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CURVE COUNTING ON K3 x £, THE IGUSA CUSP

FORM 10, AND DESCENDENT INTEGRATION

G. OBERDIECK AND R. PANDHARIPANDE

ABSTRACT. Let S be a nonsingular projective K3 surface. Mo-
tivated by the study of the Gromov-Witten theory of the Hilbert
scheme of points of S, we conjecture a formula for the Gromov-
Witten theory (in all curve classes) of the Calabi-Yau 3-fold S x E
where F is an elliptic curve. In the primitive case, our conjecture
is expressed in terms of the Igusa cusp form yi¢9 and matches a
prediction via heterotic duality by Katz, Klemm, and Vafa. In
imprimitive cases, our conjecture suggests a new structure for the
complete theory of descendent integration for K3 surfaces. Via
the Gromov-Witten/Pairs correspondence, a conjecture for the re-
duced stable pairs theory of S x E is also presented. Speculations
about the motivic stable pairs theory of S x E are made.

The reduced Gromov-Witten theory of the Hilbert scheme of
points of S is much richer than S x E. The 2-point function of
Hilb?(S) determines a matrix with trace equal to the partition
function of S x E. A conjectural form for the full matrix is given.
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0. INTRODUCTION

Let S be a nonsingular projective K3 surface, and let £ be a non-
singular elliptic curve. The 3-fold

X=SxFE
has trivial canonical bundle, and hence is Calabi-Yau. Let
m: X =S5, m: X —>F
denote the projections on the respective factors. Let
tse:S =X, ps: E—X

be inclusions of the fibers of w5 and 7 over points e € E and s € S
respectively. We will often drop the subscripts e and s.

Let 5 € Pic(S) C Hy(S,Z) be a class which is positive (with respect
to any ample polarization), and let d > 0 be an integer. The pair (3, d)
determines a class in Hy(X,Z) by

(B,d) = t5«(8) + Le«(d[E]) .

The moduli space of stable maps Mg (X , (B, d)) from connected genus
g curves to X representing the class (3, d) is of virtual dimension 0.
However, because S is holomorphic symplectic, the virtual class van-
ished],

77, (x.(5.0))] " = 0.

The Gromov-Witten theory of X is only interesting after reduction.
The reduced class [M, (X, (ﬁ,d))yed is of dimension 1. The elliptic
curve E acts on M, (X , (B, d)) with orbits of dimension 1. The moduli
space M, (X , (B, d)) may be viewed virtually as a finite union of E-
orbits. The basic enumerative question here is to count the number of
these E-orbits.

The counting of the E-orbits is defined mathematically by the fol-
lowing construction. Let 3 € H%(S,Q) be any class satisfying

(1) (8,8") =1

with respect to the intersection pairing on S. For g > 0, we define

@ M- evi (i (3 Um(0))
[Mg,1(X,(B.d))]e

1See [24] for discussion of the virtual class for stable maps to K3 surfaces.
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where 0 € E is the zero of the group law. The invariant N;f& 4 s the
virtual count of E-orbits discussed above. Because of orbifold issues
and the possible non-integrality of 8V,

X
Ny sa€Q.

We will prove N;{ 5.4 does not depend upon the choice of BY satisfying
(). The count N;{ 5.4 18 invariant under deformations of S for which /3
remains algebraic. By standard arguments [24] [35], Ngf 5,4 then depends
upon S and [ only via the norm square

2~ 2 = (5, 5)

and the divisibility m(3). The count Ngf 5.4 1s independent of the com-
plex structure of . The notation

(3) NGm.ha = Ngg.a
will be used.

We conjecture here four basic properties of the reduced Gromov-
Witten counts Ngfﬁ,d:

(i) a closed formula for their generating series in term of the Igusa

cusp form yqg in case [ is primitive,

(ii) a reduction rule expressing the invariants for imprimitive 8 in
terms of the primitive cases determined by (i),

(iii) a Gromov-Witten/Pairs correspondence governing the reduced
stable pairs invariants of X,

(iv) a precise formula relating Ngf 5.4 to the reduced genus 0 Gromov-
Witten invariants of the Hilbert scheme Hilb%(S) of d points of
the K3 surface S in case ( is primitive.

In the d = 0 case, the counts Ngfﬁ,o specialize to the basic integrals

(4) N, o = /[ (~1)7A,

Mg(svﬁ)]TEd

of the reduced Gromov-Witten theory of K3 surfacesE The integrals
(@) are governed by the Katz-Klemm-Vafa conjecture proven in [34].
Formula (i) specializes to the Jacobi form of the KKV formula. For-
mulas for BPS counts of S x E associated to primitive curve classes
f € Hy(S,Z) are predicted in [15], Section 6.2] via heterotic duality.
After suitable interpretation of the Gromov-Witten theory (2)), our
formulas (i) match those of [15].

2Here, Ag is the top Chern class of the Hodge bundle.
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The imprimitive structure (ii) is new and takes a surprisingly dif-
ferent form from the standard 3-fold Gromov-Witten multiple cover
theory. In fact, conjecture (ii) suggests a new structure for the com-
plete theory of descendent integration for K3 surfaces:

(v) We conjecture a reduction rule expressing the descendent inte-
grals

n S n
<H%(%)> :/— [[vevevitv) . vieH(SQ

9.3 [Mg,n(S,8)]7¢? ;2

for imprimitive £ in terms of the primitive cases.

By [25, Theorem 4], the descendent integrals in the primitive cases are
known to be coefficients of quasi-modular forms.

The GW/P correspondence (iii) for X is straightforward to conjec-
ture. Because reduced theories are considered, the correspondence here
is not directly a special case of the standard GW /P correspondence for
3-folds [20, 33].

In [6, 29, B0], a triangle of parallel equivalences relating the Gromov-
Witten and Donaldson-Thomas theory of C2 x P! to the quantum coho-
mology of Hilb?(C?) was established. Equivalences relating the count-
ing theories of S x P! and the quantum cohomology of Hilbd(S ) were
expected. However, the conjectured formula (iv) relating Ngf@d to the
reduced genus 0 Gromov-Witten invariants of Hilb?(S) is subtle: an
interesting correction term appears.

The 2-point function in the reduced genus 0 Gromov-Witten theory
of Hilb%(S) studied in [27] underlies (iv) and motivates the entire paper.
An interesting speculation which emerges concerns the 3-fold geometry

(5) SxP'/{SyUS,}
relative to the K 3-fibers over 0, co € P:

(vi) For primitive § € Pic(S), we conjecture a form for the matrix
of relative invariants of the geometry (Hl).

The reduced Gromov-Witten invariants of S X E arise as the trace of
the matrix (vi).

The precise statements of the above conjectures are given in Sections
4 and 5. Conjecture A of Section 4.1 covers both (i) and (iv). Conjec-
tures B, C, and D of Sections 4.2-4.4 correspond to (ii), (v), and (iii)
respectively. Conjectures E, F, and G of Section 5 address (vi) via the
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reduced Gromov-Witten theory of Hilb%(S). Conjectures E and F were
first proposed in [27] in a different but equivalent form. Conjecture G
is a direct Hilbert scheme / stable pairs correspondence (again with a
correction term).

