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Abstract. Let A be an abelian variety. We introduce A-equivariant
Grothendieck rings and A-equivariant motivic Hall algebras, and en-
dow them with natural integration maps to the ring of dual numbers.
The construction allows a systematic treatment of reduced Donaldson–
Thomas invariants by Hall algebra techniques. We calculate reduced
Donaldson–Thomas invariants for K3×E and abelian threefolds for sev-
eral imprimitive curve classes. This verifies (in special cases) multiple
cover formulas conjectured by Oberdieck–Pandharipande and Bryan–
Oberdieck–Pandharipande–Yin.
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1. Introduction

1.1. Equivariant Hall algebras. We present a framework to apply tech-
niques from motivic Hall algebras and Grothendieck rings of varieties in the
presence of an action by an abelian variety. The idea is to incorporate the
action as additional data into the definition, making the Hall algebra and
the underlying Grothendieck groups equivariant. The natural integration
map by Euler characteristic is replaced by an integration map to the ring of
dual numbers:

Q[ε]/(ε2 = 0) .

Date: December 5, 2016.
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Precisely, given a scheme Z with an action by a simple1 abelian variety A

we define the integration map by

I(Z) = e(ZA) + e((Z − ZA)/A)ε

where ZA is the fix locus of the action, and e(·) is the topological Euler
characteristic taken here always in the orbifold sense. This construction
arises natural in applications. For example, for a smooth projective variety
X of dimension d we have the identity in the Grothendieck ring of varieties

(1)
∞∑
n=0

[Hilbn(X)] qn =
( ∞∑
n=0

[Hilbn(Cd)0] qn
)[X]

where Hilbn(X) is the Hilbert scheme of points on X, and Hilbn(Cd)0 is the
punctual Hilbert scheme in the affine space Cd [16]. In case X = Y × A
where A is a simple abelian variety acting on X by translation in the second
factor, a straight-forward argument shows that (1) lifts to the A-equivariant
Grothendieck ring. Applying our integration map we naturally obtain2

(2)

1 + ε
∞∑
n=1

e (Hilbn(X)/A) qn =
( ∞∑
n=0

e
(

Hilbn(Cd)0
)
qn
)I(X)

=
( ∞∑
n=0

Pd(n)qn
)ε·e(Y )

= 1 + ε · e(Y ) log
( ∞∑
n=0

Pd(n)qn
)
,

where Pd(n) is the number of d-dimensional partitions of n, and we used the
convention f(q)ε = exp(log(f)ε). The left hand side is (up to a factor) the
generating series of Euler characteristics of the generalized Kummer schemes
of Y ×A, and we recover a formula proven by Shen [30], Morrison-Shen [20],
and Gulbrandsen-Ricolfi [14]. In fact, the first order expansion in terms of
e(A) was the main motivation that led Gulbrandsen to conjecture (2) for
abelian varieties in [13]. Our approach captures this intuition and makes it
mathematically rigorous.

1.2. Reduced Donaldson–Thomas invariants. Our main interest here
lies in applications to Donaldson–Thomas (DT) invariants3 for special Calabi–
Yau threefolds X. We are particularly interested in the following examples:

(1) X is an abelian threefold, or

1An abelian variety is simple if all its proper subgroups are 0-dimensional.
2See Section 3 for details of the proof.
3Donaldson–Thomas invariants are defined by integration over the Hilbert scheme of

curves in threefolds and virtually enumerate algebraic curves, see [26] for an introduction.
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(2) X is the product of a K3 surface and an elliptic curve E.
In both cases an abelian variety acts on the Hilbert schemes by translation
and forces almost all ordinary DT invariants to vanish. The definition of
DT invariants needs to be modified to be enumerative meaningful.

Let A be an abelian variety which acts on a Calabi–Yau threefold X.
Let Hilbn(X,β) be the Hilbert scheme of 1-dimensional subschemes Z ⊂ X
satisfying

[Z] = β ∈ H2(X,Z), χ(OZ) = n ∈ Z .
If the induced A-action on Hilbn(X,β) has finite stabilizers, we define A-
reduced Donaldson–Thomas invariants of X by

(3) DTX,A-red
n,β =

∫
Hilbn(X,β)/A

ν de =
∑
k∈Z

e
(
ν−1(k)

)
,

where ν : Hilbn(X,β)/A→ Z is Behrend’s constructible function [3].
For abelian threefolds (acting on itself by translation) the definition was

introduced by Gulbrandsen in [13], where he also showed deformation in-
variance in many cases. For K3 × E the definition is by Bryan [8] and
deformation invariance is proven in [21]. In both cases explicit conjectural
formulas for the reduced DT invariants are known in all curve classes [22, 10].
The formulas reveal (at least conjecturally and as far as numbers go) rich
structures underlying the enumerative geometry of algebraic curves.

In Section 4 we introduce A-equivariant versions of Joyce’s motivic Hall
algebra and equip them with integration maps defined over the ring of dual
numbers. This structure is tailored to deal with reduced DT invariants
systematically. This leads to new calculations in several interesting cases,
and to DT/PT correspondences in previous unknown cases.

1.3. Reduced DT invariants for K3 × E. Let S be a non-singular pro-
jective K3 surface and let E be a non-singular elliptic curve. We consider
the product Calabi–Yau

X = S × E
on which E acts by translation in the second factor. Using the Künneth
decomposition we identify

H2(X,Z) = H2(S,Z)⊕H2(E,Z) = H2(S,Z)⊕ Z .

The conjectural form of the reduced DT invariants of X is reviewed in
Section 2; here we prove the following special case. Define coefficients m(d, n)
by the expansion

∞∑
d=0

∑
n∈Z

m(d, n)pntd = − 24℘(p, t)∏
m≥1(1− tm)24
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where ℘ is the Weierstraß elliptic function,

(4) ℘(p, t) = 1
12 + p

(1− p)2 +
∞∑
d=1

∑
k|d

k(pk − 2 + p−k)td .

Theorem 1. For all d ≥ 0 we have

exp
( ∞∑
n=1

DTX,E−red
n,(0,d) (−p)n

)
=
∞∏
`=1

( 1
1− p`

)m(d,`)
.

Theorem 1 determines all reduced invariants in classes (0, d).4 As in the
case of the Hilbert scheme of points we need to exponentiate the generating
series of reduced DT invariants to obtain product expansions. The case d = 0
of Theorem 1 recovers the calculation of reduced degree 0 DT invariants of
[30, 20]. For d > 0 the results give a new and non-trivial check in imprimitive
classes for the general multiple cover formula conjectured in [22]. Explicitly,
taking the logarithm in the theorem yields the closed formula

DTX,E-red
n,(0,d) = (−1)n

∑
k|(n,d)

1
k

m
(
d,
n

k

)
.

1.4. Reduced DT invariants for abelian threefolds. Let A be a projec-
tive abelian threefold acting on itself by translation. If n 6= 0 by deformation
invariance the A-reduced DT invariants depend only on the type5

(d1, d2, d3), di ≥ 0

of the curve class β. We write

DTred
n,(d1,d2,d3) = DTA,A-red

n,β .

We restrict here to the degenerate case where β has type (0, 0, d). If n < 0
the Hilbert scheme is empty and all reduced invariants vanish. For n = 0
A-reduced invariants are not defined. For n > 0 we have the following result.

Theorem 2. For all d ≥ 0 and n > 0 we have

DTred
n,(0,0,d) = (−1)n−1

n

∑
k|gcd(n,d)

k2.

In case d = 0 the above formula specializes to the degree 0 reduced DT
invariants which were conjectured in [13] and proven in [30, 20, 14] using gen-
eralized Kummer schemes. If d > 0 we obtain agreement with the multiple
cover formulas of [10], compare Section 2.

4 The Hilbert scheme Hilbn(X, (0, d)) is empty for n < 0 and E-invariant for n = 0.
5The type is obtained from the standard divisor theory of the dual abelian variety [10].
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1.5. Reduced DT/PT correspondence. A stable pair on a threefold X
is the datum (F , s) of a pure 1-dimensional sheaf F and a section s ∈ H0(F)
with 0-dimensional cokernel. Following [25] we let Pn(X,β) be the moduli
space of stable pairs with numerical invariants

[Supp(F)] = β ∈ H2(X,Z), χ(F) = n ∈ Z .

