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Abstract. As an analogy to Gopakumar-Vafa conjecture on Calabi-Yau 3-folds, Klemm-

Pandharipande defined Gopakumar-Vafa type invariants of a Calabi-Yau 4-fold X using
Gromov-Witten theory. When X is holomorphic symplectic, Gromov-Witten invariants van-

ish and one can consider the corresponding reduced theory. In a companion work, we propose

a definition of Gopakumar-Vafa type invariants for such a reduced theory. In this paper, we
give them a sheaf theoretic interpretation via moduli spaces of stable pairs.

0. Introduction

0.1. Gopakumar-Vafa invariants. A smooth complex projective 4-foldX is holomorphic sym-
plectic if it is equipped with a non-degenerate holomorphic 2-form σ ∈ H0(X,Ω2

X). The ordinary
Gromov-Witten invariants of X always vanish for non-zero curve classes. Instead a reduced
Gromov-Witten theory is defined by Kiem-Li’s cosection localization [KiL].

Given cohomology classes γi ∈ H∗(X,Z), the (reduced) Gromov-Witten invariants of X in a
non-zero curve class β ∈ H2(X,Z) are defined by

GWg,β(γ1, . . . , γl) =

∫
[Mg,l(X,β)]vir

l∏
i=1

ev∗i (γi),(0.1)

where

[Mg,l(X,β)]vir ∈ A2−g+l(Mg,l(X,β))

is the (reduced) virtual class and evi : Mg,l(X,β)→ X is the evaluation map at the i-th marking.
We refer to [O18a, O21, OSY] for some references on computations for (0.1). Gromov-Witten
invariants are in general rational numbers because the moduli space Mg,l(X,β) of stable maps
is a Deligne-Mumford stack. It is an interesting question to find out integer-valued invariants
which underlie them.

In [COT22], we studied this question and defined genus 0 Gopakumar-Vafa invariants

(0.2) n0,β(γ1, . . . , γl) ∈ Q

for any non-zero curve class β and genus 1 and 2 Gopakumar-Vafa invariants

(0.3) n1,β(γ) ∈ Q, ∀ γ ∈ H4(X,Z); n2,β ∈ Q

for any primitive curve class β (i.e. it is not a multiple of a non-zero curve class in H2(X,Z))
from Gromov-Witten invariants (0.1) (see §1.1 for details). This may be compared with the
previous works of Gopakumar and Vafa [GV] on Calabi-Yau 3-folds, Klemm and Pandharipande
[KP] on Calabi-Yau 4-folds and Pandharipande and Zinger [PZ] on Calabi-Yau 5-folds.

In loc. cit., we conjectured the integrality of (0.2), (0.3) and provided substantial evidence
for it. The aim of this paper is to give a sheaf theoretic interpretation of these Gopakumar-Vafa
invariants using moduli spaces of stable pairs, in analogy with the discussion of [CMT19, CT19]
on ordinary Calabi-Yau 4-folds.

0.2. GV/Pairs correspondence. Let F be a one dimensional coherent sheaf on X and s ∈
H0(F ) be a section. For an ample divisor ω on X, we denote the slope function by µ(F ) =
χ(F )/(ω · [F ]). The pair (F, s) is called Zt-stable (t ∈ R) if

(i) for any subsheaf 0 6= F ′ ⊆ F , we have µ(F ′) < t,
(ii) for any subsheaf F ′ ( F such that s factors through F ′, we have µ(F/F ′) > t.

For a non-zero curve class β ∈ H2(X,Z) and n ∈ Z, we denote by

P tn(X,β)

the moduli space of Zt-stable pairs (F, s) with ([F ], χ(F )) = (β, n). It has a wall-chamber
structure and for a general t ∈ R (i.e. outside a finite subset of rational numbers in R), it is a
projective scheme.
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When t < n
ω·β , P tn(X,β) is empty. The first nontrivial chamber appears when t = n

ω·β + 0+,

which we call Joyce-Song (JS) chamber (here 0+ denotes a sufficiently small positive number
with respect to the fixed ω, β, n). When t� 1, it recovers the moduli space of Pandharipande-
Thomas (PT) stable pairs [PT09] (Proposition 1.6).

For general t ∈ R, by Theorem 1.7, we can define its DT4 virtual class following [BJ, OT]
(see also [CL14]). However, by a cosection argument the virtual class vanishes, see [KiP, Sav].
Using Kiem-Park’s cosection localization [KiP], we have a (reduced) virtual class

[P tn(X,β)]vir ∈ An+1(P tn(X,β),Q),

depending on the choice of orientation [CGJ, CL17]. More precisely, for each connected com-
ponent of P tn(X,β), there are two choices of orientation which affect the virtual class by a sign
(component-wise). To define its counting invariants, let

τ : Hm(X,Z)→ Hm−2(P tn(X,β),Z),

τ(γ) := πP∗ (π∗Xγ ∪ ch3(F)) ,

where I = (O → F) is the universal Zt-stable pair and πP , πX are projections from P tn(X,β)×X
onto its factors. For γi ∈ Hmi(X,Z), the Zt-stable pair invariants are defined by

P tn,β(γ1, . . . , γl) :=

∫
[P tn(X,β)]vir

l∏
i=1

τ(γi) ∈ Q.

When n = −1, we also write

P t−1,β :=

∫
[P t−1(X,β)]vir

1.

Here is the main conjecture of this paper, which gives a sheaf theoretic interpretation of all genus
Gopakumar-Vafa invariants using Zt-stable pair invariants.

Conjecture 0.1. (Conjecture 1.10) Fix n ∈ Z, β ∈ H2(X,Z) and let t > n
ω·β be generic. For

certain choice of orientation, we have

(1) If n > 2, then

P tn,β(γ1, . . . , γl) = 0.

(2) If n = 1, then

P t1,β(γ1, . . . , γl) = n0,β(γ1, . . . , γl).

(3) If n = 0 and β is primitive, then

P t0,β(γ) = n1,β(γ).

(4) If n = −1 and β is primitive, then

P t−1,β = n2,β .

We verify this conjecture by a computation in an ideal geometry where curves deform in
families of expected dimensions and have expected generic properties (see §1.4). Besides this,
we study several examples and prove our conjecture in those cases.

0.3. Verification of conjectures I: K3 × K3. Let X = S × T be the product of two K3
surfaces. When the curve class β ∈ H2(S × T,Z) is of non-trivial degree over both S and T ,
then one can construct two linearly independent cosections for moduli spaces of stable maps,
which imply that the (reduced) Gromov-Witten invariants of X in this class vanish. Therefore
we always restrict to consider curve classes of form

β ∈ H2(S,Z) ⊆ H2(X,Z).

Theorem 0.2. (Theorem 2.11, 2.14, 2.15, Remark 2.16) Let X = S × T be as above. Then
Conjecture 0.1 holds for any primitive curve class β ∈ H2(S,Z) ⊆ H2(X,Z).

