REDUCED DONALDSON-THOMAS INVARIANTS AND
THE RING OF DUAL NUMBERS

GEORG OBERDIECK AND JUNLIANG SHEN

ABSTRACT. Let A be an abelian variety. We introduce A-equivariant
Grothendieck rings and A-equivariant motivic Hall algebras, and en-
dow them with natural integration maps to the ring of dual numbers.
The construction allows a systematic treatment of reduced Donaldson—
Thomas invariants by Hall algebra techniques. We calculate reduced
Donaldson-Thomas invariants for K3 x E' and abelian threefolds for sev-
eral imprimitive curve classes. This verifies (in special cases) multiple
cover formulas conjectured by Oberdieck—Pandharipande and Bryan—
Oberdieck—Pandharipande—Yin.
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1. INTRODUCTION

1.1. Equivariant Hall algebras. We present a framework to apply tech-
niques from motivic Hall algebras and Grothendieck rings of varieties in the
presence of an action by an abelian variety. The idea is to incorporate the
action as additional data into the definition, making the Hall algebra and
the underlying Grothendieck groups equivariant. The natural integration
map by Euler characteristic is replaced by an integration map to the ring of
dual numbers:
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Precisely, given a scheme Z with an action by a simpleﬂ abelian variety A
we define the integration map by

I(Z) = e(ZY) + e((Z — Z4) ] A)e

where Z4 is the fix locus of the action, and e(-) is the topological Euler
characteristic taken here always in the orbifold sense. This construction
arises natural in applications. For example, for a smooth projective variety
X of dimension d we have the identity in the Grothendieck ring of varieties

o0 ) [X]
(1) > [Hib"(X)]¢" = (Z [Hilb"(C?)o] q")
n=0 n=0

where Hilb™(X) is the Hilbert scheme of points on X, and Hilb™(C9)g is the
punctual Hilbert scheme in the affine space C? [I6]. In case X =Y x A
where A is a simple abelian variety acting on X by translation in the second
factor, a straight-forward argument shows that lifts to the A-equivariant
Grothendieck ring. Applying our integration map we naturally obtairﬂ

00 0o I(X)
1+e> e(Hib"(X)/A)¢" = (Z e(Hilb”(Cd)o)q">
n=1 n=0

—~
)
SN—

00 ee(Y)
= (Z Pd(n)q">
n=0

=1+e-eY)log <§: Pd(n)q”> )
n=0

where Py(n) is the number of d-dimensional partitions of n, and we used the
convention f(q)¢ = exp(log(f)e). The left hand side is (up to a factor) the
generating series of Euler characteristics of the generalized Kummer schemes
of Y x A, and we recover a formula proven by Shen [30], Morrison-Shen [20],
and Gulbrandsen-Ricolfi [I4]. In fact, the first order expansion in terms of
e(A) was the main motivation that led Gulbrandsen to conjecture for
abelian varieties in [13]. Our approach captures this intuition and makes it
mathematically rigorous.

1.2. Reduced Donaldson—Thomas invariants. Our main interest here
lies in applications to Donaldson-Thomas (DT) invariantsﬂ for special Calabi—
Yau threefolds X. We are particularly interested in the following examples:

(1) X is an abelian threefold, or

LAn abelian variety is simple if all its proper subgroups are 0-dimensional.

2See Section 3 for details of the proof.

3Donaldson-Thomas invariants are defined by integration over the Hilbert scheme of
curves in threefolds and virtually enumerate algebraic curves, see [26] for an introduction.
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(2) X is the product of a K3 surface and an elliptic curve E.

In both cases an abelian variety acts on the Hilbert schemes by translation
and forces almost all ordinary DT invariants to vanish. The definition of
DT invariants needs to be modified to be enumerative meaningful.

Let A be an abelian variety which acts on a Calabi—Yau threefold X.
Let Hilb™(X, 8) be the Hilbert scheme of 1-dimensional subschemes Z C X
satisfying

[Z]:,B GHQ(X,Z), X(Oz):nez.

If the induced A-action on Hilb™ (X, 3) has finite stabilizers, we define A-
reduced Donaldson—Thomas invariants of X by

vde = Ze(y_l(k‘)) ,
kEZ

where v : Hilb" (X, 3)/A — Z is Behrend’s constructible function [3].
For abelian threefolds (acting on itself by translation) the definition was
introduced by Gulbrandsen in [13], where he also showed deformation in-

X,A-red __
(3) DT e — /H .
ilb"™(X,8)/A

variance in many cases. For K3 x E the definition is by Bryan [8] and
deformation invariance is proven in [2I]. In both cases explicit conjectural
formulas for the reduced DT invariants are known in all curve classes [22] [10].
The formulas reveal (at least conjecturally and as far as numbers go) rich
structures underlying the enumerative geometry of algebraic curves.

In Section [4] we introduce A-equivariant versions of Joyce’s motivic Hall
algebra and equip them with integration maps defined over the ring of dual
numbers. This structure is tailored to deal with reduced DT invariants
systematically. This leads to new calculations in several interesting cases,
and to DT/PT correspondences in previous unknown cases.

1.3. Reduced DT invariants for K3 x E. Let S be a non-singular pro-
jective K3 surface and let E' be a non-singular elliptic curve. We consider
the product Calabi—Yau

X=SxFE

on which E acts by translation in the second factor. Using the Kiinneth
decomposition we identify

Hy(X,Z) = Hy(S,Z) & Hy(E,Z) = Hy(S,2) & Z.

The conjectural form of the reduced DT invariants of X is reviewed in
Section here we prove the following special case. Define coefficients m(d, n)
by the expansion

i > m(d,n)p"t? = — 24p(p, t)

o [Ty (1 —tm)24
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where g is the Weierstraf elliptic function,

1
12 —i—Zka —24p° k)d.

d=1 k|d

(4) p(p,t) =
Theorem 1. For all d > 0 we have

X, E—red n o 1 \m@h
exp ZDT 0.d) (—=p)" | = ( Z) .
/=1

Theorem |1| determines all reduced invariants in classes (0, d)ﬁ As in the
case of the Hilbert scheme of points we need to exponentiate the generating

series of reduced DT invariants to obtain product expansions. The case d = 0
of Theorem [1| recovers the calculation of reduced degree 0 DT invariants of
[30,20]. For d > 0 the results give a new and non-trivial check in imprimitive
classes for the general multiple cover formula conjectured in [22]. Explicitly,
taking the logarithm in the theorem yields the closed formula
1 n
X FE-red
k|(n,d)
1.4. Reduced DT invariants for abelian threefolds. Let A be a projec-

tive abelian threefold acting on itself by translation. If n # 0 by deformation
invariance the A-reduced DT invariants depend only on the typeﬂ

(d17d27d3)7 d’L Z 0

of the curve class 5. We write

A,A-red
DTre(dth’ds) DTnﬁ .

We restrict here to the degenerate case where 8 has type (0,0,d). If n <0
the Hilbert scheme is empty and all reduced invariants vanish. For n = 0
A-reduced invariants are not defined. For n > 0 we have the following result.

Theorem 2. For all d > 0 and n > 0 we have

(=)t Z 52

k|ged(n,d)

DT;%0.0.0) =

In case d = 0 the above formula specializes to the degree 0 reduced DT
invariants which were conjectured in [I3] and proven in [30), 20}, 4] using gen-
eralized Kummer schemes. If d > 0 we obtain agreement with the multiple
cover formulas of [I0], compare Section

4 The Hilbert scheme Hilb™ (X, (0,d)) is empty for n < 0 and E-invariant for n = 0.
5The type is obtained from the standard divisor theory of the dual abelian variety [10].
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1.5. Reduced DT /PT correspondence. A stable pair on a threefold X
is the datum (F, s) of a pure 1-dimensional sheaf F and a section s € HY(F)
with O-dimensional cokernel. Following [25] we let P, (X, 3) be the moduli
space of stable pairs with numerical invariants

[Supp(F)| =p € Hy(X,Z), x(F)=neZ.