Let A be an abelian variety which acts on a Calabi–Yau threefold X. If
the induced action on Pn(X,β) has finite stabilizers, we define A-reduced
Pandharipande-Thomas (PT) invariants by

PTX,A-red
n,β =

∫
Pn(X,β)/A

ν de,

where ν : Pn(X,β)/A→ Z is the Behrend function.
The relationship between usual DT and PT invariants of Calabi–Yau 3-

folds has been well understood via wall-crossing [32, 6, 35]. For abelian
threefolds A we prove in Section 6.4 the following simple correspondence:

DTA,A-red
n,β = PTA,A-red

n,β

for all n, β where A-reduced invariants are defined.
For E-reduced invariants of K3 × E the DT/PT correspondence takes a

more interesting form. Define generating series of reduced invariants:

DTred
d (q, t) =

∑
n,γ

DTX,E-red
n,(γ,d) q

ntγ , PTred
d (q, t) =

∑
n,γ

PTX,E-red
n,(γ,d) q

ntγ

where the sums run over all n ∈ Z and all curve classes γ ∈ H2(S,Z) with
(n, γ) 6= 0. Let also

M(q) =
∞∏
m=1

(1− qn)−n

be the MacMahon function, and define coefficients ad by
∞∑
d=0

adt
d =

∞∏
m=1

(1− tm)−24 .

By a result of Göttsche [11] we have ad = e(Hilbd(S)).

Theorem 3. For all d ≥ 0,

exp
(
DTred

d (q, t)
)

= M(−q)−24ad · exp
(
PTred

d (q, t)
)
.

If γ 6= 0 then we recover the result of [21],

DTX,E-red
n,(γ,d) = PTX,E-red

n,(γ,d) ,

while for γ = 0 the correspondence (Theorem 3) is new and non-trivial.
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1.6. Relation to other work. (1) The motive of the generalized Kum-
mer schemes were computed in [20] using Grothendieck rings relative to an
abelian monoid. It would be interesting to compare this to the motivic class
(in the Grothendieck ring of stacks) of the stack quotient Hilbn(X)/A.
(2) The topological vertex method of [9, 8] may yield another approach to
Theorems 1 and 2. The method proceeds by stratification and computation
of the local invariants. While in principle this method is able to compute
the Euler characteristic of the corresponding Hilbert scheme, the difficulty
here is to incorporate also the correct Behrend function weights into the
computation for DT invariants.

1.7. Plan of the paper. In Section 2 we recall the general multiple cover
formulas for abelian threefolds and K3 × E as conjectured in [22, 10]. We
also comment on the relationship of Theorem 1 to Gromov-Witten theory.
In Section 3 as warmup for the general case we introduce an equivariant
Grothendieck ring of varieties and prove the degree 0 cases of Theorems 1
and 2. In Section 4 we introduce the equivariant motivic Hall algebra, which
we apply in Section 5 to prove the main theorems following a strategy of
Y. Toda [34]. In Section 6 we treat the parallel case of abelian threefolds.

1.8. Conventions. We always work over the complex numbers C. All
schemes are of finite type, and by definition a variety is a reduced, separated
scheme of finite type. A Calabi–Yau threefold is a nonsingular projective
threefold X with trivial canonical class KX ' OX . In particular the van-
ishing of H1(X,OX) is not required. By the recent work [28, 35] the results
of [7, Sec.5] also hold in this more general setting, compare [21, 4.6].

1.9. Acknowledgements. The paper was started when J. S. was visiting
MIT in September 2016. We would like to thank Jim Bryan, Andrew Kresch,
Davesh Maulik, Rahul Pandharipande, Johannes Schmitt, and Qizheng Yin
for their interest and useful discussions.

J. S. was supported by grant ERC-2012-AdG-320368-MCSK in the group
of Rahul Pandharipande at ETH Zürich.

2. Multiple cover formulas

2.1. Overview. We review here the conjectural formulas for reduced DT
invariants of K3× E by [22] and abelian threefolds by [10].

2.2. K3 × E. Let X = S × E be the product of a non-singular projective
K3 surface S and an elliptic curve E, on which E acts by translation in the
second factor. The E-reduced DT invariants of X are denoted by

DTred
n,(β,d) = DTX,E-red

n,(β,d)
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where β ∈ H2(S,Z) is a (possibly zero) curve class, d ≥ 0 and n ∈ Z.
Since we require the translation action on the Hilbert scheme to have finite
stabilizers we will always require

β 6= 0 or n 6= 0 .

Define coefficients c(m) by the expansion∑
d≥0

∑
k∈Z

c(4d− k2)pktd = 24φ−2,1(p, t)℘(p, t)

where φ−2,1 is the unique weak Jacobi form of index 1 and weight −2,

(5) φ−2,1(p, t) = (p− 2 + p−1)
∏
m≥1

(1− ptm)2(1− p−1tm)2

(1− tm)4

and ℘ is the Weierstraß elliptic function (4). The weight 10 Igusa cusp form
is defined by the product expansion

χ10(p, t, t̃) = p t t̃
∏
k,h,d

(1− pktht̃d)c(4hd−k2)

where the product is over all k ∈ Z and h, d ≥ 0 such that
• h > 0 or d > 0,
• h = d = 0 and k < 0 .

We define coefficients m(h, d, n) by the expansion of the reciprocal of the
Igusa cusp form in the region 0 < |t| < |p| < 1,

∞∑
h=0

∞∑
d=0

∑
n∈Z

m(h, d, n)pnth−1t̃d−1 = −1
χ10(p, t, t̃)

.

The coefficients m(h, d, n) are related to m(d, n) introduced before by

m(d, n) = m(1, d, n) .

The following conjecture was proposed in [22].

Conjecture 1 ([22]). For all n, β, d satisfying β 6= 0 or n 6= 0, we have

(6) (−1)nDTred
n,(β,d) =

∑
k≥1
k|(n,β)

1
k

m
(

(β/k)2

2 + 1, d, n
k

)

where γ2 = γ · γ is the self-intersection of a class γ ∈ H2(S,Z).

The equality of Conjecture 1 is conjectured to hold for all cases where
it is defined. Indeed, the reduced DT invariants on the left hand side are
defined if and only if (β, n) 6= (0, 0) which precisely coincides with the case
where the sum on the right hand side makes sense.

If β is primitive of square β2 = 2h − 2 then (6) says the reduced DT
invariant is up to a sign equal to the coefficient m(h, d, n). If β is imprimitive,
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then (6) expresses the reduced DT invariant in terms of primitive invariants.
Hence we sometimes refer to (6) as a multiple cover formula. In the most
degenerate case β = 0 we recover Theorem 1.

Finally, for every d ≥ 0 the rule (6) may be reformulated in the following
product expansion:

exp
( ∑

(n,β) 6=0
DTred

n,(β,d)(−p)
ntβ
)

=
∏

(`,γ)6=0

( 1
1− p`tγ

)m(γ2/2+1,d,`)

where (n, β) and (`, γ) run over all non-zero pairs of an integer and a (pos-
sibly zero) curve class in H2(S,Z).

2.3. Comparision with Gromov–Witten theory. The formula (6) was
conjectured in [22] for reduced Gromov–Witten (GW) invariants in curve
classes (β, d) where β 6= 0. Translating the statement to DT theory via the
conjectural reduced GW/DT correspondence6 yields Conjecture 1. While
reduced GW invariants are not defined for β = 0, the formula makes sense
on the DT side and surprisingly gives the correct result.

If β vanishes the Donaldson–Thomas generating series is not a rational
function and the variable change p = eiu is not well-defined. However,
parallel to the case of degree zero DT invariants discussed in [19, 2.1] an
asymptotic correspondence may be established as follows.

The analog of the reduced (disconnected) Gromov–Witten potential in
case β = 0 and genus g ≥ 2 is the series

Fg(t) =
∫
S
c2(S) ·

∏
m≥1

1
(1− tm)

∫
S
c2(S)

∞∑
d=0

1
2g − 2

〈
τ1(ω)λg−1λg−2〉Eg,dtd

where 〈·〉Eg,d are the connected Gromov–Witten invariants of the elliptic
curve E in genus g and degree d, and ω ∈ H2(E,Z) is the class of a point,
τ1 is the first descendent insertion, and λk is the k-th Chern class of the
Hodge bundle. The Euler factor∏

m≥1

1
(1− tm)

∫
S
c2(S)

is the contribution of the non-reduced Gromov–Witten theory of X. The
factor 2g − 2 corrects for the integration of the cotangent line bundle over
each curve, compare [10, Sec.7]. A calculation by Pixton [27, Prop.4.4.6]
based on the results [23, 24] shows

∞∑
d=0

〈
τ1(ω)λg−1λg−2〉Eg,dtd = (−1)gB2g−2

(
2g
2

)
C2g(t)

6 The reduced GW/PT correspondence is conjectured in [22, Conj.D], to which we
apply the DT/PT-correspondence of [21].
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where Bk are the Bernoulli numbers and

Ck(t) = − Bk
k · k! + 2

k!
∑
n≥1

∑
`|n

`k−1tn

are renormalized classical Eisenstein series. Let also

Fg(t) =
∞∑
d=0
Fgd t

d .