In fact, by the global Torelli theorem (see e.g. [Ver, Huy]), primitive curve classes on K3
surfaces can be deformed to irreducible curve classes. By deformation invariance, we only need
to deal with an irreducible curve class β, in which case we have an isomorphism (Proposition
2.3):

P tn(X,β) ∼= P tn(S, β)× T,
and a forgetful map

(0.4) P tn(S, β)→Mn(S, β),
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where Mn(S, β) is the coarse moduli space of one dimensional stable sheaves F on S with [F ] = β,
χ(F ) = n. Both P tn(S, β) and Mn(S, β) are smooth schemes. We can then determine the DT4

virtual class of P tn(X,β) (Theorem 2.8) and its pushforward (under the forgetful map) by the
Thom-Porteus formula (Proposition 2.9). This enables us to reduce the computation of Zt-
stable pair invariants to certain tautological integrals on Mn(S, β). By Markman’s framework of
monodromy operators [M08], we relate such integrals to certain tautological integrals on Hilbert
schemes of points on S (see §2.6 for details), which we explicitly determine using [COT22] (see
the proof of Theorem 2.14, 2.15 for details).

0.4. Verification of conjectures II: T ∗P2. Let H ∈ H2(T ∗P2) be the pullback of the hyper-
plane class and let us identify H2(T ∗P2,Z) ≡ Z by taking the degree against H.

By explicitly describing the moduli spaces and virtual classes, we obtain:

Proposition 0.3. (Proposition 3.3) For certain choice of orientation, we have

P1,1(H2, H2) = 1, P1,2(H2, H2) = −1, P1,3(H2, H2) = 0,

P0,1(H2) = P0,2(H2) = 0, P0,3(H2) = 1, P−1,1 = P−1,2 = P−1,3 = 0.

Moreover, P tn(X, d) is independent of the choice of t > n/d in the listed cases above.
In particular, for X = T ∗P2, we have

• Conjecture 0.1 (2) holds when d 6 3.
• Conjecture 0.1 (3), (4) hold.

0.5. Verification of conjectures III: exceptional curves on Hilb2(K3). Let S be a K3
surface and Hilb2(S) be the Hilbert scheme of two points on S. Consider the Hilbert-Chow map

π : Hilb2(S)→ Sym2(S)

to the symmetric product of S. Let D be the exceptional divisor fitting into Cartesian diagram:

D

π

��

i // Hilb2(S)

π

��
S

∆ // Sym2(S),

where ∆ is the diagonal embedding and π : D → S is a P1-bundle. The following provides a
verification of our (genus 0) conjecture for imprimitive curve classes.

Theorem 0.4. (Theorem 3.1) In the JS chamber, Conjecture 0.1 (1), (2) hold for multiple fiber
classes β = r[P1] (r > 1) of π as above.

In fact, by the Jordan-Hölder filtration and a dimension counting, the JS pair invariants of
P JS
n (X, r[P1]) are zero unless n = r and in which case we have

P JS
n (X,n[P1]) ∼= Hilbn(S).

Then the proof makes use of the Chern class operator of tautological bundles by Lehn [Lehn].

0.6. Multiple fiber classes of elliptic fibrations. Let p : S → P1 be an elliptic K3 surface
and consider the elliptic fibration:

p̄ := p× idT : X := S × T → P1 × T =: Y,

where T is a K3 surface. Denote f to be a generic fiber of p̄ and p ∈ H0(T ) be the point class.
The following gives a closed formula of Zt-stable pair invariants for multiple fiber classes.

Theorem 0.5. (Theorem 2.19) Let t > 0. Then for certain choice of orientation, we have∑
r>0

P t0,r[f ](γ) qr = 24

(∫
S×p

γ

)
·
∑
m>1

∑
n|m

n2qm.

As for the proof, we note that there is an isomorphism

p̄∗ : Hilbr(Y ) ∼= P t0(X, r[f ]), IZ 7→ p̄∗IZ ,

under which the (reduced) virtual classes

(−1)n+1[Hilbr(Y )]vir = [P t0(X, r[f ])]vir ∈ A1(Hilbr(Y ))

can be identified for certain choice of orientation on the right hand side. Then we are left to
evaluate an integral on [Hilbr(Y )]vir which can be done via the degeneration method and a
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Behrend function argument [B, OS]. We refer to Theorem 2.17 for a similar result for trivial
elliptic fibration E × E × T → E × T and the proof therein for details.

The formula in Theorem 0.5 seems to support our speculation of a GV/Pairs correspondence
in genus 1 for imprimivite curve classes (see §1.5 for details).

0.7. A conjectural virtual pushforward formula. Finally we remark that for a general
holomorphic symplectic 4-fold X and an irreducible curve class β ∈ H2(X,Z), we have a forgetful
map as in (0.4):

P tn(X,β)→Mn(X,β),

where Mn(S, β) is the coarse moduli space of one dimensional stable sheaves F on X with
[F ] = β, χ(F ) = n. In Appendix §A, we conjecture a virtual pushforward formula for this map
(which we verify for the product of K3 surfaces, see Proposition A.5). Together with Conjecture
0.1 (4), this formula implies a conjectural relation between genus 2 Gopakumar-Vafa invariants
and certain descendent invariants on M1(X,β) (Proposition A.3), which appears as [COT22,
Conj. 2.2 (iii)].

0.8. Notation and convention. In this paper, all varieties and schemes are defined over C.
For a morphism π : X → Y of schemes, and for F ,G ∈ Db(Coh(X )), we denote by RHomπ(F ,G)
the functor Rπ∗RHomX(F ,G).

A class β ∈ H2(X,Z) is called effective if there exists a non-empty curve C ⊂ X with class
[C] = β. An effective class β is called irreducible if it is not the sum of two effective classes, and
it is called primitive if it is not a positive integer multiple of an effective class.

A holomorphic-symplectic variety is a smooth projective variety with a non-degenerate holo-
morphic two form σ ∈ H0(X,Ω2

X). A holomorphic-symplectic variety is irreducible hyperkähler
if X is simply connected and H0(X,Ω2

X) is generated by a symplectic form. A K3 surface is an
(irreducible) hyperkähler variety of dimension 2.
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1. Definitions and conjectures

1.1. Gopakumar-Vafa invariants. Let X be a holomorphic symplectic 4-fold and Mg,l(X,β)
be the moduli stack of genus g, l-pointed stable maps to X with non-zero curve class β. Its
virtual class [BF, LT] vanishes due to a trivial factor in the obstruction sheaf. By Kiem-Li’s
theory of cosection localization [KiL], one can define a (reduced) virtual class 1

[Mg,l(X,β)]vir ∈ A2−g+l(Mg,l(X,β)).

For integral classes

γi ∈ Hmi(X,Z), 1 6 i 6 l,(1.1)

the (primary) Gromov-Witten invariant is defined by

GWg,β(γ1, . . . , γl) =

∫
[Mg,l(X,β)]vir

l∏
i=1

ev∗i (γi) ∈ Q,(1.2)

where evi : Mg,l(X,β)→ X is the i-th evaluation map.