Let A be an abelian variety which acts on a Calabi—Yau threefold X. If
the induced action on P, (X, /) has finite stabilizers, we define A-reduced
Pandharipande-Thomas (PT) invariants by

PTX BA red / vde,
Pu(X,8)/A

where v : P, (X, 3)/A — Z is the Behrend function.

The relationship between usual DT and PT invariants of Calabi—Yau 3-
folds has been well understood via wall-crossing [32] 6, [35]. For abelian
threefolds A we prove in Section [6.4] the following simple correspondence:

DTﬁ,A—red — PTA,A—I'ed

for all n, 8 where A-reduced invariants are defined.
For E-reduced invariants of K3 x E the DT/PT correspondence takes a
more interesting form. Define generating series of reduced invariants:

X,E-red X,E-red
Tred q’ Z DT (A/ de nt'y Tred q, Z PT (7 de nt’y

where the sums run over all n € Z and all curve classes v € Ha(S,Z) with
(n,7v) # 0. Let also

o0

M(g)=J[a-¢H™

m=1

be the MacMahon function, and define coefficients aq by

o0
m= 1
By a result of Gottsche [11] we have ag = e(Hilb%(9)).
Theorem 3. For all d > 0,
exp (DT (g, 1)) = M(—g) "2 - exp (PT(q, 1)) -

If v # 0 then we recover the result of [21],

X,E-red __ X,E-red
DTn,(%d) - In(vd)

while for v = 0 the correspondence (Theorem |3) is new and non-trivial.



6 GEORG OBERDIECK AND JUNLIANG SHEN

1.6. Relation to other work. (1) The motive of the generalized Kum-
mer schemes were computed in [20] using Grothendieck rings relative to an
abelian monoid. It would be interesting to compare this to the motivic class
(in the Grothendieck ring of stacks) of the stack quotient Hilb™(X)/A.

(2) The topological vertex method of [9, [§] may yield another approach to
Theorems [I|and [2l The method proceeds by stratification and computation
of the local invariants. While in principle this method is able to compute
the Euler characteristic of the corresponding Hilbert scheme, the difficulty
here is to incorporate also the correct Behrend function weights into the
computation for DT invariants.

1.7. Plan of the paper. In Section [2] we recall the general multiple cover
formulas for abelian threefolds and K3 x E as conjectured in [22 10]. We
also comment on the relationship of Theorem [1| to Gromov-Witten theory.
In Section [3] as warmup for the general case we introduce an equivariant
Grothendieck ring of varieties and prove the degree 0 cases of Theorems
and [2l In Section 4 we introduce the equivariant motivic Hall algebra, which
we apply in Section [5| to prove the main theorems following a strategy of
Y. Toda [34]. In Section 6 we treat the parallel case of abelian threefolds.

1.8. Conventions. We always work over the complex numbers C. All
schemes are of finite type, and by definition a variety is a reduced, separated
scheme of finite type. A Calabi—Yau threefold is a nonsingular projective
threefold X with trivial canonical class Kx ~ Ox. In particular the van-
ishing of H'(X, Oy) is not required. By the recent work [28] [35] the results
of [7, Sec.5] also hold in this more general setting, compare [21], 4.6].

1.9. Acknowledgements. The paper was started when J. S. was visiting
MIT in September 2016. We would like to thank Jim Bryan, Andrew Kresch,
Davesh Maulik, Rahul Pandharipande, Johannes Schmitt, and Qizheng Yin
for their interest and useful discussions.

J. S. was supported by grant ERC-2012-AdG-320368-MCSK in the group
of Rahul Pandharipande at ETH Ziirich.

2. MULTIPLE COVER FORMULAS

2.1. Overview. We review here the conjectural formulas for reduced DT
invariants of K3 x E by [22] and abelian threefolds by [10].

2.2. K3 x E. Let X = S x F be the product of a non-singular projective
K3 surface S and an elliptic curve F, on which E acts by translation in the
second factor. The E-reduced DT invariants of X are denoted by

red . X,E-red
DT, (s.0) = Do isa)
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where 8 € Hy(S,Z) is a (possibly zero) curve class, d > 0 and n € Z.
Since we require the translation action on the Hilbert scheme to have finite
stabilizers we will always require

B#0 or n#0.

Define coefficients ¢(m) by the expansion
DD cldd = K)ptt? = 24921 (p, )0 (p, 1)
d>0 keZ
where ¢_o 1 is the unique weak Jacobi form of index 1 and weight —2,
(1—pt™)>(1 —p~'t™)?
(1 —tm)4

(5) $21(p,t) =(p—2+p ") []

m>1
and g is the Weierstraf elliptic function . The weight 10 Igusa cusp form
is defined by the product expansion

xw(p,t.1) = pti [ (1 _ plghidyeldhd—k?)
k,h,d
where the product is over all k € Z and h,d > 0 such that

e h>0o0rd>0,
e h=d=0and k<0 .

We define coefficients m(h,d,n) by the expansion of the reciprocal of the
Igusa cusp form in the region 0 < |¢| < |p| < 1,
o o _1
Z Z Z m(h,d, n)p”thilfdfl = — .
h=0d=0neZ x10(p, ¢, )
The coefficients m(h, d,n) are related to m(d, n) introduced before by
m(d,n) = m(1,d,n).
The following conjecture was proposed in [22].

Conjecture 1 ([22]). For all n,,d satisfying  # 0 or n # 0, we have

. 1 B/k)? n

(6) (—1)"DTils = D km<( /2) +1,d, k)
k>1
kl(n,)

where v2 = v -7 is the self-intersection of a class v € Hy(S, 7).

The equality of Conjecture [1] is conjectured to hold for all cases where
it is defined. Indeed, the reduced DT invariants on the left hand side are
defined if and only if (5,n) # (0,0) which precisely coincides with the case
where the sum on the right hand side makes sense.

If 8 is primitive of square 2 = 2h — 2 then @ says the reduced DT
invariant is up to a sign equal to the coefficient m(h, d,n). If 5 is imprimitive,
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then @ expresses the reduced DT invariant in terms of primitive invariants.
Hence we sometimes refer to @ as a multiple cover formula. In the most
degenerate case § = 0 we recover Theorem

Finally, for every d > 0 the rule (@ may be reformulated in the following
product expansion:

1 m(y?/241,d,¢)
exp< Z DTreBd) p)"t >: H (1 ; )

(n,B)#0 (€,7)#0
where (n, 3) and (¢,~) run over all non-zero pairs of an integer and a (pos-
sibly zero) curve class in Ha(S,Z).

2.3. Comparision with Gromov—Witten theory. The formula @ was
conjectured in [22] for reduced Gromov-—Witten (GW) invariants in curve
classes (f,d) where 8 # 0. Translating the statement to DT theory via the
conjectural reduced GW/DT correspondenceﬁ yields Conjecture While
reduced GW invariants are not defined for g = 0, the formula makes sense
on the DT side and surprisingly gives the correct result.

If B vanishes the Donaldson—Thomas generating series is not a rational
function and the variable change p = €™ is not well-defined. However,
parallel to the case of degree zero DT invariants discussed in [19, 2.1] an
asymptotic correspondence may be established as follows.

