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Abstract. Let S be a K3 surface with primitive curve class β. We solve
the relative Gromov-Witten theory of S × P1 in classes (β, 1) and (β, 2). The
generating series are quasi-Jacobi forms and equal to a corresponding series of
genus 0 Gromov-Witten invariants on the Hilbert scheme of points of S. This
proves a special case of a conjecture of Pandharipande and the author. The
new geometric input of the paper is a genus bound for hyperelliptic curves on
K3 surfaces proven by Ciliberto and Knutsen. By exploiting various formal
properties we find that a key generating series is determined by the very first
few coefficients.

Let E be an elliptic curve. As collorary of our computations we prove that
Gromov-Witten invariants of S ×E in classes (β, 1) and (β, 2) are coefficients
of the reciprocal of the Igusa cusp form. We also calculate several linear Hodge
integrals on the moduli space of stable maps to a K3 surface and the Gromov-
Witten invariants of an abelian threefold in classes of type (1, 1, d).
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0. Introduction

0.1. Overview. Let S be a nonsingular projective K3 surface, let P1 be the pro-
jective line, and let 0, 1,∞ ∈ P1 be distinct points. Consider the relative geometry
(1) (S × P1) / {S0, S1, S∞}
where Sz denotes the fiber over the point z ∈ P1.

For every β ∈ H2(S,Z) and integer d ≥ 0, the pair (β, d) determines a class in
H2(S × P1,Z) by

(β, d) = ιS∗(β) + ιP1∗(d[P1])
where ιS and ιP1 are inclusions of fibers of the projection to P1 and S respectively.
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Let βh ∈ Pic(S) ⊂ H2(S,Z) be a primitive non-zero curve class satisfying
〈βh, βh〉 = 2h− 2

with respect to the intersection pairing on S. In [28, 31] the following predictions
for the relative Gromov-Witten theory of (1) in classes (βh, d) were made:

(i) The theory is related by an exact correspondence to the three-point genus 0
Gromov-Witten theory of the Hilbert schemes of points of S.

(ii) For all fixed relative conditions, the generating series of Gromov-Witten
invariants (summed over the genus and the classes βh) is a quasi-Jacobi
form1.

(iii) The theory is governed by an explicit Fock space formalism.
The Jacobi form property of the generating series (part (ii)) is especially strik-
ing since it implies various strong identities and constraints on the curve counting
invariants. In case of the Hilbert scheme of points an explanation for these sym-
metries has been found in the invariance of Gromov-Witten invariants under the
monodromies of Hilbd(S) in the moduli space of hyperkähler manifolds. For S×P1

the geometric origin of the Jacobi form property is less clear. Nevertheless, a first
hint can be found in the following fact proven by Ciliberto and Knutsen:

Theorem 1 ([9], Thm 3.1, Rmk 3.2). Let β be a primitive curve class on a K3
surface S such that every curve in S of class β is irreducible and reduced. Then the
arithmetic genus g = pa(C) of every irreducible curve C ⊂ S × P1 in class (β, d)
with d > 1 satisfies
(2) h ≥ g + α

(
g − (d− 1)(α+ 1)

)
where 〈β, β〉 = 2h− 2 and α = b g

2d−2c.

An elementary check shows (2) implies (in fact is equivalent if d = 2) to the
bound

(g + d− 1)2 ≤ 4h(d− 1) + (d− 1)2 .

On the other side the coefficient c(h, r) in the Fourier expansion
∑
h,r c(h, r)qhyr

of a weak Jacobi form of index d− 1 is non-zero only if
r2 ≤ 4h(d− 1) + (d− 1)2 .

We find the genus bound by Ciliberto-Knutsen to match the coefficient bound for
weak Jacobi forms under the index shift2 r = 1− g − d. The appearence of Jacobi
forms in the Gromov-Witten theory of S × P1 is partly reflected in the fact that
d-gonal curves on generic K3 surfaces have many singularities.

One may ask if constraint (2) can be used to determine Gromov-Witten invari-
ants of S × P1. The main technical result of the paper shows this is possible in
case d = 2: For a key choice of incidence condition, the Gromov-Witten invariants
of S × P1 in class (βh, 2) are completely determined by formal properties, the con-
straint (2) and a few calculations in low genus. By standard techniques this leads
to a full evaluation of the relative Gromov-Witten theory of S×P1 in classes (βh, 1)
and (βh, 2) in terms of quasi-Jacobi forms.

1 Jacobi forms are two-parameter generalizations of classical modular forms. A quasi-Jacobi
forms is the holomorphic part of a almost-holomorphic Jacobi form, see [24] for the definition
and [30, Sec.1] for an introduction. In this paper we will use the explicit presentation of the
quasi-Jacobi form algebra presented in [28, Appendix B].

2The shift r = 1− g − d is related to a similar shift in the GW/Pairs correspondence [34, 35].
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0.2. Relative Gromov-Witten theory of K3× P1.

0.2.1. Definition. Let z1, . . . , zk be distinct points on P1, and consider the relative
geometry

(3) (S × P1) / {Sz1 , . . . , Szk} .

Let (β, d) ∈ H2(S × P1,Z) be a curve class, and let ~µ(1), . . . , ~µ(k) be ordered parti-
tions of size d with positive parts. The moduli space

M•
g,n,(β,d),µ = M

•
g,n

(
(S × P1)/{Sz1 , . . . , Szk}, (β, d), (~µ(1), . . . , ~µ(k))

)
parametrizes possibly disconnected3 n-pointed relative stable maps of genus g and
class (β, d) with ordered ramification profile ~µ(i) along the divisors Szi respectively.
The relative evaluation maps

ev(i)
j : M•

g,n,(β,d),µ → Szi ≡ S , j = 1, . . . , l(µi), i = 1, . . . , k

send a relative stable map to the j-th intersection point with the divisor Szi . We
let ev1, . . . , evn denote the evaluation maps of the non-relative marked points.

Relative Gromov-Witten invariants are defined using unordered relative condi-
tions. Let γ1, . . . , γ24 be a fixed basis of H∗(S,Q). A cohomology weighted partition
ν is a multiset4 of pairs {

(ν1, γs1), . . . , (νl(ν), γsl(ν))
}

where
∑
i νi is an unordered partition of size |ν|. The automorphism group Aut(ν)

consists of the permutation symmetries of ν.
Consider unordered cohomology weighted partitions

µ(1), . . . , µ(k) .

For every i ∈ {1, . . . , k} let (µ(i)
j , γ

(i)
sj )j=1,...,l(µi) be a choice of ordering of µ(i),

and let ~µ(i) = (µ(i)
j ) be the underlying ordered partition. We define the reduced

Gromov-Witten invariants of (S × P1)/{Szi} with relative conditions µ(1), . . . , µ(k)

by integration over the reduced virtual class5 of the moduli space M•
g,n,(β,d),µ:

〈
µ(1), . . . , µ(k)

∣∣∣ n∏
i=1

τ`i(αi)
〉S×P1/{z1,...,zk},•

g,(β,d)

= 1∏
i |Aut(µ(i))|

·
∫

[M•
g,n,(β,d),µ]red

n∏
i=1

ψ`ii ev∗i (αi) ∪
k∏
i=1

l(µ(i))∏
j=1

ev(i)∗
j (γ(i)

sj ) ,

where α1, . . . , αn ∈ H∗(S × P1,Q) are cohomology classes and ψi is the cotangent
line class at the ith non-relative marked point. Since all cohomology of S is even,
the integral is independent of the choice of ordering of µi. The automorphism
factors correct for the choice of an ordering.

3The moduli space in the disconnected case is always denoted by a • here.
4The same as a set but with possible repetitions.
5The pullback of the symplectic form from the K3 surface yields a trivial quotient of the

standard perfect-obstruction theory on the moduli space. The reduction by this quotient defines
the reduced virtual class, see [22] for a modern treatment of this process.
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0.2.2. Evaluations. Let S be a non-singular projective K3 surface with elliptic6

fibration π and section s,

π : S → P1, s : P1 → S , π ◦ s = idP1 .

The class of a fiber of π and the image of s are denoted

F,B ∈ Pic(S) ⊂ H2(S,Z)

respectively. Consider the primitive curve classes

βh = B + hF, h ≥ 0

of self-intersection 〈βh, βh〉 = 2h− 2. Let also p ∈ H4(S,Z) be the class of a point,
and let 1 ∈ H0(S,Z) be the unit.

Consider Gromov-Witten invariants of S×P1/{0, 1,∞} with relative conditions

(4)
µm,n = {(1, p)m(1, F )n}
νm,n = {(1,1)m(1, F )n}
D(F ) = {(1, F )(1,1)m+n−1} ,

over the points 0, 1,∞ respectively:

(5) Ng,h(m,n) =
〈
µm,n, νm,n, D(F )

〉S×P1/{0,1,∞},•
g,(β,m+n) .

By deformation invariance the left hand side only depends on g, h,m, n alone. The
relative condition D(F ) over ∞ is included to fix the automorphism of P1 on the
target, but otherwise plays no important role. The first result of the paper is the
complete evaluation of Ng,h(m,n) for which we require several definitions:

Let u and q be formal variables. For k ≥ 1 let

(6) C2k(q) = − B2k

2k(2k)! + 2
(2k)!

∑
n≥1

∑
d|n

d2k−1 qn ,

denote the classical Eisenstein series, where B2k are the Bernoulli numbers. We
define the Jacobi theta function

(7) Θ(u, q) = u exp

∑
k≥1

(−1)k−1C2k(q)u2k


and the Weierstrass elliptic function

℘(u, q) = − 1
u2 −

∑
k≥2

(−1)k(2k − 1)2kC2k(q)u2k−2 .

We will also require the slightly unusual but important function

G(u, q) = −Θ(u, q)2(℘(u, q) + 2C2(q)
)
.

Finally, define the modular discriminant

∆(q) = q
∏
m≥1

(1− qm)24 .

6We work here with an elliptically fibered K3 surface to obtain a uniform presentation of our
results. By deformation invariance, our results imply parallel statements for any non-singular
projective K3 surface with primitive curve class β.
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Theorem 2. For all m ≥ 0 and n > 0,∑
g∈Z

∞∑
h=0

Ng,h(m,n)u2(g+m+n−1)qh−1 = 1
m!(n!)2

G(u, q)mΘ(u, q)2n

Θ(u, q)2∆(q) .

If n = 0 all the invariants Ng,h(m,n) vanish.

The left hand side of Theorem 2 is a generating series of relative Gromov-Witten
invariants of S × P1 in degree d = m + n over P1. The right hand side is a
(holomorphic) quasi-Jacobi form of index d−1. Theorem 2 provides an example for
the conjectured quasi-Jacobi form property of generating series of Gromov-Witten
invariants of S × P1 in all degrees d.