When g = 0, the virtual dimension of M0,l(X,β) is l + 2, and (1.2) is zero unless

l∑
i=1

(mi − 2) = 4.(1.3)

Similar to the case of Calabi-Yau 4-folds and 5-folds [KP, PZ], we make the following definition:

1The virtual class mentioned in this paper is always assumed to be the reduced one.
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Definition 1.1. ([COT22, Def. 1.5]) For any γ1, . . . , γl ∈ H∗(X,Z), we define the genus 0
Gopakumar-Vafa invariant n0,β(γ1, . . . , γl) ∈ Q recursively by the multiple cover formula:

GW0,β(γ1, . . . , γl) =
∑

k>1,k|β

kn−3 n0,β/k(γ1, . . . , γl).

When g = 1, the virtual dimension of M1,l(X,β) is l + 1, and (1.2) is zero unless

l∑
i=1

(mi − 2) = 2.(1.4)

In this paper, we concentrate on the case when l = 1 and m1 = 4. Because curves in imprimitive
curve classes are very difficult to control, we restrict hereby to the case of a primitive curve class.

Definition 1.2. ([COT22, Def. 1.6]) Assume that β ∈ H2(X,Z) is primitive. For any γ ∈
H4(X,Z), we define the genus 1 Gopakumar-Vafa invariant n1,β(γ) ∈ Q by

GW1,β(γ) = n1,β(γ)− 1

24
GW0,β(γ, c2(X)),

where c2(X) is the second Chern class of TX .

When g = 2, the virtual dimension of M2,0(X,β) is zero, so we can consider (1.2) without
insertions:

GW2,β :=

∫
[M2,0(X,β)]vir

1 ∈ Q.

Definition 1.3. ([COT22, Def. 1.7]) Assume that β ∈ H2(X,Z) is primitive. We define the
genus 2 Gopakumar-Vafa invariant n2,β ∈ Q by

GW2,β = n2,β −
1

24
n1,β(c2(X)) +

1

2 · 242
GW0,β(c2(X), c2(X)) +

1

24
Nnodal,β .

Here n1,β(−) is given in Definition 1.2 and Nnodal,β ∈ Q is the virtual count of rational nodal
curves [NO] as defined by

(1.5) Nnodal,β :=
1

2

[∫
[M0,2(X,β)]vir

(ev1× ev2)∗(∆X)−
∫

[M0,1(X,β)]vir

ev∗1(c(X))

1− ψ1

]
,

where

• ∆X ∈ H8(X ×X) is the class of the diagonal, and
• c(X) = 1 + c2(X) + c4(X) is the total Chern class of TX .

1.2. Zt-stable pair invariants. Let ω be an ample divisor on X and t ∈ R, we recall the
following notion of Zt-stable pairs.

Definition 1.4. ([CT19, Lem 1.7]) Let F be a one dimensional coherent sheaf and s : OX → F
be a section. For an ample divisor ω, we denote the slope function by µ(F ) = χ(F )/(ω · [F ]).

We say (F, s) is a Zt-(semi)stable pair (t ∈ R) if

(i) for any subsheaf 0 6= F ′ ⊆ F , we have µ(F ′) < (6)t,
(ii) for any subsheaf F ′ ( F such that s factors through F ′, we have µ(F/F ′) > (>)t.

There are two distinguished stability conditions appearing as special cases of Zt-stability.

Definition 1.5. ([PT09], [CT19, Def. 1.10])
(i) A pair (F, s) is a PT stable pair if F is a pure one dimensional sheaf and s is surjective

in dimension one.
(ii) A pair (F, s) is a JS stable pair if s is a non-zero morphism, F is µ-semistable and for

any subsheaf 0 6= F ′ ( F such that s factors through F ′ we have µ(F ′) < µ(F ).

Proposition 1.6. ([CT19, Prop. 1.11]) For a pair (F, s) with [F ] = β and χ(F ) = n, its
(i) Zt-stability with t→∞ is exactly PT stability,
(ii) Zt-stability with t = n

ω·β + 0+ is exactly JS stability.

For β ∈ H2(X,Z) and n ∈ Z, we denote by

P tn(X,β) ⊆ Ptn(X,β)

the moduli stack of Zt-stable (semistable) pairs (F, s) with [F ] = β and χ(F ) = n.
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By Proposition 1.6, there are two disinguished moduli spaces, PT moduli spaces and JS
moduli spaces, by specializing t→∞ and t = n

ω·β + 0+ respectively:

Pn(X,β) := P t→∞n (X,β), P JS
n (X,β) := P

t= n
ω·β+0+

n (X,β).

By a GIT construction, P tn(X,β) is a quasi-projective scheme, and Ptn(X,β) admits a good
moduli space

Ptn(X,β)→ P
t

n(X,β),

where P
t

n(X,β) is a projective scheme which parametrizes Zt-polystable objects. The following
result shows that moduli stacks of Zt-stable pairs are indeed open substacks of moduli stacks of
objects in the derived categories of coherent sheaves.

Theorem 1.7. ([CT19, Thm. 0.1]) P tn(X,β) admits an open immersion

P tn(X,β)→M0, (F, s) 7→ (OX
s→ F )

to the moduli stack M0 of E ∈ Db Coh(X) with Ext<0(E,E) = 0 and det(E) ∼= OX .

Therefore for a general choice of t (i.e. outside a finite subset of rational numbers in R),
P tn(X,β) is a projective scheme which can be given a (−2)-shifted symplectic derived scheme
structure [PTVV] and has a virtual class [BJ, OT] (see also [CL14]).

Parallel to GW theory, the virtual class of P tn(X,β) vanishes [KiP, Sav]. One can define a
reduced virtual class due to Kiem-Park [KiP, Def. 8.7, Lem. 9.4]:

[P tn(X,β)]vir ∈ An+1(P tn(X,β),Q),(1.6)

depending on the choice of orientation [CGJ, CL17]. To define its counting invariants, let

τ : Hm(X,Z)→ Hm−2(P tn(X,β),Z),(1.7)

τ(γ) := πP∗ (π∗Xγ ∪ ch3(F)) ,

where I = (O → F) is the universal Zt-stable pair and πP , πX are projections from P tn(X,β)×X
onto its factors.

Definition 1.8. Let t ∈ R be generic and γi ∈ Hmi(X,Z) (1 6 i 6 l). The Zt-stable pair
invariants are

P tn,β(γ1, . . . , γl) :=

∫
[P tn(X,β)]vir

l∏
i=1

τ(γi) ∈ Q.

When n = −1, we write

P t−1,β :=

∫
[P t−1(X,β)]vir

1.

In PT and JS stabilites, we also write

Pn,β(γ1, . . . , γl) := P t→∞n,β (γ1, . . . , γl), P
JS
n,β(γ1, . . . , γl) := P

t= n
ω·β+0+

n,β (γ1, . . . , γl).

Remark 1.9. By Definition 1.4 and a dimension counting, Zt-stable pair invariants are non-
zero only if both of the following conditions hold:

t >
n

ω · β
,

l∑
i=1

(mi − 2) = 2n+ 2.