The analog of the reduced (disconnected) Gromov—Witten potential in
case § = 0 and genus g > 2 is the series
1 =1 E .d
m>1 (1 — tm)fs c2(5) dz:;) 29 — 2<T1(w))\g_1/\g_2>g’dt

where (-)F g.a are the connected Gromov-Witten invariants of the elliptic
curve E in genus g and degree d, and w € H?(E,Z) is the class of a point,
71 is the first descendent insertion, and Ag is the k-th Chern class of the
Hodge bundle. The Euler factor

H 1
m>1 (1 — tm)fs c2(S)
is the contribution of the non-reduced Gromov-Witten theory of X. The
factor 2g — 2 corrects for the integration of the cotangent line bundle over
each curve, compare [I0, Sec.7]. A calculation by Pixton [27, Prop.4.4.6]
based on the results [23], 24] shows

o0

Z <Tl (W)Ag—l)‘g—2>£dtd = (_1)9329—2 (229> C2g(t)

d=0

6 The reduced GW/PT correspondence is conjectured in [22, Conj.D], to which we
apply the DT /PT-correspondence of [21].
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where By are the Bernoulli numbers and
By,

2 —14n
—m+g§:zg’“ 14

n>1 fn

Ch (t) =
are renormalized classical Eisenstein series. Let also
o0
Fot) =Y Fot.
d=0

Then by Theorem (1| the asmptotic Gromov—Witten/Donaldson—Thomas
correspondence holds for all d > 0:

o0 (o.9)
(7) > Fqut™ ~ a3 DTGoa(—p)"
g=2 n=1
under the variable change p = ¢, where we have ¢y = —1/2, and ¢g = —1

for all d > 1, and ~ stands for taking the formal expansion on the right
hand side, interchanging sums and renormalizing the genus g > 2 terms
via negative zeta values. The overall minus sign in the correspondence
corresponds to the difference of the Behrend function of the Hilbert scheme
and its quotient by translation. The factor 1/2 in case d = 0 is parallel (via
taking the logarithm) to the square root in the degree 0 asymptotic GW/DT
correspondence [19, Eqn.2].

2.4. Abelian 3-folds. Let A be an abelian threefold, and let 8 € Ha(A,Z)
be a curve class of type (di,d2,ds). Assuming deformation invariance also
in the case n = 0 we will simply write

red _ A,A-red
DT a1dz.d5) = DT (d) do.ds)

The translation action on the Hilbert scheme has finite stabilizers (and hence
reduced DT invariants are defined) if and only if n # 0 or at least two of
the integers dy, ds, d3 are positive.

Define coefficients a(k) by the expansion

i Z a(4d — TQ)thd = —¢_21(p,t)

d=0r€eZ
where the Jacobi form ¢_o 1 was defined in . Let also

n(d17d27d37k) = E 52
§
where § runs over all divisors of

ng <k7 dl)d27 d37

kW k7 k7 k2

when all numbers in the bracket are integers.

didy dyds dads dldgdg)
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Conjecture 2 ([10]). If n > 0 or at least two of the d; are positive, then

1 4dydadz — n?
(=1)" DT s o) = D 7. (s da, ds, k) - 2 <1 2k§ )
K

where k runs over all divisors of ged(n, dyda, d1ds, dads) such that k2|d1d2d3.

For abelian threefolds we obtain product formulas only if d; = 1 (up to
permutation). Assuming Conjecture |2 we have in analogy with the Igusa
cusp form

0o . e 1 a(4hd—k2)
Te n i
exp | 3 30T 4o (-0t ) = T (7=
d,d=0n€ZL h,d,k
where the product is over all k¥ € Z and m1,mg > 0 such that m; > 0, or
mo >0, or m; =mg =0 and k > 0.

3. EQUIVARIANT GROTHENDIECK RINGS

3.1. Overview. As a toy example for the equivariant Hall algebra we intro-
duce the equivariant Grothendieck ring and its integration map to the dual
numbers. As application we reprove the following result of [30] and [20].

Let A be an abelian variety and let Y be a non-singular quasi-projective
variety. The action of A act on Y x A by translation in the second factor in-
duces an action on the Hilbert scheme of points Hilb™ (Y x A) by translation.
The quotient

Hilb"(Y x A)/A

is a Deligne-Mumford stack for every n > 0. We also let d = dim(Y x A).

Theorem 4. We have
00 00 e(Y)
exp (Z e(Hilb™ (Y x A)/A)q") = (Z Pd(n)qn> .
n=1 n=0
where Py(n) is the number of d-dimensional partitions of n.
3.2. Equivariant Grothendieck rings. Let A be a simple abelian variety

of dimension g > 0. The A-equivariant Grothendieck group of varieties is
the free abelian group K@'(Var) generated by the classes

(X, ax]

of a variety X together with an A-action ax : A x X — X, modulo the
equivariant scissor relations: For every A-invariant closed sub-variety Z C X
with complement U,

(X, ax] = [Z,ax|z] + [U,ax|v].
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For varieties X and Y with A-actions ax and ay respectively, let ax xy be
the A-action on the product X x Y obtained from the diagonal A — A x A
and the product action ax x ay. We define a multiplication on K§'(Var) by

[X,ax] X [Y,ay] = [X X Y, aXXy] .
The product is commutative and associative with unit
[Spec((C), atriv]

where agyy is the trivial A-action. We call the pair (K§'(Var), x) the A-
equivariant Grothendieck ring.

3.3. Schemes. The A-equivariant Grothendieck group of schemes is the
free abelian group K§'(Sch) generated by the classes [X, ax] of a scheme X
together with an A-action ax : A x X — X, modulo the following relations:

(a) [XUY,ax Uay] = [X,ax]+[Y,ay] for every pair of schemes X and

Y with A-actions ax and ay respectively,

(b) [X,ax] = [Y,ay] for every A-equivariant geometric bijectioX Ly
The product on K§'(Sch) is defined identical to the case of varieties. Since
the equivariant scissor relation is implied by relations (a) and (b) the nat-
ural embedding of the category of varieties into the category of schemes
determines a ring homomorphism

(8) Kt (Var) — Kg'(Sch) .
Lemma 1. The morphism is an tsomorphism.

Proof. This is parallel to |7, Sec.2.3, 2.4]. Let X be a scheme with A-action
ax. We first show the class [X,ax] is in the image of (8).

By relation (b) we may assume X is reduced. Then there is an affine
open U C X such that every point of u is seperated in X E| By the valuative
criterion, being seperated is invariant under translation by A. Hence every
point of the translate U+ A4, i.e. the image of AxU %5 X is seperated, and
U+ A is a variety. Repeating the argument with the complement of U+ A, by
induction there exist an A-equivariant stratification of X by varieties. Thus
X admits an A-equivariant geometric bijection from a variety Y, which by
(b) implies the claim.

It remains to check the relations imply each other. The key step is to prove
relation (b) follows from the equivariant scissor relation. By stratification we

"The map f is a geometric bijection if the induced map f(C) : X(C) — Y(C) on
C-valued points is a bijection, see [7, Defn.2.7].

8 Let A C X x X be the diagonal. The non-separated points of X are the closure the
image of Z\ A under the projection to the second factor. Hence we may assume X is
irreducible. Since A \ A has dimension strictly less then X, the scheme A\ A does not
dominate X.
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may assume f : X — Y is a A-equivariant geometric bijection of varieties.
Then by the proof of [7, Lem 2.8] there is an open subset U C Y such that
f~1(U) — U is an isomorphism. Since f is A-equivariant we may assume U
is A-invariant. Replacing X,Y by the complement of U, f ~1(U) respectively
and repeating the argument, the process has to terminate at which point we
obtain [X,ax] = [Y, ay] in Kg'(Var). O

We identify the groups K§'(Var) and Kg'(Sch) via the isomorphism (8.

3.4. Power structures. Recall from [I5] that a power structure over a
commutative ring R is a map

(1+qR[[g]])) x R — (1 +qR[[q]]),
denoted by (f(q),r) — f(t)", satisfying the following 5 axioms
0

(1) fl9)” =1,

(2) f(@)' = f(a),

3) fle)™- (q)n:( (q) - 9(a)",
4) fl@™™ = f@" fla™,
(5) flg)"™ = (f(Q)”)m-

The power structure over the ordinary Grothendieck ring Ky(Var) was
defined in [I5] as follows. Assume Sp(Var) is the semi-subring of Ky(Var)
spanned by effective classes. Let

t)=1+> [Mlq"
k>1
be a series in So(Var)[[q]], and [R] be a class in So(Var). Then f(t)[F is
defined to be the series 1+ 3, ~1[Wp]q¢" with

(9) Wal= > [((HR’“) \ &) x HMZ“/HSM] :
(k1,k2,...) i i i

where A is the big diagonal in [[; R*, and S}, acts by permuting the corre-

sponding k; factors in ([, R¥)\ A and Miki simultaneously, compare [15].
This defines a power structure over Sy(Var) which extends uniquely to a
power structure over Ko(Var).