We conclude the paper with speculations about the motivic stable
pairs invariants of S x E. The theory should simultaneously refine the
Igusa cusp form yjo and generalize the formula of [14].

Acknowledgements. We thank J. Bryan, S. Katz, A. Klemm, D. Maulik,
A. Pixton, R. Thomas, and B. Szendroi for many conversations over
the years about the Gromov-Witten theory of K3 surfaces. We thank
M. Raum for discussions about x;9. The paper was partially written
while both authors were attending the summer school Modern trends in
Gromouv- Witten theory at the Leibniz Universitat Hannover organized
by O. Dumitrescu and N. Pagani in September 2014.

G.O. was supported by the grant SNF-200021-143274. R.P. was
partially supported by grants SNF-200021-143274 and ERC-2012-AdG-
320368-MCSK.

1. RUBBER GEOMETRY

1.1. Definition. Let R be the 1-dimensional rubber target obtained
from the relative geometry

P' /{0, oo}
after quotienting by the scaling action. Let Y be the straight rubber

over the K3 surface S,
Y=SxR.

The moduli space of stable maps to rubber,

{ ] ~

Mg (K (/8’ d))uuv )
has reduced virtual dimension 0. Here:

(i) the superscript e indicates the domain curve may be discon-
nected (but no connected components are mapped to points),
(ii) B € Pic(S) and d > 0 is the degree over R,
(iii) the relative conditions over 0 and oo of the rubber are specified
by partitions of d weighted by the cohomology of .S,
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(iv) v and v¥ are dual cohomology weighted partitionsE

We define

(6) NYS (v, ") = / 1.

[M:] (Y7(67d))u,uv }TEd

The definition of N;&d(y, vY) requires no insertion as in (2I).

1.2. Disconnected invariants of S x E. In order to relate the inte-
grals ([2)) and ([6), we must consider the disconnected Gromov-Witten
theory of

X=SxFE.

Let M;l (X, (5, d)) be the moduli space of stable maps from from pos-
sibily disconnected genus g curves to X (with no connected components
mapped to points) representing the class (f,d). After reduction, the
moduli space is of dimension 2. For Y € Hy(S,Z) satisfing (), we
define

M W= evi (i (3 Um ()
(Mg 1 (X,(8,d))]"e?

where 0 € E is the zero of the group law as before.

Because of the holomorphic symplectic form of S, the stable maps
with two connected components mapping nontrivially to S contribute 0
to (7). Hence, the only nontrivial contibutions to () come from stable
maps with a single marked connected component mapping nontriv-
ially to S and possibly other connected components contracted over
S. By standard vanishing considerations, all connected components
contracted over S must be of genus 1. After evaluating the contracted
contributions, we obtain the following relation:

Proposition 1. For all g > 0 and 5 € Pic(5), the disconnected and
connected counts for X satisfy

NXO gd _ Edzo N;{B,d qd
) 7d o AN '
i 9,8 I1,0(1 —gm)2

3Let {7:} be a basis of H*(S,Z), let and {7,'} be the dual basis. If v = {(v;, Yi; )}
then vV = {(Vj,%.\;)}.
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1.3. Relating X and Y. Consider the degeneration of E to a nodal
rational curve C. The degeneration,

X=SxFE ~ SxC,
leads to a formula for N;é, 4 in terms of the relative geometry
SxP'/{SyUSy} .

Then, using standard rigidification of the rubber and the divisor axiom,
we obtain the relation:

®) NSSa= | 0 50 NEa( ) )

veP(d)

u29—2

Here, P(d) is the set of all cohomology weighted partitions of d with
respect to a fixed basis {v;} of H*(S,Z). The rubber series on the right
side of (§) is

ﬁdyy ZuzyzNgﬁdyy).
geZ

Finally, 3(v) = | Aut(v)| ], v is the usual combinatorial factor. For-
mula (8) and Proposition 1 together imply the following result.

Proposition 2. Definition [2)) for N 5.4 s independent of the choice
of BY satisfying ().
2. THE IGUSA CUSP FORM YX1g
Let H, denote the Siegel upper half space. The standard coordinates
0= (T z) € H,,
z
where 7,7 € H; lie in the Siegel upper half plane, z € C, and
Im(z)? < Im(7)Im(7) .

are

We denote the exponentials of the coordinates by

p=exp(2miz), q=exp(2mit), = exp(2miT).

For us, the variable p is related to the genus parameter u of Gromov-
Witten theory and the Euler characteristic parameter y of stable pairs
theory:

p=exp(iu), y=—p.
More precisely, we have u = 27z and y = exp(27mi(z + 1/2)).
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In the partition functions, the variable ¢ indexes classes of S,

"' <— a primitive class 3, on S satifying 2h —2 = (B4, Bp) ,

and the variable ¢ indexes classes of F,

(jdil <— d times the class [F] .

We will require several special functions. Let

Boy,
C =——F
2(7) 2k (2k)! 2#(7)
be renormalized Eisenstein series:
1 1
Cr=—gpF2 Ci= P
Define the Jacobi theta function by
v
F(z,71) = 715))2’7)
n*(7)
. _ (1 =pg™) (1 =p'q™)
= =i —p ) ] -
et (1—qm)?
= uexp ( - Z(—l)k(]%u%),
E>1
where we have choosen the normalization@
9) F=u+0®W?), u=2nz.

Define the Weierstrass o function by

1
o(z,7) = —— - Z(—N(% — 1)2kCopu2

k>2
_ Ly 2 > k(pF—2+p )
12 (1—p)? Py
F(z,7) and p(z,7) are related by the following construction. Let
(10) G = FOA(F) — 0.(F)® = F*0%log(F),
where 0, = ﬁ% = %a% = p%. Then we have the basic relation
(11) p(z,7) = —0:(log(F(z,7))) — 2Cs(7)
G 1
A
F2 1t

YFrom the point of Gromov-Witten theory, the leading term u* for the special
functions is more natural. However, the usual convention in the literature is to
take leading term (27iz)*. We follow the usual convention for most of the classical
functions. Our convention for F' is an exception which allows for fewer signs in
the statement of the Gromov-Witten and pairs results, but results in sign changes
when comparing with classical function (see Conjecture A).
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Define the coefficients ¢(m) by the expansion
Z(Zv 7—) = _24@(2, T)F(Za 7—)2 = Z Z C(4’I’L - k:Q)pkq
n>0 k€Z

The Igusa cusp form x10(€2) may be expressed by a result of Gritsenko
and Nikulin [13] as

(12) x10(Q) =pgq [ (1 —pFetgh@s),

(k,h,d)
where the product is over all £ € Z and h,d > 0 satisfying one of the
following two conditions:

eh>0o0rd>0,
e h=d=0and k<O0.

It follows from (I2)), that the form yi¢ is symmetric in the variables ¢
and ¢,

(13) x10(¢, ) = X10(4; q) -

Let ¢|.mV; denote the action of the [** Hecke operator on a Jacobi
form ¢ of index m and weight k, see [8, page 41]. The definition (I2))
is equivalent to

(14)  x10(@) = =3+ F(z,7A(r) -exp (= D@ - (ZoaW)(z7))

>1

r)=q]Jt -

Alternatively, we may define x19(£2) as the additive lift,
() = =>4 (F2A], Vi) (2.7).

