
NOTES ON MONODROMY AND PARALLEL TRANSPORT
OF HOLOMORPHIC-SYMPLECTIC VARIETIES OF

K3[n]-TYPE

GEORG OBERDIECK

There are three natural sets of actions on the cohomology of holomorphic-
symplectic varieties of K3[n]-type:

• the action of the Looijenga-Lunts-Verbitsky (LLV) algebra,
• the action of O(H2(X,C)) via Markman’s operator, and
• the action of the monodromy group.

In this note we describe each of these actions and relate them to each other.
We also discuss the case of parallel transport operators.

0.1. LLV algebra. We begin our discussion with the Looijenga-Lunts-Verbitsky
(LLV) Lie algebra [2, 10], for which we can work with an arbitrary holomor-
phic symplectic variety X. We let dimC(X) = 2n.

For any a ∈ H2(X,Q) such that (a, a) 6= 0, consider the operator of
multiplication by a,

ea : H∗(X,Q)→ H∗(X,Q), x 7→ a ∪ x

Let also h be the Lefschetz grading operator acting on H2i(X,Z) by i− n.
Then there exists a unique operator fa : H∗(X,Z) → H∗(X,Z) such that
the sl2 commutation relations are satisfied:

[ea, fa] = h, [h, ea] = ea, [h, fa] = −fa.

The LLV Lie algebra g(X) is defined as the Lie subalgebra of EndH∗(X,Q)
generated by ea, fa, h for all a ∈ H2(X,Q) as above. One has

g(X) = so(H2(X,Q)⊕ UQ)

where U =
(0 1

1 0
)

is the hyperbolic plane.
The degree zero part of g(X) decomposes as

g(X)0 = so(H2(X,Q))⊕Qh.

The summand so(H2(X,Q)) is also called the reduced LLV algebra. Base
changing to C and integrating then yields the LLV representation

ρLLV : SO(H2(X,C))→ GL(H∗(X,C)).

which acts by degree-preserving orthogonal ring isomorphisms [2, Prop.
4.4(ii)], where we endow H∗(X,C) with the Poincaré pairing. In the case of
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the Hilbert scheme of a K3 surfaces, explicit formulas for the action of the
Lie algebras in the Nakajima basis are given in [9].

Consider a parallel transport operator P : H∗(X1,Z) → H∗(X2,Z) in-
duced by a deformation from a holomorphic-symplectic variety X1 to X2.
Since P is a ring isomorphism, for a ∈ H2(X1,Q) we have that

P ◦ ea ◦ P−1 = eP (a).

Since clearly P ◦h◦P−1 = h we also find P ◦fa◦P−1 = fPa whenever (a, a) 6=
0. Under the identification of elements in so(H2(X,Q)) with endomorphisms
of H2(X,Q) we have Pa ∧ Pb = P ◦ (a ∧ b) ◦ P−1. Hence for any g ∈
SO(H2(X,C)) we find that

P ◦ ρLLV(g) ◦ P−1 = ρLLV(ψ ◦ g ◦ ψ−1)

where ψ = P |H2(X1,Z), that is the LLV algebra action is intertwined by
parallel transport.

0.2. Basic definitions. Let S be a K3 surface and consider the lattice
Λ = H∗(S,Z) endowed with the Mukai pairing

(x · y) := −
∫
S
x∨y,

where, if we decompose an element x ∈ Λ according to degree as (r,D, n),
we have written x∨ = (r,−D,n). Given a sheaf or complex E on S the
Mukai vector of E is defined by

v(E) =
√

tdS · ch(E) ∈ Λ.

Let v ∈ Λ be an effective vector, H be an ample divisor on S and let
MH(v) be a proper smooth moduli space of H-stable sheaves with Mukai
vector v.1 For simplicity we assume that there exists an universal sheaf F
on MH(v)×S. By definition of the moduli problem, F is unique only up to
tensoring of a line bundle from the base.

The results we state below also hold in the general case where there exists
only a universal twisted sheaf. By this we mean that all statements below
can be formulated in terms of the Chern character ch(F) alone and this class
can be defined in the twisted case as well, see [3, Sec.3]. The proofs carry
over likewise using that the ingredients hold in the twisted case as well.

Consider the morphism θF : Λ→ H2(M,Z) defined by

(1) θF (x) =
[
π∗
(
ch(F)

√
tdS · x∨

)]
deg=1

.