We define a power structure on the A-equivariant Grothendieck ring
K(?(Var) by exactly the same procedure. It only remains, given A actions
on M} and R respectively, to endow the classes @ with A-actions. The
A-actions on M} and R induce a diagonal action on each effective class

[((gzam\A) Tt /QS’“] |
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and we let [IW}] be the associated equivariant effective class in K§'(Var). As
in [20, Thm 2.1 and 2.2] this defines a power structure over the semi-ring of
A-equivariant effective classes, which extends uniquely to K§'(Var).

3.5. Canonical decompositions and e-integration maps I. Let ax be
an A-action on a variety X. Let U C X be the closed subset of A-fixed
points, and let V= X \ U be its complement. We call the associated scissor
relation

(10) [X7 aX} = [U7 atriv] + [V7 aX|V]

the canonical decomposition of [X,ax]. Since A is a simple abelian group,
the induced A-action on V has finite stabilizers and the quotient V/A is a
Deligne-Mumford stack. We define the e-integration map

T: Kg'(Var) — Qle] /€2
to be the unique group homomorphism satisfying
Z([X,ax]) = e(U) + e(V/A) - €

for every variety X with canonical decompostion .

Since stratification along stabilizers is compatible with the scissor relation,
the canonical decomposition extends uniquely to all classes in K'(Var),
and the map Z is well-defined.

Lemma 2. The e-integration map Z is a ring homomorphism.

Proof. Consider effective classes [X, ax] and [Y, ay] together with their canon-
ical decompositions

(X, ax] = [Ut, aweiv] + [V1, ax|v;]
and
Y, ay] = [Uz, apiv] + [Va, ay |y ].
The product [X x Y, axxy]| has the canonical decomposition
(X xY,axxy| = [Ur x Uz, auiv] + [V, av],

with [V,ay] = [U1 x Vo] + [Uz x V1] 4 [V1 x V3|, where we have suppressed
the induced A-actions. We have

(Ui x Vi) JA = Up x (Vi/4), {i.j} = {1.2}.

Since V; x Vy carries an (A x A)-action, the quotient (V; x V3)/A carries an
A-action. Since this action has no fixed points, e((V; x V3)/A) = 0. Thus

I([X xY, CLXXyD = €(U1 X UQ) +e€- (e(U1>6(V2/A) + €(U2)6(V1/A))
— (X, ax)) - Z([Y ax]). 0
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For f € 1+¢Q[€][[¢]] and g € Q[e] we let f9 = 91°8(f) where the logarithm
is defined by the formal expansion log(l + x) = —>2,>1(—2)"/n. The
associated power structure on Q[e] is compatible with Z as follows:

Lemma 3. Let Y be a variety, and let a be the A-action on' Y x A by
translation in the second factor. Then

[YxA,a] e(Y)-e
() ) -
1—gq 1—g¢q

Proof. We expand the motivic zeta function:
1 [YxA,a]
1= q n>1
where (Y x A)(™ is the n-th symmetric product of ¥ x A and a(™ is the

induced A-action. Hence it suffices to show

e (v x A)™/4) = ef).

n

Let 7 : (Y x A)(™ — A be the composition of the projection (¥ x A)(™ —
A™) and the addition map A™ — A. By [20, Lem 28 and 29], we have

e(m1(04)) = e(Y) -n?!

where 04 € A is the zero. The stack (Y x A)(™ /A is the quotient of 7=1(04)
by the group A[n| of n-torsion points on A. Hence

6((Y % A)(n)/A) _ e(ﬂ—le(gOA)) _ 6(:;) 0

3.6. Proof of Theorem {4, By a topological argument, see [30, Prop 2.1],
the Euler characteristic e(Hilb"(Y x A)/A) does not depend on the choice
of the abelian variety A. Hence we may assume A is simple.

Let H, = Hilb"(C%) be the punctual Hilbert scheme of length n in C%,
and let [H,] be its class in Kg'(Var) (with the trivial A-action). Let a be
the A-action on Y x A by translation in the second factor, and let al™ be
the induced action on Hilb™"(Y x A). By the stratification of Hilb"(Y x A)
(compare [16], 12]) we have

00 00 [YxA,a]
(11) ST Hib" (Y x A),a"]g" = (Z [Hm]qm> :

n=0 m=0
We apply the e-integration map to the equation . Since there exits
classes [M;] € K§'(Var) with trivial A-actions such that

S [Huld™ = ]] (11 >[MM]7

m
m>0 m>1 q
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by Lemmas [2[ and [3| the integration map of the righthand side of is
compatible with the power structure. It follows

1+ Z e(Xn)q" €= ( Z Pd(m)qm) E(Y)G.

n>1 m>0

Theorem [ is deduced by comparing the coefficient of e. ([l

3.7. Degree 0 DT invariants. Let S be a non-singular K3 surface, let E
be an elliptic curve, and let A be an abelian threefold.

Corollary 1. For all n > 0,
DTSXE,E—I‘ed — 24(_1)n_1 Zg? DTA7A_red — (_1)n_1 Z£2
n,0 n ; ’ n,0 n p ’
n n

Proof. This follows by [4], Theorem [4] and MacMahon’s formula for 3-
dimensional partitions,

Z Ps(m)q™ = H (L—e¢m)—™. O

m>0 m>1
4. EQUIVARIANT MOTIVIC HALL ALGEBRAS

4.1. Overview. Let A be a simple abelian variety of dimension g > 0. In
this section we introduce the A-equivariant motivic hall algebra of X and
its integration map over the ring of dual numbers. Applying results of Joyce
we define reduced generalized Donaldson—Thomas invariants, and prove a
structure result for reduced DT invariants generalizing results of Toda and
Bridgeland.

4.2. Modified Grothendieck rings. The modified A-equivariant Grothen-
dieck group K§'(Var) is the Q-vector space K§'(Var) @ Q modulo the follow-
ing extra relations:

(E) Let X1, X, and Y be varieties with A-actions a, az, and ay respec-
tively. If all A-actions have finite stabilizers and X; — Y (i = 1,2)
are A-equivariant Zariski fibrations with the same fibers, then

[X1,a1] = [Xo,a0] € K§(Var).
Lemma 4. Under the assumptions of relation (E), we have
€(X1/A) = e(Xg/A)

Proof. Lett W be the fiber of both fibrations. The A-eqivariant fibration
X; — Y induces a map f; : X;/A — Y/A of Deligne-Mumford stacks with
constant fiber W. Hence for ¢ = 1,2 we have

e(Xi/A) = e(W) - e(Y/A) . O
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The ring structure on K{f‘(Var) induces naturally a ring structure on
K§'(Var). By Lemma W4 the integration map Z descends to a well-defined
ring homomorphism

7 : K§(Var) — Ql].

4.3. Preliminaries. We will follow Bridgeland [7] for the discussion of
Grothendieck groups of stacks and motivic Hall algebras. In particular,
all stacks here are assumed to be algebraic and locally of finite type with
affine geometric stabilizers. Geometric bijections and Zariski fibrations of
stacks are defined in [7, Def 3.1] and [7, Def 3.3] respectively.

Let 0 : GXX — X be a group action on a stack X, and let « : SpecC — X
be a C-valued point of X. The inertia subgroup In(x) of z is defined by the
fiber product

In(z) —— SpecC

| |

G x SpecC M) X.
The stabilizer group of the point € A is the fibered product
Iso(x) = SpecC x, x » SpecC.
The stabilizer group of the G-action at x is the quotient
S(z) = In(z)/Iso(x).

We refer to [29] for a discussion of group actions on stacks.

4.4. Equivariant Grothendieck group of stacks. The following is the
main definition of Section 4] and the equivariant analog of [7, Defn.3.10].