>1

where

Our main interest is in the inverse of the Igusa cusp form,
1
X10(€2)
By (@) and (I4), i has a pole of order 2 at z = 0 and its translates.
Hence, the Fourler expansmn of depends on the location in 2. We

will always assume the parameters (z,7) to be in the region
0<lql <lpl <1

The above choice determines the Fourier expansion of ﬁ and therefore
also of -
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Consider the expansion in ¢,

1 ~n
ok > G

n>—1

For the first few terms (see [16 page 27]), we have

1
¢4——WA
%
= 24—
go =28
3 2
= —(324p* + "B, ) —
(0 (3 © +4 4) A
64 10 F*
= 2 3+ F —Fg | —.
o (3 00"~ + 3 4@‘*‘27 6) A

In particular, the leading coefficient (with p = —y) is

-1 1 1
b= —o - :
y+2+ytq ,gl (T+y~lgm)?(1 —¢™)* (1 +ygm)?

It is related to the Katz-Klemm-Vafa formula for K3 surfaces proven
in [25] 34],

—1h_y " ZuQQ‘Qqh‘l/ (=1)9%

—y=exp(—iu h>0 M y(S,8s)
920

1 on_ | Bax]
- u?A(T) P (;u kk : (Qk)!EZk(T)) '

The functions ¢4y are meromorphic Jacobi forms with poles of order 2

at z = 0 and its translates. The principal part of ¢4 at z = 0 equals
a(d) 1
A(T) (2miz)?

(15)

where a(d) is the ¢* coefficient of .

3. HILBERT SCHEMES OF POINTS

3.1. Curves classes. Let S be a nonsingular projective K3 surface.
Let

Sl — Hilb4(S)
denote the the Hilbert scheme of d points of S. The Hilbert scheme

Sl is a nonsingular projective variety of dimension 2d. Moreover, S
carries a holomorphic symplectic form, see [I, 26].
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We follow standard notation for the Nakajima operators [26]. For
a € H*(S;Q) and i > 0, let

pfi(a) : H*<S[d}7@) — H*<S[d+i]7(@>7 Y= p72<a)7

be the Nakajima creation operator defined by adding length ¢ punctual
subschemes incident to a cycle Poincare dual to . The cohomology of
Sl can be completely described by the cohomology of S via the action
of the operators p_;(«) on the vacuum vector

ls € H(SY,Q) = Q.
Let p be the class of a point on S. For § € Hy(S,Z), define the class

C(8) = p-1(B)p-1(p)* 15 € Hx(S", Z).

If 5 =[C] for a curve C' C S, then C(/3) is the class of the curve given
by fixing d — 1 distinct points away from C' and letting a single point
move on C. For d > 2, let

A=pa(ppa(p)’Ls

be the class of an exceptional curve — the locus of spinning double
points centered at a point s € S plus d — 2 fixed points away from s.
For d > 2,

(S Z) = { C(B)+ kA | B€ H)(S,Z), ke Z } .

The moduli space of stable maps@ Moo(SH. C(B) + kA) carries a
reduced virtual class of dimension 2d.

3.2. Elliptic fibration. Let S be an elliptic K3 surface
TS — P!

with a section, and let F' € Hy(S,Z) be the class of a fiber. The generic
fiber of the induced fibration

7l Hilb4(S) — Hilb(P') = P4,
is a nonsingular Lagrangian torus. Let
L, C Hilb%(S)
denote the the fiber of 7l¥ over z € P%.
Let 3, be a primitive curve class on S with (5, F) = 1 and square

(B, Bn) =2h — 2.

®Here, the maps are required to have connected domains. No superscript e
appears in the notation.
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For 21,z € P?, define the invariant

Hilb%(S)

Hilb  __
Nkhd - <L217L22 Bh.k

/ evi(La) Uevy(Ls,)
[Mo,2(Sld,C(By)+kA)]red

which (virtually) counts the number of rational curves incident to the
Lagrangians L,, and L,.

A central result of [27] is the following complete evaluation of Ni'}";.

Theorem 3. For d > 0, we have

Hilb F(z,7)*2
> Ny = TAD
k€Z h>0

where y = —e*™* and g = e

2miT

=g, By convention,

In the d = 1 case, the class A vanishes on S
only the k£ = 0 term in the sum on the left is taken. Then, Theorem [3]
specializes in d = 1 to the Yau-Zaslow formula [36] for rational curve

counts in primitive classes of K3 surfaces.
If we specialize the formula of Theorem [3to d = 0, we obtain

NHilb _ F(z,1)? 1
ZZ kh0Y  A(T) F(z,7)2AC

k€Z h>0

The result is exactly the Katz-Klemm-Vafa formula as discussed in
Section 2. While the d = 0 specialization is not geometrically well-
defined from the point of view of the Hilbert scheme, the result strongly
suggests a correspondence between the Gromov-Witten theory of K3
fibrations and the reduced theory of Hilb%(S). Precise conjectures will
be formulated in the next Section.

4. CONJECTURES

4.1. Primitive case. Let 5, € Pic(S) C Hs(S,Z) be a primitive class
which is positive (with respect to any ample polarization) and satsifies

<5h,5h> =2h—2.

Let (E,0) be a nonsingular elliptic curve with origin 0 € E. For d > 0,
consider the reduced Gromov-Witten invariant

(16) Y / evi (Bl

kE€Z h>0 [M (g,0)(SI,C(Bp)+kA)]red
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The moduli space (I6]) is of stable maps with 1-pointed domains with
complex structure fized after stabilization to be (E,0). The reduced
virtual dimension of M g (S, C(B,) + kA) is 1. The divisor class
Bk € H?(S, Q) is chosen to satisfy

(1" [ Tt
C(Br)+kA
The integral (I6]) is well-defined.

Following the perspective of [0, 29, [30], a connection between the
disconnected Gromov-Witten invariants N3 5 ; of K3Xx E and the series
(I6) obtained from the geometry of SI? is natural to expect.

We may rewrite Hy(y, ¢) by degenerating (£, 0) to the nodal elliptic
curve (and using the divisor equation) as

(18) Haly,a) =) > y'd" 1/ (ev1 X ev) (AL,

k€Z h>0 [Mo,2(S19,C(Br)+kA)]red

where [Al4] € H?¢(Sl x Sl Q) is the diagonal class. Equation (IX))
shows the integral (I6) is independent of the choice of B,Yk satisfying
(I'70). By convention,

Hig) = ¢ [ (v, x eva) [AT]

h>0 [Mo,2(SI,C(B))]red

For the second equality, we have used the Yau-Zaslow formula.

We define a generating series over all d > 0 of the Hilbert scheme

H(y,q,9) = > Haly.q) ¢

d>0

geometry:

The analogous generating series over all d for the 3-fold geometry
X=SxFE
is defined by

(19) NXouqq ZZZN;(EhdUZQZh 1q~d1
9€Z h>0 d>0

The main conjecture in the primitive case is the following.
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Conjecture A. Under y = —exp(iu),

11 1 1
NXe u,q,q) = H 14, q) + T q - .
(u,4,4) (v.4.0) + 4 qg 1—(q-G)m)* X10()

The Igusa cusp form x10(£2) and the functions F(z,7), A(7), and
G(z,7) are as defined in Section 2.