The proof of Theorem 2 proceeds in two steps: first, the series are computed
in degree d = 2 over P1 using induction over the genus via the result of Ciliberto
and Knutsen, see Section 4 for details. Then, the higher degree case follows by a
degeneration and localization argument. The reduction of higher degree to degree 2
invariants in the second step only works for very limited choices of relative insertions
and is one of the reasons to restrict to the considered case. Closed evaluations in
higher degree with more general insertions require new methods.

0.3. Hilb/GW correspondence. Let

Hilbd(S)

be the Hilbert scheme of d points of the K3 surface S.
For all α ∈ H∗(S;Q) and i > 0 let

p−i(α) : H∗(Hilbd(S);Q)→ H∗(Hilbd+i(S);Q), γ 7→ p−i(α)γ

be the Nakajima creation operator obtained by adding length i punctual subschemes
incident to a cycle Poincare dual to α. The cohomology of Hilbd(S) is completely
described by the cohomology of S via the action of the operators p−i(α) on the
vacuum vector

v∅ ∈ H∗(Hilb0(S);Q) ≡ Q.
To every cohomology weighted partition µ = {(µi, γsi)} of size d we associate

the class
|µ〉 = 1

z(µ)
∏
i

p−i(γsi)v∅

in H∗(Hilbd(S),Q), where z(µ) = |Aut(µ)|
∏
i µi.

Let β ∈ H2(S,Z) be a non-zero curve class on S. The associated curve class on
Hilbd(S), defined as the Poincare dual to

p−1(β)p−1(p)d−1v∅ ,

is denoted by β as well. We will also require A ∈ H2(Hilbd(S),Z), the class of an
exceptional curve Poincare dual to

p−2(p)p−1(p)d−2v∅ .

Let λ1, . . . , λr be cohomology weighted partitions and let

(8)
〈
λ1, . . . , λn

〉Hilbd(S)
0,β+kA =

∫
[M0,n(Hilbd(S),β+kA)]red

n∏
i=1

ev∗i (λi)
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be the reduced genus 0 Gromov-Witten invariants of Hilbd(S) in class β + kA [28].
The following GW/Hilb correspondence was conjectured in [31].

Conjecture 1 ([31]). For primitive β,

(9) (−1)d
∑
k∈Z

〈
µ, ν, ρ

〉Hilbd(S)
0,β+kA y

k

= (−iu)l(µ)+l(ν)+l(ρ)−d
∑
g≥0

〈
µ, ν, ρ

〉S×P1/{0,1,∞}
g,(β,d) u2g−2

under the variable change y = −eiu.

The Gromov-Witten invariants of Hilbd(S) which correspond to the invariants
Ng,h(m,n) were calculated in [28]. The result exactly matches the evaluation of
Theorem 2 under the correspondence of Conjecture 1. Hence Theorem 2 gives an
example of Conjecture 1 in every degree d. For low degree we have the following
result:

Theorem 3. Conjecture 1 holds if d = 1 or d = 2.

Let (z, τ) ∈ C×H. The ring QJac of quasi-Jacobi forms is the linear subspace
QJac ⊂ Q[Θ(z, τ), C2(τ), C4(τ), ℘(z, τ), ℘•(z, τ), J1(z, τ)]

of functions which are holomorphic at z = 0; here Θ is the Jacobi theta function, ℘
is the Weierstrass elliptic function, ℘• is its derivative with respect to z, and J1 is
the logarithmic derivative of Θ with respect to z, see [28, Appendix B]. The space
QJac is naturally graded by index m and weight k,

QJac =
⊕
m≥0

⊕
k≥−2m

QJack,m,

with finite-dimensional summands QJack,m. We identify a quasi Jacobi form ψ(z, τ)
with its power series expansions in the variables q = e2πiτ and u = 2πz.

In [28] the invariants of Hilb2(S) have been completely determined in the prim-
itive case. In particular, combining [28, Theorem 3] and Theorem 3 we have the
following.

Corollary 1. Let µ, ν, ρ be cohomology weighted partitions of size 2. Then, under
the variable change u = 2πz and q = e2πiτ , we have

(−iu)l(µ)+l(ν)+l(ρ)−d
∑
g,h

〈
µ, ν, ρ

〉S×P1/{0,1,∞},•
g,(βh,2) u2g−2qh−1 = ψ(z, τ)

∆(q)

for a quasi-Jacobi form ψ(z, τ) of index 1 and weight ≤ 8.

0.4. The product K3×E. Let S be a nonsingular projective K3 surface, and let
E be a nonsingular elliptic curve. The 3-fold

X = S × E
has trivial canonical bundle, and hence is Calabi-Yau. Let β ∈ H2(S,Z) be an
effective curve class and let d ≥ 0 be an integer. The pair (β, d) determines a class
in H2(X,Z) by

(β, d) = ιS∗(β) + ιE∗(d[E])
where ιS and ιE are inclusions of fibers of the projections to E and S respectively.
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The moduli space M•g(X, (β, d)) of disconnected genus g stable maps in class
(β, d) carries a reduced virtual class

[M•g(X, (β, d))]red

of dimension 1. The group E acts on the moduli space by translation and the
dimension of the reduced class correspond to the 1-dimensional orbits under this
action. We define a count of curves in X by imposing an incidence condition which
selects one point in each E orbit. Concretely, let ω ∈ H2(E,Z) be the class of a
point and let β∨ ∈ H2(S,Q) be a class satisfying 〈β, β∨〉 = 1. We define

(10) NXg,(β,d) =
∫

[M•g,1(X,(β,d))]red
ev∗1(π∗1(β∨) ∪ π∗2(ω)) .

A complete evaluation of NXg,(β,d) was conjectured in [31] matching the physical
predictions [19]. We consider here the case of primitive β.

For primitive βh the integral (10) only depends on the norm 〈βh, βh〉 = 2h− 2.
We write

NXg,h,d = NXg,(βh,d) .

Conjecture 2 ([31]). Let q̃ be a formal variable. Then
∞∑
d=0

∞∑
h=0

∑
g∈Z

NXg,h,du2g−2qh−1q̃d−1 = 1
χ10(u, q, q̃)

where χ10(u, q, q̃) is the Igusa cusp form in the notation of [31].

Conjecture 2 contains several known cases. In curve class (β, 0) the invariant
NXg,h,d reduces to the Katz-Klemm-Vafa formula proven in [27]. The case (β0, d) for
d ≥ 0 reduces to the product of a A1-resolution times an elliptic curve computed
in [25]. The cases (β0, d) and (β1, d) have been recently obtained by J. Bryan [4].
Here we show the cases (βh, 1) and (βh, 2) of Conjecture 2:

Theorem 4. For d = 1 and d = 2 we have∑
h≥0

∑
g∈Z

NXg,h,du2g−2qh−1 =
[

1
χ10(u, q, q̃)

]
q̃d−1

where [ · ]q̃k denotes the coefficient of q̃k.

0.5. Abelian threefolds. Consider a complex abelian variety A of dimension 3,
and let β ∈ H2(A,Z) be a curve class of type

(d1, d2, d3), d1, d2 > 0, d3 ≥ 0 ,
where the type is obtained from the standard divisor theory of the dual abelian
variety A∨. Since d1, d2 > 0, the action of A on the moduli space Mg(A, β) by
translation has finite stabilizers and the stack quotient

Mg(A, β)/A
is Deligne-Mumford. A 3-reduced virtual class [Mg(A, β)/A]3-red of dimension 0
has been defined in [6] and gives rise to Gromov-Witten invariants

(11) NAg,(d1,d2,d3) =
∫

[Mg(A,β)/A]3-red
1

counting genus g curves in A of class β up to translation.
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In genus 3, the counts NA3,(d1,d2,d3) reduce to a lattice count in abelian groups
[10, 14, 20] A full formula for NAg,(d1,d2,d3) in case d1 = 1 was recently conjectured
in [6] based on new calculations of the Euler characteristic of the Hilbert scheme of
curves in A. The following result verifies this conjecture in case d1 = d2 = 1.

Theorem 5.
∞∑
d=0

∞∑
g=2

NAg,(1,1,d)u
2g−2qd = Θ(u, q)2

An interesting question is to explore the enumerative significance of Theorem 5.
Define BPS numbers ng,(1,d,d′) by the expansion∑

g

ng,(1,d,d′)(2 sin(u/2))2g−2 =
∑
g≥0

NAg,(1,d,d′)u2g−2 .

Then it is natural to ask: If A is a generic abelian threefold carrying a curve class
β of type (1, d, d′), do there exist only finitely many isolated curves of genus g in
class β up to translation? Is every such curve non-singular? If both questions can
be answered affirmative, the BPS numbers ng,(1,d,d′) are enumerative.

0.6. Plan of the paper. In Section 1 we review a bracket notation for Gromov-
Witten invariants. In Section 2 we exploit a basic evaluation of Gromov-Witten
invariants of S × P1 in classes (βh, 1), leading to a proof of Theorem 5 on abelian
threefolds. In Section 3 we prove a uniqueness statement for formal series of quasi-
modular forms. Section 4 is the heart of the paper: here we apply the result
of Ciliberto and Knutsen on hyperelliptic curves in K3 surface to calculate a key
generating series of Gromov-Witten invariants of S. In Section 5 we apply standard
techniques to solve for the relative Gromov-Witten theory of S×P1 in degrees d = 1
and d = 2. As a result we obtain the GW/Hilb correspondence (Theorem 3) and
Theorem 4 on the Gromov-Witten theory of the S × E.

0.7. Acknowledgements. I would like to thank Davesh Maulik for interesting dis-
cussions and technical assistence, and Jim Bryan, Tudor Padurariu, Rahul Pand-
haripande, Aaron Pixton, Martin Raum, Junliang Shen, and Qizheng Yin for dis-
cussions about counting curves in K3 geometries. I am also very grateful to the
referees for a careful reading of the manuscript and their comments. A great in-
tellectual debt is owed to the paper [27] by Maulik, Pandharipande and Thomas,
where many of the techniques used here were developed.

1. The bracket notation

Let X be a smooth projective variety and let β ∈ H2(X,Z) be a curve class. We
will denote connected Gromov-Witten invariants of X by the bracket notation

(12)
〈
α ; τk1(γ1) · · · τkn(γn)

〉X
g,β

=
∫

[Mg,n(X,β)]vir
α ∪

n∏
i=1

ev∗i (γi)ψ
ki
i ,

where
• Mg,n(X,β) is the moduli space of connected n-marked stable maps of genus
g and class β,

• γ1, . . . , γn ∈ H∗(X) are cohomology classes,
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• α is a cohomology class on Mg,n(X,β), usually taken to be the pullback of
a tautological class [13] under the forgetful map Mg,n(X,β)→Mg,n to the
moduli space of curves.

If the obstruction sheaf on Mg,n(X,β) admits a trivial quotient obtained from a
holomorphic 2-form on X, the integral in (12) is assumed to be over the reduced
virtual class. For abelian threefolds we will use the 3-reduced virtual class [6]. The
parallel definition of (12) for disconnected invariants is denoted by attaching the
superscript • to the bracket and the moduli spaces.