Then θF restricts to an isomorphism

(2) θ = θF |v⊥ : v⊥
∼=−→ H2(M,Z)

1More generally, we can also work with σ-stable objects for a Bridgeland stability
condition in the distinguished component.
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which does not depend on the choice of universal family (use that the degree
0 component of the pushforward (1) vanishes) and for which we hence have
dropped the subscript F . The isomorphism θ preserves the Mukai pairing on
the left, and the pairing given by the Beauville-Bogomolov-Fujiki form on the
right. We will identify v⊥ ⊂ Λ with H2(MH(v),Z) under this isomorphism.

The universal sheaf F and hence its Chern character ch(F) is unique
only up to pullback of a line bundle from the base. We can pick a canonical
normalization as follows:

uv := exp
(
θF (v)
(v, v)

)
· ch(F) ·

√
tdS

where we have suppressed the pullback morphisms from M and S in the
first and last term on the right. The invariance is a short check (replace F
by F ⊗ L and calculate). The class uv is characterized among the classes
ch(F)·

√
tdS by the property that θuv (v) = 0 (Use that π∗(ch(F)

√
tdS ·v∨) =

−(v · v) + θF (v) + . . . for a universal family F .).

Example 1. Let M = Hilbn(S) the Hilbert scheme of n points on S. We
have v = 1 − (n − 1)c, and take F = IZ the ideal sheaf of the universal
subscheme. For α ∈ H2(S) we have

θ(α) = π∗(ch2(OZ)π∗S(α)).

If α is the class of a divisor A, then this is the class of subschemes incident
to A. Similarly, define2

δ = −1
2∆Hilbn(S) = c1(π∗OZ) = π∗ch3(OZ).

Then θ
(
− (1 + (n− 1)c)

)
= δ, that is under the identification (2) we have

δ = −
(
1 + (n− 1)c

)
.

Since θF (v) = −δ the canonical normalization of ch(F) takes the form

uv = exp
( −δ

2n− 2

)
ch(F)

√
tdS .

0.3. Markman’s operator. For i = 1, 2 let (Si, Hi, vi) be the data defining
the moduli space Mi = MHi(Si, vi), and let Fi be the universal family on
Mi × S. Let

g : H∗(S1,Z)→ H∗(S2,Z)
be an isomorphism of Mukai lattice such that g(v1) = v2. We will identify
g also with an isomorphism of topological K-groups

g : Ktop(S1)→ Ktop(S2)

2Beware, in some circles it is common to define δ = 1
2 ∆Hilb.
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using the lattice isomorphism Ktop(S)
∼=−→ H∗(S,Z) given by E 7→ v(E).

Here Ktop(S) carries the Euler pairing (E · F ) = −χ(E∨ ⊗ F ). Hence the
following diagram commutes

Ktop(S1) Ktop(S2)

H∗(S1,Z) H∗(S2,Z).

g

v v

g

Similar identification will apply to morphisms g defined over C. The Mark-
man operator associated to g is given by the following result:

Theorem 1. (Markman, [4]) For any isometry g : H∗(S1,C)→ H∗(S2,C)
such that g(v1) = v2 there exists a unique operator

γ(g) : H∗(M1,C)→ H∗(M2,C)

such that
(a) γ(g) is degree-preserving orthogonal ring-isomorphism
(b) γ(g)⊗ g(uv1) = uv2.

The operator is called the Markman operator and given by

(3) γ(g) = cm
[
−π∗

(
((1⊗ g)uv1)∨ · uv2

)]
.

Moreover, we have
(c) γ(g1) ◦ γ(g2) = γ(g1g2) and γ(g)−1 = γ(g−1) if it makes sense.
(d) γ(g)ck(TM1) = ck(TM2).

We refer to [4] for further properties of the operator γ(g). For example,
it is an Hodge isometry whenever g is.

We should explain the notation for the Chern class cm in (3). Let ` :
⊕iH2i(M,Q)→ ⊕iH2i(M,Q) be the universal map that takes the exponen-
tial Chern character to Chern classes, so in particular c(E) = `(ch(E)) for
any vector bundle. Then given α ∈ H∗(M) we write cm(α) for [`(α)]deg=m.

We want to explain a bit what goes into the proof of the result. The main
ingredient of the discussion is the following uniqueness statement:

Lemma 1. Let f : H∗(M1,Q)→ H∗(M2,Q) be a morphism such that:
(i) f is a degree-preserving orthogonal ring isomorphism.

(ii) There exists universal families F on M1 × S1 and F ′ on M2 × S2
such that

(f ⊗ g)
(
ch(F)

√
tdS

)
= ch(F ′)

√
tdS2 · exp(`)

for some ` ∈ H2(M2,Q).
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Then we have
(4) f = cm

(
−Extπ((1⊗ g)F ,F ′)

)
.