Then by Theorem 1 the asmptotic Gromov–Witten/Donaldson–Thomas
correspondence holds for all d ≥ 0:

(7)
∞∑
g=2
Fgdu

2g−2 ∼ cd ·
∞∑
n=1

DTred
n,(0,d)(−p)

n

under the variable change p = eiu, where we have c0 = −1/2, and cd = −1
for all d ≥ 1, and ∼ stands for taking the formal expansion on the right
hand side, interchanging sums and renormalizing the genus g ≥ 2 terms
via negative zeta values. The overall minus sign in the correspondence (7)
corresponds to the difference of the Behrend function of the Hilbert scheme
and its quotient by translation. The factor 1/2 in case d = 0 is parallel (via
taking the logarithm) to the square root in the degree 0 asymptotic GW/DT
correspondence [19, Eqn.2].

2.4. Abelian 3-folds. Let A be an abelian threefold, and let β ∈ H2(A,Z)
be a curve class of type (d1, d2, d3). Assuming deformation invariance also
in the case n = 0 we will simply write

DTred
n,(d1,d2,d3) = DTA,A-red

n,(d1,d2,d3)

The translation action on the Hilbert scheme has finite stabilizers (and hence
reduced DT invariants are defined) if and only if n 6= 0 or at least two of
the integers d1, d2, d3 are positive.

Define coefficients a(k) by the expansion
∞∑
d=0

∑
r∈Z

a(4d− r2)prtd = −φ−2,1(p, t)

where the Jacobi form φ−2,1 was defined in (5). Let also

n(d1, d2, d3, k) =
∑
δ

δ2

where δ runs over all divisors of

gcd
(
k, d1, d2, d3,

d1d2
k

,
d1d3
k

,
d2d3
k

,
d1d2d3
k2

)
when all numbers in the bracket are integers.
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Conjecture 2 ([10]). If n > 0 or at least two of the di are positive, then

(−1)nDTred
n,(d1,d2,d3) =

∑
k

1
k

n(d1, d2, d3, k) · a
(

4d1d2d3 − n2

k2

)

where k runs over all divisors of gcd(n, d1d2, d1d3, d2d3) such that k2∣∣d1d2d3.

For abelian threefolds we obtain product formulas only if d1 = 1 (up to
permutation). Assuming Conjecture 2 we have in analogy with the Igusa
cusp form

exp

 ∞∑
d,d̃=0

∑
n∈Z

DTred
n,(1,d,d̃)(−p)

ntdt̃d̃

 =
∏
h,d,k

( 1
1− pktht̃d

)a(4hd−k2)

where the product is over all k ∈ Z and m1,m2 ≥ 0 such that m1 > 0, or
m2 > 0, or m1 = m2 = 0 and k > 0.

3. Equivariant Grothendieck rings

3.1. Overview. As a toy example for the equivariant Hall algebra we intro-
duce the equivariant Grothendieck ring and its integration map to the dual
numbers. As application we reprove the following result of [30] and [20].

Let A be an abelian variety and let Y be a non-singular quasi-projective
variety. The action of A act on Y ×A by translation in the second factor in-
duces an action on the Hilbert scheme of points Hilbn(Y ×A) by translation.
The quotient

Hilbn(Y ×A)/A
is a Deligne–Mumford stack for every n > 0. We also let d = dim(Y ×A).

Theorem 4. We have

exp
( ∞∑
n=1

e
(
Hilbn(Y ×A)/A

)
qn
)

=
( ∞∑
n=0

Pd(n)qn
)e(Y )

.

where Pd(n) is the number of d-dimensional partitions of n.

3.2. Equivariant Grothendieck rings. Let A be a simple abelian variety
of dimension g > 0. The A-equivariant Grothendieck group of varieties is
the free abelian group KA

0 (Var) generated by the classes

[X, aX ]

of a variety X together with an A-action aX : A × X → X, modulo the
equivariant scissor relations: For every A-invariant closed sub-variety Z ⊂ X
with complement U ,

[X, aX ] = [Z, aX |Z ] + [U, aX |U ] .
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For varieties X and Y with A-actions aX and aY respectively, let aX×Y be
the A-action on the product X × Y obtained from the diagonal A→ A×A
and the product action aX ×aY . We define a multiplication on KA

0 (Var) by

[X, aX ]× [Y, aY ] = [X × Y, aX×Y ] .

The product is commutative and associative with unit

[Spec(C), atriv]

where atriv is the trivial A-action. We call the pair
(
KA

0 (Var),×
)

the A-
equivariant Grothendieck ring.

3.3. Schemes. The A-equivariant Grothendieck group of schemes is the
free abelian group KA

0 (Sch) generated by the classes [X, aX ] of a scheme X
together with an A-action aX : A×X → X, modulo the following relations:

(a) [X tY, aX t aY ] = [X, aX ] + [Y, aY ] for every pair of schemes X and
Y with A-actions aX and aY respectively,

(b) [X, aX ] = [Y, aY ] for everyA-equivariant geometric bijection7 X
f−→ Y .

The product on KA
0 (Sch) is defined identical to the case of varieties. Since

the equivariant scissor relation is implied by relations (a) and (b) the nat-
ural embedding of the category of varieties into the category of schemes
determines a ring homomorphism

(8) KA
0 (Var)→ KA

0 (Sch) .

Lemma 1. The morphism (8) is an isomorphism.

Proof. This is parallel to [7, Sec.2.3, 2.4]. Let X be a scheme with A-action
aX . We first show the class [X, aX ] is in the image of (8).

By relation (b) we may assume X is reduced. Then there is an affine
open U ⊂ X such that every point of u is seperated in X.8 By the valuative
criterion, being seperated is invariant under translation by A. Hence every
point of the translate U+A, i.e. the image of A×U aX−−→ X, is seperated, and
U+A is a variety. Repeating the argument with the complement of U+A, by
induction there exist an A-equivariant stratification of X by varieties. Thus
X admits an A-equivariant geometric bijection from a variety Y , which by
(b) implies the claim.

It remains to check the relations imply each other. The key step is to prove
relation (b) follows from the equivariant scissor relation. By stratification we

7The map f is a geometric bijection if the induced map f(C) : X(C) → Y (C) on
C-valued points is a bijection, see [7, Defn.2.7].

8 Let ∆ ⊂ X ×X be the diagonal. The non-separated points of X are the closure the
image of ∆ \ ∆ under the projection to the second factor. Hence we may assume X is
irreducible. Since ∆ \∆ has dimension strictly less then X, the scheme ∆ \∆ does not
dominate X.
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may assume f : X → Y is a A-equivariant geometric bijection of varieties.
Then by the proof of [7, Lem 2.8] there is an open subset U ⊂ Y such that
f−1(U)→ U is an isomorphism. Since f is A-equivariant we may assume U
is A-invariant. Replacing X,Y by the complement of U, f−1(U) respectively
and repeating the argument, the process has to terminate at which point we
obtain [X, aX ] = [Y, aY ] in KA

0 (Var). �

We identify the groups KA
0 (Var) and KA

0 (Sch) via the isomorphism (8).

3.4. Power structures. Recall from [15] that a power structure over a
commutative ring R is a map

(1 + qR[[q]])×R→ (1 + qR[[q]]),

denoted by (f(q), r) 7→ f(t)r, satisfying the following 5 axioms
(1) f(q)0 = 1,
(2) f(q)1 = f(q),
(3) f(q)n · g(q)n = (f(q) · g(q))n,
(4) f(q)n+m = f(q)n · f(q)m,
(5) f(q)nm = (f(q)n)m.

The power structure over the ordinary Grothendieck ring K0(Var) was
defined in [15] as follows. Assume S0(Var) is the semi-subring of K0(Var)
spanned by effective classes. Let

f(t) = 1 +
∑
k≥1

[Mk]qk

be a series in S0(Var)[[q]], and [R] be a class in S0(Var). Then f(t)[R] is
defined to be the series 1 +

∑
n≥1[Wn]qn with

(9) [Wn] =
∑

(k1,k2,...)∑
i
iki=n

[((∏
i

Rki
)
\ 4

)
×
∏
i

Mki
i /

∏
i

Ski

]
,

where 4 is the big diagonal in
∏
iR

ki , and Ski acts by permuting the corre-
sponding ki factors in (

∏
iR

ki) \ 4 and Mki
i simultaneously, compare [15].

This defines a power structure over S0(Var) which extends uniquely to a
power structure over K0(Var).

We define a power structure on the A-equivariant Grothendieck ring
KA

0 (Var) by exactly the same procedure. It only remains, given A actions
on Mk and R respectively, to endow the classes (9) with A-actions. The
A-actions on Mk and R induce a diagonal action on each effective class[((∏

i

Rki
)
\ 4

)
×
∏
i

Mki
i /

∏
i

Ski

]
.
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and we let [Wk] be the associated equivariant effective class in KA
0 (Var). As

in [20, Thm 2.1 and 2.2] this defines a power structure over the semi-ring of
A-equivariant effective classes, which extends uniquely to KA

0 (Var).