Let E → Mg,n(X,β) (resp. E → M
•
g,n(X,β)) be the Hodge bundles with fiber

H0(C,ωC) over the moduli point [f : C → X]. The total Chern class of the dual
of E,

E∨(1) = c(E∨) = 1− λ1 + . . .+ (−1)gλg,
is often used for the insertion α.

We extend the bracket (12) by multilinearity in the insertions. Since for dimen-
sion reasons only finitely many terms contribute, the formal expansion

γ

1− ψi
=
∞∑
k=0

τk(γ), γ ∈ H∗(X) .

is well-defined.
Assume that X admits a fibration

π : X → P1

and let X0, X∞ be the fibers of π over the points 0,∞ ∈ P1. We will use the
standard bracket notation〈

µ
∣∣∣ α∏

i

τki(γi)
∣∣∣ ν 〉X

g,β
=
∫

[Mg,n(X/{X0,X∞},β)µ,ν ]vir
α ∪

∏
i

ψkii ev∗i (γi)

for the Gromov-Witten invariants of X relative to the fibers X0 and X∞. The
integral is over the moduli space of stable maps

Mg,n(X/{X0, X∞}, β)
relative to the fibers over 0,∞ ∈ P1 in class β. Here, µ and ν are unordered
cohomology weighted partitions, weighted by cohomology classes on X0 and X∞
respectively7. The integrand contains the cohomology class α and the descendents.
Again, we use a reduced virtual class whenever possible.

We will form generating series of the absolute and relative invariants above.
Throughout we will use the following conventions:

In K3 geometries we assign to a primitive class βh of norm 〈βh, βh〉 = 2h− 2 the
variable qh−1. The d-times multiple of the fundamental class of an elliptic curve (in
a trivial elliptic fibration) will correspond to qd. For absolute invariants the genus
g Gromov-Witten invariant in class β will be weighted by the variable

u
2g−2+

∫
β
c1(X)

.

For relative invariants with relative conditions specified by cohomology weighted
partitions µ1, . . . , µk we will use

u
2g−2+

∫
β
c1(X)+

∑k

i=1
l(µi)−|µi|

.

7We follow the convention of Section 0.2 or equivalently of [26].
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For example, in case of the elliptically fibered K3 surface S with curve classes
βh = B + hF we will use

(13)
〈
α; τk1(γ1) · · · τkn(γn)

〉S
=
∑
g≥0

∑
h≥0

〈
α; τk1(γ1) · · · τkn(γn)

〉S
g,βh

u2g−2qh−1 .

2. Calculations in degree 1

2.1. Overview. We evaluate a special Gromov-Witten invariant on K3 × P1 in
class (βh, 1). By the Katz-Klemm-Vafa formula this leads to a proof of Theorem 5.

2.2. Evaluation. Let S be a K3 surface, let βh ∈ H2(S,Z) be a primitive curve
class satisfying 〈βh, βh〉 = 2h− 2 and let

F ∈ H2(S,Z)
be a class satisfying F · βh = 1 and F · F = 0.

Let ω ∈ H2(P1) be the class of a point, and let
F � ω = π∗1(F ) ∪ π∗2(ω) ∈ H4(S × P1)

where πi is the projection from S × P1 to the ith factor. Consider the connected
Gromov-Witten invariant

(14)
〈
τ0(F � ω)3〉S×P1

g,(βh,1) =
∫

[Mg,3(S×P1,(βh,1))]red

3∏
i=1

ev∗i (F � ω) .

Proposition 1. For every h ≥ 0, we have

〈
τ0(F � ω)3〉S×P1

g,(βh,1) =


[

1
∆(q)

]
qh−1

if g = 0

0 if g > 0 ,

where [ · ]qn denotes extracting the n-th coefficient.

Proof. We may take S to be generic and βh to be irreducible. Let Fi, i = 1, 2, 3 be
generic distinct smooth submanifolds of class F which intersect all rational curves
in class βh transversely in a single point. Let also x1, x2, x3 be distinct points in
P1. The products

Fi × xi ⊂ S × P1, i = 1, 2, 3
have class F � ω.

Consider an algebraic curve C ⊂ S × P1 in class (βh, 1) incident to Fi × xi for
all i. Since Fi ∩ Fj = ∅ for i 6= j, the curve C is irreducible and reduced. Because
the projection C → P1 is of degree 1 the curve C is non-singular. Since irreducible
rational curves on K3 surfaces are rigid,the only deformations of C in S×P1 are by
translations by automorphisms of P1. The incidence conditions Fi × xi then select
precisely one member of each translation class.

We find curves in class (βh, 1) incident to all Fi×xi are in 1-to-1 correspondence
with rational curves on S in class βh. By the Yau-Zaslow formula proven in [5, 1, 8]
there are precisely [

1
∆(q)

]
qh−1

such curves. It remains to calculate their contribution to (14).
By arguments parallel to the proof of [31, Proposition 5] the generating series of

(14) over all g is related to the generating series of reduced stable pair invariants of
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S×P1 in class (βh, 1) with incidence conditions Fi×xi, i = 1, 2, 3. The contribution
of the isolated curve C ⊂ S × P1 to the stable pair invariant is obtained from a
direct modification of the calcation in [36, Section 4.2] to the reduced setting [27].
Translating back to Gromov-Witten theory we find each curve C contributes 1 in
genus 0 and 0 otherwise. This concludes the proof. �

2.3. Relative theory of P1×E. Let E be an elliptic curve and consider the curve
class

(1, d) = ιP1∗([P1]) + ιE∗(d[E]) ∈ H2(P1 × E,Z)
where ιP1 , ιE are the inclusion of fibers of the projections to the second and first
factor respectively. We will use the generating series of relative invariants of P1×E,

(15)
〈
µ
∣∣∣ α∏

i

τai(γi)
∣∣∣ ν 〉P1×E

=
∑
g≥0

∑
d≥0

〈
µ
∣∣∣ α∏

i

τai(γi)
∣∣∣ ν 〉P1×E

g,(1,d)
u2gqd .

Since the class (1, d) is of degree 1 over P1, the relative insertions µ and ν are
cohomology classes on the fibers:

µ ∈ H∗(0× E) and ν ∈ H∗(∞× E) .

Similar definitions apply also to the case of a single relative divisor.

Lemma 1.
(a) The series (15) vanishes unless

degR(µ) + degR(ν) ≤ 2 ,

where degR(γ) denotes the real degree of γ.
(b) We have

〈
ω |E∨(1)

〉P1×E =
〈

1 |E∨(1)τ0(p)
〉P1×E = 1.

(c) Let D = q ddq . Then,〈
ω |E∨(1)τ0(p)

〉P1×E = DΘ(u, q)
Θ(u, q) .

Proof. (a) follows since a curve C ⊂ P1 × E in class (1, d) is of the form

(P1 × e) + D

where e ∈ E is a fixed point and D is a fiber of the projection P1×E → P1. Hence
for every relative stable map f to P1 ×E/{0,∞} the intersection point over 0 and
over ∞ agree, which implies the claim (for example choose cycles representing µ
and ν). Part (b) is [27, Lemma 24] and part (c) follows from [27, Lemma 26]. �

2.4. Fiber integrals. Let S be the elliptically fibered K3 surface with curve class
βh = B + hF where B,F are the section and fiber class respectively. Recall also
the notation (13).

Proposition 2.
〈
E∨(1)

n∏
i=1

F

1− ψi

〉S
= 1
u2n

Θ(u, q)2n

Θ(u, q)2∆(q)

Proof. By Proposition 1 we have∑
g≥0

∑
h≥0

〈
τ0(F � ω)3〉S×P1

g,(βh,1)u
2gqh−1 = 1

∆(q) .
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The factor P1 admits an action of C∗ which lifts to the moduli space Mg,n(S ×
P1, (βh, 1)). Applying the virtual localization formula [15] and using the divisor
axiom yields 〈

τ0(F � ω)3〉S×P1

g,(βh,1) =
〈
E∨(1) F

1− ψ1

〉S
g,βh

.

This proves the claim for n = 1.
For the general case, we degenerate S to the normal cone of a fiber E of the

elliptic fibration S → P1,

(16) S  S ∪ (P1 × E)

specializing the fiber class F to the P1 × E component. The degeneration formula
[17, 18], see also [27, Section 6] and [6, Section 3.4] for the modifications in the
reduced case, yields

(17)
〈
E∨(1)

n∏
i=1

F

1− ψi

〉S
=
〈
E∨(1)

∣∣∣ 1
〉S〈

ω
∣∣∣ E∨(1)

n∏
i=1

F

1− ψi

〉P1×E

We analyze both terms on the right hand side. By a further degeneration of S
(using Lemma 1) and then using the Katz-Klemm-Vafa formula [27] we get

(18)
〈
E∨(1)

∣∣∣ 1
〉S

=
〈
E∨(1)

〉S
= 1

Θ(u, q)2∆(q) .

For the second term, we degenerate the base P1 to obtain a chain of n+1 surfaces
isomorphic to P1×E. The first n of these each receive a single insertion F weighted
by psi classes. Using Lemma 1 we obtain

(19)
〈
ω
∣∣∣ n∏
i=1

F

1− ψ

〉P1×E
=
(〈

ω
∣∣∣ F

1− ψ

∣∣∣ 1
〉P1×E

)n
.

In case n = 1 the left hand side of (17) is known and we can solve for (19). The
result is

(20)
〈
ω
∣∣∣ E∨(1) F

1− ψ

∣∣∣ 1
〉P1×E

= Θ(u, q)2

u2 .

Inserting (18) and (20) back into (17), the proof is complete. �

2.5. The abelian threefold. Recall the bracket notation (15) for the generating
series of relative invariants of P1 × E in class (1, d). We will need the following
result.

Lemma 2. For p ∈ H4(P1 × E,Z) the point class,〈
1
∣∣∣ E∨(1) p

1− ψ

〉P1×E
= Θ(u, q)2

u2

Proof. The translation action of the elliptic curve on P1 × E yield basic vanishing
relations on the Gromov-Witten theory of P1×E, see [6, Section 3.3] for the parallel
case of abelian surfaces and also [32]. A straightforward application here yields〈

1
∣∣∣ E∨(1) p

1− ψ

〉P1×E
=
〈
ω
∣∣∣ E∨(1) F

1− ψ1

〉P1×E
,

where F is the fiber over a point in P1. The claim follows from (20). �
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Proof of Theorem 5. By deformation invariance we may consider the special geom-
etry

A = E1 × E2 × E3 ,

where Ei are elliptic curves, and the curve classes

(1, 1, d) = ιE1,∗([E1]) + ιE2∗([E2]) + ιE3∗(d[E3]) ∈ H2(A,Z)

where ιEi : Ei ↪→ A is the inclusion of a fiber of the map forgetting the ith factor.
For i ∈ {1, 2, 3} let

Hi ∈ H2(A)
be the pullback of the point class from the i-th factor of A. By [6, Lemma 18],

NAg,(1,1,d) = 1
2

〈
τ0(p)τ0(H1H2)

〉A, 3-red

g,(1,1,d)

where the right hand side are absolute 3-reduced Gromov-Witten invariants of A
with insertions the point class p ∈ H6(A,Z) and H1H2.