Moreover, in (ii) it is enough to assume that F , F ′ are elements in
Ktop(Mi × S)Q, i.e. differ from a universal family by tensor product by
a fractional line bundle from the base (see the proof). In particular, we have

(5) f = cm
[
−π∗

(
((1⊗ g)uv1)∨ · uv2

)]
.

Proof of Lemma 1. Assume that f satisfies (i) and (ii). Note that, since
f is a ring isomorphism, the equality in (ii) is equivalent to the parallel
equality where we replace ch(F ) by ch(F ) exp(µ) for any µ ∈ H2(M1,Q),
and similarly for ch(F ′). Hence we may have also assumed (i) with ch(F)
replaced by ch(F ) exp(µ) instead.

We will prove that for any `i ∈ H2(Mi,Q) we have:
(6)
f = cm

[
−π∗

(
((1⊗ g)(exp(`1)ch(F)

√
tdS))∨ · (exp(`2)ch(F ′)

√
tdS)

)]
.

Taking `i both to be trivial then gives (4), and taking `i to be as in the
definition of uv gives (5).

The main input of the lemma is the following theorem which we state for
an arbitrary moduli space of stable sheaves M on a K3 surface:

Theorem 2 (Markman [3]). For any universal families F ,F ′ on M × S,
∆M = cm(−Ext•π(F ,F ′)).

More generally, for any γ, γ′ ∈ H2(M,Q) we have

∆M = cm
[
−π∗

(
(exp(γ)ch(F)

√
tdS)∨ · exp(γ′)ch(F)

√
tdS

)]
By the theorem, for any γ ∈ H2(M2,Q) we thus have:

∆M2 = cm
[
−π∗

(
(ch(F ′)

√
tdS exp(γ))∨ · ch(F ′)

√
tdS exp(`2)

)]
Inserting

ch(F ′)
√

tdS = (f ⊗ g)
(

exp(f−1(`))ch(F)
√

tdS1

)
iin the first term, then using that f is degree-preserving (so commutes with
∨), and a ring isomorphism (so commutes with cm), we get that ∆M2 is
equal to

(f⊗1)cm
[
−π∗

(
((1⊗ g)(ch(F)

√
tdS exp(γ + f−1(`))))∨ch(F ′)

√
td exp(`2)

)]
Setting γ = −f−1(`) + `1, and taking Q to be the right hand side of (6) we
find

idH∗(M2) = ∆M2 = (f ⊗ 1)(Q) = Q ◦ f t
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where f is the transpose with respect to the standard cup product (or as
a correspondence, identical with f up to swapping the factors). Since f is
orthogonal, we conclude idH∗(M2) = Q ◦ f−1, so f = Q. �

After the uniquness, we prove two basic results on the operators satisfying
the condition of the previous lemma.

Lemma 2. Assume f satisfies (i) and (ii) of Lemma 1. Then

(f ⊗ g)(uv1) = uv2 .

Proof. Assuming (i) and (ii) we have

(f ⊗ g)(uv1) = exp
(
f(θF (v1))

(v1, v1)

)
ch(F ′)

√
tdS exp(`).

Hence the claim follows from the following calculation:

f(θF (v1)) = [deg 1]π∗
(
(1⊗ g−1)(f ⊗ g)(ch(F)

√
tdS) · v∨1

)
= [deg 1]π∗((1⊗ g−1)(ch(F ′)

√
tdS) · v∨1 ) exp(`)

(∗)= [deg 1]π∗(ch(F ′)
√

tdS · g(v1)∨) exp(`)
= [deg 1](−(v2, v2) + θF ′(v2)) exp(`)
= −(v2, v2)`+ θF ′(v2),

where (*) follows by Künneth decomposition and that g is an isometry of
Mukai lattice. Indeed, if we assume ch(F)

√
tdS = a⊗ b for simplicity, then

(7)

π∗((1⊗ g−1)(ch(F ′)
√

tdS) · v∨1 ) = a

∫
S
g−1(b)v∨1

= −a · (g−1(b) · v1)
= −a · (b · g(v1))

= a

∫
S
bg(v1)∨

= π∗(ch(F ′)
√

tdS · g(v1)∨).

�

We reinterpret the condition (f ⊗ g)(uv1) = uv2 in terms of generators
of the cohomology ring. Consider the canonical morphism B : H∗(S,Q) →
H∗(M,Q) defind by

B(x) = π∗(uv · x∨).