In [CMT19, CT19], similar invariants are used to give sheaf theoretic interpretations of
Gopakumar-Vafa type invariants for ordinary Calabi-Yau 4-folds [KP]. Below, we give a parallel
proposal for holomorphic symplectic 4-folds using Definition 1.8.

1.3. Conjecture. We state the main conjecture of this paper.

Conjecture 1.10. Let X be a holomorphic symplectic 4-fold with an ample divisor ω. Fix n ∈ Z
and β ∈ H2(X,Z) and let t > n

ω·β be generic. For certain choice of orientation, we have

(1) If n > 2, then

P tn,β(γ1, . . . , γl) = 0.

(2) If n = 1, then

P t1,β(γ1, . . . , γl) = n0,β(γ1, . . . , γl) ∈ Z.
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(3) If n = 0 and β is primitive, then

P t0,β(γ) = n1,β(γ) ∈ Z.

(4) If n = −1 and β is primitive, then

P t−1,β = n2,β ∈ Z.

Remark 1.11. By the global Torelli theorem [Ver, Huy], primitive curve classes on irreducible
hyperkähler varieties can be deformed to irreducible curve classes. Therefore Zt-stable pair in-
variants are independent of the choice of t > n

ω·β for such cases by [CT19, Prop. 1.12].

Remark 1.12. Our conjecture implies that there is no nontrivial wall-crossing for Zt-stable
pairs invariants when t > n

ω·β , contrary to the ordinary CY4 case [CT19, CT20b, CT20c].

Remark 1.13. Similarly to [CK19, Conj. 0.3], we may use counting invariants on Hilbert
schemes In(X,β) of curves to give a sheaf theoretic interpretation of Gopakumar-Vafa invari-
ants in which case zero dimensional subschemes [CK18] (conjecturally) will not contribute, i.e.
“ DT = PT ”. It is curious whether one can do a K-theoretic refinement as [CKM19].

1.4. Heuristic argument. In this section, we verify Conjecture 1.10 using heuristic argument
in an ideal geometry (ref. [COT22, §1.4, §1.5]). To be specific, as the virtual dimension of
Mg,0(X,β) is 2− g, we assume that:

Any genus g curve moves in a smooth compact (2− g)-dimensional family.

In particular, there are no curves of genus g > 3. Unfortunately, complicated phenomena still
arise even in the ideal case, for example, one can have two (resp. one) dimensional families of
reducible rational (resp. elliptic) curves, and any member of a rational curve family is expected
to intersect nontrivially with some member in the same family (see [COT22, §1.4] for details).

However, things will be simplified if we make the following additional assumptions:

• X is irreducible hyperkähler,
• the effective curve class β ∈ H2(X,Z) is primitive,

By the global Torelli for (irreducible) hyperkähler varieties [Ver, Huy], the pair (X,β) is defor-
mation equivalent (through a deformation with keeps β of Hodge type) to a pair (X ′, β′), where
β′ ∈ H2(X,Z) is irreducible, so we may without loss of generality assume:

• the effective curve class β ∈ H2(X,Z) is irreducible.

Under these assumptions, our ideal geometry of curves simplifies to the following form:

(1) The rational curves in X of class β move in a proper 2-dimensional smooth family
of embedded irreducible rational curves. Except for a finite number of rational nodal
curves, the rational curves are smooth, with normal bundle OP1 ⊕OP1 ⊕OP1(−2).

(2) The arithmetic genus 1 curves in X of class β move in a proper 1-dimensional smooth
family of embedded irreducible genus 1 curves. Except for a finite number of rational
nodal curves, the genus one curves are smooth elliptic curves with normal bundle L ⊕
L−1 ⊕O, where L is a generic degree zero line bundle.

(3) All genus two curves are smooth and rigid.
(4) There are no curves of genus g > 3.

We need to compute Zt-stable pair invariants in this ideal setting. The key heuristic we use is
that only Zt-stable pairs with connected support will ‘contribute’ to our invariants.

The observation is that for a Zt-stable pair I = (OX → F ) which is supported on a discon-
nected curve C = C1 t C2, we may write

I = I1 ⊕ I2, I1 = (OX → F1), I2 = (OX → F2),

where Ii is supported on Ci (i = 1, 2). Then the obstruction space satisfies

Ext2(I, I)0 = Ext2(I1, I1)0 ⊕ Ext2(I2, I2)0.

Therefore the surjective isotropic cosections (see [KiP, Lem. 9.4]) of obstruction spaces in the
RHS give rise to a (mutually orthogonal) two dimensional isotropic cosection in the LHS. Heuris-
tically speaking, such Zt-stable pairs will not ‘contribute’ to the reduced virtual class as the
reduced obstruction space still have a surjective isotropic cosection.

By Definition 1.8 and above discussion, Zt-stable pair invariants

P tn,β(γ1, . . . , γl) =

∫
[P tn(X,β)]vir

l∏
i=1

τ(γi)
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count Zt-stable pairs whose support are connected and incident to cycles dual to γ1, . . . , γl. Say
such an incident Zt-stable pair is supported on a (2− g)-dimensional family:

p : Cgβ → Sgβ

of genus g curves (g = 0, 1, 2), where Cgβ is the total space of this family. Each cycle γi will cut

down real dimension of Sgβ by deg(γi)− 2. As we have

l∑
i=1

(deg(γi)− 2) = 2n+ 2,

so all insertions in total cut down real dimension of Sgβ by 2n+ 2.

The case n > 1. When n > 2, the dimension cut down by insertions is bigger than the largest
possible dimension of Sgβ , so there can not be such incident stable pairs and

P tn>2,β(γ1, . . . , γl) = 0.

This confirms Conjecture 1.8 (1).
When n = 1, insertions cut down real dimension of Sgβ by 4, so any incident Zt-stable pair

I = (OX → F ) can only be supported on genus 0 family. As in [CT19, §4.1], by Harder-
Narasimhan and Jordan-Hölder filtration, we know

F ∼= OC ,

for some rational curve C in S0
β . Therefore incident Zt-stable pairs (with χ = 1) are in one to

one correspondence with intersection points of C0
β with cycles dual to γ1, . . . , γl and

P t1,β(γ1, . . . , γl) =

∫
S0
β

l∏
i=1

p∗(f
∗γi),

where f : C0
β → X is the evaluation map. Therefore Conjecture 1.8 (2) is confirmed in this ideal

case as both sides are (virtually) enumerating rational curves of class β incident to cycles dual
to γ1, . . . , γl.

The case n = 0. Since Zt-stable pairs I = (OX → F ) supported on genus 0 curves satisfy
χ(F ) > 0 and a 4-cycle γ ∈ H4(X) misses genus 2 curves in general position, so when [F ] = β
is irreducible, the pair must be scheme theoretically supported on an elliptic curve C and

I = (OX � OC
s→ L),

where L is a line bundle on C with χ(C,L) = 0. By Zt-stability, s is non-trivial, so s must be
an isomorphism by the stability of line bundles. Therefore incident Zt-stable pairs (with χ = 0)
are in one to one correspondence with intersection points of 4-cycle γ with genus 1 curve family
C1
β of class β and

P t0,β(γ) =

∫
C1β
f∗γ,

where f : C1
β → X is the evaluation map. Therefore Conjecture 1.8 (3) is confirmed in this ideal

setting as both sides are (virtually) enumerating elliptic curves of class β incident to γ.