We degenerate the factor E1 to a nodal rational curve and resolve. Applying the
degeneration formula modified to the reduced case8 we obtain〈

τ0(p)τ0(H1H2)
〉A,3-red
g,β

=
〈

1
∣∣∣ τ0(p)τ0(H1H2)

∣∣∣ 1
〉P1×E2×E3,red

g−1,(1,1,d)
,

where the right hand side are 1-reduced invariants of P1 × E2 × E3 relative to the
fibers over 0 and ∞, and Hi is the pullback of the point class from the i-th factor.

By a degeneration of the base P1 to a chain of three P1’s and specializing all
insertions to the middle factor, we obtain〈

1
∣∣∣ τ0(p)τ0(H1H2)

∣∣∣ 1
〉P1×E2×E3,red

g−1,(1,1,d)
=
〈
τ0(p)τ0(H1H2)

〉P1×E2×E3,red

g−1,(1,1,d)
,

to which we apply the localization formula to get

(21)
〈
E∨(1) p

1− ψ1

〉E2×E3,red

g−1,(1,d)
+
〈
E∨(1) H2

1− ψ1
τ0(p)

〉E2×E3,red

g−1,(1,d)
.

Let E = E3. We calculate both terms of (21) by the degeneration formula for

E2 × E  (E2 × E) ∪ (P1 × E) .

where the point and H2 class are specialized to the P1 × E component. In both
cases we will use the evaluation 〈E∨(1) |ω 〉E2×E3

g,(1,d) = δg,1δd,0 proven in [6, Lemma
8]. The result for the first term is〈

E∨(1) p
1− ψ1

〉E2×E3,red

g−1,(1,d)
=
〈

1
∣∣∣ E∨(1) p

1− ψ1

〉P1×E

g−2,(1,d)
,

and similarly the second term yields〈
E∨(1) H2

1− ψ1
τ0(p)

〉E2×E3,red

g−1,(1,d)
. =

〈
1
∣∣∣ E∨(1) F

1− ψ1
τ0(p)

〉P1×E

g−2,(1,d)

=
〈

1
∣∣∣ E∨(1) F

1− ψ1

∣∣∣ ω 〉P1×E

g−2,(1,d)

8This is parallel to the breaking of the reduced virtual class in the K3 case when degenerating
to two rational elliptic surfaces, see [27, Section 4].



14 GEORG OBERDIECK

where F is the class of a fiber over a point in P1, and in the second step we used
a further degeneration of the base P1 and Lemma 1. Using Lemma 2 and (20) the
claim follows now by summing up. �

3. Formal series of quasi-modular forms

3.1. Quasi-modular forms. The ring of quasi-modular forms is the free polyno-
mial algebra

QMod = C[C2, C4, C6] ,
where C2k are the Eisenstein series. The natural weight grading

QMod =
⊕
m≥0

QModm

is defined by assigning C2k weight 2k.
For a quasi-modular form f(q) =

∑
n anq

n, let

ν(f) = inf{n | an 6= 0 }

be the order of vanishing of f at q = 0. If f is a modular form, i.e. f ∈ C[C4, C6],
and f is non-zero of weight m, then

ν(f) < dim Modm, hence ν(f) ≤ 1
12m,

where Modm is the space of weight m modular forms. Similarly, one may ask if
ν(f) < dim QModm also holds for every non-zero quasi-modular form of weight m,
see [21] for a discussion. For us the following weaker bound proven by Saradha
suffices:

Lemma 3 ([38], [2]). Let f be a non-zero quasi-modular form of weight 2k. Then

ν(f) ≤ 1
6k(k + 1) .

Proof. The proof in [38, Lemma 3] also yields the stronger result stated here, as
has been observed in [2]. �

3.2. Formal series. Let u be a formal variable, and consider a power series

F(u, q) =
∑
m≥0

fm(q)um

in u with coefficients fm(q) ∈ QMod. Let
[
fm(q)

]
qn

denote the coefficient of qn in
fm(q), and let

Fn(u) =
[
F(u, q)

]
qn

=
∑
m≥0

[
fm(q)

]
qn
um

be the series of n-th coefficients.

Proposition 3. Let σ be an even integer, and let

F(u, q) =
∑
m≥0

fm(q)um

be a formal power series in u satisfying the following conditions:
(a) fm(q) ∈ QModm+σ for every m,



GROMOV-WITTEN THEORY OF K3× P1 15

(b) Fn(u) is the Laurent expansion of a rational function in y under the variable
change y = −eiu,

Fn(u) =
∑
r

c(n, r)yr ,

(c) c(n, r) = 0 unless r2 ≤ 4n+ 1,
(d) fm(q) = 0 for all m ≤ B(σ) where

B(σ) = 2bσ + 1 +
√

2σ2 + 3σ + 4c .

Then F(u, q) = 0.

Proof. Assume F is non-zero. Since σ is even and all quasi-modular forms have
even weight, we have fm = 0 unless m is even. Hence there exists an integer b such
that fm(q) = 0 for all m ≤ 2b, but f2b+2(q) 6= 0. Necessarily, 2b ≥ B(σ).
Claim. Fn(u) = 0 for n < 1

4b(b+ 2).
Proof of Claim. By property (b) and (c) above, we may write

Fn(u) =
∑
m≥0

amu
2m =

`max∑
`=−`max

c`y
`

for coefficients am, c` ∈ C where `max = b
√

4n+ 1c.
Since fm = 0 for all odd m, we find Fn(−u) = Fn(u), which yields the symmetry

c` = c−`. In particular, we may also write

Fn(u) =
`max∑
`=0

b`r
2`

where
r = y

1
2 + y−

1
2 = −2 sin

(u
2

)
= −u+ 1

24u
3 + . . . .

Since r = −u+O(u3) we obtain an invertible and upper-triangular relation between
the coefficients {a`}`≥0 and {b`}`≥0. In particular, a` = 0 for ` = 0, . . . , b implies
b` = 0 for ` = 0, . . . , b. Since moreover n < 1

4b(b + 2) implies `max ≤ b we find
b` = 0 for all ` and hence Fn = 0 as claimed. �

We conclude the proof of Proposition 3. By the claim the order of vanishing of
f2b+2(q) at q = 0 is at least 1

4b(b+ 2),
1
4b(b+ 2) ≤ ν(f2b+2) .

But by Lemma 3 and the non-vanishing of f2b+2,

(22) ν(f2b+2) ≤ 1
6(b+ σ/2 + 1)(b+ σ/2 + 2) ,

which is impossible since 2b ≥ B(σ). �

A crucial ingredient in the proof of Proposition 3 was the vanishing Lemma 3
employed in equation (22). If we could prove

(23) ν(f) < dim QModm
for all non-zero quasi-modular forms of weight m, we could sharpen the bound in
(d). While we can’t prove (23) for all m, we have verified it for all m ≤ 250. This
leads to the following partial strengthening of Proposition 3.



16 GEORG OBERDIECK

Lemma 4. Assume σ ≤ 42. Then Proposition 3 holds with property (d) replaced
by

(d’) fm(q) = 0 for m ≤ B′(σ), where B′(σ) is

2 ·min
{
b̃ ∈ Z

∣∣∣ 1
4b(b+ 2) > dim QModσ+2b+2 − 1 for all b ≥ b̃

}
.

Proof. This follows by an argument identical to proof of Proposition 3 except for
the following steps:

If b ≤ 103, then 2b + 2 + σ ≤ 250 and we use the bound (23) instead of (22).
This leads to a contradiction by definition of B′(σ).

If b > 103, then by assumption fm = 0 for all m ≤ 208. In particular, property
(d) of Proposition 3 holds and we can apply Proposition 3. �

Remarks. (a) Since

dim QMod2` = 1
12
(
`2 + 6`+ 12

)
− c(`)

where |c(`)| < 1, the inequality b(b + 2)/4 > dim QModσ+2b+2 holds for all b
sufficiently large. In particular, B′(σ) defined above is well-defined and finite. The
first values are given in the following table:

σ < −2 −2 0 2 4 6 8 10 12 14 16
B′(σ) −∞ 2 6 10 12 14 18 20 24 26 28

In particular, for σ < −2 property (d’) of Lemma 4 is always satisfied.
(b) We may obtain from Proposition 3 a similar statement for odd σ by integrating
F formally with respect to u.
(c) The coefficient bound r2 ≤ 4n + 1 in Proposition 3 (c) is the index 1 case of
the Fourier coefficient bound for weak Jacobi forms [11]. Surprisingly, the proof
of Proposition 3 fails for higher index since these coefficient constraints become
weaker, while the growth of dim QMod2` remains constant. The analog of B′(σ) is
no longer well-defined.
(d) In applications below, the coefficient of u2g+2 in F(u, q) is a series of genus g
Gromov-Witten invariants of K3 surfaces. For low σ, checking the vanishing of
these coefficients in the range 2g + 2 ≤ B(σ) is feasible.
(e) Proposition 3 was motivated by the proof of the Kudla modularity conjecture
using formal series of Jacobi forms [7].

4. Genus induction

4.1. Overview. Let S be an elliptic K3 surface with section, let B and F be
the section and fiber class respectively, set βh = B + hF where h ≥ 0, and let
p ∈ H4(S,Z) be the class of a point. Recall the generating series notation (13) for
the surface S. In this section we will prove the following evaluation:

Theorem 6. For all m,n ≥ 0,〈
E∨(1)

m∏
i=1

p
1− ψi

m+n∏
i=m+1

F

1− ψi

〉S
= (G(u, q)− 1)mΘ(u, q)2n

u2m+2nΘ(u, q)2∆(q) .
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4.2. Formal series. Theorem 6 will follow from the following evaluation and a
degeneration argument.

Theorem 7.
〈
E∨(1) p

1− ψ1

F

1− ψ2

〉S
= 1
u4

G(u, q)− 1
∆(q)

Let ω ∈ H2(P1) be the class of a point, and for γ ∈ H∗(S) let

γ � ω = π∗1(γ) ∪ π∗2(ω) ∈ H∗(S × P1)

where πi is the projection of S × P1 to the ith factor. Define the formal series

(24) F(u, q) = ∆(q) ·
∑
g∈Z

∑
h≥0

〈
τ0(p� ω)τ0(F � ω)3〉S×P1,•

g,(βh,2)u
2g+2qh−1

where the bracket on the right hand side denotes disconnected absolute Gromov-
Witten invariants of S × P1.