3.5. Canonical decompositions and ε-integration maps I. Let aX be
an A-action on a variety X. Let U ⊂ X be the closed subset of A-fixed
points, and let V = X \U be its complement. We call the associated scissor
relation

(10) [X, aX ] = [U, atriv] + [V, aX |V ]

the canonical decomposition of [X, aX ]. Since A is a simple abelian group,
the induced A-action on V has finite stabilizers and the quotient V/A is a
Deligne–Mumford stack. We define the ε-integration map

I : KA
0 (Var)→ Q[ε]/ε2

to be the unique group homomorphism satisfying

I([X, aX ]) = e(U) + e(V/A) · ε

for every variety X with canonical decompostion (10).
Since stratification along stabilizers is compatible with the scissor relation,

the canonical decomposition (10) extends uniquely to all classes in KA
0 (Var),

and the map I is well-defined.

Lemma 2. The ε-integration map I is a ring homomorphism.

Proof. Consider effective classes [X, aX ] and [Y, aY ] together with their canon-
ical decompositions

[X, aX ] = [U1, atriv] + [V1, aX |V1 ]

and
[Y, aY ] = [U2, atriv] + [V2, aY |V1 ].

The product [X × Y, aX×Y ] has the canonical decomposition

[X × Y, aX×Y ] = [U1 × U2, atriv] + [V, aV ] ,

with [V, aV ] = [U1 × V2] + [U2 × V1] + [V1 × V2], where we have suppressed
the induced A-actions. We have

(Ui × Vj)/A ' Ui × (Vj/A), {i, j} = {1, 2} .

Since V1× V2 carries an (A×A)-action, the quotient (V1× V2)/A carries an
A-action. Since this action has no fixed points, e((V1 × V2)/A) = 0. Thus

I([X × Y, aX×Y ]) = e(U1 × U2) + ε ·
(
e(U1)e(V2/A) + e(U2)e(V1/A)

)
= I([X, aX ]) · I([Y, aY ]) . �
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For f ∈ 1+qQ[ε][[q]] and g ∈ Q[ε] we let fg = eg·log(f) where the logarithm
is defined by the formal expansion log(1 + x) = −

∑
n≥1(−x)n/n. The

associated power structure on Q[ε] is compatible with I as follows:

Lemma 3. Let Y be a variety, and let a be the A-action on Y × A by
translation in the second factor. Then

I
(( 1

1− q

)[Y×A,a]
)

=
( 1

1− q

)e(Y )·ε
.

Proof. We expand the motivic zeta function:( 1
1− q

)[Y×A,a]
= 1 +

∑
n≥1

[(Y ×A)(n), a(n)] · qn ,

where (Y × A)(n) is the n-th symmetric product of Y × A and a(n) is the
induced A-action. Hence it suffices to show

e
(
(Y ×A)(n)/A

)
= e(Y )

n
.

Let π : (Y ×A)(n) → A be the composition of the projection (Y ×A)(n) →
A(n) and the addition map A(n) → A. By [20, Lem 28 and 29], we have

e(π−1(0A)) = e(Y ) · n2g−1

where 0A ∈ A is the zero. The stack (Y ×A)(n)/A is the quotient of π−1(0A)
by the group A[n] of n-torsion points on A. Hence

e((Y ×A)(n)/A) = e(π−1(0A))
n2g = e(Y )

n
. �

3.6. Proof of Theorem 4. By a topological argument, see [30, Prop 2.1],
the Euler characteristic e(Hilbn(Y × A)/A) does not depend on the choice
of the abelian variety A. Hence we may assume A is simple.

Let Hn = Hilbn(Cd)0 be the punctual Hilbert scheme of length n in Cd,
and let [Hn] be its class in KA

0 (Var) (with the trivial A-action). Let a be
the A-action on Y × A by translation in the second factor, and let a[n] be
the induced action on Hilbn(Y × A). By the stratification of Hilbn(Y × A)
(compare [16, 12]) we have

(11)
∞∑
n=0

[Hilbn(Y ×A), a[n]]qn =
( ∞∑
m=0

[Hm]qm
)[Y×A,a]

.

We apply the ε-integration map to the equation (11). Since there exits
classes [Mi] ∈ KA

0 (Var) with trivial A-actions such that∑
m≥0

[Hm]qm =
∏
m≥1

( 1
1− qm

)[Mm]
,
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by Lemmas 2 and 3 the integration map of the righthand side of (11) is
compatible with the power structure. It follows

1 +
∑
n≥1

e(Xn)qn · ε =
( ∑
m≥0

Pd(m)qm
)e(Y )ε

.

Theorem 4 is deduced by comparing the coefficient of ε. �

3.7. Degree 0 DT invariants. Let S be a non-singular K3 surface, let E
be an elliptic curve, and let A be an abelian threefold.

Corollary 1. For all n > 0,

DTS×E,E−red
n,0 = 24(−1)n−1

n

∑
`|n

`2, DTA,A−red
n,0 = (−1)n−1

n

∑
`|n

`2,

Proof. This follows by [4], Theorem 4, and MacMahon’s formula for 3-
dimensional partitions,∑

m≥0
P3(m)qm =

∏
m≥1

(1− tm)−m. �

4. Equivariant motivic Hall algebras

4.1. Overview. Let A be a simple abelian variety of dimension g > 0. In
this section we introduce the A-equivariant motivic hall algebra of X and
its integration map over the ring of dual numbers. Applying results of Joyce
we define reduced generalized Donaldson–Thomas invariants, and prove a
structure result for reduced DT invariants generalizing results of Toda and
Bridgeland.

4.2. Modified Grothendieck rings. The modifiedA-equivariant Grothen-
dieck group K̃A

0 (Var) is the Q-vector space KA
0 (Var)⊗Q modulo the follow-

ing extra relations:
(E) Let X1, X2, and Y be varieties with A-actions a1, a2, and aY respec-

tively. If all A-actions have finite stabilizers and Xi → Y (i = 1, 2)
are A-equivariant Zariski fibrations with the same fibers, then

[X1, a1] = [X2, a2] ∈ K̃A
0 (Var) .

Lemma 4. Under the assumptions of relation (E), we have

e(X1/A) = e(X2/A).

Proof. Let W be the fiber of both fibrations. The A-eqivariant fibration
Xi → Y induces a map fi : Xi/A → Y/A of Deligne-Mumford stacks with
constant fiber W . Hence for i = 1, 2 we have

e(Xi/A) = e(W ) · e(Y/A) . �
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The ring structure on KA
0 (Var) induces naturally a ring structure on

K̃A
0 (Var). By Lemma 4 the integration map I descends to a well-defined

ring homomorphism
I : K̃A

0 (Var)→ Q[ε].

4.3. Preliminaries. We will follow Bridgeland [7] for the discussion of
Grothendieck groups of stacks and motivic Hall algebras. In particular,
all stacks here are assumed to be algebraic and locally of finite type with
affine geometric stabilizers. Geometric bijections and Zariski fibrations of
stacks are defined in [7, Def 3.1] and [7, Def 3.3] respectively.

Let σ : G×X → X be a group action on a stack X , and let x : SpecC→ X
be a C-valued point of X . The inertia subgroup In(x) of x is defined by the
fiber product

In(x) SpecC

G× SpecC X .

x

σ◦(idG×x)

The stabilizer group of the point x ∈ X is the fibered product

Iso(x) = SpecC×x,X ,x SpecC .

The stabilizer group of the G-action at x is the quotient

S(x) = In(x)/Iso(x).

We refer to [29] for a discussion of group actions on stacks.

4.4. Equivariant Grothendieck group of stacks. The following is the
main definition of Section 4, and the equivariant analog of [7, Defn.3.10].

Definition 1. Let S be an algebraic stack equipped with an A-action aS .
The relative Grothendieck group of stacks KA

0 (St/S) is defined to be the
Q-vector space generated by the classes

[X f−→ S, aX ]

where X is an algebraic stack of finite type, aX is an A-action on X , and f

is an A-equivariant morphism, modulo the following relations:
(a) For every pair of stacks X1 and X2 with A-actions a1 and a2 respec-

tively a relation

[X1 t X2
f1tf2−−−→ S, a1 t a2] = [X1

f1−→ S, a1] + [X2
f2−→ S, a2]

where fi (i = 1, 2) are A-equivariant.
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(b) For every commutative diagram

X1 X2

S

g

f1 f2

with all morphisms A-equivariant and g a geometric bijection a re-
lation

[X1
f1−→ S, a1] = [X2

f2−→ S, a2].
(c) Let X1,X2,Y be stacks equipped with A-actions a1, a2, aY respec-

tively satisfying one of the following conditions:
(i) the A-actions a1, a2, aY have stabilizers A at every C-point.
(ii) the A-actions a1, a2, aY have finite stabilizers at every C-point.
Then for every pair of A-equivariant Zariski fibrations

h1 : X1 → Y, h2 : X2 → Y

with the same fibers and for every A-equivariant morphism Y g−→ S,
a relation

[X1
g◦h1−−−→ S, a1] = [X2

g◦h2−−−→ S, a2]. �

Remark. In relation (c) the stabilizer group of all actions must have the
same type (i.e. either finite or A) for the integration maps to behave rea-
sonable. For example, we require the classes

[A→ SpecC, atriv], [A→ SpecC, aA]

where atriv is the trivial action and aA is the action of A on itself by trans-
lation, to be different in KA

0 (St/ SpecC).