Lemma 3. Let f : H∗(M1,Q)→ H∗(M2,Q) be a degree-preserving orthog-
onal ring isomorphism. Then the following are equivalent:

(a) (f ⊗ g)(uv1) = uv2

(b) f(B(x)) = B(gx) for all x ∈ H∗(S1,Q).
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Proof. By the same argument as in (7) we have

π∗(uv2 · (gx)∨) = π∗((1⊗ g−1)uv2 · x∨).

Hence we see that:

(b) ⇐⇒ ∀x ∈ H∗(S1,Z) : fπ∗(uv1 · x∨) = π∗(uv2 · (gx)∨)
⇐⇒ ∀x ∈ H∗(S1,Z) : π∗((f ⊗ 1)uv1 · x∨) = π∗((1⊗ g−1)uv2 · x∨)
⇐⇒ (f ⊗ 1)(uv1) = (1⊗ g−1)(uv2)
⇐⇒ (a).

�

We come now to the question of existence of the operator in Theorem 1.
One may be tempted to define these operators directly using the closed
formula (3) and then derive their properties from it. However, (3) is unfor-
tunately hard to work with in practice. It is even not clear how to use it to
prove γ(g1)◦γ(g2) = γ(g1g2). Nevertheless, it can be used for the following:
if we know the statements of the theorem for a Zariski dense subset of all
operators g (e.g. the integral isometries), then we can define γ(g) by (3) for
arbitrary isometries and then conclude Theorem 1 in general using Zariski
density.

Hence it remains to consider the case of integral isometries. For this one
considers the set S of triples(

(S1, H1, v1), (S2, H2, v2), g : H∗(S1,Z)→ H∗(S2,Z)
)
,

where g is a isometry such that g(v1) = v2, for which the result of the
theorem holds. Since the elements for which the statements of the theorem
hold are closed under composition and inverse, we can think about S as
the set of arrows in a groupoid. Then elements of the groupoid can be
constructed in three different ways:
• For any deformation (S1, v1, H1)  (S2, v2, H2) which keeps v1 and H1

of Hodge type type, we have an associated deformation of moduli spaces
MH1(S1, v1)  MH2(S2, v2). The associated parallel transport operator
P is a degree-preserving orthogonal ring isomorphism. Moreover, since uv
is defined in terms of the universal family which deforms along the family,
the classes uvt of the individual fibers are the parallel transports of uv1 .
Hence if g is the parallel transport operator associated to S1  S2, then
(P ⊗ g)(uv1) = uv2 . We conclude that P satisfies the theorem.
• Assume that Φ : Db(S1)→ Db(S2) is a derived equivalence that takes H1-

stable sheaves of Mukai vector v1 to H2-stable sheaves of Mukai vector
v2. Then Φ induces an isomorphism of moduli spaces

ϕ : MH1(S1, v1)→MH2(S2, v2)
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such that by its definition we have
(Id�Φ)(F) = (ϕ× id)∗(F ′)

hence
(ϕ∗ � Φ∗)(ch(F)

√
tdS) = ch(F ′)

√
tdS .

Hence with g = Φ∗ we have γ(g) = ϕ∗ by the main lemma.
• Assume in a slight modification, that (ΦE)∨ is H2-stable of Mukai vector
v2 for any H1-stable sheaf E ∈M1. Then we have an induced morphism

ϕ : MH1(S1, v1)→MH2(S2, v2)
such that by its definition we have

(Id�Φ)(F)∨ = (ϕ× id)∗(F ′)
and hence

(ϕ× id)∗(Id�Φ)(F)∨ = F ′.
Since ϕ commutes with dualizing, we get

(ϕ∗ � Φ)(F)∨ = F ′

and hence (
(ϕ∗ � Φ∗)(ch(F)

√
tdS)

)∨
= ch(F ′)

√
tdS .

Going through the argument of the proof of Lemma 1 then shows
ϕ∗ = D ◦ γ(DΦ∗)

where D is the operator that acts on H2i by (−1)i. We note that Φ∗v1 =
v∨2 , so g = DΦ∗ sends v1 to v2 as required. Since D is a degree-preserving
orthogonal ring isomorphism, we see that γ(g) satisfies the statements of
the Theorem.

This shows the existence of Markman operators for g of these form. Mark-
man then (roughly) shows that any integral g can be written as a composi-
tion of these three operations. This concludes the proof.

In the next section we will see that part of the existence of the Markman
operator can also be seen directly from the LLV algebra action. The proof
above will naturally relate the operators γ(g) to the monodromy action.