Definition 1. Let S be an algebraic stack equipped with an A-action as.
The relative Grothendieck group of stacks K§'(St/S) is defined to be the
Q-vector space generated by the classes

[X i) S y a)(]
where X is an algebraic stack of finite type, ay is an A-action on X, and f

is an A-equivariant morphism, modulo the following relations:

(a) For every pair of stacks X3 and X5 with A-actions a; and ag respec-
tively a relation

[Xl L Xy Ms,all_mg] = [Xl f—1>S,CL1] + [XQ f—2>S,a2]

where f; (i = 1,2) are A-equivariant.
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(b) For every commutative diagram

with all morphisms A-equivariant and g a geometric bijection a re-
lation

D S ] = [ 22 S, a).

(c) Let X1, X,) be stacks equipped with A-actions ap, ag,ay respec-
tively satisfying one of the following conditions:
(i) the A-actions aj, a9, ay have stabilizers A at every C-point.
(ii) the A-actions ai,ag,ay have finite stabilizers at every C-point.
Then for every pair of A-equivariant Zariski fibrations

h1 :Zti — J), hg :éké —$>J)

with the same fibers and for every A-equivariant morphism Y 4 8,
a relation

goha

[ 2 S 0] = [X 20 S, ay). O

Remark. In relation (c) the stabilizer group of all actions must have the
same type (i.e. either finite or A) for the integration maps to behave rea-
sonable. For example, we require the classes

[A — SpecC, atriv], [A — SpecC,a4]

where agyqy is the trivial action and a4 is the action of A on itself by trans-
lation, to be different in K3'(St/ SpecC).

4.5. Absolute Grothendieck group of stacks. We define the absolute
A-equivariant Grothendieck group of stacks by
K34 (St) = K§'(St/ SpecC).

The product of stacks and the diagonal action makes K§'(St) a commutative
ring. Since relation (E) of Section is a special case of relation (c) of
Definition [T, the inclusion of the category of varieties into the category of
stacks naturally yields a map

(12) K{(Var) — Kg\(St)

For all d > 1 consider the classes of the general linear group GL; endowed
with the trivial A-action,

[GLy) € K§'(Var).
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By relation (c) (compare [7, 3.3]) the image of [GL,] is invertible in Kg'(St).
We then have the following structure result for Kg'(St).

Proposition 1. The morphism induces an isomorphism
(13) K{ (Var)[[GLg) 1, d > 1] == Kg\(St).
For the proof we will require the following lemma.

Lemma 5. Let X be a stack with an A-action such that every C-point of
X has finite stabilizers. Then there exist a variety Y with an A-action and
a G = GLg action such that both actions commute, and an A-equivariant
geometric bijection

f:Y/G— X.

Proof of Lemma 3 Since the A-action on X has finite stabilizers at C-valued
points, the quotient stack X'/A also has affine stabilizers. By [7, Prop 3.5]
applied to X'/A we obtain a geometric bijection

g:Y/G— X/A.

with Y a variety and G = GL, for some d. Form the Cartesian diagrams

Ww—w —2 s x

| l

Y — YV/G 2~ x/A.

Since g is a geometric bijection also g is a geometric bijection. Since WY
is a G-equivariant A-torsor, and W — W is an A-equivariant G-torsor, the
induced actions of A and G on W commute. This also shows W = W /G.

Since W — Y is an A-torsor over the variety Y, we have W is an algebraic
space, and we obtain the A-equivariant geometric bijection

W/G— X.

Finally we need to replace the algebraic space W by a variety V. This can
be achieved by using a similar stratification argument as in the proof of
Lemma Since every algebraic space has an open subspace represented
by an affine scheme, we may choose a subvariety U C W such that the
total (A x G)-orbit of U is represented by a variety. Taking the complement
and repeating, we can stratify W by (A x G)-equivariant varieties U; C w.
Hence we set V' = UU; and obtain a geometric bijection V/G — X. |

Proof of Proposition [l We construct an inverse R to . Let X be a stack
with A-action ay. Consider the stratification

X=Uuuy
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such that the stabilizer of every C-point of U (resp. of V) is A (a finite
group). By relations (b) and (a) we find
(X, ax] = U axlul + [V, ax|v].
By relation (c, ii) with ) = Spec C we have
U axlu] = U, aui]

where ay,iy is the trivial action. Hence we may assume either the A-action
on X is trivial, or has finite stabilizers. In the first case, let Y/GL; — X be
a geometric bijection with Y a variety [7, Prop 3.5]; then set

R([X7 atriv]) = [Y, atriv]/[GLd]~
If the A-action on X has finite stabilizers, let Y/GL; — X be the A-
equivariant geometric bijection of Lemma [5} then we set

R([X, awiv]) = [Y, ay]/[GL4] .

It remains to check R is well-defined and preserves the relations (a,b,c).
This follows along the lines of [7, Lem.3.9] from Lemma [5| and matching the
relation (c) with the extra relation (E) imposed on K'(Var). O

4.6. Hall algebras. Let A be a non-trivial simple abelian variety, let X be
a non-singular projective Calabi—Yau threefold and let

ax :Ax X — X

be a free action. Let Coh(X) be the category of coherent sheaves on X, and
let M be the moduli stack of objects in Coh(X). The abelian variety A acts
on Coh(X) by translation by ax, which induces an A-action

apm:AXM— M.

The equivariant motivic Hall algebra (H*(X),*) of X is defined to be the
relative Grothendieck group

HA(X) := K§(St/M).

with the product * defined by extensions of coherent sheaves as follows. Let
M@ be the moduli stack of short exact sequences

Ee:0— FEy — FEy — E3— 0.

The stack M2 carries an A-action a w2 induced by ax, and A-equivariant
projections p; : M® — M defined by pi(Ee) = E; for i = 1,2,3. Given
A-equivariant morphisms

(X & May] and [V 25 M, ay].
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consider the Cartesian diagram

| 25

PN VNG VE

The morphism p is A-equivariant with respect to the natural diagonal A-
action az on Z. We define the Hall algebra product * by

(X 2 M, ax] « [V 2 M, ay] = [2 225 M, az).

The unit of (H4(X), ) is the point [Spec(C) — M| corresponding to the
trivial sheaf 0 € Coh(X) (together with the trivial A-action).
The Hall algebra H4(X) is naturally a Kg'(St)-module via

[y,ay] . [Z—>M,CLZ] = D/ X Z—)M,ayxg],

where the A-action ayyz is induced by the diagonal A — A x A and the
product action ay X az.

4.7. Regular classes and Poisson algebras. Let L € K¢'(Var) be the
class of the affine line (with the trivial A-action), which we view also as an
element in K¢'(St) via the morphism (I2)). Consider the ring

A=K§Var)[L™H (L + ...+ 1) n > 1]
We define H2,(X) to be the A-submodule of H4(X) generated by the classes

reg
[Z — M,az] where Z is a variety with an A-action az. The elements in

H# (X) are called regular.

reg

Proposition 2. The A-submodule of regular elements HA (X) is closed

reg

under the Hall algebra product *,
HA (X))« HA (X)c HA

reg reg reg

(X)),
and hence a A-algebra. Moreover, the quotient

Hi(X) = Higg(X)/(L — 1) Hioy (X)

reg reg

is a commutative f(/é“(\/ar)—algebm.

We will prove Proposition [2] in Section

The algebra HZ(X) is called the equivariant semi-classical Hall algebra.
Identical to the non-equivariant case, Proposition [2]implies that the Poisson
bracket on HZ,(X) defined by

reg
frg—gxf
(o} =" [9€HeX)
induces a Poisson bracket on the equivariant semi-classical Hall algebra
HA(X). Hence (HZ(X),*,{,}) is a Poisson algebra.
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4.8. Canonical decompositions and e-integration maps I1I. We define
an integration map on the Poisson algebra (HA(X),*,1{,}).
Let K(X) be the Grothendieck group of coherent sheaves on X, and let
I" be the image of the Chern character map
I'=Im(ch: K(X) = H*(X,Q)).
The Euler pairing x( , ) on Coh(X) descends to the Euler form
x:I'xI'—=T.

