CURVES ON THE HILBERT SCHEME OF A K3 SURFACE

GEORG OBERDIECK

1. An enumerative problem

Let S be a smooth complex projective surface which we assume here for simplicity to be Fano (in particular, $p_{g}=q=0$). Let L be a line bundle with no higher cohomology. We are interested in counting curves in the linear system $|L|$ of given geometric genus and gonality.
Definition 1. A smooth proper connected curve C is n-gonal if there exists a morphism $C \rightarrow \mathbb{P}^{1}$ of degree n.

Definition 2. Let $N_{g, n}(L)$ be the number of irreducible curves $C \in|L|$ such that:
(i) the normalization \widetilde{C} is n-gonal of genus g
(ii) C passes through $\ell(g, n)$ generic points.

Here $\ell(g, n)$ is the number of points which makes the problem of expected dimension 0. To find it recall first that because the Brill-Noether number reads $\rho(g, a, d)=g-(a+1)(g-d+a)$, in a given family of genus g curves the loci of n-gonal curves has expected codimension $-\rho(g, 1, n)=g+2-2 n$. Second, the locus of geometric genus g curves in a family arithmetic genus p_{a} curves is of expected codimension $p_{a}-g$. Let $p_{a}(L)$ be the arithmetic genus of a curve in $|L|$. Hence

$$
\begin{aligned}
\ell=\ell(g, n) & =\operatorname{dim}|L|-\left(p_{a}(L)-g\right)+\rho(g, 1, n) \\
& =\frac{1}{2} L \cdot(L-K)-\left(\frac{1}{2} L \cdot(K+L)+1-g\right)-(g+2-2 n) \\
& =c_{1}(S) \cdot L-1+2 n-2 .
\end{aligned}
$$

2. Hilbert schemes

By a classical idea of Graber, the Hilbert scheme of n points $S^{[n]}$ can be used to approach the count $N_{g, n}(L)$. By definition a morphism $T \rightarrow S^{[n]}$ from a Noetherian scheme T corresponds to a closed subscheme $C \subset T \times S$ flat over T of degree n. Hence we find the natural bijection:

$$
\left\{\text { maps } f: \mathbb{P}^{1} \rightarrow S^{[n]}\right\} \stackrel{\cong}{\leftrightarrows}\left\{\begin{array}{l}
\text { subcurves } C \subset \mathbb{P}^{1} \times S \\
\text { flat over } \mathbb{P}^{1} \text { of degree } n
\end{array}\right\} .
$$

Moreover, as explained in [3, Sec. 1] the map f has class $\beta+k A$ under the natural isomorphism $H_{2}\left(S^{[n]}, \mathbb{Z}\right) \cong H_{2}(S, \mathbb{Z}) \oplus \mathbb{Z} A$ if and only if we have $[C]=\beta+n\left[\mathbb{P}^{1}\right] \in$ $H_{2}\left(S \times \mathbb{P}^{1}, \mathbb{Z}\right)$ and $\chi\left(\mathcal{O}_{C}\right)=k+n$. Similarly, the projection of C to S is incident to a point $P \in S$ if and only if $f\left(\mathbb{P}^{1}\right)$ is incident to the cycle $I(P)=\left\{\xi \in S^{[n]} \mid P \in \xi\right\}$.

Define the genus g Gromov-Witten invariant of the Hilbert scheme:

$$
\left\langle\alpha ; \gamma_{1}, \ldots, \gamma_{N}\right\rangle_{g, \beta+k A}^{S^{[n]}}:=\int_{\left[\bar{M}_{g, N}\left(S^{[n]}, \beta+k A\right)\right]^{\mathrm{vir}}} \operatorname{ev}_{1}^{*}\left(\gamma_{1}\right) \cdots \operatorname{ev}_{N}^{*}\left(\gamma_{N}\right) \tau^{*}(\alpha)
$$

where α is a tautological class on $\bar{M}_{g, N}$, which is the target of the forgetful morphism τ. A virtual count $H_{g, n}(\beta)$ of n-gonal genus g curves on S in class β passing through ℓ points is then defined by

$$
\sum_{k \in \mathbb{Z}}\left\langle I(P)^{\ell}\right\rangle_{0, \beta+k A}^{S^{[n]}} p^{k}=\sum_{g} H_{g, n}(\beta)\left(p^{-1 / 2}+p^{1 / 2}\right)^{2 n+2 g-2}
$$