The case n = −1. Any Zt-stable pair I = (OX → F ) with irreducible curve class [F ] = β is
scheme theoretically supported on a smooth rigid genus 2 curve C:

I = (OX � OC
s→ L),

where L is a line bundle on C with χ(C,L) = −1. As above, by Zt-stability, s must be an
isomorphism. Hence P t−1(X,β) is identified with the set of all rigid genus 2 curves in class β in
the ideal geometry, whose count gives exactly genus 2 Gopakumar-Vafa invariant n2,β . Therefore
Conjecture 1.8 (4) is confirmed in the ideal setting.
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1.5. Speculations for general curve classes. For a smooth projective Calabi-Yau 4-fold X
and γ ∈ H4(X,Z), we have genus 0, 1 Gopakumar-Vafa type invariants n0,β(γ), n1,β ∈ Q defined
by Klemm and Pandharipande from Gromov-Witten theory [KP] and stable pair invariants
Pn,β(γ) ∈ Z [CMT19]. They are related by the following conjectural formula [CMT19, §1.7]:∑

n,β

Pn,β(γ)

n!
ynqβ =

∏
β>0

(
exp(yqβ)n0,β(γ) ·M(qβ)n1,β

)
,(1.8)

where M(q) =
∏
k>1(1− qk)−k is the MacMahon function.

By taking logarithmic differentiation with respect to y, we obtain

y
d

dy
log

∑
n,β

Pn,β(γ)

n!
ynqβ

 =
∑
β>0

y
d

dy
n0,β(γ)yqβ =

∑
β>0

n0,β(γ)yqβ .

If we view it as an equality for corresponding reduced invariants on holomorphic symplectic
4-folds, it surprisingly recovers Conjecture 1.10 (i), (ii) (i.e. the genus zero part).

We do similar manipulations for genus one invariants. Note that y0qβ parts of (1.8) are∑
β

P0,βq
β =

∏
β>0

M(qβ)n1,β .

This equality is written down by a computation in the “CY4 ideal geometry” (ref. [CMT19, §2.5]),
where rational curves contribute zero and each super-rigid elliptic curve (on an ideal CY4) in
class β contributes by M(qβ) (ref. [CMT19, Thm. 5.10]). Taking logarithmic differentiation with
respect to q:

q
d

dq
log (M(q)) =

∑
d>1

qd
∑
i>1,i|d

i2.

We then wonder whether in the holomorphic symplectic 4-folds setting, each ideal elliptic curve
family in class β contributes to P0,dβ(γ) by ∑

i>1,i|d

i2.

Summing over all elliptic curve families, this would imply

P0,β(γ) =
∑

d>1,d|β

n1,β/d(γ)
∑
i>1,i|d

i2.(1.9)

It is quite curious whether the above formula gives the correct PT/GV correspondence. For
multiple fiber classes of elliptic fibrations, our computations show the formula seems correct (see
Theorem 2.17, 2.19, Remark 2.20). As for P−1,β and genus 2 Gopakumar-Vafa invariants, we
haven’t found analogous formula for general curve classes.

2. Product of K3 surfaces

In this section, we consider the product of two K3 surfaces:

X = S × T, with β ∈ H2(S,Z) ⊆ H2(X,Z).

As observed in [COT22, §5], this contains all interesting curve classes on X because if β ∈
H2(X,Z) is of non-trivial degree over both S and T , one can construct two linearly independent
cosections, which imply that reduced Gromov-Witten invariants of X in this class vanish.

2.1. Gopakumar-Vafa invariants. Recall Gopakumar-Vafa invariants specified in Definitions
1.1, 1.2, 1.3. They are computed in [COT22, Prop. 5.1] as follows: write γ, γ′ ∈ H4(X) as

γ = A1 · 1⊗ p +D1 ⊗D2 +A2 · p⊗ 1,

γ′ = A′1 · 1⊗ p +D′1 ⊗D′2 +A′2 · p⊗ 1,

based on Künneth decomposition:

H4(X) ∼= (H0(S)⊗H4(T ))⊕ (H2(S)⊗H2(T ))⊕ (H4(S)⊗H0(T )).

Fix also a curve class

α = θ1 ⊗ p + p⊗ θ2 ∈ (H6(X) ∼= H2(S))⊗ (H4(T )⊕H4(S)⊗H2(T )).
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Proposition 2.1. ([COT22, Prop. 5.1]) For β ∈ H2(S,Z) ⊆ H2(X,Z), we have

n0,β(γ, γ′) = (D1 · β) · (D′1 · β) ·
∫
T

(D2 ·D′2) ·N0

(
β2

2

)
,

n0,β(α) = (θ1 · β)N0

(
β2

2

)
.

If β is primitive, we have

n1,β(γ) = 24A2N1

(
β2

2

)
, n2,β = N2

(
β2

2

)
,

where ∑
l∈Z

N0(l) ql =
1

q

∏
n>1

1

(1− qn)24
,(2.1)

∑
l∈Z

N1(l) ql =

1

q

∏
n>1

1

(1− qn)24

(q d
dq
G2(q)

)
,(2.2)

∑
l∈Z

N2(l) ql =

1

q

∏
n>1

1

(1− qn)24

(24q
d

dq
G2 − 24G2 − 1

)
,(2.3)

with Eisenstein series:

G2(q) = − 1

24
+
∑
n>1

∑
d|n

dqn.

2.2. Moduli spaces of Zt-stable pairs. For a point t ∈ T , let it : S → S × {t} ↪→ X be the
inclusion. Consider the pushforward map

i∗ : P tn(S, β)× T → P tn(X,β),(2.4)

(OS
s→ F, t) 7→ (OX � it∗OS

it∗s→ it∗F ),

where P tn(S, β) is the moduli space of Zt-stable pairs (F, s) on S with [F ] = β and χ(F ) = n.
We restrict to the following setting.

Setting 2.2. We consider the case when the following conditions are satisfied:

(1) The map (2.4) is an isomorphism and P tn(S, β) is smooth of dimension β2 + n+ 1.
(2) There is a well-defined forgetful map

f : P tn(S, β)→Mn(S, β), (OS → F ) 7→ F,

to the coarse moduli scheme Mn(S, β) of one dimensional stable sheaves F on S with
[F ] = β and χ(F ) = n.

Proposition 2.3. Setting 2.2 is satisfied when β is irreducible.