Consider the abelian group
C(X) =Pl e
vel
where €2 = 0. The product

(14) Cup * Cyy = (_1)X(v1ﬂ}2)cvl+02
and the Poisson bracket

(15) {CvlchQ} = (_1)X(v17v2)X(Ula 02>CU1+U2
make (C¢(X),x,{,}) a Poisson algebra.

The stack M splits as a disjoint union of open and closed substacks

M = |_| M,

vel
according to Chern characters in I'. Hence the equivariant Hall algebra
admits the I'-graded decomposition

HAM) =P H} (M)

vel

where HA (M) is spanned by A-equivariant classes factoring through M,,.
Parallel to for any A-equivariant effective regular class

(Z — M,az] € HA (X)

reg
with Z a variety, we define the canonical decomposition to be
(16) [Z = M,az] =[U = M, ayiv] + [V — M, az|v]

where U is the closed subset formed by A-fixed points and V' = Z\ U. Since
az|y has finite stablizers, the quotient V/A is a Deligne-Mumford stack.
We define the e-integration map

7: HA(X) = C(X).
to be the unique group homomorphism such that for every effective class

(Z % M,az] € HA(M) with canonical decomposition we have

(17) Z(Z & M, az)) = </Ug*VM de 4 (—1)dimA </V/Ag*VM de> .6>.cv,
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where v is the Behrend function on M and the second integral is defined
by
(18) g 'vpmde = Zk-e((g*yM)_l(k)/A> .

V/A keZ

Since the Behrend function is constant along A-orbits, is well-defined.

To show 7T is well-defined we need to check the morphism is compatible
with the relations (a-c) of Section restricted to regular classes. Since we
can stratify the stack M by values of the Behrend function, we only need
to consider regular classes a € K§'(St/M) over a sub-stack

M, C M

where the Behrend function is constant. Then by projecting « to an element
in K§'(St) and using Proposition [1|and [7, Lem.3.8] we obtain that Z is well-
defined, compare [7, 7.2].

Theorem 5. T : HZ(X) — C(X) is a Poisson algebra homomorphism.

4.9. Proof of Proposition [2] and Theorem Both proofs rely on a
stratification developed in [7, Prop 6.2] whose A-equivariant form is the
following.

Proposition 3. Let Y| and Y5 be varieties with A-actions. Assume we have
A-equivariant morphisms
f1:Y1—>Ma f2:Yé—>M’
and let
& e Coh(Y; x X) (i =1,2)
be the corresponding families of sheaves on X. Then we can stratify Y1 X Yo

by locally clased A-invariant sub-varieties W C Y1 x Ya, such that for each
closed point w € W the vector spaces

Ext]§( (E2lwx x> E1lwxx)

have fized dimensions di(W), and if we form the Cartesian diagrams

Zw Z P MR P2 A

(19) i J J(Plﬁps)

W%Y]_XYQMMXM

then there exist an A-equivariant Zariski C2W) _bundle Q — W such that
(20) Zy ~ QTP

where COMW) qcts trivially.
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Proof. In [7, Prop 6.2], the subsets W are chosen to be affine. But since
extension groups form locally trivial bundles along A-orbits, we may instead
also use the A-orbits Ugzea(W + a) in the proof of [7, Prop 6.2]. O

Proof of Proposition[3 The proof is parallel to that of [7, Thm 5.1], but we
spell it out here to present the general method. Let
yi =V & Moay], i=1,2

be equivariant regular classes defined by f; as in Proposition [3] Consider
the A-equivariant stratification as in Proposition

HXYQZUW]'.
J

By definition and the diagram we have
Y1 * Yz = Z[ZWJ — M]

j
where the morphisms is the first row of . Hence yields

(21) yixye =y L-OWI[Q; & M),
J

where g; is the bundle induced by the universal extension, and we have
supressed all A-actions for clarity. Since the right-hand side of is regular,
we have proved the first part of Proposition

We prove the second part. Since the complement of the zero-section of
Q; — W; is a Zariski C*-fibration over P(Q);) by relation (c) of Definition
we have

9

(22) [Q; = M] = [W; = M] + [L - 1][P(Q;) = M]
with compatible A-actions. Hence by we have

(28)  mrgp =YW, > M =[Yix Yo % M| mod (L—1),

J

where ¢ is induced by Y7 x Y5 M M x M and

M x M —= M, ([&],[&]) — [&E1 @ &)

Since is independent of the order of multiplication, * is commutative.
O

Proof of Theorem[J. For equivariant effective classes
yi =Y I M,ay,), i=1,2

we need to check the product identity

(24) Ly *y2) = L(y1) * L(y2)
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and the Poisson bracket identity

(25) Z({y1,y2}) = {Z(v1), Z(y2)}-

By stratification of M we may assume f; maps into the substack M,,, C M
of objects with a fixed Chern character v; such that the Behrend function
on M,,, is constant with value n;. We may further assume that the effective
classes y; are of one of the following types:

Type 1. Every C-valued point on Y; is A-fixed with respect to ay;.
Type 2. Every C-valued point on Y; has finite stabilizers with respect to ay;.

We follow the calculations of [7), Section 7.2] to treat each case.

Case 1. Both y; and ys are of Type 1. Then the A-actions does not play
a role and the e-term does not appear. The proof of [7, Thm 5.2] applies.

Case 2. Assume y; is of Type 1 and ys is of Type 2. Then by definition
I(y1) = me(V1) - cops Z(ya) = (=1) " nge(Ya/A)e - ¢,

where the quotient Y5/A is induced by the action ay,. By and the first
Behrend function identity in [35, Thm 2.6] we have

(26)  Z(y1 *yo) = (=) A(—1)XO122) 0y e(V] X Yo A)€ - Coptan
We obtain the identity by and
e(Y1)e(Ya/A) = e(Y1 x Ya/A).
The calculation of Z({y1,y2}) is similar. Let Q; ER W; be the Zariski
bundle induced by the extension
Ext'(€1,6), ([&1],[E]) € Im(fi, f2) C M.
By the expression , the relation , and Serre duality, we get

{2} = 3 ((da(W) = do(W;) - [ — M|

+ [P(Q;) = M] - [P(Q;) — M))

where we have supressed the natural A-actions on the right hand side. The
second Behrend function identity in [35, Thm 2.6] yields
(27)

Z({y1,y2}) = (-UdimA(Z(—l)X(Ul’”)X(Ul,1)2)”1712 : €(Wj/A)€)Cv1+v2

J
= (1) A1) oy (01, 09) - e(Y1 X Ya/A)e - oy o

which coincides with the right-hand side of by .
Case 3. Both y; and ys are of Type 2. Since €2 = 0 we have

Z(y1) * Z(y2) = {Z(y1), Z(y2)} = 0.
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On the other hand, both equations and also hold in this case.
The product Y7 x Y5 carries an (A x A)-action with no fixed points, hence
e(Y1 x Y2 /A) = 0, and we have

Z(y1 *y2) = Z({y1,y2}) = 0. O

4.10. Generalized DT invariants. Let £ be a fixed polarization on X.

The slope function

ch3(€)
28 )= ——.
( ) :U’l:( ) Cl(ﬁ)‘ChQ(g)

defines a stability condition on the category Coh<;(X) of sheaves with sup-
port of dimension < 1. Let

3
vpp = (0,0,5,n) eI C @H?i(X’Z)’
i=0

be a non-zero numerical class and consider the moduli stack
Mn7ﬁ C M

of pio-semistable sheaves in Coh<q(X) with Chern character v, 3. Since
semi-stability is preserved by translation the A-action on M restricts to an
action apq, , on My, 5. We define

5 = [Mps = M,anm, | € H*(X)

and take the formal logarithm

l
A (-1)
(29) €n,8 — Z I Ony1,B1 * Ong By ¥+ % Opy 3.
lzl,Eizlﬁi:n,Eﬁ:lﬁi:ﬂ,

n

Fier (D)~ Fey (D)
The following theorem is the equivariant analog of Joyce’s no pole theorem
[18, Thm.8.7], see also [5] for a modern proof.

