantly with respect to the torus action (i.e. is defined by

equivariant residues), provided that we have the vanishing of the class4

c3(TX ⊗ ωX) = 0 ∈ HT (X).

For C2 × E this holds for the anti-diagonal action and in Section 4.3 we will prove Conjec-

ture D in this case. Then in Section 5 we consider the equivariant PT theory of S×C where

S is a K3 surface. We formulate reduced versions of the holomorphic anomaly equation, and

use it to find explicit conjectural formulas for the full stationary theory.

Conjecture D was found by moving the holomorphic anomaly equations for Gromov-

Witten invariants of elliptic fibrations conjectured in [30, 31] via the GW/PT descendent

correspondence [34, 22] to the PT side. Concretely, according to [34] one can express every

Gromov-Witten series in a universal way as a Laurent polynomial in z with coefficients

given by PT series under the variable change p = ez. Explicit formulas for this have been

given for toric threefolds and essential descendents in [22]. By expressing the factorwise G2-

derivative of a quasi-Jacobi form in terms of its derivatives with respect to G2 and A (see [25,

Lemma.2.15]) we can derive Conjecture D from [31, Conj. B] and Conjecture C by comparing

4This is stronger than the vanishing of
∫
X
c3(TX ⊗ ωX) ∈ HT (pt).
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z-coefficients.5 Altogether we obtain explicit holomorphic anomaly equations for PT brackets

whenever all insertions involved are essential. This suggested the general formula presented

above, but since there are no nontrivial cases where [31, Conj. B], Conjecture C and an

explicit form of the GW/PT correspondence are all simultaneously known, this argument is

almost never rigorous.

1.4. π-stable pairs invariants. In the case that c3(TX ⊗ ωX) 6= 0 the normalized PT

correlators Zβ (chk1(γ1) · · · chkn(γn)) are not quasi-Jacobi forms.6 Instead we propose here

to use the theory of π-stable pairs defined in [29], which is a modified stable pairs theory

that is more efficient and adapted to the elliptic fibration structure.7

Let C be the full subcategory of Coh(X) consisting of sheaves with at most 1-dimensional

support which are supported on fibers of π : X → B. Let

T ⊂ C

be the smallest extension-closed full subcategory which contains all µ-semistable sheaves of

positive slope (where the slope is defined by any ample class, see Section 6.2).

Definition 1.2 ([29]). A π-stable pair on π : X → B is a pair (F, s) consisting of

• a 1-dimensional coherent sheaf F such that Hom(T, F ) = 0 for all T ∈ T,

• a section s : OX → F with cokernel in T.

We prove here the existence of the moduli space of π-stable pairs:

Theorem 1.3. The moduli functor P πn,β(X) of π-stable pairs (defined in Section 6.4) is

represented by a proper algebraic space and is equipped with a perfect obstruction theory.

It follows that we can define π-stable pair invariants parallel to stable pair invariants. The

invariants, partition functions, and so on, of π-stable pairs are defined by a supscript π-PT.

We conjecture the following wall-crossing between stable pair and π-stable pair invariants:

Conjecture E. If c3(TX ⊗ ωX) = 0, then Pandharipande-Thomas and π-stable pair invari-

ants agree:

〈chk1(γ1) · · · chkn(γn)〉X,PTn,β = 〈chk1(γ1) · · · chkn(γn)〉X,π-PTn,β

In the case c3(TX ⊗ ωX) 6= 0, we expect that π-stable pair and PT invariants are con-

nected by a wall-crossing formula. The formula should be similar in shape to Oblomkov’s

conjecture relating descendent Pandharipande-Thomas and Donaldson-Thomas invariants,

see [32, Conj.5.2.1]. However, we do not have many computations of π-stable pair invariants

whenever c3(TX⊗ωX) 6= 0 and X is not Calabi-Yau, so the exact shape of the formula is not

clear yet. Finally, we conjecture the following extension of the quasi-Jacobi form property:

5This uses that z and p = ez are algebraically independent.
6For example, for elliptic Calabi-Yau threefolds by the string equation we have

Z0(ch3(1)) = c3(TX ⊗ ωX)p
d

dp
(log f(p, q))

where f(p, q) =
∏
`,m≥1(1− p`qm)−`. The function p d

dp
log f(p, q) can be seen to be not a quasi-Jacobi form

(for once it doesn’t converge near z = 0 where p = ez).
7This is parallel to the motivation to use Pandharipande-Thomas invariants instead of Donaldson-Thomas

invariants: rationality of generating series does not hold for arbitrary normalized generating series of
Donaldson-Thomas invariants in the presence of descendents of 1. Only the PT invariants defined by the
more economical moduli space of stable pairs is expected to have rationality properties in general, see [33] or
[32, Sec.5]. The intuitive reason is the interaction of the ’floating points’ with the descendents of 1. In our
case considered here we want to similarly exclude interaction of ’floating 1-dimensional sheaves supported on
fibers’ with descendent classes.
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Conjecture F (General quasi-Jacobi form conjecture). We have

Zπ-PTβ (chk1(γ1) · · · chkn(γn)) = ∆(q)
1
2
c1(NB/X)·β

∑
α=(β1,...,β`)

ϕα(p, q)∏`
i=1 Θ(pdiv(βi), q

)2
where α is as in Conjecture C and ϕα ∈ QJac.

The formulation of the holomorphic anomaly equation for π-stable pair invariants is an

interesting problem that requires further investigation.

1.5. Comparision with DT/PT. There is a certain analogy of the above conjectures with

the standard conjectures about the generating series of curve-counting Donaldson-Thomas

invariants, defined for β ∈ H2(X,Z) by〈∏
i

chi(γi)

〉DT

β

=
∑
n∈Z

qn
∫
[Hilbn,β(X)]vir

∏
i

chi(γi),

where we integrate over the Hilbert scheme of 1-dimensional subschemes.

Under this analogy the normalization factor 〈1〉X,PT,π0 of Conjecture B is parallel to the

series of degree zero Donaldson-Thomas invariants evaluated by [17, 18] to be

〈1〉DT
β=0 = M(−q)c3(TX⊗ωX),

where M(q) =
∏
n≥1(1 − qn)n is the Mac-Mahon function. Moreover, if c3(TX ⊗ ωX) = 0

then according to Conjecture 5.2.1 of [32] and [37] the normalized DT series

(1.4)
〈
∏
i chi(γi)〉

DT
β

〈
∏
i chi(γi)〉

DT
0

is a rational function satisfying a functional equation [37]. This is parallel to Conjecture C,

where we conjectured under the same assumptions that the normalized correlators are quasi-

Jacobi forms. The expected equality of (1.4) with the generating series of PT invariants is

in analogy with Conjecture E. The rationality of PT invariants for all threefolds is analogous

to Conjecture F. We summarize this discussion in the following table.

DT/PT theory for X PT/π-PT theory for X → B

Normalization factor 〈1〉DT
0 〈1〉X,PT,π0

Correspondence DT/PT PT/π-PT

If c3(TX ⊗ ωX) = 0 Rationality of
〈∏i chi(γi)〉

DT

β

〈1〉DT
0

Quasi-Jacobiness of
〈∏i chi(γi)〉

PT,π

β

〈1〉PT0

Any c3(TX ⊗ ωX) Rationality of 〈
∏
i chi(γi)〉

PT
β Quasi-Jacobiness of 〈

∏
i chi(γi)〉

π-PT,π
β

1.6. Plan of the paper. In Section 2 we introduce some background on Pandharipande-

Thomas theory, elliptic threefolds and quasi-Jacobi forms. In Section 3 we state with all

details the G2-holomorphic anomaly equation in the absolute case, and explain several con-

sequences. In Section 4 and 5 we discuss the examples P2×E, C2×E and K3×C. Section 6

discusses our results on π-stable pairs.

1.7. Acknowledgements. The authors were supported by the starting grant ’Correspon-

dences in enumerative geometry: Hilbert schemes, K3 surfaces and modular forms’, No

101041491 of the European Research Council.
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2. Preliminaries

2.1. Pandharipande-Thomas theory. We recall the following basic fact:

Lemma 2.1. (Divisor and String equation) Let X be a smooth projective threefold and let

D ∈ H2(X,Q). Then with dβ =
∫
β c1(X) we have

〈ch2(D)chk1(γ1) · · · chkn(γn)〉Xn,β = (D · β) 〈chk1(γ1) · · · chkn(γn)〉Xβ ,

〈ch3(1)chk1(γ1) · · · chkn(γn)〉Xn,β = (n− 1

2
dβ) 〈chk1(γ1) · · · chkn(γn)〉Xβ .

Proof. In both cases ch2(D) and ch3(1) are cohomology classes on Pn,β(X) of degree 0. Hence

we can determine them by restricting to fibers and applying the Hirzebruch-Riemann-Roch

theorem. (For example, in the second case one uses ch3(F ) = χ(F )− 1
2dβ.) �

2.2. Elliptic threefolds. Let B be a smooth projective surface. We assume that the three-

fold X admits an elliptic fibration

π : X → B,

by which we mean a flat morphism with ωπ trivial on all fibers, such that:

• π is equipped with a section

ι : B → X, π ◦ ι = id,

• π : X → B is a Weierstraß model [8].

Remark 2.2. The second assumption is used in our discussion only for the following lemma.

The first assumption can probably also be weakened but would require us to work with quasi-

Jacobi forms for a congruence subgroup below. We refer to [7] for related discussions.

The normal bundle of the section ι is denoted by

NB/X = Nι = ι∗(Ω∗X/B).

Cohomology classes on B naturally define classes on X by pulling them back along π. We

often suppress the pullback by π. This convention is in particular followed in this lemma:

Lemma 2.3. Let ` = c1(NB/X). Then

c1(TX) = c1(TB) + `

c2(TX) = c2(TB) + 12`2 + `c1(TB)− 12ι∗(`)

c3(TX) = ι∗(−72`2 − 12`c1(TB)).

