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Abstract. We construct an action of the Neron–Severi part of the Looijenga-

Lunts-Verbitsky Lie algebra on the Chow ring of the Hilbert scheme of points
on a K3 surface. This yields a simplification of Maulik and Negut’s proof that

the cycle class map is injective on the subring generated by divisor classes

as conjectured by Beauville. The key step in the construction is an explicit
formula for Lefschetz duals in terms of Nakajima operators. Our results also

lead to a formula for the monodromy action on Hilbert schemes in terms of

Nakajima operators.

1. Introduction

1.1. Chow. Let X be a smooth complex projective variety of dimension m. Let
h ∈ EndH∗(X,Q) be the operator that acts on Hi(X,Q) by multiplication with
i−m. Let also ea ∈ EndH∗(X,Q) denote the operator of cup product with a given
element a ∈ H2(X,Q). The element a is called Lefschetz if there exists an operator
fa ∈ EndH∗(X,Q) such that ea, fa, h satisfy the sl2-commutation relations

[ea, fa] = h, [h, ea] = 2ea, [h, fa] = −2fa.

In this case we say (ea, fa, h) is a Lefschetz triple. The operator fa, if it exists, is
unique and is called the Lefschetz dual to ea. By the Hard Lefschetz theorem every
ample class on X is Lefschetz. More generally, an element a is Lefschetz precisely
if the morphism esa : Hm−s(X)→ Hm+s(X) is an isomorphism for every s ≥ 0. In
particular being Lefschetz is a Zariski open condition.

The total Lie algebra of X introduced by Looijenga and Lunts [7] and Verbitsky
[14] is the Lie subalgebra

g(X) ⊂ EndH∗(X,Q)

generated by all Lefschetz triples (ea, fa, h). We also consider the Neron-Severi Lie
algebra of X which is defined as the Lie subalgebra

gNS(X) ⊂ g(X)

generated by all Lefschetz triples such that a is algebraic, i.e. a ∈ H1,1(X,Q).
Assume now that X is irreducible holomorphic symplectic, that is it is simply

connected and H0(X,Ω2
X) is generated by a holomorphic symplectic form σ. The

prime example of such a variety is the Hilbert scheme of points of a K3 surface. By
a result of Verbitsky [14] and Looijenga and Lunts [7] we have

g(X)⊗ R = soR(4, b2(X)− 2), gNS(X)⊗ R = soR(2, ρ(X))

where bi(X) are the Betti numbers and ρ(X) is the Picard rank of X.
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Let A∗(X) denote the Chow ring of X taken here always with Q-coefficients.
The group of correspondences A∗(X × X) carries a natural ring structure given
by composition. The cycle class map cl : A∗(X × X) → EndH∗(X) is a ring
homomorphism. Our main result says that for Hilbert schemes of points of K3
surfaces the action of the Neron-Severi Lie algebra on cohomology lifts to an action
on Chow groups by correspondences:

Theorem 1.1. Let X be the Hilbert scheme of points of a smooth projective K3
surface. There exists a Lie algebra homomorphism ρ : gNS(X)→ A∗(X ×X) such
that the following diagram commutes:

gNS(X) A∗(X ×X)

EndH∗(X,Q).

ρ

cl

We will prove Theorem 1.1 in Section 3 by explicitly constructing a represen-
tation ρ with the desired properties. Under our ρ the operators ea lift to the cup
product with the divisor class a. The claim that the Lefschetz dual fa lifts to
Chow is precisely the Grothendieck standard conjecture of Lefschetz type [5]. The
standard conjectures have been proven for Hilbert schemes of points on surfaces by
Arapura [1]. The main improvement of our approach is that we give an explicit lift
of the operator fa and show that also all the relations between the ea’s and fb’s lift.
For example, the operator h lifts to an endomorphism that is diagonalizable on the
group of zero cycles and whose eigenspaces decomposition recovers the Beauville-
Voisin decomposition, see Remark 3.3. A more general decomposition of the Chow
motive of X into eigenmotives under the action of h is obtained in the subsequent
work [13].

It is natural to expect that the conclusion of Theorem 1.1 holds for all irre-
ducible holomorphic symplectic varieties. The standard conjectures for irreducible
holomorphic symplectic varieties deformation equivalent to the Hilbert schemes of
points of K3 surfaces have been proven by Charles and Markman [3] by deform-
ing (the lift of) the operator fa. The difficulty in extending Theorem 1.1 beyond
Hilbert schemes is to deform also the relations between the operators ea and fb.