The second factor in the correction term added to H(y, ¢, ¢) can be
expanded as
1 1 1
=~ H q n)24 =G- =
G5 (1=(q-G)) A7) la=cq
= G 424G + 324G?G + 3200G3 ¢ + - - - .
From definition (I0) of G and property (9),

G=1+0(q).

L coefficient ﬁ which is the

Hence the full correction term has ¢~

Katz-Klemm-Vafa formula (required since H(y, ¢, ) has no ¢! term).
The ¢° term yields the identity

E2 G §©

—2— 4+ 24 = —24->—

A A A

which is equivalent to ({IIJ).

We do not at present have a geometric explanation for the full cor-
rection term

1 1 1
20 — = — .
(20) g amm
Denote the ¢% coefficient of (20) by
¢ _ a(d) G+l
T A(r) F?

Here, a(d) is the ¢ coefficient of i. Then ¢, is a meromorphic Jacobi
form with poles of order 2 at z = 0 and its translates. The principal
part of ¢4 at z = 0 equals

a(d) 1

A(T) (272)%

Comparing with (IH]), we see ¢4 accounts for all the poles in —,.

The second equality in Conjecture A therefore determines a natural
splitting

(21) — g =Ha+ ¢a
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of —1)4 into a finite (holomorphic) quasi-Jacobi form H,; and a polar
part ¢4. In particular, the Fourier expansion of Hy is independent of the
moduli 7. Hence, all wall-crossings are related to ¢4. The splitting of
14 into a finite and polar part has been studied by Dabholkar, Murthy,
and Zagier [7] and has a direct interpretation in a physical model of
quantum black holes. In fact, up to the Fy summand in () our
splitting matches their simplest choice, see [7, Equations 1.5 and 9.1].

The two equalities of Conjecture A are independent claims. The first
is a correspondence result (up to correction). We have made verifica-
tions by partially evaluating both sides. The second equality, which
evalutes the series, has already been seen to hold for the coefficients of
¢! and ¢°. The second equality has been proven for the coefficient of
¢' in [27]. The conjecture

1

X10(£2)
is directly related to the predictions of Section 6.2 of [15]. J. Bryan [4]
has Veriﬁedﬁ conjecture (22) for the coefficients ¢=* and ¢°.

(22) N**(u,q,q) =

The conjectural equality ([22) may be viewed as a mathematically
precise formulation of [I5, Section 6.2]. The Igusa cusp form xi9 ap-
pears in [15] via the elliptic genera of the symmetric products of a K3
surface (the yip terminology is not used in [15]). The development of
the reduced virtual class occurred in the years following [I5]. Since
the K3 x E geometry carries a free E-action, a further step (beyond
reduction) must be taken to avoid a trivial theory. Definition (2)) with
an insertion is a straightforward solution. Finally, the Igusa cusp form
X10 is related to the disconnected reduced Gromov-Witten theory of
K3 x E. With these foundations, the prediction of [I5] may be inter-
preted to exactly match (22)).

By the symmetry (I3) of the Igusa cusp form yxjo, Conjecture A
predicts a surprising symmetry for disconnected Gromov-Witten theory
of X,

N;{Eh,d - N;deh’
for all primitive classes 3, and 4. In the notation (3)), the symmetry
can be written as

Xe _ n|Xe
Ny T ha=Nglan

for all h,d > 0 (where the subscript 1 denotes primitivity).

6Bryan’s calculation is on the sheaf theory side, see Conjecture D below.
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Conjectures for the motivic generalization of the d = 0 case are
presented in [14]. An interesting connection to the Mathieu Mgy moon-
shine phenomena appears there in the data. Since the Gromov-Witten
theory of X is related via —X—io by Conjecture A to the elliptic genera
of the symmetric products of K3 surfaces, the Mathieu My, moonshine
must also arise here.

4.2. Imprimitive classes. The generating series N**(u, ¢, §) defined
by (I9) concerns only the primitive classes g, € Pic(S). To study the
imprimitive case, we define

(23) Nﬁ u, q) ZZN 5.4 292d1
g€EZ d>0

for any § € Pic(S). The coefficents of N (u,q) are connected invari-
antsl] We may write (23) in the notation (3] as

§ :§ : 29—2 ~d—1
mﬁhuq g,m,m?2(h— 1+1du q
g>0 d>0

for primitive (3, € Pic(S) satisfying
<Bha /8h> =2h—2.

In the primitive (m=1) case, instead of writing NX , We write
i
N 8) = 30 3 N 2
920 d>0

Conjecture B. For all m > 0,

(24) Nﬁﬁh u, G) Z NX 2(h—1 +1(k5u q)
klm

for the primitive class (y,.

Conjecture B expresses the series NX mp, 10 terms of series for primitive
classes corresponding to the divisors k of m. To such a divisor k, we
associate the class 7' 3, with square

()= () - =3 () -0 1) -2

The term in the sum on the right side of (24) corresponding to k
may be viewed as the contribution of the primitive class of square

7By Proposition 1, there is no difficulty in moving back and forth between con-
nected and disconnected invariants.
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equal to (fn, TBn). The primitive contribution of the divisor £ to

NX
g,m,m2(h—1)+1,d

2g—-3 | NX
(25) k Ng71,(%)2(h71)+1,d '

1S

The scaling factor k2973 is independent of d. In fact, the variable ¢
plays no role in formula (24]). To emphasize the point, the contribution
of the divisor k£ geometrically is a contribution of the class

(580 d) = 1. (28) + e (dlE)

to (mfh,d) in the 3-fold S x E. Unless d = 0, such a contribution can
not be viewed as a multiple cover contribution in the usual Gopakumar-
Vafa perspective of Calabi-Yau 3-fold invariants.

In the d = 0 case, Conjecture B specializes to the multiple cover
structure of the KKV conjecture proven in [34] which is usually formu-
lated in terms of BPS counts. We could rewrite Conjecture B in terms
of nonstandard 3-fold BPS counts which do not interact with the curve
class [E] associated to ¢. Instead, we have written Conjecture B in the
most straightforward Gromov-Witten form. In fact, the simple form
of Conjecture B suggests a much more general underlying structure for
K3 surfaces (which we will discuss in Section F.3)).

Further evidence for Conjecture B can be found in case h = 0. Lo-
calization argumentd] (with respect to the C* acting on the —2 curve)
yield

- 1 _

m,

Hence, Conjecture B predicts the primitive contributions corresponding
to k # m all vanish in the h = 0 case. Such vanishing is correct: the
reduced Gromov-Witten invariants of X vanish for classes (3, d) where
£ is primitive and

(6,8) <=2

Finally, an elementary analysis leads to the proof of Conjecture B in
all cases for g = 1. Both sides of (24]) are easily calculated.