Lemma 5. With D = q ddq ,

F(u, q) = u4∆(q)
〈
E∨(1) p

1− ψ1

F

1− ψ2

〉S
+ 1 + Θ(u, q) ·DΘ(u, q)

Proof. By Proposition 1 the contribution from disconnected curves to

(25)
∑
g∈Z

∑
h≥0

〈
τ0(p⊗ ω)τ0(F � ω)3〉S×P1,•

g,(βh,2)u
2g+2qh−1

is 1
∆(q) .9 For the contribution from connected curves we apply the localization

formula, specializing p � ω and one F � ω insertion to the fiber over ∞, and the
other insertions to the fiber over 0 ∈ P1. We find (25) equals

1
∆(q) + u4

〈
E∨(1) p

1− ψ1

F

1− ψ2

〉S
+ u4

〈
E∨(1) F

1− ψ1

F

1− ψ2
τ0(p)

〉S
.

We evaluate the third term by degenerating S to a union of S with four bubbles of
P1 × E,

S  S ∪ (P1 × E) ∪ . . . ∪ (P1 × E)
where the first three copies of P1 ×E receive a single insertion each. By (20), (18)
and Lemma 1,

u4
〈
E∨(1) · F

1− ψ1
· F

1− ψ2
τ0(p)

〉S
= u4〈E∨(1)

∣∣1〉S
·
(〈
ω
∣∣F/(1− ψ)

∣∣1〉P1×E
)2
·
〈
ω
∣∣E∨(1)τ0(p)

∣∣1〉P1×E ·
〈
ω
∣∣E∨(1)

〉P1×E

= Θ(u, q)DΘ(u, q)
∆(q) . �

Proposition 4. The series F(u, q) satisfies properties (a), (b), (c) of Proposition 3
with σ = 0.

9If the curve is disconnected it must have precisely two components of degree 1 over P1 each.
Moreover, one component carries the insertion p ⊗ ω and contributes 1, the other carries all the
insertions F � ω and contributes ∆(q)−1.
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Proof. Property (a). For m ∈ Z let

fm(q) =
[

F(u, q)
]
um

be the coefficient of um in F(u, q). For odd m, fm(q) vanishes. For even m we have
by Lemma 5

fm(q) = ∆(q)
∑
h≥0

〈
E∨

p
1− ψ1

F

1− ψ2

〉S
g,βh

qh−1 + δm0 +
[
Θ ·DΘ

]
um

where m = 2g+ 2. By the refinement [6, Theorem 9] of the quasi-modularity result
proven in [27], the first term on the right hand side is a quasi-modular form of
weight 2g + 2. By direct verification the last two terms are also quasi-modular of
weight m. Hence

fm(q) ∈ QModm .
This verifies property (a).

Property (b). By an argument parallel to the proof of [31, Proposition 5] the
GW/Pairs correspondence [34, 35] holds for absolute disconnected Gromov-Witten
invariants of S × P1 in class (βh, d). In particular, the coefficient of every qh−1

in (25) is the Laurent expansion of a rational function in y under the variable
transformation y = −eiu. This implies the claim for F(u, q).

Property (c). For each h ≥ 0 consider the Laurent expansion

(26)
∑
g

u2g+2〈τ0(p� ω)τ0(F � ω)3〉S×P1,•
g,(βh,2) =

∑
r∈Z

c(h, r)yr

of the rational function in y = −eiu. By the GW/Pairs correspondence10 we have

c(h, r) =
〈
τ0(p� ω)τ0(F � ω)3〉S×P

1,Pairs
(βh,2),r+2 ,

where the right hand side are reduced stable pairs invariants of S × P1 in class
(βh, 2) with Euler characteristic r + 2.

We will prove the vanishing of c(h, r) for r2 > 4h+ 1 in three steps.
Step 1. c(h, r) = 0 for r < −

√
4h+ 1.

By deformation invariance we may assume βh is irreducible. Let Fi, i = 1, 2, 3
be generic disjoint smooth submanifolds in class F , let x1, x2, x3 ∈ P1 be distinct
points, and let P ∈ S × P1 be a generic point. Let

P(βh, n)

denote the moduli space of stable pairs in S×P1 of class (βh, 2) Euler characteristic
n and whose underlying support curve is incident to Fi × xi for i ∈ {1, 2, 3} and to
the point P .

We claim P(βh, n) is empty if n < 2−
√

4h+ 1.
Indeed, let [OX → F ] ∈ P(βh, n) with underlying support curve C.
If C is disconnected and incident to P and xi×Fi, i = 1, 2, 3, then C is a disjoint

union of two copies of P1. Hence,

n = χ(F) ≥ χ(OC) ≥ 2 .

10See Property (b).
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If C is connected, the incidence conditions imply that C is irreducible and re-
duced. Then by Theorem 1 the arithmetic genus g = ga(C) = 1− χ(OC) satisfies

h ≥ g + α(g − α− 1)

where α = bg/2c which implies n = χ(F) ≥ χ(OC) ≥ 2−
√

4h+ 1.
Since n = r + 2, Step 1 is complete.

Step 2. There exist an intger N ≥ 0 and ng,h ∈ Q such that

∑
r

c(h, r)yr =
N∑

g=−N
ng,h(y1/2 + y−1/2)2g+2 .

Proof. By Lemma 5 and the expansion of Θ(u, q) in y = −eiu it is enough to show
that for all h

(27)
∑
g≥0

〈
E∨(1) p

1− ψ1

F

1− ψ2

〉S
g,βh

u2g+2 =
N∑

g=−N
ng,h(y 1

2 + y−
1
2 )2g+2

for some N and some ng,h under the variable change y = −eiu. For this, we will
relate the left hand side to the Gromov-Witten invariants of S ×E, where E is an
elliptic curve.

By degenerating two P1 × E-bubbles off from S, and by the Katz-Klemm-Vafa
formula and (20), we have

u4
〈
E∨(1) p

1− ψ1

F

1− ψ2

〉S
= u2

∆(q)

〈
ω
∣∣∣E∨(1) p

1− ψ1

〉P1×E
.

On the other side, let ω ∈ H2(E,Z) be the class of a point and let〈
τ0(F � ω)

〉S×E,• =
∑
h

∑
g

〈
τ0(F � ω)

〉S×E,•
g,(βh,1)u

2g−2qh−1

be the generating series of disconnected Gromov-Witten invariants of S × E. By
degenerating E to a nodal curve and resolving we have

(28)
〈
τ0(F � ω)

〉S×E,• =
∑
γ

〈
γ, γ∨

∣∣∣τ0(F � ω)
〉S×P1/{0,∞},•

where γ runs over a basis of H∗(S,Q) with γ∨ the dual basis, and we have written
γ for the weighted partition (1, γ). Degenerating the base P1 to two copies of
P1 with the non-relative point specializing to one, and the relative marked points
specializing to the other, the right hand side of (28) is

(29)
∑
γ

〈
γ, γ∨, F

〉S×P1/{0,1,∞},• + 24
〈

p
∣∣∣ τ0(F � ω)

〉S×P1,•
.

By arguments parallel11 to the proof of Proposition 1, only genus 0 curves contribute
to the first term in (29). Hence,∑

γ

〈
γ, γ∨, F

〉S×P1/{0,1,∞},• = g(q)

11We may also use Proposition 6 below to reduce to Proposition 1.
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for some power series g(q) independent of u. By using the Katz-Klemm-Vafa for-
mula for the disconnected, and the localization formula for the connected part, the
second term of (29) is

24
Θ(u, q)2∆(q) + 24u2

〈
E∨(1) p

1− ψ1

〉S
which by a further degeneration S  S ∪ (P1 × E) is

24
Θ(u, q)2∆(q)

(
1 + u2

〈
ω
∣∣∣E∨(1) p

1− ψ1

〉P1×E
)

Combining everything, we have therefore

u2
〈
ω
∣∣∣E∨(1) p

1− ψ1

〉P1×E
= Θ(u, q)2∆(q)

24

(〈
τ0(F � ω)

〉S×E,•
− g(q)

)
− 1

By the GW/Pairs correspondence for S×E in primitive classes, see [31, Proposi-
tion 5], the series 〈τ0(F �ω)〉S×E,• equals a series of reduced stable pair invariants
for X under y = −eiu. By [29, Thm. 1] these can be evaluated by the Behrend
function weighted Euler characteristic of the quotient of the moduli space of stable
pairs by the translation action by the elliptic curve. The result now follows from
[29, Thm. 2] or alternatively [37, Section 4, Appendix] (since the classes (βh, 1) are
reduced in the sense of [37]).
Step 3. c(h, r) = 0 for r >

√
4h+ 1.

Proof. For every h, consider the rational function

f(y) =
∑
r

c(h, r)yr =
N∑

g=−N
ng,h(y1/2 + y−1/2)2g+2 .

Substituting y = −eiu and taking the Laurent expansion around u = 0, we obtain
the equality of formal Laurent series

f(−eiu) =
∑
g

u2g+2〈τ0(p� ω)τ0(F � ω)3〉S×P1,•
g,(βh,2) .

By considering a generic K3 surface and a generic choice of cycles representing
the incidence conditions, a direct check shows〈

τ0(p� ω)τ0(F � ω)3〉S×P1,•
g,(βh,2) = 0

for g ≤ −2. Hence, f(−eiu) is a power series in u:
f(−eiu) = a0 + a2u

2 + a4u
4 + . . . , ai ∈ C .

Since
(y1/2 + y−1/2)2g+2 = u2g+2 +O(u2g+4)

this shows ng,h = 0 for g ≤ −2. Hence, f(y) is a finite Laurent polynomial in y,

f(y) =
M∑

r=−M
c(h, r)yr =

N∑
g=−1

ng,h(y1/2 + y−1/2)2g+2 .

Since f is symmetric under y 7→ y−1, we conclude
c(h, r) = c(h,−r) .

The claim of Step 3 follows now from Step 1 above.
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The proof of Property (c) for F(u, q) is now complete. �

4.3. Proof of Theorem 7. Let F(u, q) be the formel series defined in (24). By
Lemma 5 it is enough to show

(30) F(u, q) = G(u, q) + Θ(u, q) ·DΘ(u, q) .

By Proposition 4 the left hand side satisfies the properties (a)-(c) of Proposition 4.
Since we may rewrite

G(u, q) = 1
12ϕ0,1(z, τ)− 2C2(q)ϕ−2,1(z, τ)

where q = e2πiτ , u = 2πz and ϕ0,1, ϕ−2,1 are the weak Jacobi forms of index 1 de-
fined in [11, Section 9], properties (a)-(c) of Proposition 4 hold for G, and similarly
for Θ ·DΘ.12

Hence by Proposition 3 resp. Lemma 4, we need to check (30) only for the
coefficients of um where m ≤ 6, or equivalently since m = 2g + 2 for genera
0 ≤ g ≤ 2. For this, we may reduce by Lemma (5) to Gromov-Witten invariants of
a K3 surface with only fiber and point insertions. These can be computed for fixed
genus by a degeneration argument, see [27] or Appendix A. �

4.4. Proof of Theorem 6. Consider the degeneration of S to the union of S with
m+ n+ 1 bubbles of P1 × E,

S  S ∪ (P1 × E) ∪ . . . ∪ (P1 × E)︸ ︷︷ ︸
m+n+1

.