Proof. When β is irreducible, P tn(X,β) is independent of the choice of t > n
ω·β [CT19, Prop. 1.12],

so we can set t→∞ and work with PT stability. The isomorphism follows from similar argument
as [CMT19, Prop. 3.11]. The key point is that for any such Zt-stable pair (F, s), F is stable and
therefore scheme theoretically supported on S × {t} for some t ∈ T ([CMT18, Lem. 2.2]). The
smoothness of P tn(S, β) follows from [KY], [PT10, Prop. C.2]. �

2.3. Virtual classes. We determine the virtual class of P tn(X,β) in Setting 2.2. Firstly recall:

Definition 2.4. ([Sw, Ex. 16.52, pp. 410], [EG, Lem. 5]) Let E be a SO(2n,C)-bundle with
a non-degenerate symmetric bilinear form Q on a connected scheme M . Denote E+ to be its
positive real form 2. The half Euler class of (E,Q) is

e
1
2 (E,Q) := ± e(E+) ∈ H2n(M,Z),

where the sign depends on the choice of orientation of E+.

2This means a real half dimensional subbundle such that Q is real and positive definite on it. By homotopy

equivalence SO(m,C) ∼ SO(m,R), it exists and is unique up to isomorphisms.
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Definition 2.5. ([EG], [KiP, Def. 8.7]) Let E be a SO(2n,C)-bundle with a non-degenerate
symmetric bilinear form Q on a connected scheme M . An isotropic cosection of (E,Q) is a map

φ : E → OM ,
such that the composition

φ ◦ φ∨ : OM → E∨
Q∼= E → OM

is zero. If φ is furthermore surjective, we define the (reduced) half Euler class:

e
1
2

red(E,Q) := e
1
2

(
(φ∨OM )⊥/(φ∨OM ), Q̄

)
∈ H2n−2(M,Z),

as the half Euler class of the isotropic reduction. Here Q̄ denotes the induced non-degenerate
symmetric bilinear form on (φ∨OM )⊥/(φ∨OM ).

We show reduced half Euler classes are independent of the choice of surjective isotropic co-
section.

Lemma 2.6. ([COT22, Lem. 5.5]) Let E be a SO(2n,C)-bundle with a non-degenerate symmetric
bilinear form Q on a connected scheme M and

φ : E → OM
be a surjective isotropic cosection. Then we can write the positive real form E+ of E as

E+ = E+ ⊕ R2

such that

e
1
2

red(E,Q) = ± e(E+).

Moreover, it is independent of the choice of surjective cosection.

In particular, when E = O⊕2 ⊕ V such that Q =

(
0 1
1 0

)
⊕Q|V , we have

e
1
2

red(E,Q) = ± e 1
2 (V,Q|V ).

Recall a Sp(2r,C)-bundle (or symplectic vector bundle) is a complex vector bundle of rank
2r with a non-degenerate anti-symmetric bilinear form. One class of quadratic vector bundles
is given by tensor product of two symplectic vector bundles V1, V2. Their half Euler classes can
be computed using Chern classes of V1, V2. For our purpose, we restrict to the following case.

Lemma 2.7. ([COT22, Lem. 5.6]) Let (V1, ω1), (V2, ω2) be a Sp(2r,C) (resp. Sp(2,C)-bundle)
on a connected scheme M . Then

(V1 ⊗ V2, ω1 ⊗ ω2)

defines a SO(4r,C)-bundle whose half Euler class satisfies

e
1
2 (V1 ⊗ V2, ω1 ⊗ ω2) = ±

(
e(V1)− c2r−2(V1) · e(V2)

)
.

We determine the (reduced) virtual class of P tn(X,β).

Theorem 2.8. In Setting 2.2, for certain choice of orientation, we have

(2.5) [P tn(X,β)]vir =
(
[P tn(S, β)] ∩ f∗e(TMn(S,β))

)
× [T ]− e(T )

(
[P tn(S, β)] ∩ f∗cβ2(TMn(S,β))

)
,

where f : P tn(S, β)→Mn(S, β) is the map as in Setting 2.2.

Proof. The proof is similar as [CMT19, Prop. 4.7]. Under the isomorphism (2.4):

P tn(S, β)× T ∼= P tn(X,β),

the universal stable pair IX = (O → FX) of P tn(X,β) satisfies

FX = FS �O∆T
,(2.6)

where IS = (O → FS) is the universal stable pair of P tn(S, β) and ∆T denotes the diagonal.
As in [CMT19, Eqn. (29)], we have a distinguished triangle

RHomπPX
(IX ,FX)→ RHomπPX

(IX , IX)0[1]→ RHomπPX
(FX ,O)[2],(2.7)

where πPX : P tn(X,β)×X → P tn(X,β) is the projection.
From stable pair IX = (O → FX) and Eqn. (2.6), we get a distinguished triangle

RHomπPX
(FS �O∆T

,FS �O∆T
)→ RHomπPX

(O,FS �O∆T
)→ RHomπPX

(IX ,FX).(2.8)

By adjunction, we get an isomorphism

RHomπPX
(FS �O∆T

,FS �O∆T
) ∼= RHomπPS

(FS ,FS)� ∧iTT [−i],(2.9)
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where πPS : P tn(S, β)× S → P tn(S, β) is the projection.
Combining (2.8) and (2.9), we obtain

RHomπPX
(IX ,FX) ∼= RHomπPS

(IS ,FS)⊕RHomπPS
(FS ,FS)� (TT ⊕OT [−1]).(2.10)

Combining (2.7) and (2.10), we obtain

Ext1πPX (IX , IX)0
∼= Ext0πPS (IS ,FS)⊕ TT ,

and an exact sequence

0→ Ext1πPS (IS ,FS)⊕ Ext1πPS (FS ,FS)� TT ⊕ Ext0πPS (FS ,FS)�OT → Ext2πPX (IX , IX)0 → · · · .
(2.11)

We claim that the second arrow above is an isomorphism, which can be done by a dimension
counting. In fact, let I = (OS → F ) ∈ P tn(S, β), the cohomology of the distinguished triangle

RHomS(F, F )→ RHomS(OS , F )→ RHomS(I, F )

implies that ExtiS(I, F ) = 0 for i > 2. In Setting 2.2, we know ext0
S(I, F ) = β2 +n+ 1, therefore

ext1
S(I, F ) = 1.

As F is stable, we have

ext2
S(F, F ) = ext0

S(F, F ) = 1, ext1
S(F, F ) = β2 + 2.

So the rank of the second term of (2.11) is 2β2 + 6. One can easily check the rank of the third
term in (2.11) is also 2β2 + 6 by Riemann-Roch formula and first condition of Setting 2.2. To
sum up, we get an isomorphism:

Ext1πPS (IS ,FS)⊕ Ext1πPS (FS ,FS)� TT ⊕ Ext0πPS (FS ,FS)�OT ∼= Ext2πPX (IX , IX)0.

As in [CMT19, Prop. 4.7], one can show the decomposition in the LHS is also with respect to the
Serre duality pairing on Ext2πPX (IX , IX)0. The our claim follows from Lemmata 2.6 and 2.7. �

2.4. Thom-Porteus formula. As our insertion (1.7) depends only on the fundamental cycle
of the universal sheaf, it is useful to know the pushforward of the virtual class (2.5) under the
forgetful map. In this section, let β ∈ H2(S,Z) be an irreducible curve class, then P tn(X,β) is
independent of the choice of t > n

ω·β [CT19, Prop. 1.12], so we can set t → ∞ and work with

PT stability. Consider the forgetful map

f : Pn(S, β)→Mn(S, β), (OS → F ) 7→ F.