4.3. Descendent theory for K3 surfaces. Let S be a nonsingular
projective K3 surface, and let § € Pic(S) be a positive class. We define

8The localization required here is parallel to the proof of the scaling in [9 The-
orem 3.
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the (reduced) descendent Gromov-Witten invariants by

n

n s
<H7'a¢(%‘)> = /[_ H@Df Uevi(v), 7€ H(SQ).
=1 9.8

Mgn(S,8)]med 521
A potential function for the descendent theory of K3 surfaces in prim-
itive classes is defined by
S

(26)  Fo(mra ()7 (1)) = D <Tk1 () - 'Tkr(%r)> ¢

h=0 ngh
for g > 0.
The descendent potential (26) is a quasimodular form [25]. The ring

QMod = Q[FE»(q), E4(q), Es(q)]

of holomorphic quasimodular forms (of level 1) is the Q-algebra gen-
erated by Eisenstein series Fy, see [3]. The ring QMod is naturally
graded by weight (where Fy; has weight 2k) and inherits an increasing
filtration

QMod.y, € QMod
given by forms of weight < 2k. The precise result proven in [25] is the

following.

Theorem 4. The descendent potential is the Fourier expansion in q of
a quasimodular form

1
Fo(Ti (1) -+ 7o () € m QMod gy o,

with pole at ¢ = 0 of order at most 1.

Conjectures C1 and C2 below will reduce all descendent invariants to
the primitive case.

Conjecture C1 is an invariance property. Let S and S be two K3
surfaces, and let

p: (HAS.B), () = (H*(5.B). ()

be a real isometry sending a effective curveH class 3 € H?(S,Z) to an
effective curve class 8 € H%(S,Z),

w(B) =5

9Since there is a canonical isomorphism Ho(S,7Z) = H?(S,7Z) , we may consider
[ also as a cohomology class.
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It is convenient to extend ¢ to all of H*(S,R) by
p(1)=1, lp)=p

where 1 and p are the identity and point classes respectively.

Conjecture C1. If 8 € H(S,Z) and 8 € H%(S,Z) have the same
divisibility,
s

T S n
<Hfai(%)> = <Hfai(s@(%))> :
=1 gp st 05

Let 0; be the (complex) codimension of ~;,
v € H*(5,Q) .

Conjecture C1 implies the invariant <H::1 Tai(%)i 5 depends only
upon g, the divisibility of g, and all the pairings

</7i7’7]’>7 <7@'75>7 <67ﬁ>

for 6; = 9; = 1. For the Gromov-Witten theory of curves, a similar
invariance statement has been proven in [2§].

Conjecture C2 expresses descendent invariants in imprimitive classes
in term of primitive classes. Let 3, be a primitive curve class on S.
Since all invariants vanish if h < 0, we assume h > 0. Let m be a
positive integer. For every divisor k of m, let Sy be a K3 surface with
a real isometry

on: (HASR), () = (H(S".R), ()
for which ¢ (% 3,) is a primitive and effective curve class on Sj.
o If h > 0, such Sy are easily found.

o If h =0, such Sy exist only in the k = m case.

Conjecture C2. For primitive classes B, and m > 0,

<H Tai(%)> — Zk2gf3+2?:1 5 <H7'az<90k(%))>

gvmﬁh k“‘m

Sk

In the h = 0 case, the k # m terms on the right side of the equality
in Conjecture C2 are defined to vanish. By Conjecture C1, the right
side is independent of the choices of Sy and .
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The first evidence: the KKV formula interpreted as the Hodge inte-
gral () exactly satisfies Conjecture C2 with the integrand viewed as
having no descendent insertions. In fact, (—1)), can be expanded in
terms of descendent integrands on strata — applying Conjecture C2 to
such an expansion exactly yields the multiple cover scaling of the KKV
formula. In particular, Conjecture C2 together with the KKV formula
in the primitive case implies the full KKV formula.

Conjecture B, when fully expanded, has a scaling factor of k29—3
which corresponds to Conjecture C2 with no insertions. In fact, Con-
jecture B follows from Conjecture C2 via the product formula [2] for
virtual classes in Gromov-Witten theory. Conjecture C2 was motived
for us by Conjecture B.

The second evidence: Maulik in [21], Theorem 1.1] calculated descen-
dents for the A; singularity. We may interpret the calculation of [21] as
verifiying Conjecture C2 in case h = 0. The scaling of Conjecture C2
appears in [2I, Theorem 1.1] as the final result because the primitive
contributions corresponding to k # m all vanish in the h = 0 case. Of
course, the A; singularity only captures codimensions 0 and 1 for 9.

A simple example not covered by the two above cases is the integral

(27) <TO(P)>im51

where p € H%(S,Q) is the point class. The primitive class 3; may be
taken to be the fiber F' of an elliptically fibered K3 surface
7.8 =P,
The primitive invariant is immediate:
<7'0(P) f;l =1
Hence, Conjecture C2 yields the prediction

(TP s, = DK (0(P)) 1,

klm
= > k.
klm
We can evaluate (27)) directly from the geometry of stable maps in the
class mF of S. The integral equals the number of connected degree
m covers of an elliptic curve by an elliptic curve (times m for the

mY =k

insertion),
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which agrees with the prediction.

A much more interesting example is the genus 2 invariant

<7'0(P)7 TO(p)>§,262

in twice the primitive class 8,. Via standard geometry, £ may be taken
to be the hyperplane section of a K3 surface S with a degree 2 cover

€:5 — P?

branched along a nonsingular sextic

Cs C P? .
Conjecture C2 predicts the following equation:
5 K3 9 K3
<7'0<p), To(p>>27252 = <T0(p)77—0(p)>2755 + 222 3+4<T0<p>77—0<p) 285"

The primitive counts can be found in [5, Theorem 1.1],
K3 K3
(70(p), 70(P))y 5, = 1, (0(p), T0(P))y 5, = 8728.

So we obtain the prediction

(28) (10(P), 70(p) Vs 5, = 8T28+2°-1 = 8T60.

The verification of (2§]) is more subtle than the primitive calculation.
We study the geometry of curves in class 28, on the branched K3
surface S. The two point insertions on S determine two points p, ¢ € P2
There are 3 contributions to the invariant (28)):

(i) genus 2 curves in the series 23, arising as e !(Q) where Q C P?
is a conic passing through p and ¢ and tangent to the branch
divisor Cg at 3 distinct points,

(ii) genus 2 curves which are the union of two genus 1 curves arising
as € inverse images of a tangent line of Cg through p and a
tangent line of C through ¢,

(ili) genus 2 curves which are the union of genus 2 and genus 0
curves arising as the e inverse images of the unique line passing
through p and ¢ and a bitangent line of Cj.

The most difficult count of the three is the first. An analysis shows
there are no excess issues, hence (i) is equal to the corresponding genus
0 relative invariant of P?/C,

(29) evi'(p)Uevy'(q) = 6312,

/[M0,2(]1“’2/0672)(1)6(2)3}”"
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where (1)%(2)? indicates the (unordered) relative boundary condition
of 3-fold tangency.

For (ii), there are 30 tangent lines of Cg through p and another 30
through ¢. Since we have a choice of node over the intersection of the
two lines, the contribution (ii) is

2-30% = 1800 .
Since the number of bitangent to Cj is 324, the contribution (iii) is
2-324 =648

remembering again the factor 2 for the choice of node. Hence, we
calculate

(10(p). 0(P))5 55, = 6312+ 1800 + 648 = 8760

in perfect (and nontrivial) agreement with the prediction (28]).