Applying the degeneration formula to〈
E∨(1)

m∏
i=1

p
1− ψi

n∏
i=1

F

1− ψi

〉S
with the first m + n copies of P1 × E receiving a single insertion each, yields by
Lemma 1

(31)
〈
E∨(1)

∣∣∣ 1
〉S (〈

ω
∣∣∣ E∨(1) F

1− ψ1

∣∣∣ 1
〉P1×E

)n
·
(〈

ω
∣∣∣ E∨(1) p

1− ψ1

∣∣∣ 1
〉P1×E

)m
.

The first term on the right is the Katz-Klemm-Vafa formula (18), the second term
is determined by (20). By solving for the third term in case m = n = 1 using the
result of Theorem 7 we find〈

ω
∣∣∣ E∨(1) p

1− ψ1

∣∣∣ 1
〉P1×E

= G(u, q)− 1
u2 .

Inserting everything back into (31) completes the proof. �

12For example, see [11, page 105] for the crucial coefficient bound.
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4.5. Further invariants. Theoretically we could use the formal method used
above to evaluate also other Gromov-Witten invariants of S ×P1 in classes (βh, 2).
For example consider the relative invariants

(32)
〈

(1, F )2, D(F ), (1, F )2
〉S×P1,•

g,(βh,2)
,

which, under the GW/Hilb correspondence, count rational curves in Hilb2(S) in-
cident to 2 fibers of a Lagrangian fibration Hilb2(S) → P2 [28]. The appropriate
generating series associated to (32) satisfies almost all conditions needed for Propo-
sition 3. (Showing property (c) for r >

√
4n+ 1 requires a BPS expansion parallel

to the one used in Step 2 of the proof of Proposition 4 for which we do not have a full
argument at the moment.) The modular weight σ takes the lowest possible value
namely σ = −2. Therefore we expect (32) to be determined by formal properties
and the evaluation in genus 0 alone (which is the Yau-Zaslow formula).

Similarly the space of quasi-Jacobi forms of index 1 and weight −2 has dimen-
sion 1, and is spanned by

ϕ−2,1(z, τ) = Θ(u, q)2 .

By comparision and without any further calculation we find that Θ(u,q)2

∆(q) is the
generating series for (32). By localization and degeneration the Gromov-Witten
invariants of S × P1 reduce to linear Hodge integrals on the K3 surface. The
reasoning above provides some explanation of the ubiquity of Jacobi forms and
particularly of Θ(u, q) in the enumerative geometry of K3 surfaces.

5. Relative invariants of K3× P1

5.1. Overview. The main objective of this section is to prove the GW/Hilb cor-
respondence in degree 2 (Theorem 3). In [28] the full genus 0 three point theory
of Hilb2(S) for primitive classes has been determined by calculating first five basic
cases, and then applying the WDVV equations repeatedly to solve for all other
invariants. Here we follow a similar approach. In Section 5.2 we first show the
WDVV equations for genus 0 invariants on Hilbd(S) is compatible with a corre-
sponding set of equations for the relative invariants of S × P1 obtained from the
degeneration formula. In Section 5.4, independently from the rest, we prove The-
orem 2. In Section 5.5 we use a combination of standard methods and Theorem 6
to calculate the same five basic series as in the Hilbd(S) case. Since these series
match those on the Hilbd(S) side this completes the proof. Finally in Section 5.7
we prove Theorem 4.

Throughout the section we will repeatedly use the localization and the degener-
ation formula, see for example [15, 16, 12] and [17, 18, 26].

5.2. Relations. Let S be a K3 surface. Let {γi}i be a fixed basis of H∗(S). We
identify a partition µ = {(µj , γij )} weighted by the basis {γi} with the class

1
z(µ)

∏
j

p−µj (γij )v∅ ∈ H∗(Hilb|µ|(S))

on the Hilbert scheme, where z(µ) = |Aut(µ)|
∏
i µi. Let also deg(µ) denote the

complex cohomological degree of µ in Hilbd(S),

µ ∈ H2 deg(µ)(Hilbd(S)) .
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Since {γi}-weighted partitions of size d form a basis for the cohomology of
Hilbd(S), the cup product µ ∪ ν of cohomology weighted partitions µ, ν can be
uniquely expressed as a formal linear combination of weighted partitions:

µ ∪ ν =
∑
λ

cλµνλ

where the sum runs over all weighted partitions of size |µ| and cλ ∈ Q are coeffi-
cients. When µ or ν are divisor classes on Hilbd(S), explicit formulas for µ ∪ ν are
surveyed in [23].

Let µ, ν, ρ be cohomology weighted partitions of size d, and let β ∈ H2(S,Z) be
a curve class. We will require the modified bracket〈

µ, ν, ρ
〉S×P1,?

β
= (−iu)l(µ)+l(ν)+l(ρ)−d

∑
g∈Z

〈
µ, ν, ρ

〉S×P1,•
g,(β,d) u

2g−2.

where the bracket on the right hand side denote disconnected Gromov-Witten in-
variants of S × P1/{0, 1,∞} with relative insertions µ, ν, ρ. Since the degree d is
determined by the partition, it is omitted in the notation from the left hand side.
When the entries µ, ν, ρ are formal linear combination of cohomology weighted par-
titions, the bracket 〈µ, ν, ρ〉S×P1,? is defined by multilinearity

Proposition 5. Let λ1, . . . , λ4 be cohomology weighted partitions of size d weighted
by the fixed basis {γi}, such that

∑
i deg(λi) = 2d+ 1. Then〈

λ1, λ2, λ3 ∪ λ4
〉S×P1,?

β
+
〈
λ1 ∪ λ2, λ3, λ4

〉S×P1,?

β

=
〈
λ1, λ4, λ2 ∪ λ3

〉S×P1,?

β
+
〈
λ1 ∪ λ4, λ2, λ3

〉S×P1,?

β
.

Proof. Consider Gromov-Witten invariants of S × P1 relative to fibers over the
points 0, 1,∞, t ∈ P1,

(33) (−iu)−2d+
∑

i
l(λi)

∑
g

〈
λ1, λ2, λ3, λ4

〉(S×P1)/{0,1,∞,t},•
g,(β,d) u2g−2 .

Consider the degeneration of S × P1 obtained by degenerating the base P1 to a
union of two copies of P1,

S × P1  (S × P1) ∪ (S × P1).
We assume the fibers over 0, 1 specialize to the first and the fibers over t,∞ special-
ize to the second component respectively. We will apply the degeneration formula
to (33). Since the reduced class breaks into a product of a reduced class and an ordi-
nary virtual class, we must have either β1 = 0 or β2 = 0 in the splitting β = β1 +β2
of the curve class. The result of the degeneration formula is

(34)
∑
g1,g2

∑
β=β1+β2

∑
η

〈λ1, λ2, η
〉S×P1,•
g1,β1

· z(η)
〈
η∨, λ3, λ4

〉S×P1,•
g2,β2

(−iu)−2d+
∑

i
l(λi)u2(g1+g2+l(η)−1)−2

where g1, g2 run over all integers, we have β1 = 0 or β2 = 0, η runs over all {γi}-
weighted partitions of size d, and η∨ is the dual partition13. Above, we also have

13If η = {(ηi, γsi )}, then η∨ = {(ηi, γ
∨
si

)} where {γ∨i } is the basis dual to {γi} with respect
to the intersection pairing on H∗(S,Q).
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used the genus glueing relation
g = g1 + g2 + l(η)− 1 ,

and have followed the notation (explained in Section 1) that we use a reduced class
whenever the K3 factor of the curve class is non-zero, and the usual virtual class
otherwise.

Consider the basis of H∗(Hilbd(S)) defined by the set of all {γi}-weighted par-
titions η of size d. The corresponding dual basis with respect to the intersection
pairing on H∗(Hilbd(S)) is {(−1)d+l(η)z(η)η∨}. Hence for every α ∈ H∗(Hilbd(S)),

α =
∑
η

(−1)d+l(η)z(η)〈α, η∨〉η .

We will also require the following evaluation of (non-reduced) relative invariants of
S × P1 in class (0, d),

(35) (−iu)−d+
∑

i
l(λi)

∑
g

〈λ1, λ2, λ3〉S×P
1,•

g,(0,d) u
2g−2 = (−1)d

∫
Hilbd(S)

λ1 ∪ λ2 ∪ λ3 .

for all weighted partitions λ1, λ2, λ3. Equality (35) follows directly from the corre-
sponding local case, see [33, Section 4.3].

Putting everything together, (34) and hence (33) are equal to the left hand side
of Proposition 5, namely〈

λ1, λ2, λ3 ∪ λ4
〉S×P1,?

β
+
〈
λ1 ∪ λ2, λ3, λ4

〉S×P1,?

β
.

Since by a parallel argument (with 0, t specializing to the first, and 1,∞ special-
izing to the second component) we also find (33) to equal the right hand side of
Proposition 5. �

From Proposition 5 and [28, Appendix A] we obtain the following.

Corollary 2. Under the correspondence of Conjecture 1, the reduced WDVV equa-
tion on Hilbd(S) corresponds to the degeneration relations of Proposition 5

For weighted partitions µ, ν, ρ of size d, let〈
µ, ν, ρ

〉S×P1,•
β

= ul(µ)+l(ν)+l(ρ)−d
∑
g∈Z
〈µ, ν, ρ

〉S×P1/{0,1,∞},•
g,(β,d) u2g−2

Proposition 6. For all γ, γ′ ∈ H2(S,Q) and all weighted partitions µ, ν of size d,

〈β, γ′〉 ·
〈
µ, ν,D(γ)

〉S×P1,•
β

= 〈β, γ〉 ·
〈
µ, ν,D(γ′)

〉S×P1,•
β

〈β, γ〉 ·
〈
µ, ν, (2,1)(1,1)d−2 〉S×P1,•

β
= d

du

〈
µ, ν,D(γ)

〉S×P1,•
β

Proof. By a rubber calculus argument, see for example [25, Prop. 4.3] or [26]. �

5.3. Elliptic K3 surfaces. In the remainder of Section 5 let S be an elliptically
fibered K3 surface with section, let B and F be the section and fiber class respec-
tively, and let βh = B + hF for all h ≥ 0.

For H∗(S)-weighted partitions µ, ν, ρ of size d, we set

(36)
〈
µ, ν, ρ

〉S×P1,• = ul(µ)+l(ν)+l(ρ)−d
∑
g∈Z

∑
h≥0
〈µ, ν, ρ

〉S×P1/{0,1,∞},•
g,(βh,d) u2g−2qh−1
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for the generating series of disconnected Gromov-Witten invariants of S×P1/{0, 1,∞},
and the same except without • for connected invariants.