4.5. Absolute Grothendieck group of stacks. We define the absolute
A-equivariant Grothendieck group of stacks by

KA
0 (St) = KA

0 (St/ SpecC) .

The product of stacks and the diagonal action makes KA
0 (St) a commutative

ring. Since relation (E) of Section 4.2 is a special case of relation (c) of
Definition 1, the inclusion of the category of varieties into the category of
stacks naturally yields a map

(12) K̃A
0 (Var)→ KA

0 (St)

For all d ≥ 1 consider the classes of the general linear group GLd endowed
with the trivial A-action,

[GLd] ∈ K̃A
0 (Var).
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By relation (c) (compare [7, 3.3]) the image of [GLd] is invertible in KA
0 (St).

We then have the following structure result for KA
0 (St).

Proposition 1. The morphism (12) induces an isomorphism

(13) K̃A
0 (Var)[[GLd]−1, d ≥ 1] '−−→ KA

0 (St).

For the proof we will require the following lemma.

Lemma 5. Let X be a stack with an A-action such that every C-point of
X has finite stabilizers. Then there exist a variety Y with an A-action and
a G = GLd action such that both actions commute, and an A-equivariant
geometric bijection

f : Y/G→ X .

Proof of Lemma 5. Since the A-action on X has finite stabilizers at C-valued
points, the quotient stack X/A also has affine stabilizers. By [7, Prop 3.5]
applied to X/A we obtain a geometric bijection

g : Y/G→ X/A.

with Y a variety and G = GLd for some d. Form the Cartesian diagrams

W̃ W X

Y Y/G X/A.

g̃

g

Since g is a geometric bijection also g̃ is a geometric bijection. Since W̃ → Y

is a G-equivariant A-torsor, and W̃ → W is an A-equivariant G-torsor, the
induced actions of A and G on W̃ commute. This also shows W = W̃/G.

Since W̃ → Y is an A-torsor over the variety Y , we have W̃ is an algebraic
space, and we obtain the A-equivariant geometric bijection

W̃/G→ X .

Finally we need to replace the algebraic space W̃ by a variety V . This can
be achieved by using a similar stratification argument as in the proof of
Lemma 1. Since every algebraic space has an open subspace represented
by an affine scheme, we may choose a subvariety U ⊂ W̃ such that the
total (A×G)-orbit of U is represented by a variety. Taking the complement
and repeating, we can stratify W̃ by (A×G)-equivariant varieties Ui ⊂ W̃ .
Hence we set V = tUi and obtain a geometric bijection V/G→ X . �

Proof of Proposition 1. We construct an inverse R to (13). Let X be a stack
with A-action aX . Consider the stratification

X = U t V
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such that the stabilizer of every C-point of U (resp. of V) is A (a finite
group). By relations (b) and (a) we find

[X , aX ] = [U , aX |U ] + [V, aX |V ] .

By relation (c, ii) with Y = SpecC we have

[U , aX |U ] = [U , atriv]

where atriv is the trivial action. Hence we may assume either the A-action
on X is trivial, or has finite stabilizers. In the first case, let Y/GLd → X be
a geometric bijection with Y a variety [7, Prop 3.5]; then set

R([X , atriv]) = [Y, atriv]/[GLd].

If the A-action on X has finite stabilizers, let Y/GLd → X be the A-
equivariant geometric bijection of Lemma 5; then we set

R([X , atriv]) = [Y, aY ]/[GLd] .

It remains to check R is well-defined and preserves the relations (a,b,c).
This follows along the lines of [7, Lem.3.9] from Lemma 5, and matching the
relation (c) with the extra relation (E) imposed on K̃A

0 (Var). �

4.6. Hall algebras. Let A be a non-trivial simple abelian variety, let X be
a non-singular projective Calabi–Yau threefold and let

aX : A×X → X

be a free action. Let Coh(X) be the category of coherent sheaves on X, and
letM be the moduli stack of objects in Coh(X). The abelian variety A acts
on Coh(X) by translation by aX , which induces an A-action

aM : A×M→M .

The equivariant motivic Hall algebra (HA(X), ∗) of X is defined to be the
relative Grothendieck group

HA(X) := KA
0 (St/M).

with the product ∗ defined by extensions of coherent sheaves as follows. Let
M(2) be the moduli stack of short exact sequences

E• : 0→ E1 → E2 → E3 → 0.

The stackM(2) carries an A-action aM(2) induced by aX , and A-equivariant
projections pi : M(2) → M defined by pi(E•) = Ei for i = 1, 2, 3. Given
A-equivariant morphisms

[X g1−→M, aX ] and [Y g2−→M, aY ].
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consider the Cartesian diagram

Z M(2)

X × Y M×M .

ρ

(p1,p3)
(g1,g2)

The morphism ρ is A-equivariant with respect to the natural diagonal A-
action aZ on Z. We define the Hall algebra product ∗ by

[X g1−→M, aX ] ∗ [Y g2−→M, aY ] = [Z p2◦ρ−−−→M, aZ ].

The unit of (HA(X), ∗) is the point [Spec(C) → M] corresponding to the
trivial sheaf 0 ∈ Coh(X) (together with the trivial A-action).

The Hall algebra HA(X) is naturally a KA
0 (St)-module via

[Y, aY ] · [Z →M, aZ ] := [Y × Z →M, aY×Z ],

where the A-action aY×Z is induced by the diagonal A → A × A and the
product action aY × aZ .

4.7. Regular classes and Poisson algebras. Let L ∈ K̃A
0 (Var) be the

class of the affine line (with the trivial A-action), which we view also as an
element in KA

0 (St) via the morphism (12). Consider the ring

Λ = K̃A
0 (Var)

[
L−1, (Ln + . . .+ 1)−1, n ≥ 1

]
We defineHA

reg(X) to be the Λ-submodule ofHA(X) generated by the classes
[Z → M, aZ ] where Z is a variety with an A-action aZ . The elements in
HA

reg(X) are called regular.

Proposition 2. The Λ-submodule of regular elements HA
reg(X) is closed

under the Hall algebra product ∗,

HA
reg(X) ∗HA

reg(X) ⊂ HA
reg(X),

and hence a Λ-algebra. Moreover, the quotient

HA
sc(X) := HA

reg(X)/(L− 1)HA
reg(X)

is a commutative K̃A
0 (Var)-algebra.

We will prove Proposition 2 in Section 4.9.
The algebra HA

sc(X) is called the equivariant semi-classical Hall algebra.
Identical to the non-equivariant case, Proposition 2 implies that the Poisson
bracket on HA

reg(X) defined by

{f, g} := f ∗ g − g ∗ f
L− 1 , f, g ∈ HA

reg(X)

induces a Poisson bracket on the equivariant semi-classical Hall algebra
HA

sc(X). Hence (HA
sc(X), ∗, {, }) is a Poisson algebra.



REDUCED DONDALDSON-THOMAS INVARIANTS 21

4.8. Canonical decompositions and ε-integration maps II. We define
an integration map on the Poisson algebra (HA

sc(X), ∗, {, }).
Let K(X) be the Grothendieck group of coherent sheaves on X, and let

Γ be the image of the Chern character map

Γ = Im(ch : K(X)→ H∗(X,Q)).

The Euler pairing χ( , ) on Coh(X) descends to the Euler form

χ : Γ× Γ→ Γ.

Consider the abelian group

Cε(X) :=
⊕
v∈Γ

Q[ε] · cv

where ε2 = 0. The product

(14) cv1 ∗ cv2 = (−1)χ(v1,v2)cv1+v2

and the Poisson bracket

(15) {cv1 , cv2} = (−1)χ(v1,v2)χ(v1, v2)cv1+v2

make (Cε(X), ∗, {, }) a Poisson algebra.
The stack M splits as a disjoint union of open and closed substacks

M =
⊔
v∈Γ
Mv

according to Chern characters in Γ. Hence the equivariant Hall algebra
admits the Γ-graded decomposition

HA(M) =
⊕
v∈Γ

HA
v (M)

where HA
v (M) is spanned by A-equivariant classes factoring through Mv.