4.4. Gromov-Witten/Pairs correspondence. Let S be a nonsin-
gular projective K3 surface, and let

X=SxF.

A stable pair (F, s) is a coherent sheaf F' with dimension 1 support in X
and a section s € H(X, F) satisfying the following stability condition:

e F'is pure, and
e the section s has zero dimensional cokernel.

To a stable pair, we associate the Euler characteristic and the class of
the support C' of F,

X(F)=n€eZ and [C]=(5,d) € HyX,Z).

For fixed n and (3, d), there is a projective moduli space of stable pairs
P,(X,(5,d)), see [33, Lemma 1.3].

The moduli space P,(X,(5,d)) has a perfect obstruction theory of
virtual dimension 0 which yields a vanishing virtual fundamental class.
If B € Pic(9) is a positive class, then the obstruction theory can be

106 calculate the relative invariant 29), we have used the program GROWI
written by A. Gathmann and available on his webpage [I0] at TU Kaiserslautern.
The submission line to GROWTI is

growi N=1,G=0,D=2E=6, H*:2,[1,2]:3,

and the output is 37872 = 3! - 6312. Since GROWTI orders the 3 relative tangency
points (which we do not do in (29)), a division by 3! completes the calculation.
In addition to providing the software, Gathmann inspired our entire approach

to (7o(p), 7'0(p)>2572 5s by his imprimitive genus 0 Yau-Zaslow calculation in [11].
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reduced to obtain virtual dimension 1. Let Y € H%(S,Q) be any class
satisfying

(30) (8,87) =1

with respect to the intersection pairing on S. For n € Z, we define

By PN n((8) Ums((0)) |
[Pr(X,(8,d))]"e

We follow here the notation of Section 0 for the projections m; and
7o. The insertions in stable pairs theory are defined in [33]. Definition
(31)) is parallel to ([2). As in the Gromov-Witten case, definition (3I))
is independent of ¥ satisfying ([B0) by degeneration and the study of
the stable pairs theory of the rubber geometry Y.

Define the generating series of stable pairs invariants for X is class
(8,d) by

Pé(,d(y) = Z Piﬁ,d y".

neL
Elementary arguments show the moduli spaces P, (X, (3, d)) are empty
for sufficiently negative n, so Pf{ 4 1s a Laurent series in y. Let

N3 (u) = Z N:Xs g u??
gEZ

be the corresponding Gromov-Witten series for disconnected invariants.

Conjecture D. For a positive class 5 € Pic(S) and all d, the series
Pf{d(y) i1s the Laurent expansion of a rational function in y and

NZa(u) = Pha(y)
after the variable change y = — exp(iu).
The d = 0 case of Conjecture D is exactly the Gromov-Witten/Pairs
correspondence established in [34] for all 5 as a step in the proof of the

KKV conjecture. The following result is further evidence for Conjec-
ture D.

Proposition 5. For primitive £, € Pic(S) and alld, the series P§, 4(y)
1s the Laurent expansion of a rational function in y and

N5a(u) = Phay)

after the variable change y = — exp(iu).



24 G. OBERDIECK AND R. PANDHARIPANDE

Proof. We may assume S is elliptically fibered as in Section The
reduced virtual class of the moduli spaces of stable maps and stable
pairs under the degeneration

(32) SxC ~ RxCuURxC

was studied in [25]. Here, R is a rational elliptic surface. The two
components of the degeneration (32) meet along along F' x C where
F C R is a nonsingular fiber of

7m: R— P

The crucial observation is that the reduced virtual class of the moduli
spaces associated to S x C may be expressed in terms of the standard
virtual classes of the relative geometries (B82) of the degeneration. The
above argument is valid also for the degeneration

(33) X=SxFE ~ RxEURXE.
Since the GW /Pairs correspondence for the relative geometry
RxE/FxFE

follows from the results of [31], 32], we obtain the reduced correspon-
dence for S x E. [

5. THE FULL MATRIX

5.1. The Fock space. The Fock space of the K3 surface .5,
(34) F(S) =P Fus) =P H (5, Q),

d>0 d>0

is naturally bigraded with the (d, k)-th summand given by
f5(5> _ H2(k+d) (S[d], Q)
For a bihomogeneous element p € F¥(S), we let
lul=d,  k(p) =k

The Fock space F(S) carries a natural scalar product (- | - ) defined
by declaring the direct sum (B4]) orthogonal and setting

— U
(p|v) /S[d]u v

for every pu,v € H*(S!4, Q). For a,a’ € H*(S,Q), we also write

(a,d) = /Soz Uda'
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If pu, v are bihomogeneous, then (u|v) is nonvanishing only in the case
|ul = [v| and k(p) + k(v) = 0.
For all & € H*(S,Q) and m # 0, the Nakajima operators p,,(«) act
on F(S) bihomogeneously of bidegree (—m, k(«)),
pmla) s Fi — ffj:fa) :
The commutation relations

(35) [P (@), pm’(a/)] = _m5m+m'70<a’ O/> id}—(s)’
are satisfied for all a, o/ € H*(S) and all m,m' € Z \ 0.
The inclusion of the diagonal X C X™ induces a map
Tem  H (X, Q) — H*(X™ Q) = H*(X,Q)®™.
For 7, = 7,9, we have
(@) =) g7 (aUn) ® 7,
.3
where {~;} is a basis of H*(X) and g% is the inverse of the intersection
matrix g;; = <%, 7j>.
For v € H*(S,Q), define the degree zero Virasoro operator
1 y
Lo(v) = 5 Z Pprpok () = — Zzgjp—k(% Upe(v5)
keZ\0 k>1 i

where : —— : is the normal ordered product, see [1§]. For o € H*(S,Q),
we have then

[pi(), Lo(7)] = kpr(aU7).
Let 1 € H*(S) denote the unit. The restriction of Lo(7y) to Fy(S),

Lo(Y)|5ys) : H (S, Q) — H*(S",Q)

is the cup product by the class

1

Da(v) = mp—l(v)p—l(l)d_l € H* (5", Q)

of subschemes incident to v, see [19]. In the special case, v = 1,
Lo = Ly(1) is the energy operator,

Lo(1)|Fus) = d - idzys) -

Finally, define Lehn’s diagonal operator [19]:

1
0= 9 Z (P—iP—jPitj + PiPiP (i) T3 ([X]) -

i,5>1
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For d > 2, 8 acts on F4(S) by the cup product with —3Ag, where
1 n—2
Agla) = mpd(l)ﬁl(l)

denotes the class of the diagonal in S¥.

5.2. Quantum multiplication. Let S be an elliptic K3 surface with
section class B and fiber class F. For h > 0, let

By =DB+hF.

We will define quantum multiplication on F(S) with respect to the
classes [y,.

For ay, ..., a, € H*(S Q), define the quantum bracket

(36) (on,... ) =

q

Z Z ykthl

/_ evi(aq)---evr (anm)
h>0 keZ [Mo,m (SI4,C(Br)+kA)]red

as an element of Q((y))((q)) Because d is determined by the «;, we
often omit S, The multilinear pairing (- --) extends naturally to the
Fock space by declaring the pairing orthogonal with respect to (B4).