0.4. Monodromy representation. Let X be a holomorphic-symplectic
variety of K3[n]-type. Let Mon(X) be the subgroup of O(H∗(X,Z)) gen-
erated by all monodromy operators, and let Mon2(X) be its restriction to
H2(X,Z). By Markman and the global Torelli theorem [7, Lemma 2.1], [5],
[6, Thm.1.3] we have

(8) Mon(X) = Mon2(X) = Õ+(H2(X,Z))

where Õ+(H2(X,Z)) is the subgroup of O(H2(X,Z)) of orientation preserv-
ing lattice automorphisms which act by ±1 on the discriminant.
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The orientation is defined as follows: the lattice H2(X,Z) is of signature
(3, 20), hence the positive cone C = {x ∈ H2(M,R)|〈x, x〉} is homotopy
equivalent to the 2-sphere S2. An orthogonal transformation of H2(M,Z)
is called orientation preserving if it acts as the identity on H2(C,Z) ∼=
H2(S2,Z) = Z. For example, multiplication by (−1) is orientation revers-
ing. (Similar definitions hold for orthogonal transformations on any lattice
of signature (m,n) for m > 0; the multiplication by (−1) then acts by (−1)m
on Hm−1(Sm−1).) We let O+(H2(M,Z)) ⊂ O(H2(M,Z)) be the subgroup
of orientation preserving transformation. Since any holomorphic-symplectic
variety defines a canonical class in H2(C,Z) (determined by Re([σ]), Im([σ])
and a Kähler class), and any small deformation preserves this choice, any
monodromy operator is orientation preserving.

We will write
µ : Mon(X)→ O(H∗(X,Z))

for the monodromy representation.
We will also consider the case of parallel transport operators. An operator

P : H∗(X1,Z)→ H∗(X2,Z)

is a parallel transport operator if there exists a family of holomorphic-
symplectic varieties over a base with two special fibers X1, X2 such that
P is the parallel transport along a path in the base. We write PT(X1, X2)
for the subspace of parallel transport operators, and PT2(X1, X2) for its
projection to H2(X1,Z). By the global Torelli Theorem ([6, Thm.1.3], [7,
Lemma 2.1]) we have again that

PT(X1, X2) ∼= PT2(X1, X2)

where the isomorphism is by restriction. The right hand group is described
as follows: For any holomorphic-symplectic variety of K3[n] is equipped with
a natural embedding

ιX : H2(X,Z)→ Λ = U4 ⊕ E8(−1)2

unique up to composing with an element of O(Λ). For X = MH(S, v) one
has (up to composition) ιX = θ−1 where θ is given by (2).

Theorem 3. ([6, Thm.9.8]) An isometry ψ : H2(X1,Z) → H2(X1,Z) is a
parallel transport operator if and only of if it is orientation preserving and
there exists an η ∈ O(Λ) such that

η ◦ ιX1 = ιX2 ◦ ψ,

Orientation preserving is here defined with respect to the canonical choice
of orientation. In the case X1 = X2 the theorem reduces to (8).
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0.5. Markman’s operator and monodromy. We start to relate the three
operations on chomology we have defined above. The natural one to start
with is to relate Markman’s operator to the monodromy, since the latter
played the crucial role in proving the existence of the former.

We first consider the case of monodromy. Let as before M = MH(S, v)
be a fixed moduli space of stable sheaves on a K3 surface S and let Λ =
H∗(S,Z). Recall that we have a natural isomorphism

θ : v⊥
∼=−→ H2(M,Z).

Consider the isomorphism

α : O(H2(M,C))→ O(ΛC)v, ϕ 7→ α(ϕ)

where we define α(ϕ) by α(φ)|v⊥ = ϕ and α(φ)(v) = v. Define the Markman
representation by

ρ : O(H2(M,C))→ O(H∗(M,C)), g 7→ γ(α(g)).

Recall also the monodromy representation:

µ : Õ+(H2(M,Z))→ O(H∗(M,Z)).

Consider the character

(9) τ : Õ+(H2(M,Z))→ Z/2Z = {0, 1}

such that g acts on the discriminant of H2(X,Z) by (−1)τ(g). Let also
D : H∗(X,Q)→ H∗(X,Q) be the dualizing automorphism given by

D|H2i(X,Q) = (−1)iidH2i(X,Q).

Theorem 4. (Markman, [4]) For any g ∈ Õ+(H2(M,Z)) we have

µ(g) = Dτ(g) ◦ ρ((−1)τ(g)g)

We discuss a basic example that we will use for Gromov-Witten theory.

Example 2. Let M = Hilbn(S) and consider g ∈ Õ+(H2(M,Z)) given by

g|H2(S,Z) = id, g(δ) = −δ.

This is orientation preserving (it fixes a slice of the positive cone) and acts
by −1 on the discriminant lattice, hence is a monodromy operator.