Proof. This follows from the description of X as a Weierstraßmodel, which we recall quickly;

we refer to [8] for details. One defines the rank 3 vector bundle

E = π∗OX(3B0),

where B0 = ι(B). By checking fiberwise one has π∗OX(B0) = OB, and for all n ≥ 1 the

exact sequence

0→ OX(nB0)→ OX((n+ 1)B0)→ Ln+1 → 0,

where L = NB/X . This implies that E admits a natural filtration with graded piece

gr(E) = OB ⊕ L⊗2 ⊕ L⊗3.

The line bundle OX(3B0) is relatively very ample, and hence defines an embedding8

j : X ↪→ P(E∨)

8We use the geometric convention P(F ) = Proj(Sym•F∨) for a vector bundle F .
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such that j∗(OP(E∨)(1)) = OX(3e). By taking local coordinates x on L2 and y on L3 and

using the cubic equation y2 = x3 + . . . one sees that

OP(E∨)(X) = L−6 ⊗OP(E∨)(3)

that is the divisor X ⊂ P(E∨) is cut out by a section of L−6 ⊗OP(E∨)(3).

The rest now follows from standard arguments. Let p : P(E∨)→ B be the projection. We

use the three sequences:

0→ OP(E∨) → p∗(E∨)⊗OP(E∨)(1)→ TP(E∨)/B → 0

0→ TP(E∨)/B → TP(E∨) → p∗(TB)→ 0

0→ TX → TP(E∨)|X → OP(E∨)(X)|X → 0.

If we let

ξ = c1(OP(E∨)(1))

and use ξ|X = 3B0 and B2
0 = B0` and c(E∨) = 1− 5`+ 6`2 this yields:

c(TX) =
c(π∗TB)c(p∗E∨ ⊗O(1))

c(L−6 ⊗O(3))

=
(1 + c1(TB) + c2(TB))(1 + 9B0 − 5`− 3B0`+ 6`2)

1− 6`+ 9B0

which gives the lemma as claimed. �

The following constant will play an important role.

Corollary 2.4. We have

c3(TX ⊗ ωX) = c3(X)− c1(X)c2(X) = −60

∫
B
c1(Ne)

2.

We give the most basic computation of Pandharipande-Thomas invariants of X. Let

F ∈ H2(X,Z)

be the class of a fiber of π : X → B.

Lemma 2.5. With N = NB/X we have∑
d≥0

qd
〈
1
〉X
0,dF

=
∏
m≥1

(1− qm)−e(B)+c1(N)·(KB−c1(N)).

Proof. We have the isomorphism P0(X, dF ) ∼= B[d] given by sending the ideal sheaf Iz of a

length d subscheme z ⊂ B to the stable pair π∗(Iz) = [OX → Oπ−1(z)]. The moduli space

is smooth, so the invariant is the top Chern class of the obstruction bundle. The virtual

tangent bundle at a point I = π∗(Iz) is:

T vir
P0(X,dF )|I = RHomX(I, I)0[1] = (RHomX(I, I)−RΓ(X,OX))[1].

The relative dualizing sheaf ωπ is a line bundle and trivial on fibers of π. Restricting to

the section ι(B) we find

ωπ|ι(B) = ΩX/B|ι(B) = N∗

where N = NB/X . Hence we get

ωπ = π∗N∗B/X
and so

R1π∗OX = π∗(ωπ)∨ = NB/X .

We conclude that

RΓ(X,OX) = RΓ(S,Rπ∗OX) = RΓ(S,OS −N) = RΓ(S,OS)−RΓ(S,N).
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Moreover,

RHomX(I, I) = RHomS(Iz, Iz ⊗ (OS −N)).

Thus

T vir
P0(X,dF )|I = RHomS(Iz, Iz)[1] +RΓ(S,OS)︸ ︷︷ ︸

T
S[d],Iz

+RHomS(Iz, Iz ⊗N) +RΓ(S,N)[−1]︸ ︷︷ ︸
Obs[−1]

.

We hence find∑
d≥0

qd
∫
[P0(X,dF )]vir

1 =

∫
S[d]

c2d(−RHomS(Iz, Iz ⊗N) +RΓ(S,N)).

The claim hence follows from [6, Cor. 1]. �

In two special cases this computes all Pandharipande-Thomas invariants in class dF :

Proposition 2.6. Let π : X → B be one of the following two cases:

(a) the projection S × E → S for any surface S and elliptic curve E,

(b) the product map S × Σ→ C × Σ for any elliptic surface S → C and curve Σ.

Then we have ∑
n∈Z

∑
d≥0

〈
1
〉X
n,dF

(−p)nqd =
∏
m≥1

(1− qm)−e(B)+c1(N)·(KB−c1(N)).

In particular, Conjecture B holds in these cases.

Proof. For (a) if n > 0 then the elliptic curve E acts free on Pn(X, d[E]) by translation. The

virtual fundamental class is then pulled back from the quotient Pn(X, d[E])/E, and hence

its integral vanishes, see [23]. In case n < 0 the moduli space is empty, and for n = 0 the

invariants are computed by Lemma 2.5.

For (b) by a degeneration argument we can assume that Σ = P1 If S = P1 × E, then

the claim follows from part (a). Otherwise, by a further degeneration argument, where we

degenerate S to a chain of rational elliptic surfaces, we can assume that S is a rational elliptic

surface. Applying the GW/PT correspondence [34] and using the localization formula for the

natural torus action on P1 then yields the vanishing for n > 0 by a direct computation. �

2.3. Quasi-Jacobi forms. Jacobi forms are holomorphic functions f : C × H → C which

satisfy a transformation law under the action of the Jacobi group SL2(Z)nZ2, see [9]. Quasi-

Jacobi forms are holomorphic parts of almost holomorphic Jacobi forms, see [19, 30, 16] for

more details. We introduce here quasi-Jacobi forms in an adhoc fashion in terms of their

generators. In particular, we will identify a quasi-Jacobi form with its Fourier expansion in

the variables

(2.1) p = e2πix, q = e2πiτ , (x, τ) ∈ C×H.

For even k ≥ 2 define the index 0 and weight k Eisenstein series

Gk(q) = − Bk
2 · k

+
∑
n≥1

∑
d|n

dk−1qn.

Let Dp = p d
dp , recall Θ(p, q) from (1.3), and consider the following functions:

A(p, q) = Dp log Θ(p, q), ℘(p, q) = −DpA(p, q)− 2G2(q),

℘′(p, q) = Dp℘(p, q).

We let Θ,A, ℘, ℘′ be of weight −1, 1, 2, 3 and index 1, 0, 0, 0 respectively.
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Definition 2.7 ([16, Prop.2.1]). The algebra of quasi-Jacobi forms QJac is the subring of

the free polynomial algebra C[Θ,A, G2, ℘, ℘
′, G4] consisting of those polynomials which define

holomorphic functions H×C→ C under (2.1). The algebra is bigraded by weight and index:

QJac =
⊕

m∈ 1
2
Z≥0

⊕
k∈Z

QJack,m.

An element of QJack,m is called a quasi-Jacobi form of weight k and index m.

The generators G2 and A are strictly quasi-Jacobi forms; the remaining generators are

examples of (meromorphic) Jacobi forms. It is hence natural to consider the formal derivative

operators in the generators G2 and A:

d

dG2
: QJac(Γ)k,m → QJac(Γ)k−2,m,

d

dA
: QJac(Γ)k,m → QJac(Γ)k−1,m

The operators d
dG2

, d
dA , Dp andDτ := Dq := q ddq act on QJac. Let wt and ind be the operators

which act on QJack,m by multiplication by the weight k and the index m respectively. By

[30, (12)] we have the commutation relations:

(2.2)

[
d

dG2
, Dτ

]
= −2wt,

[
d

dA
, Dp

]
= 2ind[

d

dG2
, Dp

]
= −2

d

dA
,

[
d

dA
,Dτ

]
= Dp.

The algebra of (weak) Jacobi forms Jac is the subring of QJac consisting of functions f

with d
dG2

f = d
dAf = 0.

3. Holomorphic anomaly equation

We state with all details our main holomorphic anomaly equation, then discuss the com-

patibility with the string and divisor equation and deduce some consequences.

3.1. Generating series. Define the divisor class

W = [ι(B)]− 1

2
π∗(c1(NB/X)) ∈ H2(X).

Recall that for any fixed class β ∈ H2(B,Z) we defined the series:

〈chk1(γ1) · · · chkn(γn)〉Xβ =
∑

β̃∈H2(X,Z)
π∗β̃=β

∑
m∈ 1

2
Z

i2mpmqW ·β̃ 〈chk1(γ1) · · · chkn(γn)〉X
m+ 1

2
d
β̃
,β̃

where i =
√
−1 and d

β̃
=
∫
β̃
c1(TX). We also use the normalization:

Zβ (chk1(γ1) · · · chkn(γn)) =
〈chk1(γ1) · · · chkn(γn)〉X,PTβ

〈1〉X,PT0

3.2. Main equation. Recall from [30, Sec.2] that the operator [W ∪ (−), π∗π∗(−)] acts

semi-simply on H∗(X) and yields a decomposition

H∗(X) = H∗+ ⊕H∗− ⊕H∗⊥
into eigenspaces of eigenvalue 1, −1, and 0 respectively. Below we always assume that each

γi ∈ H∗(X) lies in such an eigenspace. We let wt(γi) denote its eigenvalue.

Define the following class in H∗(X3):

E := ∆X,12 · π∗∆B,13 + ∆X,13 · π∗∆B,12 + ∆X,23 · π∗∆B,12

− π∗∆B,123

(
pr∗1W + pr∗2W + pr∗3W

)
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where we denote by π also the map

X ×X ×X −→ B ×B ×B,

we let ∆X,I be the class of the locus in Xn where all the points labeled by I ⊂ {1, . . . , n}
coincide, and we let prI be the projections to the factors labeled by I. We view E here as a

correspondence, i.e. for γ ∈ H∗(X) and Γ ∈ H∗(X2) we define

(3.1)
E(γ) = pr23∗(pr∗1(γ)E)

E(Γ) = pr3∗(pr∗12(Γ)E).