5.4. Proof of Theorem 2. Let µm,n, νm,n be the weighted partitions defined in
(4). For the proof we will drop the subscript n and simply write µm = µm,n, etc.
Let also ρm = {(1, F )(1,1)m+n−1}.

Let n > 0 first. By a degeneration argument the connected invariants satisfy〈
µm, νm, ρm

〉S×P1/{0,1,∞}
g,(m+n,βh) = 1

n!
〈
µm
∣∣τ0(F � ω)n+1〉S×P1/{0}

g,(m+n,βh).

Applying the localization formula and Theorem 6 yields∑
g,h

〈
µm, νm, ρm

〉S×P1/{0,1,∞}
g,(m+n,βh) qh−1u2(m+n)+2g−2 = 1

n!2m!
(G− 1)mΘ2n

Θ2∆ .

To obtain the disconnected invariants, let

f : C → S × P1

be a possibly disconnected relative stable map incident to (cycles representing)
µm, νm, ρm over 0, 1,∞ respectively. There is a single connected component C0
of C such that the restriction f |C0 maps in class (n + k, βh) for some k ≥ 0 and
is incident to µk, νk, ρk. By the incidence conditions, the restriction of f to every
other component is an isomorphism onto a rational line P1×P where P is one of the
remaining incidence points. In total, with careful consideration of the orderings,
we therefore find〈

µm, νm, ρm
〉S×P1/{0,1,∞},•
g,(m+n,βh)

= 1
(n!m!)2

m∑
k=0

(
m

k

)(
m

k

)
(m− k)!

(
(n!k!)2〈µk, νk, ρk〉S×P1/{0,1,∞}

g+(m−k),(k+n,βh)

)
.

The first part of Theorem 2 follows now by summing up.
In case n = 0 we will use the relative condition µm = {(1, x1), . . . , (1, xm)} for

some generic points x1, . . . , xm ∈ S. Consider an irreducibe curve Σ ⊂ S × P1 of
degree k over P1 which is incident to k of the points {xi} over 0. Since Hilbk(S)
is not uniruled for every k > 0 the map P1 → Hilbk(S) corresponding to Σ must
be constant and hence k = 1 and Σ = xi × P1. Let f : C → S × P1 be a possibly
disconnected relative stable map incident to µm, νm, ρm over 0, 1,∞ respectively.
By the previous discussion the image f(C) must contain the curves xi×P1 for all i
and hence meets the divisor S∞ in the points x1, . . . , xm. But if ρm is represented
by the cycle {(1, F0), (1, S)m−1} for some fiber F0 disjoint from {xi} this implies
that f is not incident to ρm in contradiction to the assumption. Hence the moduli
space is empty and the invariant vanishes. �

5.5. Special cases in degree 2. We will require a total of five special cases of
relative invariants of S × P1 in degree 2 over P1. The first two cases are provided
by Theorem 2 with (m,n) = (1, 1) and (0, 2).

Lemma 6.
〈
(1, F )2, D(F ), (1, p)(1,1)

〉S×P1,• = 1
2

Θ(u, q) ·DΘ(u, q)
∆(q)
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Proof. Only maps from connected curves contribute to the invariants here, hence
it is enough to consider connected invariants. By a degeneration argument we have〈

(1, F )2, D(F ), (1, p)(1,1)
〉S×P1

=
〈
(1, F )2∣∣τ0(p� ω)τ0(F � ω)

〉S×P1

,

which by the localization formula and the divisor axiom is
u4

2

〈
E∨(1) τ0(p) F

1− ψ2

F

1− ψ3

〉S
Degeneration of S to the normal cone of an elliptic fiber E yields

u4

2
〈
E∨(1)

∣∣1〉S(〈ω ∣∣ F

1− ψ
∣∣ 1 〉P1×E

)2〈
ω
∣∣τ0(p)E∨(1)

∣∣1〉P1×E

Using the Katz-Klemm-Vafa formula (18), (20) and Lemma 1 for the first, second
and third term respectively, the claim follows. �

Lemma 7.
〈
(2, p), D(F ), D(F )

〉S×P1,• = 1
4

∂
∂uG(u, q)

∆(q)

Proof. Let α ∈ H2(S,Q) be a class satisfying
〈α, α〉 = 1 and 〈α, F 〉 = 〈α,W 〉 = 0 .

Then apply Proposition 6 twice with (λ1, . . . , λ4) equal to(
(2, α), D(F ), D(F ), D(α)

)
and

(
(1, F )(1, α), D(F ), (2, 1), D(α)

)
respectively, and use Proposition 6 and Theorem 2. �

For the last case we will require the following Hodge integrals.

Lemma 8. 〈
E∨(1) 1

1− ψ1
τ0(p)

〉S
= 1
u2

G(u, q)− 1
Θ2∆(i) 〈

E∨(1) 1
1− ψ1

〉S
= −2
u2∆(q)(ii)

(iii)
〈
E∨(1) p

1− ψ1

1
1− ψ2

τ0(p)
〉S

=
〈
E∨(1) p

1− ψ1
· 1

1− ψ2

〉S
· DΘ

Θ + (G− 1)2

u4Θ2∆ + 2(G− 1)
u4∆ · DΘ

Θ .

Proof. (i) Consider the connected invariant

(37)
〈
τ0(F � ω)τ0(p� ω)

〉S×P1

g,(βh,1) .

Applying the localization formula to (37) with τ0(F � ω) specializing to the fiber
over 0, and τ0(p � ω) specializing to the fiber over ∞, yields

〈
E∨(1) p

1−ψ1

〉S
g,βh

+〈
E∨(1) F

1−ψ1
τ0(p)

〉S
g,βh

. Specializing both insertions to the fiber over ∞ ∈ P1 yields〈
E∨(1) 1

1−ψ1
τ0(F )τ0(p)

〉S
g,βh

. Since the result in both computations is the same, the
claim now follows by the divisor equation and Theorem 6.
(ii) Applying the localization formula to

〈
τ0(F � ω)3〉S×P1

g,(βh,1) where all insertions

specialize to the fiber over 0 yields
〈
E∨(1) 1

1−ψ1
τ0(F )3〉S

g,βh
. The claim now follows

from Proposition 1, Theorem 6 and the divisor axiom.
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(iii) Consider the degeneration
(38) S  S ∪ (P1 × E) ∪ (P1 × E) .

We apply the degeneration formula to the invariants
〈
E∨(1) 1

1−ψ1
τ0(p)

〉S where we
specialize τ0(p) to the first copy of P1 × E. Using Lemma 1 the result is

(39)

〈
E∨(1) 1

1− ψ1
τ0(p)

〉S
=
〈
E∨(1) 1

1− ψ1

∣∣∣1〉S〈ω∣∣∣E∨(1)τ0(p)
∣∣∣1〉P1×E

+
〈
E∨(1)

∣∣∣1〉S〈ω∣∣∣E∨(1) 1
1− ψ1

τ0(p)
∣∣∣1〉P1×E

+
〈
E∨(1)

∣∣∣1〉S〈ω∣∣∣E∨(1)τ0(p)
∣∣∣1〉P1×E〈

ω
∣∣∣E∨(1) 1

1− ψ1

〉P1×E
.

By (ii) and using the degeneration S  S ∪ (P1 × E) we have

−2
u2∆(q) =

〈
E∨(1) 1

1− ψ1

〉S
=
〈
E∨(1) 1

1− ψ1

∣∣∣1〉S +
〈
E∨(1)

∣∣∣1〉S〈ω∣∣∣E∨(1) 1
1− ψ1

〉P1×E

Inserting this into (39), using (i), the Katz-Klemm-Vafa formula (18), and Lemma
1, we obtain

(40)
〈
ω
∣∣∣E∨(1) 1

1− ψ1
τ0(p)

∣∣∣1〉P1×E
= 1
u2

(
G− 1 + 2Θ ·DΘ

)
.

We apply the degeneration formula for (38) to
〈
E∨(1) p

1−ψ1
1

1−ψ2
τ0(p)

〉S . We
specialize the marked point carrying the τ0(p) insertion to the first copy of P1×E,
and the marked point with insertion p/(1− ψ1) to S. The result is〈

E∨(1) p
1− ψ1

1
1− ψ2

τ0(p)
〉S

=
〈
E∨(1) p

1− ψ1

1
1− ψ2

∣∣∣1〉S〈ω∣∣∣E∨(1)τ0(p)
∣∣∣1〉P1×E

+
〈
E∨(1) p

1− ψ1

∣∣∣1〉S〈ω∣∣∣E∨(1) 1
1− ψ1

τ0(p)
∣∣∣1〉P1×E

+
〈
E∨(1) p

1− ψ1

∣∣∣1〉S〈ω∣∣∣E∨(1)τ0(p)
∣∣∣1〉P1×E〈

ω
∣∣∣E∨(1) 1

1− ψ1

〉P1×E
.

which by a similar argument as before, and with (40) and Lemma 1 is〈
E∨(1) p

1− ψ1
· 1

1− ψ2

〉S
· DΘ

Θ + (G− 1)2

u4Θ2∆ + 2(G− 1)
u4∆ · DΘ

Θ . �

Lemma 9. The series

− 4u4
〈
E∨(1) p

1− 2ψ1

〉S
+ 1

2u
6
〈
E∨(1) p

1− ψ1

p
1− ψ2

〉S
+ u4

〈
E∨(1) p

1− ψ1

1
1− ψ2

〉S
+ u4

〈
E∨(1) p

1− ψ1

〉S
.



28 GEORG OBERDIECK

is equal to
(
− 2(G− 1) + Θ ·DΘ

) 1
∆ .

Proof. Consider the connected invariant

(41)
〈
τ0(p� ω)τ0(F � ω)3

〉S×P1

.

We apply the localization formula to (41), with exactly two of the four insertions
specializing to the fiber over 0 ∈ P1. The result is

u4
〈
E∨(1) p

1− ψ1

F

1− ψ2

〉S
+ u4

〈
E∨(1) F

1− ψ1

F

1− ψ2
τ0(p)

〉S
,

which, by a degeneration argument, Theorem 6 and Lemma 1, is equal to
(
(G −

1) + Θ ·DΘ
)
/∆.

We apply the localization formula a second time to (41), this time specializing
the insertion τ0(p�ω) to the fiber over ∞, and all insertions τ0(F �ω) to the fiber
over 0. The result is

− 4u4
〈
E∨(1) p

1− 2ψ1

〉S
+ u4

〈
E∨(1) p

1− ψ1

1
1− ψ2

τ0(F )3
〉S

+ 1
2u

6
〈
E∨(1) p

1− ψ1

p
1− ψ2

〉S
+ u4

〈
E∨(1) p

1− ψ1

〉S
.

The claim follows now follows by applying the divisor axiom to the second term
and using Theorem 6. �

We determine the fifth special case.