Parallel to (10) for any A-equivariant effective regular class

[Z →M, aZ ] ∈ HA
reg(X)

with Z a variety, we define the canonical decomposition to be

(16) [Z →M, aZ ] = [U →M, atriv] + [V →M, aZ |V ]

where U is the closed subset formed by A-fixed points and V = Z \U . Since
aZ |V has finite stablizers, the quotient V/A is a Deligne–Mumford stack.
We define the ε-integration map

I : HA
sc(X)→ Cε(X).

to be the unique group homomorphism such that for every effective class
[Z g−→M, aZ ] ∈ HA

v (M) with canonical decomposition (16) we have

(17) I([Z g−→M, aZ ]) =
(∫

U
g∗νM de+ (−1)dimA

(∫
V/A

g∗νM de
)
· ε
)
·cv ,
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where νM is the Behrend function on M and the second integral is defined
by

(18)
∫
V/A

g∗νM de =
∑
k∈Z

k · e
(
(g∗νM)−1(k)/A

)
.

Since the Behrend function is constant along A-orbits, (18) is well-defined.
To show I is well-defined we need to check the morphism is compatible

with the relations (a-c) of Section 4.4 restricted to regular classes. Since we
can stratify the stack M by values of the Behrend function, we only need
to consider regular classes α ∈ KA

0 (St/M) over a sub-stack

Mτ ⊂M

where the Behrend function is constant. Then by projecting α to an element
in KA

0 (St) and using Proposition 1 and [7, Lem.3.8] we obtain that I is well-
defined, compare [7, 7.2].

Theorem 5. I : HA
sc(X)→ Cε(X) is a Poisson algebra homomorphism.

4.9. Proof of Proposition 2 and Theorem 5. Both proofs rely on a
stratification developed in [7, Prop 6.2] whose A-equivariant form is the
following.

Proposition 3. Let Y1 and Y2 be varieties with A-actions. Assume we have
A-equivariant morphisms

f1 : Y1 →M, f2 : Y2 →M,

and let
Ei ∈ Coh(Yi ×X) (i = 1, 2)

be the corresponding families of sheaves on X. Then we can stratify Y1×Y2
by locally clased A-invariant sub-varieties W ⊂ Y1 × Y2, such that for each
closed point w ∈W the vector spaces

ExtkX (E2|w×X , E1|w×X)

have fixed dimensions dk(W ), and if we form the Cartesian diagrams

(19)
ZW Z M(2) M

W Y1 × Y2 M×M

ρ p2

(p1,p3)
(f1,f2)

then there exist an A-equivariant Zariski Cd1(W )-bundle Q→W such that

(20) ZW '
[
Q/Cd0(W )

]
,

where Cd0(W ) acts trivially.
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Proof. In [7, Prop 6.2], the subsets W are chosen to be affine. But since
extension groups form locally trivial bundles along A-orbits, we may instead
also use the A-orbits ∪a∈A(W + a) in the proof of [7, Prop 6.2]. �

Proof of Proposition 2. The proof is parallel to that of [7, Thm 5.1], but we
spell it out here to present the general method. Let

yi := [Yi
fi−→M, aYi ], i = 1, 2

be equivariant regular classes defined by fi as in Proposition 3. Consider
the A-equivariant stratification as in Proposition 3,

Y1 × Y2 =
⊔
j

Wj .

By definition and the diagram (19) we have

y1 ∗ y2 =
∑
j

[ZWj →M]

where the morphisms is the first row of (19). Hence (20) yields

(21) y1 ∗ y2 =
∑
j

L−d0(Wj)[Qj
gi−→M],

where gi is the bundle induced by the universal extension, and we have
supressed allA-actions for clarity. Since the right-hand side of (21) is regular,
we have proved the first part of Proposition 2.

We prove the second part. Since the complement of the zero-section of
Qj →Wj is a Zariski C∗-fibration over P(Qj) by relation (c) of Definition 1
we have

(22) [Qj
gj−→M] = [Wj →M] + [L− 1][P(Qj)→M]

with compatible A-actions. Hence by (21) we have

(23) y1 ∗ y2 =
∑
j

[Wj →M] = [Y1 × Y2
φ−→M] mod (L− 1),

where φ is induced by Y1 × Y2
(f1,f2)−−−−→M×M and

M×M→M, ([E1], [E2]) 7→ [E1 ⊕ E2].

Since (23) is independent of the order of multiplication, ∗ is commutative.
�

Proof of Theorem 5. For equivariant effective classes

yi := [Yi
fi−→M, aYi ], i = 1, 2

we need to check the product identity

(24) I(y1 ∗ y2) = I(y1) ∗ I(y2)
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and the Poisson bracket identity

(25) I({y1, y2}) = {I(y1), I(y2)}.

By stratification ofM we may assume fi maps into the substackMni ⊂M
of objects with a fixed Chern character vi such that the Behrend function
onMni is constant with value ni. We may further assume that the effective
classes yi are of one of the following types:
Type 1. Every C-valued point on Yi is A-fixed with respect to aYi .
Type 2. Every C-valued point on Yi has finite stabilizers with respect to aYi .
We follow the calculations of [7, Section 7.2] to treat each case.
Case 1. Both y1 and y2 are of Type 1. Then the A-actions does not play
a role and the ε-term does not appear. The proof of [7, Thm 5.2] applies.
Case 2. Assume y1 is of Type 1 and y2 is of Type 2. Then by definition

I(y1) = n1e(Y1) · cv1 , I(y2) = (−1)dimAn2e(Y2/A)ε · cv2 ,

where the quotient Y2/A is induced by the action aY2 . By (23) and the first
Behrend function identity in [35, Thm 2.6] we have

(26) I(y1 ∗ y2) = (−1)dimA(−1)χ(v1,v2)n1n2 · e(Y1 × Y2/A)ε · cv1+v2 .

We obtain the identity (24) by (14) and

e(Y1)e(Y2/A) = e(Y1 × Y2/A).

The calculation of I({y1, y2}) is similar. Let Q̂j
ĝ−→ Wj be the Zariski

bundle induced by the extension

Ext1(E1, E2), ([E1], [E2]) ∈ Im(f1, f2) ⊂M.

By the expression (21), the relation (22), and Serre duality, we get

{y1, y2} =
∑
j

(
(d3(Wj)− d0(Wj)) · [Wj →M]

+ [P(Qj)→M]− [P(Q̂j)→M]
)

where we have supressed the natural A-actions on the right hand side. The
second Behrend function identity in [35, Thm 2.6] yields
(27)
I({y1, y2}) = (−1)dimA

(∑
j

(−1)χ(v1,v2)χ(v1, v2)n1n2 · e(Wj/A)ε
)
cv1+v2

= (−1)dimA(−1)χ(v1,v2)n1n2χ(v1, v2) · e(Y1 × Y2/A)ε · cv1+v2

which coincides with the right-hand side of (25) by (15).
Case 3. Both y1 and y2 are of Type 2. Since ε2 = 0 we have

I(y1) ∗ I(y2) = {I(y1), I(y2)} = 0.
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On the other hand, both equations (26) and (27) also hold in this case.
The product Y1 × Y2 carries an (A × A)-action with no fixed points, hence
e(Y1 × Y2/A) = 0, and we have

I(y1 ∗ y2) = I({y1, y2}) = 0. �

4.10. Generalized DT invariants. Let L be a fixed polarization on X.
The slope function

(28) µL(E) = ch3(E)
c1(L) · ch2(E) .

defines a stability condition on the category Coh≤1(X) of sheaves with sup-
port of dimension ≤ 1. Let

vn,β = (0, 0, β, n) ∈ Γ ⊂
3⊕
i=0

H2i(X,Z),

be a non-zero numerical class and consider the moduli stack

Mn,β ⊂M

of µL-semistable sheaves in Coh≤1(X) with Chern character vn,β. Since
semi-stability is preserved by translation the A-action on M restricts to an
action aMn,β

on Mn,β. We define

δAn,β = [Mn,β ↪→M, aMn,β
] ∈ HA(X)

and take the formal logarithm

(29) εAn,β =
∑

l≥1,Σli=1ni=n,Σ
l
i=1βi=β,

ni
βi·c1(L) = n

β·c1(L)

(−1)l

l
δn1,β1 ∗ δn2,β2 ∗ · · · ∗ δnl,βl .

The following theorem is the equivariant analog of Joyce’s no pole theorem
[18, Thm.8.7], see also [5] for a modern proof.

Theorem 6. The element (L− 1)εAn,β ∈ HA(X) is regular, i.e,

(L− 1)εAn,β ∈ HA
reg(X).