The following lemma is straightforward:

Lemma 3.1. Let γ, γ′ ∈ H∗(X) and α, α′ ∈ H∗(B).

• (Symmetry) E(γ � γ′) = E(γ′ � γ)

• (H∗(B)-linearity)

E(π∗(α) · γ) = pr∗1(α) · E(γ)

E(π∗(α� α′) · γ � γ′) = (α · α′) · E(γ � γ′)

• E(1) = ∆B, E(W ) = ∆X , E(α) = (α1 + α2)∆B for α ∈ H∗⊥(X)

• E(γ � 1) = π∗π∗(γ), E(W � γ) = γ

• E(γ� γ′) = π∗π∗(γ · γ′) + γ ·π∗π∗(γ′) +π∗π∗(γ) · γ′−π∗(π∗(Wγ) ·π∗(γ′))−π∗(π∗(γ) ·
π∗(γ

′W ))− π∗(π∗(γ)π∗(γ
′))W

Given a class γ ∈ H∗(X ×X) we will also write

(a− 1 + wtL)!(b− 1 + wtL)!c̃hac̃hb(γ)

=
∑
i

(a− 1 + wt(γLi ))!(b− 1 + wt(γRi ))!c̃ha(γ
L
i )c̃hb(γ

R
i )

whenever γ =
∑

i γ
L
i � γRi is a wt-homogeneous Künneth decomposition of γ.

We make the following convention regarding factorials: In all sums below we sum only

over those terms where all in the summand all occuring factorials a! have a ≥ 0. For

example,
∑

k∈Z
xk

k! will mean for us k ≥ 0. Similarly, in all appearing binomial coefficients(
n
a,b

)
= n!/(a!b!) we assume that n, a, b ≥ 0.

Given a function Z : H∗(X) → Q and Γ ∈ H∗(X2) the expression Z(Γ1) · Z(Γ2) stands

for the sum

(3.2) Z(Γ1) · Z(Γ2) :=
∑
i

Z(φi)Z(φ∨i )

where Γ =
∑

i φi ⊗ φ∨i ∈ H∗(X ×X) is a Künneth decomposition. We will apply this below

to the diagonal class ∆B ∈ H∗(B2).

We are ready to state our main conjecture:

Conjecture G. Assume that c3(TX ⊗ ωX) = 0. Then we have:

(a) (Quasi-Jacobi form property)

Zβ (chk1(γ1) · · · chkn(γn)) = ∆(q)
1
2
c1(NB/X)·β

∑
α=(β1,...,β`)

ϕα(p, q)∏`
i=1 Θ(pdiv(βi), q

)2
where α runs over all decompositions β = β1 + . . . βk into effective classes βi ∈
H2(B,Z) which are of divisibility div(βi) in H2(B,Z), and all ϕα ∈ QJac.
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(b) (Holomorphic anomaly equation) We have:

d

dG2
Zβ

(
c̃hk1(γ1) · · · c̃hkn(γn)

)
=

− 2
∑
i<j

σijZβ

c̃hki−1(γi∆B,1)c̃hkj−1(γj∆B,2)
∏
6̀=i,j

c̃hk`(γ`)


−

n∑
i=1

σiZβ

c̃hki−2(γi · c2(B))
∏
` 6=i

c̃hk`(γ`)


+

n∑
i=1

∑
m1+m2=ki

σiZβ

(−1)(1+wtL)(1+wtR) (m1 − 1 + wtL)!(m2 − 1 + wtR)!

(ki − 2 + wt(γi))!
c̃hm1

c̃hm2
(E(KX · γi))

∏
` 6=i

c̃hk`(γ`)


− 2

∑
i<j

σij(−1)(1+wt(γi))(1+wt(γj))

(
ki + kj − 4 + wt(γi) + wt(γj)

ki − 2 + wt(γi), kj − 2 + wt(γj)

)
Zβ

c̃hki+kj−2(E(γi � γj))
∏
` 6=i,j

c̃hk`(γ`)

 ,

where σi is the sign obtained by permuting the i-th entry of (γ1, . . . , γn) to the left-

most position, and σij is the sign obtained by permuting the i-th and j-th entry to

the left-most position.

The above conjecture differs from the Conjectures C and D given in the introduction in

that we do not make any claims about the weight and index of the quasi-Jacobi form, and

that we do not give the holomorpic anomaly equation for A. Instead, we show below that

these are formal consequences of the divisor and string equation (Lemma 2.1) and the Lie

algebra relations given in (2.2):

Proposition 3.2. Assume that c3(TX ⊗ ωX) = 0. If Conjectures B and G hold, then the

quasi-Jacobi form Zβ(c̃hk1(γ1) · · · c̃hkn(γn)) is of weight9

KX · ι∗β +

n∑
i=1

(ki − 1 + wt(γi)).

For the proof we need the following reformulation of the divisor equation:

Lemma 3.3. Assume that c3(TX ⊗ ωX) = 0 and Conjecture B. Then

(3.3) Zβ(c̃h2(W )c̃hk1(γ1) · · · c̃hkn(γn)) = DτZβ(c̃hk1(γ1) · · · c̃hkn(γn))

+
(
e(B) + c1(NB/X) · c1(TB)

)
G2(q) · Zβ(c̃hk1(γ1) · · · c̃hkn(γn))

Proof. Recall that for D ∈ H2(X,Q) we have:

c̃h2(D) = ch2(D)− 1

24
(D · c2(TX)).

By Lemma 2.3 and Corollary 2.4 we find that

c̃h2(W ) = ch2(W )− 1

24
(e(B) + c1(NB/X) · c1(TB)).

The claim now follows from the divisor equation and the following easy identity (obtained

from computing the logarithmic derivative):

Dτ

∏
n≥1

(1− qn) =

(
−G2(q)−

1

24

)∏
n≥1

(1− qn). �

9The first term can be rewritten as
∫
ι∗β

KX = −β · (c1(TB) + `).
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Proof of Proposition 3.2. We apply d
dG2

to (3.3) and compute both sides. On the right hand

side we use the commutation relation [ d
dG2

, Dτ ] = −2wt. On the left we use the holomorphic

anomaly equation (Conjecture G). Then we compare both terms and solve for the weight of

Zβ(c̃hk1(γ1) · · · c̃hkn(γn)). By a straightforward computation this yields the claim. �

Proposition 3.4. Assume that c3(TX ⊗ ωX) = 0 and Conjectures B and G hold. Then

d

dA
Zβ

(
c̃hk1(γ1) · · · c̃hkn(γn)

)
=

n∑
i=1

σiZβ

 c̃hki−1(γi∆B,1)c̃h2(∆B,2)
∏
` 6=i

c̃hk`(γ`)


+

n∑
i=1

σiZβ

 c̃hki+1(π
∗π∗(γi))

∏
`6=i

c̃hk`(γ`)

 .

Moreover, Zβ

(
c̃hk1(γ1) · · · c̃hkn(γn)

)
is a quasi-Jacobi form of index

1

2
β · (β + c1(NB/X)).

Proof. We use the string equation (Lemma 2.1):

(3.4) Zβ

(
c̃h3(1)c̃hk1(γ1) · · · c̃hkn(γn)

)
= p

d

dp
Zβ

(
c̃hk1(γ1) · · · c̃hkn(γn)

)
.

Applying d
dG2

to both sides, using the Lie algebra relation
[

d
dG2

, p d
dp

]
= −2 d

dA and then the

conjectural G2-holomorphic anomaly equation, implies the first claim. For the second claim,

start again with (3.4), apply d
dA and use [ ddA , p

d
dp ] = 2ind. �

3.3. Further checks. For all γ ∈ H∗(X) and λ ∈ H2(B) the following equalities follow

from the definition or the divisor equation:

Zβ

(
c̃h0(γ)c̃hk1(γ1) · · · c̃hkn(γn)

)
=

(
−
∫
X
γ

)
Zβ

(
c̃hk1(γ1) · · · c̃hkn(γn)

)
Zβ

(
c̃h1(γ)c̃hk1(γ1) · · · c̃hkn(γn)

)
= 0

Zβ

(
c̃h2(λ)c̃hk1(γ1) · · · c̃hkn(γn)

)
= (λ · (β +

c1(Ne)

2
))Zβ

(
c̃hk1(γ1) · · · c̃hkn(γn)

)
.

A short but non-trivial computation shows that Conjecture G is compatible with the above

equations, in the sense that if we apply d
dG2

to both sides and use the holomorphic anomaly

equation, then we obtain the same result on both sides.

4. First examples

4.1. Calabi-Yau threefolds. If X is a Calabi-Yau threefold, then10 NB/X = ωB. Hence

the above conjectures imply that the series

Zβ := Zβ(1)

is a (meromorphic) Jacobi-Form of weight 0 and index 1
2β(β+KB). Therefore Conjecture G

specializes to the Huang-Katz-Klemm conjecture of [11].

10Consider the sequence 0→ TB → TX |B → NB/X → 0 and take the determinant.
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4.2. The product P2 × E. The following example was considered and computed in the

second author’s master thesis [40]. It is very different in nature from the Calabi-Yau case

and hence constitutes an important piece of evidence for our conjecture.

Let E be an elliptic curve and consider the trivial elliptic fibration

X = P2 × E, π : X → P2.

Consider the class of a line in P2 and of a point in E, respectively,

H ∈ H2(P2,Z), p ∈ H2(E,Z).