The justification for this is that for an isolated genus g curves $C \subset S \times \mathbb{P}^{1}$, the corresponding map $f: \mathbb{P}^{1} \rightarrow S^{[n]}$ meets the diagonal $\Delta_{S^{[n]}}$ in $2 n+2 g-2$ points, and by Graber each of these intersection points should contribute $p^{-1 / 2}+p^{1 / 2}$ to the left hand side. In particular Graber proves:

Theorem 1 ([1]). For $S=\mathbb{P}^{2}$ the count $H_{g, 2}(\beta)$ is enumerative, or in other words equal to $N_{g, 2}(\beta)$. For an explicit recursion see 1 .

3. K3 surfaces

The above discussion motivates the study of the Gromov-Witten theory of the Hilbert scheme of points of a K3 surface. We state a triality of conjectures which governs the structure of the theory. Let $S \rightarrow \mathbb{P}^{1}$ be an elliptic K3 surface with section B and fiber class F. We define potential of reduced Gromov-Witten invariants:

$$
F_{g, m}\left(\alpha ; \gamma_{1}, \ldots, \gamma_{N}\right)=\sum_{d=-m}^{\infty} \sum_{r \in \mathbb{Z}}\left\langle\alpha ; \gamma_{1}, \ldots, \gamma_{N}\right\rangle_{g, m(B+F)+d F+k A}^{S^{[n]}} q^{d}(-p)^{k}
$$

By deformation invariance these series determine all Gromov-Witten invariants of hyper-Kähler varieties of $K 3^{[n]}$-type [4]. By convention, we assume $k=0$ for $n=1$. Recall the algebra QJac of quasi-Jacobi forms [3].

Conjecture A. $F_{g, m}\left(\alpha ; \gamma_{1}, \ldots, \gamma_{N}\right)$ is a quasi-Jacobi form of index $n-1$ and weight $n(2 g-2)+\sum_{i} \underline{\operatorname{deg}}\left(\gamma_{i}\right)-10$ of the form

$$
F_{g, m}\left(\alpha ; \gamma_{1}, \ldots, \gamma_{N}\right) \in \frac{1}{\Delta(q)} \text { QJac. }
$$

Here, if $\gamma \in H^{*}\left(S^{[n]}\right)$ is written in terms of the action of Nakajima operators

$$
\gamma=\prod_{i} \mathfrak{q}_{a_{i}}\left(\delta_{i}\right) 1, \quad 1 \in H^{*}\left(S^{[0]}\right)
$$

where δ_{i} are elements of a fixed basis $\left\{W:=B+F, F, \mathrm{p}, 1, e_{3}, \ldots, e_{22}\right\}$ with $e_{i} \in$ $H^{2}(S)$ orthogonal to W, F, then the modified degree function deg is defined by

$$
\underline{\operatorname{deg}}(\gamma)=\operatorname{deg}(\gamma)+w(\gamma)-f(\gamma)
$$

where $w(\gamma)$ and $f(\gamma)$ are the number of classes δ_{i} equal to W and F respectively.
Conjecture B. We have the multiple cover conjecture:

$$
F_{g, m}\left(\alpha ; \gamma_{1}, \ldots, \gamma_{N}\right)=m^{\sum_{i} \operatorname{deg}\left(\gamma_{i}\right)-\underline{\operatorname{deg}\left(\gamma_{i}\right)}} \cdot T_{m, \ell} F_{g, 1}\left(\alpha ; \gamma_{1}, \ldots, \gamma_{N}\right)
$$

where $\ell=n(2 g-2)+\sum_{i} \underline{\operatorname{deg}}\left(\gamma_{i}\right)$ and $T_{m, \ell}$ is the formal Hecke operator on Jacobi forms, see [4, 2.6].