Proof. We prove the Theorem by making Joyce’s virtual projection operators
[17] A-equivariant. For this we work with the A-equivariant Hall algebra
which satisfies relations (a) and (b) of Section 4.4, but not (c). The key step
here is that every stack

Mn,β ↪→M
admits a A-equivariant geometric bijection

(30) f : Y/G→Mn,β ,
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where Y is a variety with an A-action and a G-action which commute.
Since the virtual projection operators are explicitly defined on Y/G and A-
equivariant, the projection on virtual indecomposable objects is well-defined
onMn,β and yields an A-equivariant and virtual indecomposable object. Its
image in HA

reg(X) is precisely (29) and hence (L− 1)εAn,β is regular.
To show (30) we can stratify Mn,β into a component U where the action

has finite stabilizers, and a component V where the action has stabilizer
group A at every closed point. The claim follows for the first component by
Lemma 5, and we only need to consider the second. If A has dimension ≥ 2
then there does not exist a 1-dimensional sheaf fixed by A and V is empty.
Hence we may assume A is an elliptic curve. Since the A action on X is
free, the stack quotient

S = X/A

is a non-singular proper algebraic space of dimension 2 and hence a non-
singular projective surface. Let π : X → S be the quotient map and let F
be the class of a fiber of π. Then V is empty unless β = dF and n = 0
for some d > 0, in which case let Nd be the moduli stack of 0-dimensional
sheaves of length d on S, equipped with the trivial A-action. Then pullback
via π induces an A-equivariant geometric bijection onto V,

Nd → V ⊂M0,dF

The claim then follows from Kresch’s stratification result [7, Prop 3.5] ap-
plied to Nd, and equipping Y with the trivial A-action. �

Let (L− 1)εAn,β denote also the projection of

(L− 1)εAn,β ∈ HA
reg(X)

on the equivariant semi-classical Hall algebra HA
sc(X).

Proposition 4. There exists N red
n,β ∈ Q such that

I((L− 1)εAn,β) = −(N red
n,β · ε) · cvn,β .

Proof. By the definition of I we have

I((L− 1)εAn,β) = −(Nn,β +N red
n,β · ε) · cvn,β .

where Nn,β ∈ Q is the generalized DT invariant of [6, 31, 35] and N red
n,β ∈ Q.

If dim(A) > 1 then no non-trivial sheaf of dimension ≤ 1 is A-invariant.
Hence Nn,β = 0 for all (n, β) 6= 0.

If dim(A) = 1 then every A-invariant sheaf is supported on the elliptic
curve A which implies Nn,β = 0 by [33, Lem. 2.11].9 �

9 We may also use [34, Prop 6.7] here.
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4.11. Wall-crossing formulas. We define a reduced version of the invari-
ants Ln,β defined in [6, 31, 35]. We follow the discussion in [35, 4.2].

Let DbCoh(X) be the bounded derived category of coherent sheaves on
X, and consider the slope function

νL(E) := c1(E) · L2

rk(E) , E ∈ Coh(X).

which defines a weak stability condition on Coh(X). Let A be the category
of complexes I• ∈ DbCoh(X) satisfying the following conditions:

(a) hi(I•) = 0 if i 6= 0, 1.
(b) All Harder–Narasimhan factors of h0(I•) have slopes ≤ 0.
(c) All Harder–Narasimhan factors of h1(I•) have slopes > 0.

By [35, 3.3] the category A is the tilt of Coh(X) along a torsion pair and
hence abelian. Let MA be the moduli stack of objects in the category A,
and let

aMA : A×MA →MA
be the natural translation action by A. Then we can define the A-equivariant
motivic Hall algebra HA(A) for MA parallel to M. By [35, Thm 1.1] the
ε-integration map

(31) I : HA
sc(A)→ Cε(X)

defined as in (17) is a homomorphism of Poisson algebras. We refer to [35,
Sec.2] for a detailed discussion about how to replace M by MA.

Recall the slope function (28) and let ML
n,β ⊂ MA be the moduli stack

of objects I• ∈ A satisfying the following conditions:
(a) ch(I•) = un,β := (1, 0,−β,−n).
(b) h0(I•) is an ideal sheaf.
(c) h1(I•) ∈ Coh≤1(X) and µL(E) ≥ 0 for every sub-sheaf E ⊂ h1(I•).
(d) Hom(E [−1], I•) = 0 for any E ∈ Coh(X) with µL(E) ≥ 0.

Let
LAn,β = [ML

n,β ⊂MA, aMA |ML
n,β

] ∈ HA(MA)

be the class defined by the moduli stack ML
n,β, with the A-action obtained

by the restriction of aMA . Then by [35, 4.2] the class

(L− 1)LAn,β ∈ HE(MA)

is a regular element. Define invariants Ln,β, Lred
n,β ∈ Q by

I((L− 1)LAn,β) = −(Ln,β + Lred
n,β · ε)cun,β .

By construction Ln,β ∈ Z coincide with the usual L-invariant defined in [35].

Lemma 6. For every β we have
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(1) Lred
n,β = Lred

−n,β for all n ∈ Z,
(2) Lred

n,β = 0 if n� 0.

Proof. By the same proof as in [35, Sec.4] since the dualizing functor is
A-equivariant. �

In (3) we defined A-reduced Donaldson–Thomas invariants if the action of
A on the Hilbert scheme has finite stabilizers. Here we extend the definition
to the general case as follows. For all n, β, let

Vn,β ⊂ Hilbn(X,β)

be the complement of the fixed locus of translation by A. Then we define

DTX,A-red
n,β =

∫
Vn,β/A

ν de

where ν : Vn,β/A→ Z is the Behrend function on the quotient.
The following Theorem is the analog for reduced invariants of the main

structure result of Donaldson–Thomas theory [6, 31, 35].

Theorem 7. We have the following formula,

(32)
∑
n,β

DTX,A-red
n,β qntβ

=
( ∑
n>0,β

(−1)n−1nN red
n,βq

ntβ
)
·
(∑
n,β

Ln,βq
ntβ
)

+
∑
n,β

Lred
n,βq

ntβ.

Proof. By a straightforward argument the identity [35, Thm 4.8] lifts to the
A-equivariant motivic hall algebra. Applying the reduced integration map
I by Proposition 4 the left-hand side of (32) is the ε-coefficient of

�(33) exp

 ∑
n>0,β

(−1)n−1nN red
n,βεq

ntβ

 ·
∑
n,β

(Ln,β + Lred
n,βε)qntβ

 .

5. Reduced DT invariants of K3× E

5.1. Overview. Let X be the product of a K3 surface S and an elliptic
curve E. We let E act on X by translation in the second factor. Through-
out the section all reduced invariants shall be understood as E-reduced
invariants. In particular we write

DTred
n,β = DTX,E-red

n,β .
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5.2. L-invariants.

Proposition 5. We have Lred
n,(0,d) = 0 for all n and d ≥ 0, and

(34)
∑
d≥0

∑
n∈Z

Ln,(0,d)q
ntd =

∏
m≥1

(1− tm)−24.

Proof. Equality (34) is proven in [34, Prop 6.8], hence it remains to show
all Lred

n,(0,d) vanish. If n < 0 the Hilbert scheme Hilbn(X, (0, d)) is empty. If
n = 0 we have

Hilb0(X, (0, d)) ' Hilbd(S).
which is invariant under the E-action, see the proof of [34, Prop 6.8]. Hence
DTred

n,(0,d) = 0 for n ≤ 0. By Theorem 7 we conclude Lred
n,(0,d) = 0 for all

n ≤ 0, from which the result follows by Lemma 6. �

5.3. Reduced N-invariants. The proof of the following result is a modi-
fication of an argument by Toda, see [34, Prop 6.7].

Proposition 6. Let n > 0, d ≥ 0 and k = gcd(n, d). Then

N red
n,(0,d) =

(
k

n

)2
N red
k,0 = 24 · 1

n2

∑
`|k

`2 .

Proof. By (32) we have

DTred
n,0 = (−1)n−1nN red

n,0 .

Hence the case d = 0 follows from Corollary 1.
Assume d > 0, and let Mn,(0,d) be the moduli space of L-semistable

sheaves of Chern character (0, 0, (0, d), n), see Section 4.10.
If k = gcd(n, d) = 1 then every semistable sheaf E is stable and hence

E = j∗E ′

for a stable sheaf E ′ supported on j : Es ↪→ X for some s ∈ S, where
Es = s× E. By the classification [1, 2] we conclude

(35) Mn,(0,d) ∼=M1,(0,0)

where, under the identification of E with its dual Pic0(E), the isomorphism
is given by taking the determinant on each fiber Es,

E = j∗E ′ 7→ j∗ det(E ′) .