Theorem 4.1 ([40]). We have

Z1

(
ch2(H

2p)ch2(H
2)
)

= iΘ

Z1

(
ch2(H

2p)ch2(Hp)
)

= 3iDτΘ

Z1

(
ch2(Hp)2ch2(H

2)
)

= 4iDτΘ

Z1

(
ch2(Hp)3

)
= 3iD2

τΘ + 9i
(DτΘ)2

Θ

Z1

(
ch3(H

2p)
)

= iDzΘ = iΘA

Z1

(
ch2(H

2p)ch2(Hα)ch2(Hβ)
)

= iDτ (Θ)

Z2

(
ch2(H

2p)ch2(H
2)4
)

= Θ4

Z2

(
ch2(H

2p)3
)

= 3Θ3D2
zDτΘ + 3Θ2

(
D2
zΘ
)
DτΘ

− 6Θ2 (DpDτΘ)DpΘ + 3Θ2 (DτΘ)2

Z2

(
ch2(H

2p)2ch3(H
2)
)

= 2Θ3DpDτΘ

One checks directly that in all these cases Conjecture G holds.

4.3. The product C2×E. Consider the G2
m action on C2 with tangent weights t1, t2 at the

origin. Consider the trivial elliptic fibration

X = C2 × E, π : X → C2.

We have

c(TX) = (1 + t1)(1 + t2) = 1 + (t1 + t2) + t1t2

which shows that

c3(TX ⊗ ωX) = −(t1 + t2)t1t2 ∈ H∗G2
m

(X).

Hence the class c3(TX ⊗ ωX) is non-zero but vanishes after restriction to t1 = −t2.
Consider the equivariant modified descendent classes:∑

k≥0
c̃hk(γ)xk =

1

S(x/θ)

∑
k=0

xkchk(γ)

where S(x) = (ex/2 − e−x/2)/x and θ−2 = −c2(TX). Note that this agrees with our conven-

tions from the beginning of the paper in case the classes are non-equivariant. A localization

argument shows the following:

Proposition 4.2. Let γ1, . . . , γn ∈ H∗(E). For t1 = −t2, we have:∑
k1,...,kn≥0

ZC2×E(c̃hk1(γ1) · · · c̃hkn(γn))xk11 · · ·x
kn
n

=

(∫
E
γ1

)
· · ·
(∫

E
γn

)
x1 · · ·xnt−n1 Fn(t1x1, . . . , t1xn),
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where we used the Bloch-Okounkov n-point correlation function [3]:

Fn(x1, . . . , xn) =
∏
l≥1

(1− qn)
∑
λ

q|λ|
n∏
l=1

∑
i≥1

e(λi−i+
1
2
)xl .

Moreover, Conjectures C and D hold in this case

Proof. Assume that t1 = −t2. The moduli space of stable pairs Pχ,β(X) is empty whenever

χ < 0. For χ > 0 the natural action by E on Pχ,β(X) by translation is free. Hence taking

derivative, we obtain a global non-zero vector field on Pχ,β(X), whose Serre-dual defines a

non-zero cosection of the moduli space. This implies that the virtual class of the moduli

space (and hence all invariants) in case χ > 0 vanish, see [35, Section 4.3] for more details on

this argument. For χ = 0, as explained in the proof of Lemma 2.5 we have the isomorphism

P0,d[E](X) = Hilbd(C2) and

ZC2×E(chk1(γ1) . . . chkn(γn)) =
∏
n≥1

(1− qn)

∫
Hilbd(C2)

e(THilbd(C2))chk1(γ1) . . . chkn(γn)).

A G2
m-fixed stable pair corresponding to a partition λ is of the form [O → (π1)

∗Oλ] ∈
Db(C2 × E) with Oλ =

⊕
(i,j)∈λOET i1T

j
2 where we sum over all the squares in the Young

diagram of λ. The contribution of an insertion is thus:∑
k≥1

chk(γ)xk =
∑
k≥1

(∫
C2×E

chk(π
∗
1Oλ) ∪ π∗2(γ)

)
xk

=

(∫
E
γ

)
(1− e−t1x)(1− e−t2x)

t1t2

∑
(i,j)∈λ

e(−it1−jt2)x

and

ch0(γ) = − 1

t1t2

∫
E
γ.

This yields: ∑
k1,...,kn≥0

ZE×C
2
(c̃hk1(γ1) · · · c̃hkn(γn))xk11 · · ·x

kn
n

=

(∫
E
γ1

)
· · ·
(∫

E
γn

)∏
n≥1

(1− qn)

n∏
l=1

1

t1t2S(i
√
t1t2xl)

×
∑
λ

q|λ|
n∏
l=1

(1− e−xlt1)(1− e−xlt2)
∑

(i,j)∈λ

e(−it1−jt2)xl − 1


=

(∫
E
γ1

)
· · ·
(∫

E
γn

)∏
n≥1

(1− qn)

n∏
l=1

1

t1t2S(i
√
t1t2xl)

×
∑
λ

q|λ|
n∏
l=1

(1− et1xl)
∑
i≥1

(
e(−λit2−it1)xl − e−it1xl)

)
− 1


=

(∫
E
γ1

)
· · ·
(∫

E
γn

)∏
n≥1

(1− qn)

n∏
l=1

1− exlt1
t1t2S(i

√
t1t2xl)

(4.1)

×
∑
λ

q|λ|
n∏
l=1

∑
i≥1

e(−λit2−it1)xl
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In case t1 = −t2, this is:(∫
E
γ1

)
· · ·
(∫

E
γn

)∏
n≥1

(1− qn)
n∏
l=1

xl
t1

∑
λ

q|λ|
n∏
l=1

∑
i≥1

e(λi−i+
1
2
)t1xl ,

which shows the first part.

For the second part, it was shown in [3] that the x-coefficients of the n-point correlation

function are quasi-modular forms (and hence index 0 quasi-Jacobi forms). Our holomorphic

anomaly equation corresponds to the identity [39, Lem. 4.2.2]:

d

dG2
Fn(x1, · · · , xn) = (x1 + · · ·+ xn)2Fn(x1, · · · , xn)

− 2
∑

1≤i<j≤n
(xi + xj)Fn−1(xi + xj , x1, · · · , x̂i, · · · , x̂j , · · · , xn),

where we take the G2-derivatives factorwise. �

5. Extended example: The product K3× C

The goal of this section is to use the holomorphic anomaly equation to find conjectural

formulas for the stationary Pandharipande-Thomas theory of S×C, where S is a K3 surface.

The final formulas are given in Sections 5.6 and 5.7.

5.1. Definition and holomorphic anomaly equations. Let S be an algebraic K3 surface.

We let Gm act on C with weight t on the tangent space at 0 and consider the equivariant

Pandharipande-Thomas theory of

X = S × C.

The inclusion of the fiber over 0 ∈ C is denoted by

ι : S ↪→ X.

We will usually identify curve classes on S with their pushforward by ι.

Because of the existence of a symplectic form on S, it is well-known that the standard

virtual class on Pn,β(X) vanishes for β ∈ H2(S,Z) non-zero, see [21]. Instead Pandharipande-

Thomas invariants of X are defined by a reduced virtual class of dimension 1,

[Pn,β(X)]red ∈ AGm,1(Pn,β(X)).

We will use the notation:

(5.1) 〈chk1(γ1) · · · chkn(γn)〉X,PT,redn,β =

∫
[Pn,β(X)]red

∏
i

chki(γi) ∈ Q(t)

where the integral on the right stands for an application of the virtual localization formula.

Remark 5.1. (Convention on equivariant parameter) If the γi are homogeneous of

complex degree deg(γi), that is γi ∈ H2 deg(γi)(S) then we have

〈chk1(γ1) · · · chkn(γn)〉X,PT,redn,β = c · t−1+
∑
k(ki+deg(γi)−3)

for some c ∈ Q. Since there is no additional information contained in the exponent of t, we

hence usually set t = 1 below.

Let S → P1 be an elliptic K3 surface with section B and fiber class F . We take W = B+F .

The threefold X becomes elliptically fibered via the projection:

π : X → P1 × C.
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By [27] the invariants (5.1) for imprimitive β are determined by those where β is primitive

through a multiple cover formula. By deformation invariance it is hence enough to consider

the invariants (5.1) for the classes β = B + dF . We thus define the generating series

〈chk1(γ1) · · · chkn(γn)〉PT :=
∑
d≥0

∑
n∈Z

(−p)nqd−1 〈chk1(γ1) · · · chkn(γn)〉PT,Xn,B+dF .

The Chern classes of the tangent bundle are

c(TX) = (1 + t)(1 + c2(S)) = 1 + t+ c2(S) + tc2(S).

In particular, KX = −t and

c3(TX ⊗ ωX) = 0 ∈ H∗Gm(X).

This means that we should expect that Conjecture G holds for S×C, as soon as we account

for using the reduced virtual class by introducing some modifications. The modifications

needed are discussed in [30, Sec.7]. This comes out as follows:

Conjecture H. 〈c̃hk1(γ1) · · · c̃hkn(γn)〉PT is a quasi-Jacobi form of index −1 and weight

−10 +
∑

i(ki − 1 + wt(γi)), of the form

〈
c̃hk1(γ1) · · · c̃hkn(γn)

〉PT
=

ϕ(p, q)

Θ2(p, q)∆(q)

for some ϕ ∈ QJac∗,0.

Here the weight is explicitly computed by

wt(γ) =


1 if γ ∈ {p,W}
−1 if γ ∈ {1, F}
0 if γ ⊥ {p, 1,W, F}.