Theorem 6. The element (L — l)efﬁ € HA(X) is regular, i.e,
(L —1)e) 5 € Hip (X).

reg

Proof. We prove the Theorem by making Joyce’s virtual projection operators
[I7] A-equivariant. For this we work with the A-equivariant Hall algebra
which satisfies relations (a) and (b) of Section [4.4] but not (c). The key step
here is that every stack

Mnﬂ — M

admits a A-equivariant geometric bijection

(30) [:Y]G—= Mg,
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where Y is a variety with an A-action and a G-action which commute.
Since the virtual projection operators are explicitly defined on Y/G and A-
equivariant, the projection on virtual indecomposable objects is well-defined
on M, g and yields an A-equivariant and virtual indecomposable object. Its
image in H;gg(X ) is precisely and hence (L — l)eﬁy 5 is regular.

To show we can stratify M, g into a component I/ where the action
has finite stabilizers, and a component V where the action has stabilizer
group A at every closed point. The claim follows for the first component by
Lemma [5 and we only need to consider the second. If A has dimension > 2
then there does not exist a 1-dimensional sheaf fixed by A and V is empty.
Hence we may assume A is an elliptic curve. Since the A action on X is
free, the stack quotient

S=X/A
is a non-singular proper algebraic space of dimension 2 and hence a non-
singular projective surface. Let m : X — S be the quotient map and let F'
be the class of a fiber of . Then V is empty unless § = dF and n = 0
for some d > 0, in which case let Ny be the moduli stack of 0-dimensional
sheaves of length d on S, equipped with the trivial A-action. Then pullback
via 7 induces an A-equivariant geometric bijection onto V,

Nd —V C MO,dF

The claim then follows from Kresch’s stratification result [7, Prop 3.5] ap-
plied to Ny, and equipping Y with the trivial A-action. O

Let (L — 1)67‘?7 5 denote also the projection of
(L — Depp € Higg(X)

reg

on the equivariant semi-classical Hall algebra HZ(X).
Proposition 4. There exists Nrrfg € Q such that
T((L — Vepg) = —(NiG - €) - cu, -
Proof. By the definition of Z we have
Z(L - 1)eﬁ75) = —(Nppg+ N;‘fg “€) - Cup g

where N, g € Q is the generalized DT invariant of [6], 31, 35] and Nfl‘fg € Q.
If dim(A) > 1 then no non-trivial sheaf of dimension < 1 is A-invariant.
Hence N, g =0 for all (n, 3) # 0.
If dim(A) = 1 then every A-invariant sheaf is supported on the elliptic
curve A which implies N,, 3 = 0 by [33, Lem. 2.11]E| O

9 We may also use [34, Prop 6.7] here.
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4.11. Wall-crossing formulas. We define a reduced version of the invari-
ants Ly, g defined in [6, 31], 35]. We follow the discussion in [35, 4.2].
Let D*Coh(X) be the bounded derived category of coherent sheaves on
X, and consider the slope function
C1 (5) . £2
k(&)
which defines a weak stability condition on Coh(X). Let A be the category

ve(€) = , €€ Coh(X).

of complexes I* € D*Coh(X) satisfying the following conditions:
(a) K'(I*) =0ifi#0,1.
(b) All Harder-Narasimhan factors of h°(I*®) have slopes < 0.
(c) All Harder—Narasimhan factors of h!(I*®) have slopes > 0.

By [35, 3.3] the category A is the tilt of Coh(X) along a torsion pair and
hence abelian. Let M4 be the moduli stack of objects in the category A,
and let
Myt AX My — My

be the natural translation action by A. Then we can define the A-equivariant
motivic Hall algebra H4(A) for M 4 parallel to M. By [35, Thm 1.1] the
e-integration map
(31) T: HA(A) — C(X)
defined as in is a homomorphism of Poisson algebras. We refer to [35]
Sec.2] for a detailed discussion about how to replace M by M 4.

Recall the slope function and let ./\/lfl 5 C My be the moduli stack
of objects I*® € A satisfying the following conditions:

(a) ch(I®) = uyp:=(1,0,—8,—n).

(b) h°(I*®) is an ideal sheaf.

(c) h'(I*) € Coh<q(X) and pr(€) > 0 for every sub-sheaf € C hl(I°).
(d) Hom(&E[—1],I°) =0 for any £ € Coh(X) with ps(€) > 0.

Let
Lhp=[Mys C Masapalae ] € HA (M)

be the class defined by the moduli stack Mﬁ 5, with the A-action obtained
by the restriction of arq,. Then by [35] 4.2] the class

(L— 1)L € HE (M)
is a regular element. Define invariants L, g, Lre% € Q by
I(L— 1)L g) = —(Lpp+ LG - €)cu, ,-
By construction Ly, g € Z coincide with the usual L-invariant defined in [35].

Lemma 6. For every 8 we have
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(1) Lyeh = L™ 5 for alln € Z,
(2) Lyt =0 if n>> 0,

Proof. By the same proof as in [35, Sec.4] since the dualizing functor is
A-equivariant. O

In we defined A-reduced Donaldson—Thomas invariants if the action of
A on the Hilbert scheme has finite stabilizers. Here we extend the definition
to the general case as follows. For all n, 3, let

Vn,p C Hilb" (X, B)

be the complement of the fixed locus of translation by A. Then we define

DTX A-red _ /
n ﬁ/A

where v : V,, 3/A — Z is the Behrend function on the quotient.
The following Theorem is the analog for reduced invariants of the main
structure result of Donaldson-Thomas theory [6], 311 [35].

Theorem 7. We have the following formula,

DT 5"
n7B

— (T o) (X Lusat?) + X Lisha e

n>0,3 n,3 n,B

Proof. By a straightforward argument the identity [35, Thm 4.8] lifts to the
A-equivariant motivic hall algebra. Applying the reduced integration map
7T by Proposition || the left-hand side of is the e-coefficient of

(33)  exp ( Z (="~ 1n]\fmﬁeq tﬁ) (Z(Lng —I—Lff%e) ”tﬂ) . O

n>0,3 n,B

5. REDUCED DT INVARIANTS OF K3 x F

5.1. Overview. Let X be the product of a K3 surface S and an elliptic
curve E. We let FE act on X by translation in the second factor. Through-
out the section all reduced invariants shall be understood as FE-reduced
invariants. In particular we write

d X,E-red
DT;‘,Le’ﬂ — DT?’L,ﬁ re .
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5.2. L-invariants.

Proposition 5. We have L:le"(hd) =0 for alln and d > 0, and

(34) D> Lnoadtt = T[a—t™)~2

d>0n€eZ m>1
Proof. Equality is proven in [34, Prop 6.8], hence it remains to show
all Lff?o g vanish. If n <0 the Hilbert scheme Hilb™ (X, (0,d)) is empty. If
n = 0 we have

Hilb’(X, (0,d)) ~ Hilb%(S).

which is invariant under the FE-action, see the proof of [34, Prop 6.8]. Hence

DT;‘A:?O’d) = 0 for n < 0. By Theorem [7| we conclude Liﬁ?o,d) = 0 for all

n < 0, from which the result follows by Lemma [6] O

5.3. Reduced N-invariants. The proof of the following result is a modi-
fication of an argument by Toda, see [34, Prop 6.7].

Proposition 6. Let n >0, d > 0 and k = ged(n,d). Then

k2 1
ok

Proof. By we have
DT = (~1)" Nz,

Hence the case d = 0 follows from Corollary

Assume d > 0, and let M, o4 be the moduli space of L-semistable
sheaves of Chern character (0,0, (0,d),n), see Section m

If k = ged(n,d) = 1 then every semistable sheaf £ is stable and hence

E =5

for a stable sheaf & supported on j : Es — X for some s € S, where
Es = s x E. By the classification [I}, 2] we conclude

(35) M, (0,0) = M 0,0

where, under the identification of E with its dual Pic’(E), the isomorphism
is given by taking the determinant on each fiber Ej,

E =& = judet(&).