For the proof of the theorem we consider the action of the Nakajima operators
qn on the direct sum of Chow groups

A∗(Hilb(S)) =

∞⊕
n=0

A∗(Hilbn(S)),

where we let Hilbn(S) denote the Hilbert scheme of n points of a projective K3
surface S. See also Section 2.3 for further details on Nakajima operators. The
action of the operators ea on cohomology was expressed in terms of Nakajima
operators by Lehn [6]. By recent work of Maulik and Negut [10] the formula of
Lehn holds also in Chow. We prove Theorem 1.1 by explicitly writing lifts of the
fa in terms of Nakajima operators and show they satisfy the required commutation
relations.

We have the following consequence of Theorem 1.1 which was conjectured by
Beauville and first proven by Maulik and Negut.
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Corollary 1.2 ([10]). Let S be a K3 surface. The cycle map A∗(Hilbn(S)) →
H∗(Hilbn(S)) is injective on the subring generated by divisor classes.

Proof. The subring of A∗(Hilbn(S)) generated by divisor classes is an irreducible
representation of the simple Lie algebra gNS(X), hence the cycle class map restricted
to it is either injective or zero. �

Theorem 1.1 and hence also the proof of Corollary 1.2 are not independent from
[10] and should be rather viewed as replacing its representation-theoretic part. In
[10] Lehn’s formula is used to construct an action of the product of the Heisenberg
and Virasoro algebra on A∗(Hilb(S)). Beauville’s conjecture is then deduced from
Schur’s Lemma. Our approach here also relies on Schur’s Lemma but has the
advantange that the Lie algebra gNS(X) involved is much smaller (for once it is
finite-dimensional) and that the argument might generalize to other cases.1

1.2. Application to monodromy. Recall that the locus of Hilbert schemes of
points of K3 surfaces is of codimension 1 in the moduli space of irreducible holo-
morphic symplectic varieties. In particular, for all n ≥ 2 the monodromy group
of X = Hilbn(S) is strictly larger than the monodromy group of the underlying
K3 surface S. On the other hand the Nakajima operators define a basis of the
cohomology of Hilbn(S) which strongly depends on the Hilbert scheme structure.
A basic question is how the monodromy group acts on this basis, and whether its
action on cohomology can be written in terms of Nakajima operators.

In Theorem 3.1 we describe the action of the total Lie algebra g(X) on cohomol-
ogy in terms of Nakajima operators. This leads to a formula for the monodromy
action as follows. The degree zero part of the Lie algebra g0(X) is isomorphic
to so(H2(X,Q)) ⊕ Qh where H2(X,Q) is endowed with the Beauville-Bogomolov
quadratic form. Its action on H∗(X) integrates to an action σ : SO(H2(X,Z)) →
EndH∗(X,Q). By a result of Markman [9] the monodromy group of X is

Mon(X) = Õ+(H2(X,Z))

where the right hand side stands for orthogonal transformations which preserve the
orientation and act by ±1 on the discriminant. By [8, Lemma 4.13] the monodromy
action on cohomology agrees with σ on an index 2 subgroup of the intersection

SO(H2(X,Z)) ∩ Õ+(H2(X,Z)).

This leads to the desired formulas up to finite index.
The description of the monodromy in terms of Nakajima operators was the orig-

inal motivation for considering the operators fa in the Nakajima basis. It will also
play an important role in holomorphic anomaly equations for Hilbert schemes of
points of K3 surfaces in forthcoming work.

1.3. Plan. In Section 2 we give preliminaries on the Lie algebra, Nakajima opera-
tors, and the Chow ring of K3 surfaces. In Section 3 we state the formulas for the
Lefschetz duals fa and give the proof of Theorem 1.1.

1On ther other hand, Maulik and Negut’s argument yields the stronger statement that the
cycle class is injective on the subring generated by all small tautological classes [10].
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2. Preliminaries

2.1. The Lie algebra made explicit. Let V be a vector space with a non-
degenerate symmetric bilinear form (−,−) on it. The wedge prouct ∧2V carries
naturally the structure of a Lie algebra. The Lie bracket is defined by

[a ∧ b, c ∧ d] = (a, d)b ∧ c− (a, c)b ∧ d− (b, d)a ∧ c+ (b, c)a ∧ d

for all a, b, c, d ∈ V . There exist a natural Lie algebra isomorphism ∧2V → so(V )
by letting a ∧ b act on V via the endomorphism (a ∧ b)v = (b, v)a− (a, v)b.