We also expect the holomorphic anomaly equations:

Conjecture I. Let B = P1 × C be the base of the elliptic fibration X → P1 × C.

d

dA

〈
c̃hk1(γ1) · · · c̃hkn(γn)

〉PT
=

n∑
i=1

σi

〈
c̃hki−1(γi∆B,1)c̃h2(∆B,2)

∏
` 6=i

c̃hk`(γ`)

〉PT

+

n∑
i=1

σi

〈
c̃hki+1(π

∗π∗(γi))
∏
`6=i

c̃hk`(γ`)

〉PT

.
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and

d

dG2

〈
c̃hk1(γ1) · · · c̃hkn(γn)

〉PT
=

− 2
∑
i<j

〈
c̃hki−1(γi∆B,1)c̃hkj−1(γj∆B,2)

∏
` 6=i,j

c̃hk`(γ`)

〉PT

−
n∑
i=1

〈
c̃hki−2(γi · c2(B))

∏
6̀=i

c̃hk`(γ`)

〉PT

+
∑

i=1,...,n
m1+m2=ki

(−1)(1+wtL)(1+wtR)(m1 − 1 + wtL)!(m2 − 1 + wtR)!

(ki − 2 + wt(γi))!

〈
c̃hm1

c̃hm2
(E(KXγi))

∏
` 6=i

c̃hk`(γ`)

〉PT

− 2
∑
i<j

(−1)(1+wt(γi))(1+wt(γj))

(
ki + kj − 4 + wt(γi) + wt(γj)

ki − 2 + wt(γi), kj − 2 + wt(γj)

)〈
c̃hki+kj−2(E(γi � γj))

∏
` 6=i,j

c̃hk`(γ`)

〉PT

−
∑
a,b

(g−1)ab

〈
TeaTeb

(
c̃hk1(γ1) · · · c̃hkn(γn)

)〉PT
where

• the ea form a basis of {F,B}⊥ ⊂ H2(S,Q) and gab = 〈ea, eb〉 is the pairing matrix,

• where for any α ∈ {W,F}⊥ ⊂ V we let Tα act on the descendent algebra as a

derivation with action on the generators Tαchk(γ) = chk((F · γ)α − (α · γ)F ). In

particular, if we let σ =
∑

a,b(g
−1)abTeaTeb and α′ ∈ {W,F}⊥ we have

σ(chk(γ)) = −20(γ · F )chk(F )

σ(chk(W )ch`(W )) = 2
∑
a,b

g−1chk(ea)ch`(eb)− 20chk(F )ch`(W )− 20chk(W )ch`(F )

σ(chk(W )ch`(α)) = −2chk(α)ch`(F )− 20chk(F )ch`(α)

σ(chk(α)ch`(W )) = −2chk(F )ch`(α)− 20chk(α)ch`(F )

σ(chk(α)ch`(α
′)) = 2(α · α′)chk(F )ch`(F )

• The class of the diagonal in HGm(C × C) with respect to the diagonal Gm-action is

∆C = 1
t [(0, 0)]. Hence we have

∆B =
1

t
[(0, 0)](F1 + F2)

where Fi = pr∗i (F ). Moreover, c2(B) = 2tF . Also recall that KX = −t.

The most basic example is given by the Katz-Klemm-Vafa formula [21]:

〈1〉PT =
−1

Θ2(p, q)∆(q)
.

In the remainder of this section we will use Conjecture I to derive conjectural formulas for

〈chk1(γ1) · · · chkn(γn)〉PT

in the stationary case, that is whenever degC(γi) > 0 for all i. This is done in several steps

and uses the following two methods:

(i) Direct evaluations by applying the localization formula (Section 5.2)

(ii) GW/PT correspondence [34] (proven for K3×C for primitive β in [24]) and compu-

tations on the Gromov-Witten side.

The end result is given in Sections 5.6 and 5.7.
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5.2. Evaluation by localization. Given a primitive effective class β ∈ H2(S,Z), by de-

formation invariance we may assume that β is irreducible. In this case the moduli space of

stable pairs satisfies:

Pn,ι∗β(X) = Pn,β(S)× C.
Moreover, Pn,β(S) is smooth of dimension β2 + n+ 1, see [21] for references. Let

ι : Pn(S, β)× 0→ Pn(X,β)

denote the inclusion of the zero fiber.

Proposition 5.2 ([21, Sec.1.2]). We have

[Pn(X, ι∗β)]red = ι∗

(
e(ΩPn(S,β) ⊗ t)

t
[Pn(S, β)]

)
Proof. This can be seen in two different ways: Following [21, Sec. 1.2], by a Serre duality

computation the obstruction bundle is

Ob = (ΩPn(S,β) ⊕−t)⊗ t

and the reduced obstruction bundle is

Obred = ΩPn(S,β) ⊗ t.

We obtain:

[Pn(X, ι∗β)]red = e(ΩPn(S,β) ⊗ t) · [Pn(X, ι∗β)]

= ι∗

(
e(ΩPn(S,β) ⊗ t)

t
[Pn(S, β)]

)
Alternatively, one can apply the virtual localization formula directly. As discussed in [36]

one obtains

[Pn(X, ι∗β)]red = ι∗ (e(ES ⊗ t) · [Pn(S, β)]) .

where

• ES = RHomπ(IS ,F)∨,

• π : Pn(S, β)× S → Pn(S, β) is the projection,

• IS = [O → F] is the universal stable pair.

Note that the rank of ES is

rank(ES) = χ(IS , F ) = χ(OX − F, F ) = χ(F )− χ(F, F ) = n+ β2.

Since Homπ(IS , F ) is the tangent space of Pn(S, β), which is smooth of dimension β2 +n+1,

we have that E xt1π(IS , F ) is rank 1. In fact, E xt1π(IS , F ) is trivial which follows from applying

Hom(−, F ) to the distinguished triangle IS → O → F . Hence

ES = Tan∨Pn(S,β) −O

and we get the previous result:

e(ES ⊗ t) = e((Tan∨ −O)⊗ t) =
e(Tan∨ ⊗ t)

e(O ⊗ t)
=

1

t
e(Tan∨ ⊗ t) �

For γ ∈ H∗(S), consider the descendent classes on Pn(X,β) and Pn(S, β):

chXk (γ) = πPn(X,β),∗(chk(FX −O)π∗S(γ))

chSk (γ) = πPn(S,β),∗(chk(FS −O)π∗S(γ)).

where (FX , sX) is the universal stable pair on Pn(X,β) × X, and (FS , sS) is the universal

stable pair on Pn(S, β)× S.
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Lemma 5.3. For any γ ∈ H∗(S) and k > 0 we have that

ι∗chXk (γ) =
k−1∑
`=1

chS` (γ)
(−t)k−1−`

(k − `)!
.

Proof. Consider the diagram

Pn(S, β)× S

Pn(S, β)×X Pn(X,β)×X

Pn(S, β) Pn(X,β)

j

ι̃

π̃ π

ι

where the bottom square is fibered. Observe that

ch(j∗F) = j∗

(
ch(F)

tdC

)
= j∗

(
ch(F)

1− e−t

t

)

= j∗

ch(F)
∑
k≥0

(−t)k

(k + 1)!

 .

With k > 0 we therefore get:

ι∗chk(γ) = ι∗π∗(chk(FX)π∗S(γ))

= π̃∗(ι̃
∗(chk(FX)) · π∗S(γ))

= π̃∗(chk(j∗FS) · π∗S(γ))

= π̃∗

([
j∗

(
ch(F)

tdC

)]
k

π∗S(γ)

)
= (π̃ ◦ j)∗

([
ch(F)

tdC

]
k−1
· π∗S(γ)

)

= (π̃ ◦ j)∗

(
k−1∑
`=1

ch`(FS)
(−t)k−1−`

(k − `)!
π∗S(γ)

)

=
k−1∑
`=1

chS` (γ)
(−t)k−1−`

(k − `)!

�

Using the above results we can compute the following basic invariant:

Proposition 5.4. Let β ∈ H2(S,Z) be an effective algebraic class with β2 = −2, and let

F ∈ H2(S,Q) with 〈β, F 〉 = 1. Then∑
n

〈ch2+k(F )〉X,PT,redn,β (−p)n = − p

(1− p)2

(
(−1)k

(k + 1)!

1− pk+1

(1− p)k+1

)
tk−1.

Proof. We may assume that β is irreducible, and hence the class of a (−2)-curve P1 ⊂ S. By

Proposition 5.2 and Lemma 5.3 we obtain:∫
[Pn(X,β)]red

c̃h
X

2+k(F ) =

∫
Pn(S,β)

k+1∑
`=1

chS` (F )
(−t)k+1−`

(k + 2− `)!
e(Ω⊗ t)

t
.(5.2)
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The moduli space Pn(S, β) is isomorphic to Pn−1, parametrizing n − 1 points on the (−2)-

curve. The universal stable pair FS on Pn−1 × S is the pushforward of pr∗1OPn−1(1) ⊗
pr∗2OP1(n− 1) under the natural inclusion Pn−1 × P1 ↪→ Pn−1 × S. Let

ξ = c1(OPn−1(1)).

We obtain

chS` (F ) =
ξ`−1

(`− 1)!
.

Note also that c(TPn−1) = (1 + ξ)n hence c(ΩPn−1) = (1− ξ)n, and therefore∫
Pn−1

e(ΩP ⊗ t)ξ` = Coeffξn−1−`
(t− ξ)n

t
= (−1)n−1−`t`

(
n

`+ 1

)
.

Inserting into (5.2) we hence obtain

(5.2) =

k+1∑
`=1

∫
Pn−1

(−t)k+1−`

(k + 2− `)!
e(ΩP ⊗ t)

t

ξ`−1

(`− 1)!

=
1

t

k∑
`=0

(−1)k+`

(k + 1− `)!

∫
Pn−1

tk+1−`e(ΩP ⊗ t)
ξ`

`!

= tk−1
k∑
`=0

(−1)n−1+k

(k + 1− `)!
1

`!

(
n

`+ 1

)
.

Observe that for all k ≥ 0 we have (1 + x)k =
∑

i≥0
(
k
i

)
xi. Using

(−k
i

)
= (−1)i

(
k+i−1
i

)
we

get in particular that for r ≥ 1 we have

xr−1

(1− x)r
=
∑
n≥r−1

(
n

r − 1

)
xn.

Therefore

∑
n

(−p)n
∫
[Pn(X,β)]red

c̃h2+k(F ) = tk−1
k∑
`=0

(−1)k−1

(k + 1− `)!`!