By Theorem we obtain that the full monodromy assigned to it is:

µ(g) = D ◦ ρ(−g) = D ◦ γ(g̃)

where we let
g̃ = idH0⊕H4 ⊕−idH2(S,Z)

be −1 times the unique lift of g to H∗(S,Z).
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We can give a more concrete description. Since g̃ acts trivially on H0⊕H4,
the operator ρ(g̃) intertwines the Nakajima operators qi(α).3 In particular,
if all αi are homogeneous, then

ρ(g̃)(qa1(α1) · · · qak
(αk)1) = (−1)k1qa1(α1) · · · qak

(αk)1

where k1 = |{i : αi ∈ H2(S,Q)}|. Since

deg
(
qa1(α1) · · · qak

(αk)1
)

= n− k +
∑
i

deg(αi).

we conclude that

mon(g)
(
qa1(α1) · · · qak

(αk)1
)

= (−1)n+k(qa1(α1) · · · qak
(αk)1

)
.

�

We state also the version for parallel transport operators. Let

ψ : H2(M1,Z)→ H2(M2,Z)

be a parallel transport operator. By the characterization of parallel trans-
port operators in Theorem 3 there exists a (unique) lattice isomorphism

η : H∗(S1,Z)→ H∗(S2,Z)

which extends ψ, i.e. such that the following diagram commutes:

H2(M1,Z) H2(M2,Z)

H∗(S1,Z) H∗(S2,Z).

ιM1

ψ

ιM2

η

The isometry η sends v1 to ±v2. Let τ(ψ) ∈ Z/2Z such that η(v1) =
(−1)τ(ψ)v2. This defines a map4

τ : PT(M1,M2)→ Z/2Z = {0, 1}.

Theorem 5. (Markman, [4]) For any parallel transport operator ψ : H2(M1,Z)→
H2(M2,Z) we have that:

P (ψ) = Dτ(ψ) ◦ γ((−1)τ(ψ)η)

where P (ψ) : H∗(M1,Z)→ H∗(M2,Z) is the unique parallel transport oper-
ator that restricts to ψ on H2(M1,Z).

3This follows since the Nakajima operators are equivariant with respect to the mon-
odromy group O(H2(S,Z))+ which is Zariski dense in O(H2(S,C)).

4For an alternative definition, use that there exists a natural isomorphism ([1, Sec.14])

H2(Mi,Z)∨/H2(Mi,Z)→ L∨/L

were L = Zv and hence we obtain a canonical element in H2(Mi,Z)∨/H2(Mi,Z) corre-
sponding to v/(2n − 2). We have τ(ψ) = 0 if and only if ψ preserves this distinguished
element. This makes the connection to the definition of the character (9).
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Of course, (−1)τ(ψ)η is just the map H∗(S1,Z) → H∗(S2,Z) defined by
sending v1 to v2 and acting by (−1)τ(ψ) on H2(M1,Z).

Proof. We just need to check that this is compatible with the three bulleted
operations in Section 0.3. The first two are immediate. We check the third.
In the notation there we have

ϕ∗ = D ◦ γ(DΦ∗) : H∗(M1,Z)→ H∗(M2,Z).

Let ψ be the restriction of the parallel transport operator ϕ∗ to H2(M1,Z).
Then under the identification (2) we have

ψ = −(DΦ∗)|v⊥1 .

The natural extension of ψ is then η = −DΦ∗ which sends v1 to −DΦ∗(v1) =
−Dv∨2 = −v2, so τ(ψ) = 1. We conclude that

D ◦ γ(−η) = Dγ(DΦ∗) = ϕ∗. �

We can reformulate the above discussion slightly. On M = MH(S, v)
consider the involution

D̃ = D ◦ ρ(−idH2(M,Z)) = D ◦ γ(idQv ⊕−idv⊥).

We define the extended Markman representation

ρ̃ : O(H2(M,C))× Z2 → O(H∗(M,C))

by
ρ̃(g, τ) = D̃τ ◦ ρ(g).

Then we have a natural embedding

Mon(M)→ O(H2(M,C))× Z2, g 7→ (g, τ(g))

which fits into the commutative diagram

Mon(M) O(H2(M,C))× Z2

O(H∗(M,C)).
µ ρ̃

Lemma 4. The subgroup Mon(M) = Õ+(H2(M,Z)) is Zariski dense in
O(H2(M,C))× Z2.