It remains to compare the translation action by E on both sides of (35).
Let ta : X → X, (s, e) 7→ (s, e+ a) be the translation by an element a ∈ E.
We have

det(t∗aE) = det(E)⊗OEs(−na) = t∗nadet(E)
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Hence the isomorphism (35) is E-equivariant with respect to n-times the
natural translation action on the right hand side. Taking into account the
stabilizers group E[n] of n-torsion points of E, we conclude

N red
n,(0,d) = 1

n2 ·N
red
1,(0,0) = 24

n2

which verifies the proposition in case k = 1.
Assume m = km0 and d = kd0 with gcd(m0, d0) = 1. Then according

to [1, 2] there is no stable object in Mn,(0,d). Every semistable sheaf E
inMn,(0,d) has exactly k Jordan–Hölder(JH) factors, and each factor deter-
mines a C-valued point inMn0,(0,d0). The universal family on Mn0,(0,d0)×SX
induces a derived equivalence

(36) DbCoh(X) '−→ DbCoh(X)

sending [E ] ∈ Mn0,(0,d0) to a skyscraper sheaf Cp for some p ∈ X. Hence
comparing Jordan–Hölder factors we obtain the isomorphism

(37) Mn,(0,d)
'−→Mk,(0,0).

Applying the same argument as in the case k = 1 to each JH-factor, the
isomorphism (37) is E-equivariant with respect to the n0 times the natural
translation on Mk,(0,0). Hence

N red
n,(0,d) = 1

n2
0
N red
k,(0,0)

and the claim follows from case d = 0. �

5.4. Proof of Theorem 1. By Theorem 7 the reduced DT invariants are
completely determined by the L, the reduced L, and the reduced N invari-
ants. Hence Theorem 1 follows from Propositions 6 and 5. �

5.5. Proof of Theorem 3. The Hall algebra identity of [35, Lem 3.16] lifts
to the A-equivariant Hall algebra. Applying the ε-integration map shows
that the difference between the generating series of reduced DT and PT
invariants is (∑

n>0
(−1)n−1nN red

n,0 q
n

)
·

∑
n,β

Ln,βq
ntβ

 .
By definition, the ordinary L-invariant Ln,β vanishes if β is not of the form
(0, d) since there is no E-fixed point in the moduli space ML

n,β. Hence if
γ ∈ H2(S,Z) is non-zero then

DTred
n,(γ,d) = PTred

n,(γ,d) .
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Finally, by Propositions 6 and 5 we obtain

DTred
n,(0,d) = PTred

n,(0,d)+24

log

∏
n≥1

(1− (−q)n)n
 ∏
m≥1

(1− tm)−24


qntd

. �

6. Reduced DT invariants for abelian 3-folds

6.1. Overview. LetB be an non-singular simple principally polarized abelian
surface, let E be an elliptic curve and let

A = B × E .

Here we compute the A-reduced DT invariant of X in class

(0, d) ∈ H2(A,Z) .

By deformation invariance [13] this yields Theorem 2.
Since A is not simple the equivariant Hall algebra methods of Section 4

can not be applied directly and need to be modified. In particular we need
to account for more complicated stabilizer groups. For A = B×E this leads
to an integration map which takes values in the ring

Q[ε1, ε2]/(ε21 = ε22 = 0) .

6.2. Equivariant Hall algebra. The following Lemma asserts that all sta-
bilizer groups of A can be controlled.

Lemma 7. Every subgroup G of A is of the form (a) G = A, (b) G = B×K,
(c) G = K ′ × E, or (d) G = K ′′ for finite groups K,K ′,K ′′.

Proof. Every subgroup G ⊂ A has finitely many connected components all
of which have the same dimension. Let G◦ be the connected component of
G containing the zero.

If G◦ has dimension 0, the group G is of type (d).
If G◦ is of dimension 1, then B simple implies that the projection G◦ → B

is constant. Hence G is of type (c).
If G◦ is of dimension 2, consider the projection π : G◦ → E. If π is

non-constant it is surjective and the kernel is a 1-dimensional subgroup of
B; a contradiction. Hence π is constant and G is of the form (b).

Finally, if G◦ is of dimension 3, the group G is of type (a). �

We define the relative and absolute A-equivariant Grothendieck group of
stacks parallel to Section 4. The Definition 1 is identical except for relation
(c). The possible cases (i) and (ii) of stabilizers groups have to replaced with
the cases (a), (b), (c), (d) of Lemma 7. This yields an A-equivariant motivic
Hall algebra HA(X) resp. HA(A) with the usual properties and structures.
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We define the reduced integration map I. For an effective regular class
[Y →M, aY ] with Y a variety, let

(38) [Y →M, aY ] = [Y A] + [U1] + [U2] + [V ]

be the canonical decomposition, such that every C-point of Y A, U1, U2, V

has a stabilizers of type (a), (c), (b), (d) respectively, and we have omitted
the natural A-actions and the morphism to M in the notation. Parallel to
(17) we define the ε-integration map to be the unique group homomorphism

(39) I : HA
sc(X)→

⊕
v∈Γ

Q[ε1, ε2]/(ε21, ε22) · cv

such that for every regular effective class [Y →Mv, aY ]

I([Y g−→M, aY ]) =
( ∫

Y A
g∗νM de+

( ∫
U1/B

g∗νM de
)
ε1

−
( ∫

U2/E
g∗νM de

)
ε2 −

( ∫
V/A

g∗νM de
)
ε1ε2

)
· cv .

By the same argument as for Theorem 5, the ε-integration map (39) is a
homomorphism of Poisson algebras.

6.3. Proof of Theorem 2. Let εAn,β be the class in the A-equivariant mo-
tivic Hall algebra defined in Section 4.10. Define generalized Donaldson–
Thomas invariants by the reduced integration map of Section 6.2,

I
(
(L− 1)εAn,β

)
= −N•n,β · cvn,β .

Parallel to Proposition 4 only A-reduced invariants are non-zero. We write

N•n,(0,d) = NA-red
n,(0,d)ε1ε2 .

Define equivariant L-invariants by I
(
(L− 1)LAn,β) = −L•n,βcn,β and let

DT•n,β = DTn,β + DTB-red
n,β ε1 + DTE-red

n,β ε2 + DTA-red
n,β ε1ε2 .

As in (33) an application of the reduced integration map yields the wall-
crossing formula

(40)
∑
n,β

DT•n,βqntβ = exp

 ∑
n>0,β

(−1)n−1nN•n,βqntβ
 ·

∑
n,β

L•n,βqntβ
 .

We have
DTn,β = 0 if (n, β) 6= 0
DTE-red

n,β = 0 for all n, β
DTB-red

n,β = 0 unless β = (0, d), d > 0, n = 0
DTB-red

0,(0,d) = e(Hilbd(B)/B) if d > 0,
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which yields ∑
n∈Z

L•n,(0,d)q
n =

{
e(Hilbd(B)/B)ε1 if d > 0
1 if d = 0.

Picking out the qnt(0,d) coefficient in (40) hence yields

(41) DTA-red
n,(0,d) = (−1)n−1nNA-red

n,(0,d) .

Proposition 7. Let n > 0, d ≥ 0 and k = gcd(n, d). Then

NA-red
n,(0,d) =

(
k

n

)2
NA-red
k,0 = 1

n2

∑
`|k

`2 .

Proof. Since the isomorphisms (35) and (37) are compatible withB-translations
the proof of Proposition 6 also shows

NA-red
n,(0,d) =

(
k

n

)2
NA-red
k,0 .

Hence the claim follows from the d = 0 case of (41) and Corollary 1. �

Proof of Theorem 2. By (41) and Proposition 7. �

6.4. DT/PT correspondence. Finally we prove the DT/PT correspon-
dence for abelian 3-folds. If at least two of the di are positive in the curve
class β = (d1, d2, d3) the A-translation on the Chow variety Chow(A, β) has
no fixed point. By a comparision of local contribution as in [21] it follows

DTA-red
n,β = PTA-red

n,β .

The following theorem extends this statement to all classes.

Theorem 8. When d > 0 and n > 0, we have

DTA-red
n,(0,0,d) = PTA-red

n,(0,0,d).

Proof. By deformation invariance we may work with the product A = B×E.
Applying the ε-integration map of Section 6.2 to the A-equivariant version
of the Hall algebra identity of [35, Lem 3.16] yields

∑
n,d

DT•n,(0,d)q
ntd = exp

(∑
n>0

(−1)n−1nN•n,0qntd
)
·

∑
n,d

PT•n,(0,d)q
ntd

 .
where the invariants DT•n,(0,d) and N•n,0 are defined in Section 6.3 and

PT•n,(0,d) = PTn,(0,d) + PTB-red
n,(0,d)ε1 + PTE-red

n,(0,d)ε2 + PTA-red
n,(0,d)ε1ε2 .

By expansion using ε21 = ε22 = 0 and

PTn,(0,d) = 0

for any (n, d) 6= 0, the theorem is deduced. �
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