∑
n≥0

(
n

`+ 1

)
pn


= tk−1(−1)k−1

k∑
`=0

1

(k + 1− `)!`!
p`+1

(1− p)`+2

= −tk−1 p

(1− p)2

(
(−1)k

(k + 1)!

1− pk+1

(1− p)k+1

)
.

�

5.3. Descendents of fiber class. Let S → P1 be again an elliptic K3 surface with fiber

class F . The first evaluation we consider is the series

Ak(p, q) :=
〈ch2+k(F )〉PT

〈1〉PT

= −Θ2∆ 〈ch2+k(F )〉PT .

The holomorphic anomaly equation of Conjecture I in this case reads as follows11:

11Observe that we follow the convention of Remark 5.1.
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Lemma 5.5. Assuming Conjecture I, Ak is a quasi-Jacobi form of index 0 and weight k

satisfying

d

dA
Ak = Ak−1

d

dG2
Ak = −

∑
m1+m2=k−2

m1!m2!

(k − 1)!
Am1Am2

Proof. The class of the diagonal in HGm(C×C) with respect to the diagonal Gm-action is12

∆C =
1

t
[(0, 0)].

We then find

π∗1([0]F ) ·∆B = π∗1([0] · [∆P1 ] · F1(F1 + F2) = F1F2[(0, 0)].

Note also chk(F ) = c̃hk(F ). Hence we apply the d
dA -holomorphic anomaly equation, with

output given by the above insertion. This yields the first claim.

For the second claim, one uses

E(KXF ) = FKXE(1) = KXF1F2 = −F1F2 (with t = 1). �

By Proposition 5.4 we also have for k ≥ 0 the leading term:

Ak =
(−1)k

(k + 1)!

1− pk+1

(1− p)k+1
+O(q).

Example 5.6. Assume Conjecture I. Then the above constraints, together with the GW/PT

correspondence and basic computations on the GW side along the lines of [21, 28] yield the

following evaluations:

A0 = 1

A1 = A

A2 = −G2 +A2/2

A3 = −G2A+A3/6

A4 =
1

24
A4 − 1

2
A2G2 +

1

3
G2

2 −
1

72
G4

A5 =
1

120
A5 − 1

6
A3G2 +

1

3
AG2

2 −
1

72
AG4.

5.4. Descendents of point. For p ∈ H4(S) the point class we consider the series

Bk(p, q) :=
〈chk(p)〉PT

〈1〉PT
.

Assuming the holomorphic anomaly equation, then we see that Bk is a quasi-Jacobi form

of index 0 and weight k satisfying

d

dA
Bk = Bk−1 +Ak−1

d

dG2
Bk =

−2

(k − 1)!

∑
m1+m2=k

(m1 − 2)!m2!Am1−2Bm2 .

The constant term is easily fixed to be:

Bk = 0 +O(q), k > 0.

12Similarly, the equivariant diagonal of P1 is [∆P1 ] = 1
t
[(0, 0)] + 1

−t [(∞,∞)].
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Assuming Conjecture I and using Gromov-Witten computations one finds:

B0 =

(∫
S
−p
)

Θ2∆(q) 〈1〉S×CPT = −1.

B1 = 0

B2 =
1

2
A2 − 1

2
℘+ 2G2

B3 =
1

3
A3 +AG2 −

1

2
A℘− 1

12
℘′

B4 =
1

8
A4 − 1

4
A2℘−G2

2 +
1

3
G2℘−

1

24
℘2 − 1

12
A℘′ +

5

36
G4

5.5. C-series. Consider classes α1, α2 ∈ H2(S,Q) such that

αi · F = αi ·B = 0 for i = 1, 2

α1 · α2 = 1, α2
1 = 0, α2

2 = 0.

Consider the series

Ck` :=

〈
c̃h2+k(α1)c̃h2+`(α2)

〉PT
1

〈1〉PT

Lemma 5.7. Assume Conjecture I. Then Ck` is a quasi-Jacobi form of index 0 and weight

k + `+ 2 satisfying

d

dA
Ck` = Ck−1,` + Ck,`−1

and

d

dG2
Ck` =− 2

∑
m1+m2=k

(m1 − 1)!m2!

k!
Am1−1Cm2−1,`

− 2
∑

m1+m2=`

(m1 − 1)!m2!

`!
Am1−1Ck,m2−1

+ 2

(
k + `

k, `

)
Ak+` − 2AkA`

Example 5.8. Conjecture I with the above constraints then yields:

Ck` = 0 +O(q)

Ck0 = C0` = 0

C11 = Dτ (G2)

C21 = Dτ (G2)A

C31 = Dτ (G2)
A2

2
+

4

3
G3

2 −
2

3
G2G4 +

7

720
G6

C41 = Dτ (G2)
A3

6
+

(
4

3
G3

2 −
2

3
G2G4 +

7

720
G6

)
A

C22 = Dτ (G2)A
2 +

2

3
G3

2 −
1

6
G2G4 −

7

720
G6

C32 =
1

2
Dτ (G2)A

3 + (2G3
2 −

5

6
G2G4)A
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5.6. A general formula for the stationary theory. We now turn to what can be said

about the general stationary theory of S × C. Define the partition function:

ZS×C(γ0, γ1, . . .) :=

〈
exp

∑
k≥0

c̃h2+k(γk)

〉PT

where γ0, γ1, γ2, . . . ∈ H∗(S) are formal classes. ZS×C(γ0, γ1, . . .) encodes all Pandharipande-

Thomas invariants of S × C. We make the following basic dependence conjecture:

Conjecture J. Assume that deg(γi) > 0 for all i. Then we have

ZS×C(γ0, γ1, . . .) = exp

∑
k≥0

(γk,W +DτF )Ak +
∑
k≥0

(γk, 1)Bk +
1

2

∑
i,j≥0

(γi · γj)Cij

 −1

Θ2∆
.

where Dτ ’s in the formula above stand for commuting the operators to the left and applying

them to the remaining terms. Moreover, (γ1, γ2) =
∫
S γ1 ∪ γ2 is the intersection pairing.

A similar dependence has been conjectured for the Gromov-Witten theory of the K3

surface in [26] and motivated the above conjecture.

5.7. Conjectural evaluation of ABC. Finally, we conjecture a general expression for the

series Ak, Bk, Ck. For that recall the series

A(p, q) = Dp log Θ(p, q) = −1

2
− p

1− p
−
∑
n≥1

∑
d|n

(pd − p−d)qn.

The series can naturally be expanded in p = ez. By some abuse of notation, we will write

A(z) := A(p, q)|p=ez

for this series. Concretely, one has

A(z) =
1

z
− 2

∑
k≥1

Gk(q)
zk−1

(k − 1)!
.

Below we will implicitly use the variable change p = ez.

Our computations above lead to the following conjecture:

Conjecture K. For all k ≥ 0, under the variable change p = ez we have:

Ak(p, q) =
1

(k + 1)!
Resx=0(A(z) +A(x))k+1

Bk(p, q) = Resx=0

(
(A(z) +A(x))k

k!
(A(x+ z)−A(x))

)
Ck`(p, q) = Resx1=0 Resx2=0

(
(A(x1) +A(z))k+1

(k + 1)!

(A(x2) +A(z))`+1

(`+ 1)!
A′(x1 − x2)

)
where Resx=0 stands for taking the x−1 coefficient, and A′(z) = d

dzA(z).

Example 5.9. To compute Bk and Ck` one uses the basic expansion

A(x+ z) = ex
d
dzA(z) = A(z) + xA′(z) +

x2

2
A′′(z) + . . . .

For example, if ` = 0 we have

Resx2=0 (A(x2) +A(z)) (A′(x1)− x2A′′(x1) + . . .) = A′(x1)
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and hence correctly

Ck0 = Resx1=0

(
(A(x1) +A(z))k+1

(k + 1)!
A′(x1)

)
=

1

(k + 2)!
Resx1=0

(
(A(x1) +A(z))k+2

)′
= 0.

In case ` = 1 we get

Ck1 = Resx1=0
(A(x1) +A(z))k+1

(k + 1)!

(
− 1

x31
− A(z)

x21
− 2G2A(z) +G4x1 + . . .

)
For example

C11 = Resx1=0

[ (
1/2x−21 +Ax−11 + (A2/2− 2G2)− 2AG2x+ . . .

)
×
(
−1

x31
− A(z)

x21
− 2G2A(z) +G4x1 + . . .

)]
= −2G2

2 +
5

6
G4 = Dτ (G2).

6. π-stable pairs invariants

6.1. Overview. The goal of this section is to extend the quasi-Jacobi form conjecture (Con-

jecture C) to elliptic threefolds with non-vanishing c3(TX ⊗ ωX). The idea is to use π-stable

pair invariants, which is a version of Pandharipande-Thomas invariants introduced in [29]

adapted to the elliptic fibration structure π : X → B.

Throughout this section, we let π : X → B be an elliptically fibered threefold with a

section and a Weierstraßmodel.

6.2. 1-dimensional fiber sheaves. Let Coh≤1(X) be the full subcategory of the category

of coherent sheaves on X consisting of sheaves whose support has dimension at most 1. Let

L be an ample line bundle on B and let H be an ample line bundle on X such that H−π∗(L)

is also ample. Define the slope function

µ : Coh≤1(X)→ S := (−∞,∞]× (−∞,∞],

by

µ(F ) =

(
χ(F )

ch2(F ) · f∗L
,

χ(F )

ch2(F ) ·H

)
.

We order S lexicographically (i.e. (a, b) < (a′, b′) iff a < a′ or a = a, b < b′). The function µ

defines a stability condition on Coh≤1(X), compare [5, Sec.3, Lem. 39].

In particular, µ(F ) = (∞, a) for a ∈ R if F is a 1-dimensional sheaves supported on fibers

of π, and µ(F ) = (∞,∞) if F is zero-dimensional.