LetX be an irreducible holomorphic symplectic variety. The Beauville-Bogomolov
form is a non-degenerate quadratic form on H2(X,Z). Let U be the hyperbolic lat-
tice

(
0 1
1 0

)
with standard basis e, f . By [7, 14] we have

g(X) = so(H2(X,Q)⊕ UQ).

After identifying the right hand side with the second wedge product of H2(X,Q)⊕
UQ as before, this isomorphism is given explicitly by

ea = e ∧ a, fa =
−2

(a, a)
f ∧ a, h = 2 · e ∧ f

for all a ∈ H2(X) with (a, a) 6= 0. We will also use

f̃a = −2 · f ∧ a

which is defined for all a, is linear in a and satisfies f̃a = (a, a)fa whenever (a, a) 6= 0.

2.2. The Chow ring of a K3 surface. Let S be a smooth projective K3 surface
and let

c ∈ A2(S)

be the class of any point on any rational curve of S. Beauville and Voisin [2] prove
the following basic relations:

c2(TS) = 24c, ` · `′ = (`, `′)c

for all `, `′ ∈ A1(S). They also establish the following decomposition of the class of
the small diagonal ∆123 in the Chow ring of S × S × S:

(1) [∆123] = ∆12c3 + ∆13c2 + ∆23c1 − c1c2 − c1c3 − c2c3,

where following [10] we write ci for the pullback of c along the projection to the i-th
factor and ∆ij for the pullback of the class of the diagonal in S2 along the projection
to the (i, j)-factor, etc. Parallel conventions will be followed throughout. We will
also use the following relation from [2]:

∆ · c1 = ∆ · c2 = c1 · c2
∆ · `1 = ∆ · `2 = c1`2 + `1c2.
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2.3. Nakajima operators. Let S be a smooth projective surface. We recall the
definition of Nakajima correspondences [12, 4] following the presentation of [10].
Throughout the paper we will use the term ‘operator’ synonymously with ’corre-
spondence’. Given a correspondence Γ we will write Γ also for the induced mor-
phism on Chow groups. Also note that the results of [10] were formulated in terms
of homomorphisms of Chow groups, but since the proofs are purely cycle-theoretic,
they imply also the (in general stronger) parallel statements for correspondences.

For n ≥ 0 and i > 0 consider the closed subscheme

Zn,n+i = {(ξ, x, η) ∈ Hilbn(S)× S ×Hilbn+i(S)|ξ ⊂ η,Supp(Iξ/Iη) = {x}}

and let p1 : Zn,n+i → Hilbn(S), p2 : Zn,n+i → S and p3 : Zn,n+i → Hilbn+i(S) be
the projection to the factors. The Nakajima operators are defined by

qi = (p2 × p3)∗p
∗
1

q−i = (−1)i · (p1 × p2)∗p
∗
3.

We also set q0 = 0. Following [10] the qi here are viewed as defining operators

qi : A∗(Hilbn(S))→ A∗(Hilbn+i(S)× S).

The composition qi1 · · · qik of Nakajima operators is understood as an operator

qi1 · · · qik : A∗(Hilbn(S))→ A∗(Hilbn+i1+...+ik(S)× Sk)

where the operator qij acts by its definition on the Hilbert scheme and by the
identity on all remaining S-factors. We have the Heisenberg commutation relations

(2) [qm, qn] = mδm+n,0id×∆.

For α ∈ A∗(S) we also write

qi(α) = p3∗(p
∗
1( · ) ∪ p∗2(α))

and similarly for negative i. The commutation relations read

[qm(α), qn(β)] = mδm+n,0〈α, β〉id.

More general given Γ ∈ A∗(Sk) we let

qi1 · · · qik(Γ) : A∗(Hilbn(S))→ A∗(Hilbn+i1+...+ik(S))

be the operator obtained by viewing qi1 · · · qik as a correspondence from Sk to

Hilbn+
∑
j ij (S) and applying it to Γ.

3. Formulas and proofs

3.1. Formulas. Let S be a smooth projective K3 surface. Let ∆Hilbn(S) ⊂ Hilbn(S)
be the divisor parametrizing non-reduced subschemes and let

δ = −1

2
[∆Hilbn(S)].