Let € be a formal parameter with €2 = 0. For

a,b,c € H*(S" Q),

define the (primitive) quantum product x by
(a|bxc)y = (a bUc>+e-<a,b,c>q.
As (- >q takes values in Q(())((q)), the product * is defined over the
ring
H*(5Y,Q) @ Q(y)((0)) ® Qle] /.

By the WDVV equation in the reduced case (see [27, Appendix 1]),

% is associative. We extend * to an associative product on F(S) by
b* ¢ = 0 whenever b and ¢ are in different summands of (34)).

The parameter € has to be introduced since we use reduced Gromov-
Witten theory to define the bracket ([Bfl). It can be thought of as an
infinitesimal virtual weight on the canonical class K g, and corresponds
in the toric case (see [23, 29]) to the equivariant parameter (¢; + t3)
mod (t; + t2)?.

HBy standard arguments [27], the moduli space Mo.m (S C(Br)+kA) is empty
for k sufficiently negative.



CURVE COUNTING ON K3 x E 27

We are mainly interested in the 2-point quantum operator

NP F(S) @ Q) (@) — F(S) @ Q(y))((a))
defined by the bracket

{(a | EMPb) = (a, b>q

and extended ¢ and y linearly. Because Mo(S9, o) has reduced vir-

tual dimension 2d, £ is a self-adjoint operator of bidegree (0, 0).

Let Dy, Dy € H?*(S Q) be divisor classes. By associativity and
commutativity,

(37) Dy x (Dyxa) = Dy * (Dy % a)
for all a. By the divisor axiom, we have

Dy(y) * - = (Lo(v) +e po(v)gH“b>

Fa(S) Fa(S)

-1
Pl

- (o+ eyd%sHﬂb)

Fa(S) Fa(S)

for every v € H?(S,Q). Here, d% is formal differentiation with respect

to the variable y, and po(7y) for v € H*(S) is the degree 0 Nakajima
operator defined by the following conditio E!

[P0 (7). P (7)) = 0
for all v € H*(S), m € Z and

po(v) " yF 1s = (v, B )" Yk s

After specializing D;, we obtain the main commutator relations for
g on F(9),

po(7) [EM, Lo(v")] = po () [EM™, Lo(7)]
prﬁszgﬁﬁme»

for all v,7" € H?(S,Q). The equalities (B8] are true only after restrict-
ing to F(.5), and not on all of 7(5)®@Q((y))((q)) by definition of po(7y)
and ydiy.

(38)

Equation (38) shows the commutator of EMP with a divisor inter-
section operator to be essentially independent of the divisor.

2This definition precisely matches the action of the extended Heisenberg algebra
(pr(7)),k € Z on the full Fock space F(S) ® Q[H*(S,Q)] under the embedding

q" 1 ¢BThE | see [17) section 6.1].
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5.3. The operators £"). Let
(39) pme(y,9) € C((y"?))[[d]

be fixed power series that satisfy the symmetries
Pme = —P-m,~L
Come =My, -
for all (m, /) € Z?\ 0. Depending on the functions ([B9), define for all
r € Z operators
£V F(8) @ C((y%)((a)) — F(S) @ C(y'*)(()

by the following recursion relations:

(40)

Step 1. For all » > 0,

£ e »
Fo(S)C(@/)) (@) F(y,q)2A(g) — To®ECTHN@)

where F'(y, q) and A(q) are the functions defined in section 2 considered
as formal expansions in the variables y and ¢.

Step 2. For all m # 0,r € Z,
7E()
[P (1,0 =3

k()
LETL m

cpeNETTTO L o (Y. q)

Here k(7y) denotes the shifted complex cohomological degree of ~,
v € H*FI(35:Q)

and : —— : is a variant of the normal ordered product defined by

ER ifr <0
o (e o JPelY) <
pe() {5%4(7) 050,

The two steps uniquely determine the operators £, It follows from
the symmetries (0), that £ respects the Nakajima commutator re-
lations (B5). Hence £ acts on F(S) and is therefore well defined. By
definition, it is an operator of bidegree (—r,0), which is y-linear, but
not q linear.

Conjecture E. There exist unique functions op, e for (m,l) € Z*\ 0
that satisfy:

(i) Initial conditions:

. 1 d
011 =Gy, q) =1, @i0=—iF(y,q), ¢1.1= §qd—q(F(y,q)2) :
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(ii) €O satisfies the WDVV equations:
po() [€7, Lo()] = po(7') [E, Lo(7)]
pol) [€.0] = y - [V, La(1)
on F(S) for all v,7' € H*(S,Q).
Conjecture E has been checked numerically on Fy(S) for d < 5. The
functions ¢, ¢+ sgn(m)d,, are expected to be quasi Jacobi forms with

weights and index for all non-vanishing cases given by the following
table:

index | weight
m#£0,0£0|2HIT

2

m#£0,0=0]| ~1

2

The first values of ¢,,; are:

1 3 1
paa 1= 2K (S0(e) - (52 + 0l + 0.(0(0) - o)

1

1
P21 = 2K3 . (le(Z) - EJ1E2 + 56,2(@(2)))

o0 =—2-J; K?

4 3 1 1
pos ==K (1= So(e) — phE— 100002

1 1
P2,—2 = 2J1 . K4 . <J§ — 2J1p(2) — EJlEQ — 56;;(@(2))) s

where K = iF and J; = 0,(log(F)).

Conjectures E and F (below) were first proposed in different but
equivalent forms in [27].

5.4. Further conjectures. Let L be the energy operator on F(S).
We define the operator

Gh L F(S) @ Q((y))((g)) — F(S) @ Q(())((q))
by

G () = Gy, " -
for any homogeneous p € F(S9).
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Conjecture F. For S an elliptic K3 surface we have on F(S)

g,

Hilb _ ¢(0) _
& & 2N

We stated the Conjecture for the elliptic K3 surface S with respect
to the classes

Bp= B+ hF.

By extracting the ¢" !-coefficient and deforming the K3 surface, we
obtain the 2-point invariants for any pair (S’, 8’) of a K3 surface S’
and a primitive curve class 8’ of square 2h — 2.

The trace of the operator 7z G™ on the Fock space F(9) is

1 ., 1 e
Trz(s) FQAqLO 1GgLo — A Z Gy (S gt

d>0
By Gottsche’s formula [12], we obtain precisely the correction term
(20). Hence Conjectures A and F together imply
1
 x10(9)
The above equation is a purely algebraic statement about the operator
£,

Let P,(Y, (8, d)) be the moduli space of stable pairs on the straight
rubber geometry

Trrs) ¢ W =

Y=S%xR

defined in Section 1. The reduced virtual dimension of the moduli
space P,(Y, (Bn,d)) is 2d. Let

evi : Po(Y, (Bp.d)) — S, i=0,00
be the boundary map.
Define the bidegree (0, 0) operator

g F(S) @ Q((y))((q) — F(S) ® Q(y))((9))
on Fy(S) by

(] ) =35y | evy () Ueviy(v).

h>0 nez [P (Y (Bh,d))]red

BFor d = 0, we take S to be a point.
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Conjecture G. On the elliptic K3 surface S,

gHilb FiA GLO — nyogPairs.