We let T ⊂ Coh≤1(X) be the smallest extension-closed full subcategory which contains

all µ-semistable sheaves F of slope µ(F ) > (∞, 0). We define the complement

F = {F ∈ Coh≤1(X)|Hom(T, F ) = 0 for all T ∈ T}.

The pair (T,F) defines a torsion pair on Coh≤1(X). The category T is closed under taking

quotients (use the stability condition), and F is closed under taking subobjects.

Remark 6.1. Let p1, p2 : X ×B X → X be the two projections, let P be the normalized

relative Poincaré bundle on X ×B X, and consider the Fourier-Mukai transform

φP = p2∗(p
∗
1(−)⊗ P) : Db(X)→ Db(X)

(all functors are derived). Then one has the characterization

T =

{
F ∈ Coh≤1(X)

∣∣∣∣ F supported on fibers of π,
φP(F ) is a sheaf

}
,
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see for example [29].

6.3. π-stable pairs. We give the definition of π-stable pairs.13

Definition 6.2 ([29]). A π-stable pair on π : X → B is a pair (F, s) consisting of

• a coherent sheaf F ∈ F,

• a section s : OX → F with cokernel in T.

In the following lemma we show that a π-stable pair is uniquely determined by the asso-

ciated 2-term complex OX → F up to quasi-isomorphism. Because of that, we will always

identify π-stable pairs with the corresponding two-term complexes.

Lemma 6.3. The category of π-stable pairs is equivalent to the category of complexes I•

in the derived category Db(X) satisfying the following properties:

• ch(I•) = (1, 0,−β,−m) for some β ∈ H2(X,Z) and m ∈ Q,

• hi(I•) = 0 for i 6= 0, 1,

• h0(I•) is torsion free and h1(I•) lies in T,

• Hom(Q[−1], I•) = 0 for every Q ∈ T.

Proof. Let I• be a complex satisfying the above conditions. We first prove that Hom(I•,OX) =

C. Since h0(I•) is torsion-free of rank 1 and has vanishing first Chern class, it is isomorphic

to the ideal sheaf IC of a curve C. Consider the exact triangle

IC → I• → Q[−1]→ IC [1],

for some Q ∈ T, and apply Hom(−,OX). We see that

0→ Hom(I•,OX)→ Hom(IC ,OX)→ Hom(Q[−2],OX).

We then have

Hom(Q[−2],OX) = Ext1(OX , Q⊗ ωX) = H1(X,Q).

By using the Harder-Narasimhan flitration we may assume that Q is stable and of the form

Q = is∗Q
′ for some stable sheaf Q′ ∈ Coh(Xs) of slope > 0 for some s ∈ B. But then it

follows that H1(X,Q) = 0 because φP(Q) is a sheaf by Remark 6.1. Hence Hom(I•,OX) =

Hom(IC ,OX) = C. Let F = Cone(I• → OX) be the cone of the canonical morphism. This

fits into the exact sequence

I• → OX → F.

Since h0(I•) = IC → OX is injective, we have that F is a 1-dimensional sheaf. The cokernel

of s : OX → F lies in T since h1(I•) ∈ T. Moreover, for any T ∈ T applying Hom(T,−)

shows that Hom(T, F ) = Hom(T, I•[1]) = 0 so (F, s) is a π-stable pair.

Conversely, for any π-stable pair (F, s) the 2-term complex I• = [OX → F ] satisfies the

above conditions. �

6.4. Moduli space. Let P πn (X,β) be the moduli functor of π-stable pairs I = [OX → F ]

satisfying

ch2(F ) = β ∈ H2(X,Z), χ(F ) = n ∈ Z.
The objects of P πn (X,β) over a scheme S are the two-term complexes [OX×S → F ] with F
flat over S such that for all geometric points s ∈ S the restriction [OX,s → Fs] is a π-stable

pair with the given numerical data.

13In fact, our definition of π-stable pair differs slightly from [29]. In [29] the π-stable pairs are defined with
respect to the torsion pair T′ given by semistable sheaves of slope > (∞,−1). The definition below is better
behaved because every π-stable pair can be written as OX → F and not just as a abstract 2-term complex in
the derived category.
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Theorem 6.4. P πn (X,β) is represented by a proper algebraic space.

For the proof we apply the Artin representability theorem. We follow the same strat-

egy as for Bryan-Steinberg pairs [5] for which the representability of the moduli space was

proven in [38, Sec.3.2]. In particular, we need to prove that the moduli functor P πn (X,β) is

open, bounded, separated, complete, and has trivial automorphism. The openness follows

immediately from the openness of semistable sheaves (compare [38, Prop.3.4]). Moreover, as

observed in [29, Lemma 4] the boundedness is proven as in [41, Sec. 4.2]. The next step are

the trivial automorphisms and negative Ext’s:

Lemma 6.5. For any π-stable pair I•, we have Ext<0(I•, I•) = 0.

Proof. Apply Hom(I•,−) to IC → I• → Q[−1]. Then show Ext<0(I•, IC) = 0 by applying

Hom(−, IC) to the same sequence. Similar for Q[−1]. �

Lemma 6.6. For any two π-stable pairs I•, J•, the canonical map Hom(I•, J•)→ Hom(I•,OX) =

Hom(OX ,OX) is injective. In particular, Hom(I•, I•) = Cid.

Proof. Same proof as in [38, Prop.3.2]. �

By arguing as in [38, Prop.3.6] the two lemmata above imply the separatedness of the

moduli functor P πn (X,β). We hence have to tackle the properness:

Let R be a discrete valuation ring with fraction field K, residue field k, and uniformizer

π. Let XR = X × Spec(R) and XK = X × Spec(K).

Proposition 6.7. Given a π-stable pair I = [OXK → F ] over K, there exists a π-stable pair

I = [OXR → F ] over R such that IK = I.

Proof. The argument is a modification of Langton’s original semistable reduction, compare

[12, Sec.2.B]. For the modification we follow [38, Prop.3.7] with some exceptions. (We also

refer to [20] for similar arguments in a related case.)

Let H be a R-flat extension of F (flat over R means that H is locally torsion-free over R,

so just extend F to any coherent sheaf and quotient out the R-torsion).

Step 1. We want to find a subsheaf H′ ⊂ H such that the restriction H′k lies in F. Assume

that Hk does not lie in F. Then there exists a maximally destabilizing subsheaf Q0 ⊂ Hk
with Q0 ∈ T. In particular, Q0 is semistable and all Harder-Narasimhan factors of Hk with

respect to µ-stability have smaller slope then Q0. Consider the sequence

0→ Q0 → Hk → P0 → 0.

Let ι : Xk → XR be the inclusion and define the kernel

H1 = Ker(H → ι∗Hk → ι∗P0 → 0).

We obtain the short exact sequence

0→ H1 → H→ P0 → 0.

Restricting to Xk and noting Tork(P0, k) = P0 we obtain

0→ P0 → H1
k → Hk → P0 → 0

and hence the short exact sequence

0→ P0 → H1
k → Q0 → 0.

We see that H1
k is an extension of P0, Q0 in the opposite way, that is we have flipped

the extension. In particular, Hk and H1
k have the same Chern character, same Hilbert

polynomial, and same µ-slope.
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We want to argue that H1
k brings us closer to a sheaf in F. If H1

k lies in F we are done.

Otherwise, consider again a maximally destabilizing subsheaf

0→ Q1 → H1
k → P1 → 0.

We form the diagram of rows of short exact sequences:

(6.1)

0 L Q1 Im(f) 0

0 P0 H1
k Q0 0

f

where f : Q1 → H1
k → Q0 is the composition and L = Ker(f).

If µ(Q1) > µ(Q0) then f must vanish by stability, so L = Q1; moreover, the injection

L ↪→ P0 together with the fact that the largest slope of a Harder-Narasimhan factor of P0 is

strictly smaller than µ(Q0) < µ(Q1), then shows that L = 0, which is a contradiction with

the choice of Q1. Hence µ(Q1) ≤ µ(Q0). We now iterate the above process. If it does not

stop, we obtain a sequence

µ(Q0) ≥ µ(Q1) ≥ µ(Q2) ≥ . . . .

Since each Qn is a destabilizing subobject of Hnk we must have µ(Qn) > µ(Hnk ) = µ(Hk).
Moreover, the support of Qn lies in the support of Hnk ; since ch2(Hnk ) is independent of n,

we find that ch2(Qn) lies in a bounded set, so the denominators of µ(Qn) lie in a finite set.

We find that there exists an n0 ≥ n such that µ(Qn) = µ(Qn0) for all n ≥ n0. We assume

that n0 = 0, and hence µ(Qn) = µ(Q0) for all n.

We return to the diagram (6.1). Since µ(Q0) = µ(Q1) we see that L is semi-stable of

slope µ(Q0) and hence lies in T (use that the category of semi-stable sheaves of a given slope

is abelian); the injection L → P0 then implies L = 0 by the torsion-pair property, so that

Q0 ⊂ Q1, and hence

Q0 ⊂ Q1 ⊂ Q2 ⊂ . . . .

Since ch2(Qn) is bounded, it must stabilize at some point n0, at which point we get Qn =

Qn+1 = . . . since the slope has also stabilized. By shifting indices (assuming n0 = 1) we

hence can assume that Q0 = Q1 = . . .. This implies that the second row in (6.1) splits and

hence

Hnk = Qn ⊕ Pn ∼= Qn−1 ⊕ Pn−1
and the summands Qn and Qn−1 coincide. Hence also P0 = P1 = . . ..