By definition δ = 0 if n ≤ 1. For all n ≥ 1 we have the orthogonal decomposition

H2(Hilbn(S),Z) ∼= H2(S,Z)⊕ Zδ.

The restriction of the Beauville-Bogomolov form to the first factor is the intersection
pairing on S. Moreover, (δ, δ) = 2− 2n. Similarly, for algebraic classes we have

(3) A1(Hilbn(S)) ∼= A1(S)⊕ Zδ.
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We will identify classes in A1(S)⊕ Zδ with their image in A1(Hilbn(S)) under the
isomorphism (3) and similarly for cohomology.

Let ea be the operator which acts on A∗(Hilbn(S)) by cup product with the class
a ∈ A1(S)⊕Zδ. By the results of Lehn [6, Thms. 3.5, 3.10] and Maulik-Negut [10,
Thm.1.6] we have for all α ∈ A1(S) the equality

(4)

eα = −
∑
n>0

qnq−n(∆∗α)

eδ = −1

6

∑
i+j+k=0

: qiqjqk(∆123) :

where ∆ : S → S2 is the inclusion of the diagonal, and : − : is the normal ordered
product defined by

: qi1 · · · qik : = qiσ(1)
· · · qiσ(k)

where σ is a permutation such that iσ(1) ≥ . . . ≥ iσ(k).

The formulas (4) hold also in cohomology for all α ∈ H2(S,Q).
Define the following operators on A∗(Hilbn(S)):

h = 2
∑
n>0

1

n
qnq−n(c2 − c1)(5)

f̃α = −2
∑
n>0

1

n2
qnq−n(α1 + α2)(6)

f̃δ = −1

3

∑
i+j+k=0

: qiqjqk

(
1

k2
∆12 +

1

j2
∆13 +

1

i2
∆23 +

2

j · k
c1 +

2

i · k
c2 +

2

i · j
c3

)
: .

We define f̃a for all a ∈ A1(S)⊕Qδ by linearity in a. If (a, a) 6= 0 we also set

fa =
1

(a, a)
f̃a.

The following implies Theorem 1.1.

Theorem 3.1. Let S be a smooth projective K3 surface and let n ≥ 1 be an integer.

(a) For every a ∈ A1(S)⊕Qδ we have

[h, ea] = 2ea, [h, f̃a] = −2f̃a, [ea, f̃a] = (a, a)h

as operators on A∗(Hilbn(S)).
(b) If (a, a) 6= 0 then (ea, fa, h) specializes to a Lefschetz triple in cohomology.

(c) The Lie subalgebra of A∗(Hilbn(S)×Hilbn(S)) generated by ea, f̃a, h for all
a ∈ A1(S)⊕Qδ is isomorphic to so(A1(Hilbn(S))⊕ UQ).

We make several remarks.

Remark 3.2. Consider Lefschetz duals on Hilbert schemes of points of arbitrary
smooth projective surfaces S. By the discussion in Section 3.2 below, for any

α ∈ H2(S,Q) of non-zero square the operator eα admits the Lefschetz dual f̃α/(α ·
α) where f̃α is defined as in (6). However, the Lefschetz dual of more general
elements a ∈ H2(Hilbn(S)) do not seem to admit a nice expression in terms of
Nakajima operators. For example on Hilbn(P2) we have in general [fa, fb] 6= 0
and computer calculations suggest that the expression for fa involves expressions
in Nakajima operators qn of arbitrarily high degree. The fact that the Lefschetz
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duals on Hilb(K3) can be expressed as quadratic and cubics in Nakajima operators
is remarkable. It requires both K = 0 and e(S) = 24, see the proof below.

Remark 3.3. Let X = Hilbn(S) where S is a K3 surface. We consider the action
of h on the Chow group of zero-dimensional cycles. For example let x1, . . . , xn ∈ S
be distinct points and consider the subscheme z = {x1, . . . , xn} ∈ X. Then

h([z]) = 2

n∑
j=1

[{x1, . . . , xj−1, xj+1, . . . , xn, c0}]

where c0 ∈ S is a representative of the Beauville-Voisin class c ∈ A2(S). More
generally, using the commutation relations one checks that the action of h on A0(X)
is diagonalizable with eigenvalues 0, 2, . . . , 2n and corresponding eigenspaces

A0(X)2i = SpanQ
(
q1([p1]− c) · · · q1([pi]− c)q1(c)n−i1

∣∣ p1, . . . , pi ∈ S
)
.