Recall that Pn(S, β) is smooth of dimension β2 + n + 1 and Mn(S, β) is smooth of dimension
β2 + 2. The image of f in Mn(S, β) is the locus

(2.12)
{
F ∈Mn(S, β) |h0(F ) > 1

}
,

where surjectivity follows since β is irreducible and F is pure, so any non-zero section s ∈
H0(S, F ) must have zero-dimensional cokernel. The expected dimension of sections is χ(F ) = n,
so the image is everything if n = 1, a divisor if n = 0 and a codimension 2 cycle if n = −1.

Let FS be a (twisted) universal sheaf on Mn(S, β) × S. If n = 1 (or more generally, there
exists a K-theory class pairing with 1 with a sheaf parametrized by Mn(S, β)) the twisted sheaf
can be taken to be an actual sheaf. For us here the difference will not matter, since we are only
interested in the Chern character of the universal sheaf, which can also be easily defined in the
twisted case. We refer to [M08] for a discussion.

Let πM : Mn(S, β)×S →Mn(S, β) be the projection. We resolve the complex RπM∗(FS) by
a 2-term complex of vector bundles:

RπM∗(FS) ∼= (E0
σ−→ E1).

Then (2.12) is the degeneracy locus

D1(σ) =
{
x ∈Mn(S, β) | dimC ker(σ(x)) > 1

}
.

By the Thom-Porteus formula [Ful, §14.4] (see [GT, Prop. 1] for a modern treatment and observe

that Pn(S, β) is precisely what is called D̃1(σ) there), we get the following:

Proposition 2.9.

f∗[Pn(S, β)] = c1−n(−RπM∗(FS)) ∩ [Mn(S, β)].
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We can calculate the right hand side above by Grothendieck-Riemann-Roch formula

ch(−RπM∗(FS)) = −πM∗(ch(FS) · π∗S td(S)).

We obtain the following:

(2.13)

f∗[P1(S, β)] = 1,

f∗[P0(S, β)] = −πM∗(ch3(FS))− 2πM∗(ch1(FS)π∗Sp),

f∗[P−1(S, β)] =
1

2
(c1(−RπM∗(FS)))

2
+ πM∗(ch4(FS)) + 2πM∗(ch2(FS)π∗Sp),

where we used Poincaré duality on the right to identify homology and cohomology and p ∈ H4(S)
denotes the point class. A small calculation shows that the right hand side is indeed independent
of the choice of universal family F (i.e. the formulae stay invariant under replacing F by F⊗π∗ML
for L ∈ Pic(Mn(S, β))). This will be useful later on.

2.5. Genus 0 in irreducible classes. In this section, we prove Conjecture 1.10 (1), (2) for
irreducible curve classes. We first recall a result of Fujiki [Fuji] and its generalization in [GHJ,
Cor. 23.17].

Theorem 2.10. ([Fuji], [GHJ, Cor. 23.17]) Let M be a hyperkähler variety of dimension 2n.
Assume α ∈ H4j(M,C) is of type (2j, 2j) on all small deformation of M . Then there exists a
constant C(α) ∈ C depending only on α (called Fujiki constant of α) such that∫

M

α · β2n−2j = C(α) · qM (β)n−j , ∀ β ∈ H2(M,C),

where qM : H2(M,C)→ C denotes the Beauville-Bogomolov-Fujiki form.

Theorem 2.11. Let X = S × T and β ∈ H2(S,Z) ⊆ H2(X,Z) be an irreducible curve class.
Then Conjecture 1.10 (1), (2) hold.

Proof. By Proposition 2.3, we have a forgetful map

f̄ = (f, idT ) : Pn(X,β) = Pn(S, β)× T →Mn(S, β)× T.

As our insertion (1.7) only involves fundamental cycle of the universal one dimensional sheaf, so
it is the pullback f̄∗ of a cohomology class from Mn(S, β)× T .

When n > 1, we have

dimC Pn(S, β) = β2 + n+ 1 > β2 + 2 = dimCMn(S, β).

By Theorem 2.8 and Proposition 2.9, it is easy to see

Pn,β(γ1, . . . , γl) = 0, n > 1.

When n = 1, we take insertion γ, γ′ ∈ H4(X) for example (other cases follow from easier versions
of the same argument). Based on Künneth decomposition:

H4(X) ∼= (H0(S)⊗H4(T ))⊕ (H2(S)⊗H2(T ))⊕ (H4(S)⊗H0(T )),

we write

γ = A1 · 1⊗ p +D1 ⊗D2 +A2 · p⊗ 1,

γ′ = A′1 · 1⊗ p +D′1 ⊗D′2 +A′2 · p⊗ 1.

By Eqn. (2.6), the insertion becomes (see also [COT22, Proof of Thm. 5.8]):

τ(γ) = (D1 · β)⊗D2 +A2f
∗πM∗(π

∗
Sp · ch1(FS))⊗ 1,(2.14)

where πS , πM are projections from S ×Mn(S, β) to its factors. Hence

τ(γ) · τ(γ′) = (D1 · β) · (D′1 · β)⊗ (D2 ·D′2) +A2A
′
2f
∗ (πM∗ (π∗Sp · ch1(FS)))

2 ⊗ 1 + others,
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where “others” lie in H2(P1(S, β))⊗H2(T ). By Theorem 2.8, we get

P1,β(γ, γ′) = (D1 · β) (D′1 · β)

∫
T

(D2 ·D′2)

∫
P1(S,β)

f∗e(TM1(S,β))

− e(T )A2A
′
2

∫
P1(S,β)

f∗
(
cβ2(TM1(S,β)) · πM∗ (π∗Sp · ch1(FS))

2
)

= (D1 · β) (D′1 · β)

∫
T

(D2 ·D′2)

∫
M1(S,β)

e(TM1(S,β))

− e(T )A2A
′
2

∫
M1(S,β)

cβ2(TM1(S,β)) · πM∗ (π∗Sp · ch1(FS))
2

= (D1 · β) (D′1 · β)

∫
T

(D2 ·D′2) e(M1(S, β)),

where the second equality follows from Proposition 2.9 and the last equality is proved using
Fujiki formula (Theorem 2.10) and the evaluation

qM (πM∗ (π∗Sp · ch1(FS))) = 0,

(which follows for example from [COT22, Proof of Thm. 5.8]). Conjecture 1.10 (2) then reduces
to [COT22, Thm. 5.8]. �

2.6. Transport of integrals to the Hilbert schemes. To compute the stable pair theory on
Pn(S, β) for n 6 0 we will need to handle more complicated descendent integrals on Mn(S, β).
As in [COT22, §4.4] which deals with the n = 1 case, we use here the general framework of
monodromy operators of Markman [M08] (see also [O22]) to reduce to the Hilbert schemes.