Proof. Since Mon(M) contains both elements with τ(g) = 1 and with τ(g) =
0 and det = −1, it is enough to show that the subgroup of Mon(M) of
elements of determinant 1 and τ(g) = 0 is Zariski dense. But this is an
arithmetic subgroup of SO(H2(M,C)) so it is dense. �
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The last question we investigate is how does the extended Markman rep-
resentation behave under parallel transport. Let M1,M2 be two moduli
spaces of stable sheaves on a K3 surface. Let Pψ : H∗(M1,Z)→ H∗(M2,Z)
be a parallel transport operator, and let ψ be the restriction to H2(M1,Z),
and let η : H∗(S1,Z)→ H∗(S2,Z) be the unique extension of ψ.

Lemma 5. For any h ∈ O(H2(M1,C)) and τ ∈ Z2 we have that

Pψ ◦ ρ̃(h, τ) ◦ P−1
ψ = ρ̃(ψ ◦ h ◦ ψ−1, τ).

Proof. Clearly we have Pψ ◦D ◦ P−1
ψ = D so we can assume τ = 0. Recall

the map B : H∗(Si,Z)→ H∗(Mi,Z) from Lemma 3. We will show that for
all x ∈ H∗(S2,Z) we have

(Pψ ◦ ρ(h) ◦ P−1
ψ )B(x) = B

(
(η ◦ α(h) ◦ η−1)x

)
which will imply by Lemma 1 that

(Pψ ◦ ρ(h) ◦ P−1
ψ ) = γ(η ◦ α(h) ◦ η−1) = ρ(ψ ◦ h ◦ ψ−1)

as desired.
By Theorem 5 we have that

PψB(x) =
{
B(ηx) if τ(ψ) = 0
DB(−ηx) if τ(ψ) = 1.

Thus we get that

(Pψ ◦ ρ(h) ◦ P−1
ψ )B(x) = Pψγ(α(h))B(η−1) = B(ηα(h)η−1)

if τ(ψ) = 0 and

(Pψ ◦ ρ(h) ◦ P−1
ψ )B(x) = Pψγ(α(h))DB(−η−1x)

= DPψB(−α(h)η−1x)
= B(ηα(h)η−1x)

if τ(ψ) = 1. �

We hence can define the extended Markman representation

ρ : O(H2(X,C))× Z2 → O(H∗(X,C))

for any holomorphic-symplectic variety of K3[n]-type as follows: Let Pψ :
H∗(X,Z)→ H∗(M,Z) be a parallel transport operator, whereM is a moduli
space of sheaves on a K3 surface, and let ψ = Pψ|H2(X,C) be its restriction.
Then for any (g, τ) ∈ O(H2(X,C))× Z2 we set

ρ(ψ, τ) = P−1
ψ ◦ ρ̃(ψgψ−1, τ) ◦ Pψ.

By the previous lemma this is independent of the choice of M and parallel
transport operator Pψ.
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The monodromy group embeds then Mon(X) → O(H2(X,C)) × Z2 via
g 7→ (g, τ(g)), and the monodromy representation is the restriction of ρ.
Another way to characterize the representation ρ is that the image

ρ(O(H2(X,C))× Z2) ⊂ O(H∗(X,C))
is the Zariski closure of the Monodromy group (see also [4, Lemma 4.11]).
If n ≥ 3, the representation ρ is faithful (kernel is trivial).

0.6. The Markman and LLV algebra representation. Recall the rep-
resentation of the LLV algebra

ρLLV : SO(H2(X,C))→ SO(H∗(X,C)).
and the extended Markman representation

ρ : O(H2(X,C))× Z2 → O(H∗(X,C)).

Proposition 1. We have
ρ|SO(H2(X,C))×{0} = ρLLV.

Proof. Both actions are intertwined by the parallel transport operators,
hence it is enough to prove this in the case of a moduli space of sheaves
on a K3 surface M . Also it is enough to prove this on a Zariski-dense sub-
set. Markman does this in [4, Lemma 4.13] using that the LLV algebra
action and ρ both are intertwined by the monodromy action and the later
is dense in O(H2(X,C)) × Z, as well as that the cohomology is generated
by the degree components of B(x) for all x.

For the Hilbert scheme one can also give a direct argument as follows. It
gives also the existence of the Markman operator in this special case.

Claim: Let M = Hilbn(S). Then for any g ∈ SO(H2(M,C)),
(ρLLV(g)⊗ α(g))uv = uv.

Hence by Lemma 1 we have ρLLV(g) = ρ(g).