The eigenspace decomposition recovers the proposed splitting of the conjectural
Bloch-Beilinson filtration given in [15].

3.2. The surface part. We begin with some general remarks that hold for every
smooth projective surface S. For a correspondence Γ ∈ A∗(S × S) we let Γ′ be its
transpose which is defined as τ∗(Γ) where τ is the automorphism of S2 that swaps
the factors. The correspondence Γ acts on A∗(S) via

Γ(γ) = π2∗(π
∗
1(γ) · Γ).

Given two correspondences Γ and Γ̃ their composition as operators on A∗(S) is

Γ ◦ Γ̃ = π13∗(Γ̃12 · Γ23),

where π13 : S3 → S × S is the projection to the outer factors.
Let deg(Γ) denote the degree of the homogeneous correspondence Γ, that is

Γ ∈ Adeg(Γ)(S × S). Define the following operator on A∗(Hilb(S)):

(7) TΓ = −
∑
n>0

ndeg(Γ)−3qnq−n(Γ′).

Lemma 3.4. For any C ∈ A∗(Sk) and homogeneous correspondence Γ,

[TΓ, qn1
· · · qnk(C)] =

∑
i:ni>0

n
deg(Γ)−2
i qn1

· · · qnk(idSi−1 ×Γ× idSk−i(C))

+ (−1)deg(Γ)−3
∑
i:ni<0

n
deg(Γ)−2
i qn1

· · · qnk(idSi−1 ×Γ′ × idSk−i(C)).

Proof. We commute TΓ through the Nakajima operators. If ni > 0 then the i-th
term contributes

− ndeg(Γ)−3
i qn1

· · · qni [q−ni︸ ︷︷ ︸
from TΓ

, qni ]qni+1
· · · qnk(C{i,i+1}c · Γ′i,i+1)

=n
deg(Γ)−2
i qn1

· · · qnk(π{i+1,i+2}c∗(∆i+1,i+2 · C{i,i+1}c · Γ′i,i+1))

=n
deg(Γ)−2
i qn1

· · · qnk(idSi−1 ×Γ× idSk−i(C))

where we write C{i,i+1}c for the pullback of C to Sk+2 along the projection which
forgets the factors i and i+ 1, etc. The case ni < 0 is similar. �

Corollary 3.5. [TΓ, TΓ̃] = T[Γ,Γ̃] for any homogeneous correspondences Γ, Γ̃.
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By Corollary 3.5 for every n ≥ 1 we have an embedding of Lie algebras

T : A∗(S × S)→ A∗(Hilbn(S)×Hilbn(S)), Γ 7→ TΓ.

We now specialize to the case of K3 surfaces. For every α ∈ A1(S) consider the
correspondences

(8) eα = ∆∗(α) = c1α2 + α1c2, f̃α = 2(α1 + α2), h = 2(c2 − c1).

Either by a direct check or because Q1 ⊕ A1(S) ⊕ Qc is an invariant subring of
A∗(S) which injects into cohomology, the correspondences (8) satisfy the relations
of part (a) of Theorem 3.1. Applying T to these correpondences precisely yields
the operators (4), (5), (6). Using Corollary 3.5 we conclude that Theorem 3.1(a)
holds for all n ≥ 1 and α ∈ A1(S).

Further, by the cohomological version of Lemma 3.4 for every u ∈ Hi(S) and for
all n ∈ Z one has

[h, qn(u)] = (i− 2)qn(u).

Since the Nakajima operators generate the cohomology of Hilbert schemes and
qn(u) is of degree i, we conclude that h acts on Hj(Hilbn(S)) by multiplication by
j−2n. This shows part (b) of Theorem 3.1 for all α ∈ A1(S). On S the Lie algebra
generated by the correspondences (8) for all α ∈ A1(S) is so(A1(S)⊕ U) (e.g. use
again the argument with the invariant subring and that in cohomology we know
the result from Verbitsky). Applying T proves the same on Hilbn(S).

3.3. The general case. For all a, b ∈ A1(S)⊕ Zδ let κab = [ea, f̃b]. To prove the
remainder of Theorem 3.1 we need to establish the following commutation relations:

[h, ea] = 2ea, [h, f̃a] = −2f̃a, [h, κab] = 0

[ea, eb] = 0, [f̃a, f̃b] = 0, [ea, f̃a] = (a, a)h

κab + κba = 2(a, b)h,

[κab, ec] = 2(a, b)ec + 2(b, c)ea − 2(a, c)eb

[κab, f̃c] = −2(a, b)f̃c + 2(b, c)f̃a − 2(a, c)f̃b

1

2
[κab, κcd] = (a, d)κbc − (a, c)κbd − (b, d)κac + (b, c)κad + ((a, c)(b, d)− (a, d)(b, c))h.