We now argue for a contradiction. The defining sequence

0→ Hn → Hn−1 → ι∗Pn−1 → 0

and P0 = P1 = . . . shows that for every n we have a sequence

0→ ι∗P0 → H/Hn → H/Hn−1 → 0

and hence (H/Hn)k = (H0/H1)k = P0. This shows that H/Hn is flat over R/πn, see [12,

2.1.3], and the natural morphism H/πnH → H/Hn (obtained from the inclusion πnH ⊂ Hn)

is hence an R/πn-flat quotient. Let p be the Hilbert polynomial of P0. It follows that the

base change of the proper map QuotXR/R(H, p) → Spec(R) to Spec(R/Pn) is surjective for

all n. Hence QuotXR/R → Spec(R) is surjective. In particular, there exists a surjection

H → P0 with P0 flat over R. The kernel Q0 = Ker(H → P0) is a flat family of sheaves in T,

and QK ⊂ HK yields a non-trivial subobject in HK ∈ FK , a contradiction.
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Step 2. (Extending the section) By Step 1 there exists a subsheaf H′ ⊂ H (automat-

ically flat over R) such that H′k lies in F. We replace H by such a H′ and hence from now

on assume that Hk lies in F.

The R-module HomXR(OXR ,H) has a canonical section after tensoring with K. After

multiplying with a sufficiently high power of π it follows that there exists a global section

s : OXR → H

estending the given section OXR → F . Let

K = Coker(s).

We want to argue now that H and s can be replaced so that Kk lies in T. We do this in two

more steps.

Step 3. Let Kf ⊂ K be the largest flat subsheaf of K over R (this exists since R is a

DVR), and let M = K/Kf . We have that M is supported over (a finite thickening of14) the

central fiber. Consider the unique exact sequence

0→ A→M → B → 0

with A ∈ T and B ∈ F provided by the torsion pair. Define

H′ = Ker(H →M → Bk).

Restricting 0→ H′ → H→ ι∗Bk → 0 to k yield

0→ ι∗Bk → H′k → Ker(Hk → ι∗Bk)→ 0.

Since Ker(Hk → ι∗Bk) is a subobject of Hk ∈ F, it lies in F, and hence H′k is an extensions

of objects in F and hence also lies in F.

ReplacingH byH′ and iterating this procedure above a finite number of times (the number

is equal to the minimum m such that πmB = 0), we can assume that the torsion part of K,

i.e. K/Kf lies in T.

Step 4. If Kk is not in T, there exists a minimally destabilzing quotient P0 of Kk with

P0 ∈ F. Consider the exact sequence

0→ Q0 → Kk → P0 → 0.

Define

H1 = Ker(H → Hk → Kk → P0 → 0).

The section O → H factors through H1 with cokernel K1.

Restricting 0→ H1 → H→ ι∗P0 → 0 to Xk yields

0→ P0 → H1
k → Hk → P0 →

Since Hk ∈ F and F is closed under subobjects, we have Ker(Hk → P0) lies in F, and hence

H1
k lies in F since F is closed under extension.

The cokernel K1 fits into the short exact sequence

0→ K1 → K → ι∗P0 → 0.

Restricting to Xk and observing that K does not have to be flat over R yields the exact

sequence (not necessarily exact on the left)

P0 → K1
k → Kk → P0.

14We view M as a OX [ε]/εm module for some m > 0 below.
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Hence we obtain the sequence

P0 → K1
k → Q0 → 0.

If K1
k ∈ T we are done, otherwise pick again a minimally destabilizing quotient P1 of K1

k.

We then have again P1 ∈ F. Consider the sequence

0→ Q1 → K1
k → P1 → 0.

Consider the diagram

(6.2)

P0 K1
k Q0 0

0 Im(f) P1 L 0.

f

where f : P0 → K1
k → P1 and L = Coker(f).

If µ(P1) < µ(P0) then f = 0 by stability and hence L = P1. Since every Harder-

Narasimhan factor of Q0 has slope strictly bigger than µ(P0), and we have the quotient

Q0 → L, and we get L = 0, which is a contradiction to the choice of P1. Hence µ(P1) ≥ µ(P0).

We now iterate again the above process, which gives a series of inequalities

µ(P0) ≤ µ(P1) ≤ µ(P2) ≤ . . . .

Since Pn is a quotient of Hnk and ch2(Hnk ) is independent of n, we see that ch2(Pn) lies

in a finite set. Moreover, µ(Pn) ≥ µ(Hnk ) = µ(Hk). Hence there exists an n0 such that

µ(Pn) = µ(Pn+1) for all n ≥ n0. We assume n0 = 0. Then one finds that L is semi-stable of

the same slope as µ(P0) = µ(P1), and hence L = 0 as a quotient of Q0. This gives the series

of surjections P0 � P1 � P2 � . . . which has to stabilize at some point n0. We take n0 = 0,

so P0 = P1 = . . ..

We argue now by contradiction. The sequence

0→ Kn → Kn−1 → ι∗P0 → 0

(by mapping to 0 → K → K → 0 → 0 and applying the snake lemma) shows that we have

the exact sequence

0→ ι∗P0 → K/Kn → K/Kn−1 → 0,

and K/K1 = P0. We obtain that K/Kn is flat over R/πn. Moreover, the quotient K/πnK →
K/Kn factors through Kf/πnKf → K/Kn and then arguing as in Step 1 lifts to a quotient

Kf � P0 where P0 is flat family over R of semistable sheaves of slope µ(P0). Base changing to

K yields a non-trivial surjection KK � (P0)K from an element of TK to FK , a contradiction.

�

6.5. Invariants. By work of Huybrechts and Thomas [13] the moduli space of π-stable pairs

carries a virtual fundamental class

[P πn (X,β)]vir ∈ Avd(P πn (X,β)), vd =

∫
β
c1(X).

Let O → F denote the universal π-stable pair on P πn (X,β) ×X. Descendent classes on the

moduli space are defined as before for γ ∈ H∗(X) and k ∈ Z by

chk(γ) = πP∗(π
∗
X(γ) · chk(F−O)) ∈ H∗(P πn (X,β)).

Define the π-stable pair invariants by

〈chk1(γ1) · · · chkn(γn)〉X,π-PTn,β =

∫
[Pπn (X,β)]vir

∏
i

chki(γi).
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For any fixed class β ∈ H2(B,Z) let

〈chk1(γ1) · · · chkn(γn)〉X,π-PT,πβ =
∑

β̃∈H2(X,Z)
π∗β̃=β

∑
m∈ 1

2
Z

i2mpmqW ·β̃ 〈chk1(γ1) · · · chkn(γn)〉X,π-PT
m+ 1

2
d
β̃
,β̃

where i =
√
−1 and dβ =

∫
β̃
c1(TX). We also define the normalized series

Zπ-PTβ (chk1(γ1) · · · chkn(γn)) :=
〈chk1(γ1) · · · chkn(γn)〉X,π-PT,πβ

〈1〉X,π-PT,π0

We can compute the normalization factor here explicitly:

Proposition 6.8.

〈1〉π-PT,πβ=0 =
∏
m≥1

(1− qm)−e(B)−c1(N)·(c1(TB)+c1(N))

where N = NB/X is the normal bundle of the section.

Proof. Let [OX → F ] ∈ P πn (X, df) where f ∈ H2(X,Z) is the fiber class of the fibration

X → B. Since F ∈ F all Harder-Narasimhan factors of F must have holomorphic Euler

characteristic χ ≤ 0. This shows that n ≤ 0. On the other hand, OX → F factors as

OX � OC ↪→ F for a curve of the form C = π−1(z) for a 0-dimensional subscheme z ⊂ B.

The cokernel Q = Coker(OC → F ) lies in T hence we get that also χ(F ) = χ(OC)+χ(Q) ≥ 0.

Hence F = OC and n = 0, and OX → F is an ordinary stable pair. We hence see that

(6.3) P πn (X, df) =

{
∅ if n 6= 0

P0(X, df) if n = 0.

The claim hence follows from Lemma 2.5. �

Recall from Section 4.3 the equivariant threefold C2 ×E. We compute the corresponding

series of π-PT invariants in a special case. This example shows that Conjecture F can not

be extended to the equivariant case.

Proposition 6.9. For arbitrary t1, t2 and γ ∈ H∗(E) we have

∑
k≥0

ZE×C
2,π-PT(c̃hk(γ))xk = −

(∫
E
γ

)
1

t1t2S(i
√
t1t2x)

∏
n≥1

(1− qn)(1− qne−(t1+t2)x)

(1− qne−t1x)(1− qne−t2x)

= −
(∫

E
γ

)
1

t1t2
exp

−∑
i,j≥1

(−1)i+j
ti1t

j
2

i!j!
zi+jG

δi,j
i+j

 ,

where

Gsk = −sBk

k
+
∑
d≥1

qd

1− qd
dk−1.

Almost all non-zero x-coefficients on the left hand side are not quasi-Jacobi forms.
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Proof. By (6.3) the left hand side is given precisely by the expression in (4.1) in case n = 1.

In this case, we can reuse the proof strategy of [3, Thm. 6.5]. This yields∑
k≥0

ZE×C
2,π(c̃hk(γ))xk =

∏
n≥1

(1− qn)
∑
λ

q|λ|
∑
i≥1

e(−λit2−it1)x

=

〈∑
i

e(−λit2−it1)x

〉
q

=
∑
k≥1

e−t1x
(q)∞

(qe−t2x)∞

∑
r≥0

et1rx
(qe−t2x)r

(q)r

= e−t1x
(q)∞(qe(−t1−t2)x)∞
(qe−t2x)∞(e−t1x)∞

where (a)n =
∏n
k=0(1− aqk) and

〈f〉q = (q)∞
∑
λ

f(λ)q|λ|.

In the above computation we used [3, Lem. 6.6] and Heine’s q-analog of the Gauss 2F1-

summation, where for any a, b, c with |c| < |ab|:
∞∑
n=0

(a)n(b)n
(c)n(q)n

( c
ab

)n
=

(c/a)∞(c/b)∞
(c)∞(c/ab)∞

This was used in the last equality with a = ε, b = qe−t2x, c = qe(−t1−t2)xε after taking the

limit ε→ 0. The claim now follows. �
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