Conjecture B implies that every $F_{g, m}$ is a quasi-Jacobi form (with poles at $q=0$) of index $m(n-1)$ for the congruence subgroup $\Gamma_{0}(n) \rtimes \mathbb{Z}^{2}$. The weight is as before.

Conjecture C. We have the holomorphic anomaly equation:

$$
\begin{aligned}
\frac{d}{d G_{2}} F_{g, m}\left(\alpha ; \gamma_{1}, \ldots, \gamma_{N}\right)= & F_{g-1, m}\left(\alpha ; \gamma_{1}, \ldots, \gamma_{N}, U\right) \\
& +2 \sum_{\substack{g=g_{1}+g_{2} \\
\{1, \ldots, N\}=A \sqcup B}} F_{g_{1}, m}\left(\alpha_{1} ; \gamma_{A}, U_{1}\right) F_{g_{2}}^{v i r}\left(\alpha_{2} ; \gamma_{B}, U_{2}\right) \\
& -2 \sum_{i=1}^{N} F_{g, m}\left(\alpha \cdot q^{*}\left(\psi_{i}\right) ; \gamma_{1}, \ldots, \gamma_{i-1}, U \gamma_{i}, \gamma_{i+1}, \ldots, \gamma_{N}\right) \\
& -\frac{1}{m} \sum_{a, b}\left(G^{-1}\right)_{a b} T_{e_{a}} T_{e_{b}} F_{g, m}\left(\alpha ; \gamma_{1}, \ldots, \gamma_{N}\right)
\end{aligned}
$$

with the following notations:

- by convention the last term vanishes in case $m=0$,
- the intersection matrix G of the e_{a} is defined by $G_{a b}=\left\langle e_{a}, e_{b}\right\rangle$,
- we let $\rho: \wedge^{2} H^{2}(X) \cong \mathfrak{s o}\left(H^{2}(X)\right) \rightarrow \operatorname{End} H^{*}(X)$ be the Looijenga-LuntsVerbitsky algebra action for $X=S^{[n]}$ with the conventions of [2],
- $U=\tilde{f}_{F}=\rho(-f \wedge F)$,
- $T_{\lambda} F_{g, m}\left(\alpha ; \gamma_{1}, \ldots, \gamma_{N}\right)=\sum_{i=1}^{N} F_{g, m}\left(\alpha ; \gamma_{1}, \ldots, \gamma_{i-1}, \rho(\lambda \wedge F) \gamma_{i}, \gamma_{i+1}, \ldots, \gamma_{N}\right)$,
- $q: \bar{M}_{g, N}\left(S^{[n]}, \beta\right) \rightarrow \bar{M}_{g, N}\left(\mathbb{P}^{n}, \pi_{*} \beta\right)$ is induced by the Lagrangian fibration $\pi: S^{[n]} \rightarrow \mathbb{P}^{n}$ associated to $S \rightarrow \mathbb{P}^{1}$,
- $F_{g}^{v i r}$ is the potential of ordinary (non-reduced) Gromov-Witten invariants.

The first two conjectures can be found in [3 and 4]. The last one generalizes the K3 surface case [5. Example calculations will be discussed elsewhere.

References

[1] T. Graber, Enumerative geometry of hyperelliptic plane curves, J. Algebraic Geom. 10 (2001), no. 4, 725-755.
[2] A. Negut, G. Oberdieck, Q. Yin, Motivic decompositions for the Hilbert scheme of points of a K3 surface, J. Reine Angew. Math., to appear, arXiv:1908.08830
[3] G. Oberdieck, Gromov-Witten invariants of the Hilbert scheme of points of a K3 surface, Geom. Topol. 22 (2018), no. 1, 323-437.
[4] G. Oberdieck, Gromov-Witten theory and Noether-Lefschetz theory for holomorphicsymplectic varieties, arXiv:2102.11622
[5] G. Oberdieck and A. Pixton, Holomorphic anomaly equations and the Igusa cusp form conjecture, Invent. Math. 213 (2018), no. 2, 507-587.

Mathematisches Institut, Universitt Bonn
E-mail address: georgo@math.uni-bonn.de