Proof of Claim: For α, β ∈ H2(S,Q) let
hαβ = ρLLV(α ∧ β)
hαδ = ρLLV(α ∧ δ)

where we identify ∧2H2(M,Z) = so(H2(M,Z)) ⊂ so(H∗(S,C)) in the usual
way, that is a ∧ b acts by

(a ∧ b)(x) = a(b · x)− b(a · x).
Since hαβ, hαδ are degree-preserving orthogonal derivations, by Lemma 3

it suffices to prove that H(B(x)) = B(H(x)) for all x ∈ H∗(S,Q) and
H ∈ {hαβ, hαδ}. Since H is a derivation this is equivalent to proving

[H, Ĝ(x)] = Ĝ(Hx)



NOTES 15

where Ĝ(x) : H∗(M,Q) → H∗(M,Q) is the operator of multiplication by
B(x).

To do so, we begin with introducing some notation. Let Z ⊂ Hilbn × S
be the universal subscheme. For x ∈ H∗(X,Z) consider the class

univ(x) = π∗(ch(OZ) ∪ π∗S(x)).

A subscript d of these classes will denote their degree d component. For
α ∈ H2(S) we have

univ2(α) = θF (α), univ3(1) = δ.

Let G(x) : H∗(M,Q) → H∗(M,Q) be the operator of multiplication by
univ(x). By Example 1 we then have

Ĝ(x) = exp
(−G3(1)

2n− 2

){
−(v(OS) · x)id−G(

√
td · x∨)

}
.

In [8, Prop 4.3 and 4.4] the following was proven:

[hαβ, G(x)] = G(hαβ(x))

[hαδ, G(x)] = −G2(α)G(x)−G
(
−nαx− α

∫
S
x−

∫
S
αx+ 2α

∫
S
xc

)
+G2

(
α

∫
S
x+

∫
S
αx

)
where the last term comes from the fact that we need [hαδ, G1(x)] = 0. With
this formula it is then straightforward that

[hαβ, Ĝ(x)] = Ĝ(hαβ(x)).

For hαδ one shows[
hαδ, exp

(
− G3(1)

2n− 2

)]
= G2(α) exp

(
− G3(1)

2n− 2

)
and

[hαδ, G(
√

td · x∨)] = −G2(α)G(
√

td · x∨)

+G
(√

tdS ·
(
(δ · x)α− (α · x)δ

)∨)− (
√

tdS · x)G2(α)− n(x · α)id

(use
(
(δ ·x)α− (α ·x)δ

)∨ = −(δ ·x)α− (α ·x)δ and that δ = −(1+(n−1)c)).
These two formulas then give [hαδ, Ĝ(x)] = Ĝ(hαδ(x)). �

References
[1] D. Huybrechts, Lectures on K3 surfaces, Cambridge Studies in Advanced Mathemat-

ics, 158. Cambridge University Press, Cambridge, 2016. xi+485 pp.
[2] E. Looijenga, V. A. Lunts, A Lie algebra attached to a projective variety, Invent.

Math. 129 (1997), no. 2, 361–412.
[3] E. Markman, Generators of the cohomology ring of moduli spaces of sheaves on sym-

plectic surfaces, J. Reine Angew. Math. 544 (2002), 61–82.



16 GEORG OBERDIECK

[4] E. Markman, On the monodromy of moduli spaces of sheaves on K3 surfaces, J.
Algebraic Geom. 17 (2008), no. 1, 29–99.

[5] E. Markman, Integral constraints on the monodromy group of the hyperKÃďhler res-
olution of a symmetric product of a K3 surface, Internat. J. Math. 21 (2010), no. 2,
169–223.

[6] E. Markman, A survey of Torelli and monodromy results for holomorphic-symplectic
varieties, Complex and differential geometry, 257–322, Springer Proc. Math., 8,
Springer, Heidelberg, 2011.

[7] E. Markman, On the existence of universal families of marked irreducible holomorphic
symplectic manifolds, Kyoto J. Math. Advance publication (2020), 17 pages.

[8] A. Negut, G. Oberdieck, Q. Yin, Motivic decompositions for the Hilbert scheme of
points of a K3 surface, arXiv:1912.09320

[9] G. Oberdieck, A Lie algebra action on the Chow ring of the Hilbert scheme of points
of a K3 surface, arXiv:1908.08830.

[10] M. Verbitsky, Cohomology of compact hyper-Kähler manifolds and its applications,
Geom. Funct. Anal. 6 (1996), no. 4, 601–611.

University of Bonn
E-mail address: georgo@math.uni-bonn.de

https://arxiv.org/abs/1912.09320
http://arxiv.org/abs/1908.08830

	0.1. LLV algebra
	0.2. Basic definitions
	0.3. Markman's operator
	0.4. Monodromy representation
	0.5. Markman's operator and monodromy
	0.6. The Markman and LLV algebra representation
	References