Lemma 10.
〈
D(p), D(F ), D(p)

〉S×P1,• = (DΘ(u, q))2

∆(q)

Proof. Only connected curves contribute to the integral. The degeneration formula
yields〈

τ0(p� ω)2τ0(F � ω)
〉S×P1

=
〈
D(p), D(F ), D(p)

〉S×P1

+ 2
〈
(1, p)2∣∣τ0(F � ω)

〉S×P1

+ 2
〈
(1, p)(1, F )

∣∣τ0(F � ω)
〉S×P1

.

The last two terms of the right hand side are computed directly using the localiza-
tion formula and Theorem 6:〈

(1, p)2∣∣τ0(F � ω)
〉S×P1

= 1
2

(G− 1)2

Θ2∆〈
(1, p)(1, F )

∣∣τ0(p� ω)
〉S×P1

= (G− 1)
∆

DΘ
Θ

Hence it remains to prove〈
τ0(p� ω)2τ0(F � ω)

〉S×P1

= (DΘ)2

∆ + 2(G− 1)
∆

DΘ
Θ + (G− 1)2

Θ2∆ .

We apply the localization formula to the left hand side, specializing exactly one
of the τ0(p� ω) insertions to the fiber over 0, and the other insertions to the fiber
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over ∞. Five fixed loci contribute. The result is

(42)

− 4u4
〈
E∨(1) p

1− 2ψ1
τ0(p)

〉S
+ u4

〈
E∨(1) p

1− ψ1

1
1− ψ2

τ0(p)τ0(F )
〉S

+ 1
2u

6
〈
E∨(1) p

1− ψ1

p
1− ψ2

τ0(p)
〉S

+ u4
〈
E∨(1) p

1− ψ1
τ0(p)

〉S
+ u4

〈
E∨(1) p

1− ψ1

F

1− ψ2
τ0(p)

〉S
.

By the divisor equation and Lemma 8(iii), we may remove the τ0(F ) and τ0(p)
insertion from the second term. Since only fiber and point classes appear in the
other terms of (42), the τ0(p) insertion can be degenerated off to a copy of P1×E,
where it is evaluated by Lemma 1. The remaining first four terms then exactly
yield the evaluation of Lemma 9. Applying Theorem 6 for the last term, a direct
calculation shows the claim. �

5.6. Proof of Theorem 3. We consider the case d = 2. The invariants

(43)

〈
(1, F )2, D(F ), (1, F )2 〉S×P1,•〈

(1, p)(1, F ), D(F ), D(F )
〉S×P1,•〈

(1, F )2, D(F ), D(p)
〉S×P1,•〈

(2, p), D(F ), D(F )
〉S×P1,•〈

D(p), D(F ), D(p)
〉S×P1,•

were computed in Theorem 2 and Lemmas 6, 7 and 10. By comparision with the
results of [28], the GW/Hilb correspondence (Conjecture 1) holds in the case of
the invariants (43). Under the GW/Hilb correspondence the WDVV equations on
the Hilbert scheme side correspond to the relations of Proposition 5. Similarly, the
divisor axiom on the Hilbert scheme side corresponds to Proposition 6 above. A
direct check shows that all degree 2 relative invariants〈

λ1, λ2, λ3
〉S×P1,•
g,(βh,2)

can be reduced to the invariants (43) using the relations of Propositions 5 and
6. Since, under the correspondence (9), both the genus 0 invariants of Hilb2(S)
and the relative invariants of S × P1 in degree 2 are goverened by the same set of
non-degenerate equations and initial values, they are equal.

We consider d = 1. The invariants of S×P1 in class (βh, 1) with relative insertions
(1, F ), (1, F ), (1, F ) are determined by Proposition 1 via a degeneration argument.
The result matches the corresponding series on the Hilbert scheme Hilb1(S) = S.
The remaining invariants in degree 1 are determined by Proposition 6. Hence the
result follows by the same argument as above. �
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5.7. The product S × E. Let d ≥ 0 be an integer, and let

NS×Eg,h,d =
〈
τ0(F � ω)

〉S×E
g,(βh,d)

be the absolute reduced Gromov-Witten invariants of the product S×E, where we
as usual work with the elliptically fibered K3 surface S with section class B, fiber
class F and curve class βh = B + hF .

Degenerating the elliptic curve E to a nodal curve and resolving, and degenera-
tion off the τ0(F � ω) insertion, we obtain

(44)
∑
g,h

NS×Eg,h,du
2g−2qh−1 =

∑
η

z(η)
〈
η, η∨, D(F )

〉S×P1,•

+ χ(Hilbd(S))
∑
g,h

d!
〈
(1, p)d

∣∣τ0(F � ω)
〉S×P1

u2g−2+2dqh−1

where η runs over the set P(d) of cohomology weighted partitions of size d weighted
by a fixed basis {γi}, η∨ is the dual partition of η, and χ(Hilbd(S)) is the topological
Euler characteristic of Hilbd(S). The second term on the right hand side of (44)
can be computed by localization and Theorem 6. We obtain

(45)
∑
g,h

NS×Eg,h,du
2g−2qh−1 =

∑
η

z(η)
〈
η, η∨, D(F )

〉S×P1,•+χ(Hilbd(S))G(u, q)d

Θ(u, q)2∆(q) .

Proof of Theorem 4. Under the GW/Hilb correspondence (Conjecture 1) and by a
degeneration argument,

∑
η z(η)

〈
η, η∨, D(F )

〉S×P1,• equals

(46) Hd(y, q) =
∑
h≥0

∑
k∈Z

qh−1yk
∫

[M(E,0)(Hilbd(S),βh+kA)]red
ev∗0(F )

under the variable change y = −eiu, where we follow the notation of [31]. Since the
GW/Hilb correspondence has been proven for d = 1 and d = 2 above, the claim
now follows from the Katz-Klemm-Vafa formula [27] for d = 1, and Proposition 2
of [28] for d = 2. Alternatively, in case d = 1 and d = 2 the right hand side of (45)
can be directly evaluated on S × P1 by reduction to the invariants (43). �

We analyze (45) further. By [29, Theorem 2] we have the expansion∑
g

NS×Eg,h,du
2g−2qh−1 =

N∑
g=0

ng,h,d(y1/2 + y−1/2)2g−2

where y = −eiu and ng,h,d ∈ Z. A calculation of the (disconnected) genus 0
Gromov-Witten invariants of S × E using the product formula yields

n0,h,d = p24(h)p24(d),
where we let

p24(n) =
[ 1

∆(q)

]
qn−1

= χ(Hilbn(S)).

On the other hand, the coefficient of u−2qh−1 in the second term on the right hand
side of (45) is

χ(Hilbd(S))
[ G(u, q)d

Θ(u, q)2∆(q)

]
u−2qh−1

= p24(d) · p24(h).
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This shows the following.

Corollary 3. For every d ≥ 0 we have∑
g,h

NS×Eg,h,du
2g−2qh−1 = Fd(u, q) + χ(Hilbd(S)) G(u, q)d

Θ(u, q)2∆(q) .

where under the variable change y = eiu,

Fd(u, q) =
m∑
g=1

n′g,h,d(y1/2 + y−1/2)2g−2.

with n′g,h,d ∈ Z. In particular Fd(u, q) is a holomorphic entire function in u ∈ C.

Hence we have proven the natural splitting of the invariants of S×E into a finite
holomorphic part Fd (conjecturally equal to the the Hilbert scheme invariants Hd)
and the polar part (a correction term), see the discussion of Conjecture A in [31].

Appendix A. Gromov-Witten invariants of K3 surfaces

A.1. Overview. Let S be an elliptic K3 surface with section, let B and F be
the section and fiber class respectively, set βh = B + hF where h ≥ 0, and let
p ∈ H4(S,Z) be the class of a point. Recall the generating series notation (13) for
the surface S. In this section we will explain how the invariants

(47)
〈
E∨(1)

∏
i

τki(p)
∏
j

τ`j (F )
〉S
g

can be obtained from the Gromov-Witten theory of elliptic curves. While the
method we present yields an effective algorithm for the computation of (47) for
every genus g, it seems difficult to obtain closed formulas in this way.

A.2. Computation. By degenerating S to a union of S with m+ n+ 1-copies of
P1×E with each of the first m+n copies receiving a marked point, and using (18)
for the first and (1) for the last term, we have〈

E∨(1)
∏
i

τki(p)
∏
j

τ`j (F )
〉S

= 1
Θ(u, q)2∆(q)

∏
i

Aki(u, q)
∏
j

B`j (u, q)

where for all k ≥ 0 we let

Ak(u, q) =
∑
g≥k+1

(−1)g−k−1Ak,g(q)u2g, Ak,g(q) =
〈
ω
∣∣λg−k−1τk(p)

∣∣1〉P1×E
g

Bk(u, q) =
∑
g≥k

(−1)g−kBk,g(q)u2g, Bk,g(q) =
〈
ω
∣∣λg−kτk(F )

∣∣1〉P1×E
g

.

By a further degeneration and Lemma 1 we have

Ak,g(q) =
〈
ω
∣∣λg−k−1τk(p)

〉P1×E
g

to which we apply the localization formula. This yields

Ak,g(q) =
∑
i,j,`≥0

2i+j≤g+`−1
`≤g−k−1

(−1)i+j+`P (i, `) ·
〈
τg−2i−j+`−1(ω)τk(ω)λjλg−k−1−`

〉E
g−i
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where the invariants of a nonsingular elliptic curve E are denoted by〈
α τk1(γ1) · · · τkn(γn)

〉E
g

=
∑
d≥0

〈
α τk1(γ1) · · · τkn(γn)

〉E
g,d[E]q

d

and we set P (0, 0) = 1, P (g, `) = 〈ω|λ`Ψg−`−1
∞ |1〉P1×E,∼

g for all g ≥ ` + 1, and
P (g, `) = 0 otherwise. By the methods of [26] one proves∑

g,k

P (g, k)u2gwk = exp
(∑
r≥1

C2r(q)u2rwr−1
)
,

where C2r(q) are the Eisenstein series (6). Similarly,

Bk,g(q) = P (g, g−k)+
∑
i,j,`≥0

2i+j≤g+`−1
`≤g−k

(−1)i+j+`P (i, `)·
〈
τg−2i−j+`−1(ω)τk(1)λjλg−k−`

〉E
g−i .

This reduces the computation of (47) to the evaluation of Gromov-Witten invariants
of an elliptic curve, which were completely determined in [32] and can be computed
conveniently in the program [3].

We list the examples which are used in Section 4.3.

〈τ0(p)〉Sg=1 = 1
∆
(
− 2C2

2 + 10C4
)

〈τ1(p)〉Sg=2 = 1
∆
(
− 8

3C
3
2 + 16C2C4 − 7C6

)
〈τ0(p)λ1〉Sg=2 = 1

∆
(
− 4C3

2 + 12C2C4 + 21C6
)

〈τ0(p)τ1(F )〉g=2 = 1
∆ · 2C2 · (−2C2

2 + 10C4
)
.
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