We have stated Conjecture G as relating EH and £, Combining
Conjectures F and G leads to the direct prediction on F(S5):

gPairs — yLo 5(0)

A conjecture relating the stable pairs theory of S x R to the Gromov-
Witten side is formulated exactly as in Conjecture D. We can express
the conjectural relationship between the different theories by the tri-
angle:

Quantum cohomology

of Hilb%(K3)
Gromov-Witten Stable pairs
theory theory
of K3 x P! of K3 x P!

5.5. Three examples. (i) Let I be the fiber of the elliptic fibration.
Then, we have

(p_1(F)'1s | EOp_1(F)"1s) = (—1)(1s | pr(F)*EVp_y( dls>
= (-1) <1S | pol F)dg(d)S01 oP-1 1S>
= 1) <1S | Po( F)2d5 <_ ) ‘P1,0<P71,015>
_ Spcfo@ 1,0
F(y,q)*Alq)
F(y,q)*?
A

in agreement with Theorem Bl We have used po(F) = 1 above.
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(ii) Let W = B+ F. Then W? = 0 and <W, Bh> = h— 1. In particular

po(W) acts as 0, = qdiq. We have

(P () s | EOp 1 (W) Ls) = (=1)*(Ls | po(W)ED o gp_1 (W) 1)
= <1S | PO(W)ng 0)90(110@ 10ls >

nod 8061{0@‘11,0
— (F(?/,Q)ZA(Q)>
_ 22d F<y7q)2d_2
= ( Alg) )

(iii) Let p € H*(S;Z) be the class of a point. For all d > 1, let
C(F) =p1(F)p_1(p)* 15 € Hy(51,2).

Then, assuming Conjecture F,

(C(F)), :<CF ), Dy( F>

,<p p)" s | ECp_1(F)p_i(e)™'1s)

- m<p_l(p)d_lls | D1 0p_1.0p-1(e)* 1)

_1 d—1
) Ed & 1L 1 E0pn0pro(er + DT () poa (€)' 1s)
- P10P-10(p11 + 1)d_1
_ G
A(q)

in full agreement with the first part of Theorem 2 in [27].

5.6. The A, resolution. Let
gPairs — [q—l]gPairs and gHilb _ [q—l]gHilb

be the restriction of EMP and £ to the case of the class 3y = B .
The corresponding local case was considered before in [22] 23]. Define
operators & g ) by

"y _ Y
(s | £5°Ls) = (1+y)?

(1), €3] = (7, B) ((—y) ™2 — (—y)™?) €5

507"

We denote with [¢!] the operator that extracts the ¢! coefficient.
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for all m # 0 and v € H*(S), see [23, Section 5.1]. Translating the
results of [22] 23] to the K3 surface leads to the following evaluation.

Theorem 6. We have

gHilb Y 1d — ~LogPairs _ 5(0) '
B + (1 +y)2 F(S) Yy B B

From numerical experiments [27], we expect the expansions
pmo = ((=y) "2 = (=y)"?) + O(q) ~ for all m #0
Ome = 0(q) forall ¢ £0,m € Z.

Because of
Glo Y
-t = Id
[q ]FQA (1 + y)2 F(S) »

we find conjectures F and G to be in complete agreement with Theorem
6l

From Theorem [6], we obtain the interesting relation

| 11 1
TI‘]: S qLOilgPaHS = - — .
= P yr2tyt qngl (T +y~qm)*(1 = ¢m)*(1 +yq™)

By the symmetry of 1o in the variables ¢ and ¢, we obtain agreement
with Conjecture A.

6. MOTIVIC THEORY

Let S be a nonsingular projective K3 surface, and let 5 € Pic(95)
be a positive class (with respect to any ample polarization). We will
assume [ is irreducible (not expressible as a sum of effective classes).

To unify our study with [I4], we end the paper with a discussion of
the motivic stable pairs invariants of

X=S5%xF

in class (3, d). Following the conjectural perspective of [14], we assume
the Betti realization of the motivic invariants of X is both well-defined
and independent of deformations of S for which § remains algebraic
and irreducible.

We define a generating function Z of the Betti realizations of the
motivic stable pairs theory of X in classes (0, d) where (3, is irreducible
and satisfies

(B, Bn) =2h — 2.
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The series Z depends upon the variables y, ¢, ¢ just as before and a
new variable u for the virtual Poincare polynomial:

. 1 n b1 ~d—
Z(u,y,q,q) = mZZH(Pn(SX B, (@ud)))?/ "t

Here we follow the notation of [14], Section 6] for the normalized virtual
Poincaré polynomial

H(P.(S x E, (Br,d))) € Zlu,u™'].

In the definition of Z, the prefactor the reciprocal of the nor-

1
o (
malized Poincaré polynomial of E) quotients by the translation action

of B on P,(S x E, (B, d)).

Because of the u normalization, we have the following symmetry of
Z in the variable w:

(i) Z(w.y,q,q) = Z(u™",y,4.q) -
Two further properties which constrain Z are:

(ii) the specialization u = —1 must recover the stable pairs invari-
ants (determined by Conjectures A and D),
1

Z —17?/7%6 = -
( ) X10

9

(iii) the coefficient of G~ must specialize to the motivic series of [14,
Section 4],

(wy = 1) (w =) - Coefiz+ (Z(u,y,4,d) ) =

o0

1
11 (1 —uty=1g")(1 —utyg)(1 — ¢)*(1 —uy~'q")(1 — uyq")’

n=1

obtained from the Kawai-Yoshioka calculation [17].

To obtain further constraints, we study the virtual Poincaré polyno-
mial

H(Pia(S X B, (h,d))/E) € Z[u, u™]
which arises as

(41) Coeﬁ‘ylfhquh—lqdfl (Z) .
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For ¢"1¢%!, the coefficient (I]) corresponds to the the lowest order

term in y. We have an isomorphism of the moduli space,
Prop-a(S X E,(h,d))/E = Pi_pia(S,h) .

Hence, we obtain a fourth constraint for Z.

(iv) Coeff j1-n—dgn—15i-1 (Z) equals the y*~"+ig"=1 coefficient of

q q

1 1°_°[ 1
(wy—1) (ut —y=1) +4 (I —uwty=1g")(1 —u~tygm)(1 — ¢")?0(1 —uy—1q™)(1 — uyq™)

The function —ﬁ has a basic symmetry in the variables ¢ and q.
As stated, condition (iv) is not symmetric in ¢ and ¢. However, the
symmetry

Coeﬂyl—h—dqh—lqd—l (Z) = Coeffyl—h—dqd—1q~h—1 (Z)

can be easily verified from (iv). Unfortunately, further calculations
show that the symmetry in the variables ¢ and ¢ appears not to lift to
the motivic theory.

A basic question is to specify the modular properties of Z. We
hope conditions (i)-(iv) together with the modular properties of Z will
uniquely determine Z. There is every reason to expect the function Z
will be beautiful.
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