It remains to compare the translation action by F on both sides of .
Let t,: X — X, (s,e) — (s,e+ a) be the translation by an element a € E.
We have

det(t:€) = det(€) ® Op, (—na) = t:,det(E)
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Hence the isomorphism is F-equivariant with respect to n-times the
natural translation action on the right hand side. Taking into account the
stabilizers group E[n] of n-torsion points of F, we conclude
1 24
Nytoay = 75 - Nidoo) = 3
which verifies the proposition in case k = 1.

Assume m = kmg and d = kdy with ged(mg,dy) = 1. Then according
to [I, 2] there is no stable object in M,, (o 4). Every semistable sheaf &
in M,, (0,q) has exactly k Jordan-Holder(JH) factors, and each factor deter-
mines a C-valued point in M, (0.4,)- The universal family on M, 0,4,) X 5 X
induces a derived equivalence

(36) DbCoh(X) = D°Coh(X)

sending [£] € M,y (0,40) t0 a skyscraper sheaf C, for some p € X. Hence
comparing Jordan—Hoélder factors we obtain the isomorphism

(37) M, (0,q) = M. 0,0)-

Applying the same argument as in the case k = 1 to each JH-factor, the
isomorphism is F-equivariant with respect to the ng times the natural
translation on My (o). Hence

1
red red
Noo.a) = 2Nk:0.0)
0
and the claim follows from case d = 0. O

5.4. Proof of Theorem [I, By Theorem [7] the reduced DT invariants are
completely determined by the L, the reduced L, and the reduced N invari-
ants. Hence Theorem [I] follows from Propositions [6] and O

5.5. Proof of Theorem (3. The Hall algebra identity of [35, Lem 3.16] lifts
to the A-equivariant Hall algebra. Applying the e-integration map shows
that the difference between the generating series of reduced DT and PT
invariants is

(Z(—l)”lnNﬁféiqn> : (Z Ln,ﬁq"tﬁ> :
n>0 n,B

By definition, the ordinary L-invariant L,, g vanishes if 3 is not of the form
(0,d) since there is no E-fixed point in the moduli space Mﬁﬁ. Hence if
v € Hy(S,Z) is non-zero then

d d
DTty = Py -
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Finally, by Propositions [6] and [5] we obtain

log (H (1- <—q>”>") [Ta- tm>—24] .o

DT o) = PTiloa+24

n>1 m>1

6. REDUCED DT INVARIANTS FOR ABELIAN 3-FOLDS

6.1. Overview. Let B be an non-singular simple principally polarized abelian
surface, let £/ be an elliptic curve and let

A=BXxE.
Here we compute the A-reduced DT invariant of X in class
(0,d) € Hy(A,Z) .

By deformation invariance [I3] this yields Theorem

Since A is not simple the equivariant Hall algebra methods of Section [4]
can not be applied directly and need to be modified. In particular we need
to account for more complicated stabilizer groups. For A = B x E this leads
to an integration map which takes values in the ring

Qler, €]/ (] = €5 =0).

6.2. Equivariant Hall algebra. The following Lemma asserts that all sta-
bilizer groups of A can be controlled.

Lemma 7. Every subgroup G of A is of the form (a) G = A, (b) G = BxK,
(¢) G=K'xE, or (d) G=K" for finite groups K, K', K".

Proof. Every subgroup G C A has finitely many connected components all
of which have the same dimension. Let G° be the connected component of
G containing the zero.

If G° has dimension 0, the group G is of type (d).

If G° is of dimension 1, then B simple implies that the projection G° — B
is constant. Hence G is of type (c).

If G° is of dimension 2, consider the projection w : G° — E. If 7 is
non-constant it is surjective and the kernel is a 1-dimensional subgroup of
B; a contradiction. Hence 7 is constant and G is of the form (b).

Finally, if G° is of dimension 3, the group G is of type (a). O

We define the relative and absolute A-equivariant Grothendieck group of
stacks parallel to Section [4] The Definition [1] is identical except for relation
(c). The possible cases (i) and (ii) of stabilizers groups have to replaced with
the cases (a), (b), (c), (d) of Lemmal7] This yields an A-equivariant motivic
Hall algebra HA(X) resp. H?(A) with the usual properties and structures.
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We define the reduced integration map Z. For an effective regular class
Y — M, ay] with Y a variety, let

(38) Y = M,ay] = [YA] + [U1] + [U2] + [V]

be the canonical decomposition, such that every C-point of Y4, Uy, Us, V.
has a stabilizers of type (a), (c), (b), (d) respectively, and we have omitted
the natural A-actions and the morphism to M in the notation. Parallel to
we define the e-integration map to be the unique group homomorphism

(39) T: He(X) = D Qler, ] /(e 63) -
vell
such that for every regular effective class [Y — M,, ay]

(Y & M,ay]) = (/YAg*dee-i- (/Ul/B

_ (/U /Eg*l//\/[ d€)€2 — (/V/Ag*yM d€)€162) ey
2

By the same argument as for Theorem |5, the e-integration map is a
homomorphism of Poisson algebras.

g*I/M d€>€1

6.3. Proof of Theorem Let 671?, s be the class in the A-equivariant mo-
tivic Hall algebra defined in Section [£.10] Define generalized Donaldson—
Thomas invariants by the reduced integration map of Section [6.2]

A .
I((L — 1)671”3) = —anB . CUn,B'
Parallel to Proposition [4] only A-reduced invariants are non-zero. We write
° A-red
Ny 0.0) = No(0.a)1€2-
Define equivariant L-invariants by Z((L — 1)Lf’ 5) = —L} gcn,p and let
DT, 5 = DTyp+ DT + DT 5 + DT, 2 €1en .

As in an application of the reduced integration map yields the wall-
crossing formula

(40) ZDT:L’Bq”tB = exp ( Z (—1)”_1nN;’5q"t5) . (Z L;L’ﬂq”tﬁ) .
n7ﬁ

n,B n>0,8
We have
DT,s=0 if (n, 8) # 0
DTfi’éed -0 for all n, 8
DTﬁ'ﬁred -0 unless 8 = (0,d),d > 0,n =0

DT &) = e(HibY(B)/B) if d >0,
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which yields

Te n_ [e(HilbY(B)/B)e; ifd >0
% mOaT = if d =0.
ne

Picking out the ¢"t(%% coefficient in ([#0) hence yields
(41) DT, l5d) = (— 1)” 1nN od)
Proposition 7. Letn >0, d >0 and k = gcd(n d). Then

v = (5) g = Ly,

ok
Proof. Since the isomorphisms and are compatible with B-translations
the proof of Proposition [6] also shows
NATed ( % > ? Njged

Hence the claim follows from the d = 0 case of and Corollary O
Proof of Theorem[2 By and Proposition O

6.4. DT/PT correspondence. Finally we prove the DT/PT correspon-
dence for abelian 3-folds. If at least two of the d; are positive in the curve
class 8 = (dy, ds,d3) the A-translation on the Chow variety Chow (A, 3) has
no fixed point. By a comparision of local contribution as in [21] it follows

DT/ et = PT/ 4.
The following theorem extends this statement to all classes.
Theorem 8. When d > 0 and n > 0, we have
DT 500 = PTi(50.0)-
Proof. By deformation invariance we may work with the product A = Bx E.

Applying the e-integration map of Section to the A-equivariant version
of the Hall algebra identity of [35, Lem 3.16] yields

Z DT;7(O7d)qntd = exp (Z(—l)”_lnN:l’Oq"td) . (Z PT;’(O’d)q”td) .
n,d

n>0 n,d
where the invariants DT, 4 and N, o are defined in Section and
PT? 00) = PTo0.0) + PTG er + PTh g2 + PToisheres
By expansion using ¢? = ¢3 = 0 and
PT, 0,4 =0
for any (n,d) # 0, the theorem is deduced. O
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