By the discussion in Section 3.2 we know these relations when all classes involved
are from A1(S). Moreover it suffices to check the relations on a basis, and we
only need to check those relations that do not follow from the Jacobi identity and
previously established relations. Hence it is enough to check for all α, β ∈ A1(S)
the following.

(a) [h, eδ] = 2eδ and [h, f̃δ] = −2f̃δ
(b) [f̃α, f̃δ] = 0.

(c) [eδ, f̃δ] = (2− 2n)h on A∗(Hilbn(S)).
(d) καδ = −κδα
(e) [h, καδ] = 0
(f) [καβ , eδ] = 2(α, β)eδ.

(g) [καβ , f̃δ] = −2(α, β)f̃δ.

We check part (c) below in detail by a direct computation. The remaining relations
follow from a straightforward application of Lemma 3.4 and we skip the details.
One may see them also as follows: Each is a relation between Nakajima operators
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of degree at most 5, which after applying the commutation relations (2), reduces
to a relation in Sk for some k ≤ 5 between classes which are polynomials in ∆ij , ci
and αj for some α ∈ A1(S). By the result of Verbitsky [14] we know these relations
hold in cohomology. Since k ≤ 5 we hence know from work of Voisin [16] (see also
[17]) that they hold in Chow as well.

Proof of Relation (c). By [10, Thm.1.6] the operator

L0 =
∑
k>0

qkq−k(∆)

acts by multiplication by −n on A∗(Hilbn(S)). Hence we need to show

[eδ, f̃δ] = 2h+ 2L0(1)h.

We do this by expanding both sides in Nakajima operators ordered in normal prod-
uct ordering. For the right hand side we obtain

2h+ 2L0(1)h = 4
∑
k>0

1− k
k

qkq−k(c2 − c1) + 4
∑
k,`>0

1

k
: qkq−k(c2 − c1)q`q−`(∆) :

For the left hand side we first consider the quartic terms, that is those of degree
4 in a normal ordering. These involve precisely one interaction of the Nakajima

operators. Let E be the argument of qiqjqk in the definition of f̃δ. Since the

argument of the cubic term in eδ and f̃δ is S3-symmetric, the quartic term reads

9 · (−1

6
) · (−1

3
)

∑
j1+k1=−i1
j2+k2=i1

: [qi1 , q−i1 ]qj1qk1
qj2qk2

(∆134 · E256) :

=
1

2

∑
j1+k1=−i1
j2+k2=i1

i1 : qj1qk1qj2qk2(π3456∗(∆134 · E256 ·∆12)) :

=
1

2

∑
a+b+c+d=0
a+b6=0

: qaqbqcqd

(
2
c+ d

d2
∆123 −

4

d
∆12c3 + 2

(c+ d)

c · d
c1c2 +

1

(c+ d)
∆12∆34

)
: .

The term with ∆12∆34 cancels by symmetrizing. For the remaining terms we
insert the decomposition (1) of the small diagonal ∆123 and observe that the sum
vanishes when it is taken over all a, b, c, d such that a + b + c + d = 0. The terms
we overcounted (those with a + b = 0) sum up precisely to (the negative of) the
quartic term in 2h+ 2L0(1)h.

For the quadratic term we have two Nakajima interactions. We get

Quadratic terms in [eδ, f̃δ] =
∑

i1+j1+k1=0
i1,j1<0

[qi1 , q−i1 ][qj1 , q−j1 ]qk1
q−k1

(∆135 · E246)

+
∑

i1+j1+k1=0
i1,j1>0

[qi1 , q−i1 ][q−j1 , qj1 ]q−k1
qk1

(∆146 · E235).
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Using the Nakajima commutation relations and ∆ ·∆ = e(S) · c1c2 this simplifies
as desired to∑

k>0

(
4(k − 1)−

∑
i+j=k
i,j>0

e(S)
i · j
k2

)
qkq−k(c2 − c1) = 4

∑
k>0

1− k
k

qkq−k(c2 − c1),

where in the last equality we have used
∑
i+j=k i·j = 1

6k(k2−1) and e(S) = 24. �
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