Consider the Mukai lattice, which is the lattice Λ = H∗(S,Z) endowed with the Mukai pairing

〈x, y〉 := −
∫
S

x∨y,

where, if we decompose an element x ∈ Λ according to degree as (r,D, n), we have written
x∨ = (r,−D,n). Given a sheaf or complex E on S the Mukai vector of E is defined by

v(E) =
√

tdS · ch(E) ∈ Λ.

Let M(v) be a proper smooth moduli space of stable sheaves on S with Mukai vector v ∈ Λ
(where stability is with respect to some fixed polarization). We assume that there exists a
universal family F on M(v) × S. If it does not exists, everything below can be made to work
by working with the Chern character ch(F) of a quasi-universal family, see [M08] or [O22]. Let
πM , πS be the projections to M(v) and S. One has the Mukai morphism

θF : Λ→ H2(M(v)),

θF(x) =
[
πM∗(ch(F) ·

√
tdS · x∨)

]
deg=2

,

where [−]deg=k stands for extracting the degree k component and (as we will also do below) we
have suppressed the pullback maps from the projection to S. Define the universal class

uv = exp

(
θF(v)

〈v, v〉

)
ch(F)

√
tdS ,

which is independent of the choice of universal family F. For x ∈ Λ, consider the normalized
descendents:

B(x) := πM∗(uv · x∨),

and let Bk(x) = [B(x)]deg=2k its degree 2k component.

Example 2.12. For v = (1, 0, 1 − d), the moduli space becomes the punctual Hilbert scheme:
M(v) = S[d]. Then we have

uv = exp

(
−δ

2d− 2

)
ch(IZ)

√
tdS ,

where we let δ = π∗ ch3(OZ) (so that −2δ is the class of the locus of non-reduced subschemes).
We define the standard descendents on the Hilbert scheme by

Gd(α) = π∗(π
∗
S(α) chd(OZ)) ∈ H∗(S[d]).
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One obtains that

B1(p) = − δ

2d− 2
,

B2(p) =
1

2

δ2

(2d− 2)2
−G2(p).

For a divisor D ∈ H2(S), one finds

B1(D) = G2(D),

B2(D) = G3(D)− δ

2d− 2
G2(D).

Using the descendents Bk(x), one allows to move between any two moduli spaces of stable
sheaves on S just by specifying a Mukai lattice isomorphism g : Λ → Λ. We give the details in
the case of our interest, see [M08, O22] for the general case.

As before let β ∈ Pic(S) be an irreducible effective class of square β · β = 2d − 2, and let
n ∈ Z. We want to connect the moduli spaces

Mn(S, β)  S[d].

Let β = e + (d − 1)f where e, f ∈ H2(S,Z) span a hyperbolic lattice: Ze ⊕ Zf ∼=
(

0 1
1 0

)
. We do

not require e, f to be effective here. Define the isomorphism g : Λ→ Λ by

1 7→ (0,−e, n), p 7→ (0, f, 0), e 7→ (1,−nf, 0), f 7→ (0, 0,−1), g|{1,p,e,f}⊥ = id.

One sees that g is an isometry of the Mukai lattice and that

g∗(0, β, n) = (1, 0, 1− d).

Then one has:

Theorem 2.13. (Markman [M08], reformulation as in [O22, Thm. 4]) For any ki > 0 and
αi ∈ H∗(S) and any polynomial P ,∫

Mn(S,β)

P (Bki(αi), cj(TMn(S,β))) =

∫
S[d]

P (Bki(gαi), cj(TS[d])).

2.7. Genus 1 in irreducible classes. Recall the genus 1 Gopakumar-Vafa invariants (Propo-
sition 2.1). On the stable pair side, we have the following:

Theorem 2.14. Let β ∈ H2(S,Z) ⊆ H2(X,Z) be an irreducible curve class. Then for certain
choice of orientation, we have

P0,β(γ) = e(T )N1

(
β2

2

)∫
S×p

γ.(2.15)

In particular, Conjecture 1.10 (3) holds in this case.

Proof. The strategy is as follows: First we write our stable pair invariants as integrals on the
moduli spaces M0(S, β), then express the integrand in terms of the classes Bk(x) and then use
Markman’s Theorem 2.13 to reduce to an integral over the Hilbert scheme, which is known by
the results of [COT22].

By Eqn. (2.14) and Theorem 2.8 (choose the inverse orientation there), we have

P0,β(γ) = e(T )

∫
S×p

γ ·
∫
P0(S,β)

f∗
(
cβ2(TM0(S,β)) · πM∗ (π∗S(p) · ch1(FS))

)
.

Using Proposition 2.9, we find

P0,β(γ) = e(T )

∫
S×p

γ ·
∫
M0(S,β)

cβ2(TM0(S,β)) · c1(−RπM∗(FS)) · πM∗ (ch1(FS) · π∗S(p)) .

A calculation shows that we have

B1(p) = π∗(ch1(FS)π∗S(p)).

Moreover, the expressions (2.13) are invariant under replacing ch(FS) by ch(FS) exp(`) for any
line bundle ` ∈ H2(Mn(S, β)). Hence we can use ch(F′S) := ch(FS) exp(θFS (v)/〈v, v〉) which
shows that

c1(−RπM∗(FS)) = −πM∗(ch3(F′S))− 2πM∗(ch1(F′S)π∗Sp)

= −B1

(√
tdS
−1
)
− 2B1(p)

= −B1(1 + p).
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We obtain that: ∫
M0(S,β)

c2d−2(TM0(S,β)) · c1(−RπM∗(FS)) · πM∗ (ch1(FS) · π∗Sp)

=−
∫
M0(S,β)

c2d−2(TM0(S,β))B1(1 + p)B1(p)

=−
∫
S[d]

c2d−2(TS[d])B1(−e+ f)B1(f)

=−
∫
S[d]

c2d−2(TS[d])G2(−e+ f)G2(f)

=− ((−e+ f) · f)C(c2d−2(TS[d]))

=N1(d− 1),

where we used the k = 1 case of [COT22, Thm. 4.2] in the last step. �

2.8. Genus 2 in irreducible classes. Let βd ∈ H2(S,Z) ⊆ H2(X,Z) be an irreducible curve
class of square β2

d = 2d − 2. Below, we use similar method to compute stable pair invariants
P−1,βd on X for all d.

Theorem 2.15. For certain choice of orientation, we have

∑
d∈Z

P−1,βd q
d =

∏
n>1

(1− qn)−24

(24q
d

dq
G2(q)− 24G2(q)− 1

)
= 72q2 + 1920q3 + 28440q4 + 305280q5 + 2639760q6 + 19450368q7 + · · · .

In particular, Conjecture 1.10 (4) holds in this case.

Proof. As in the genus 1 case, by Theorem 2.8 and Proposition 2.9 we have:

P−1,β = −e(T )

∫
M−1(S,β)

c2d−2(TM−1(S,β)) · c2(−RπM∗(FS)).

With the same discussion as before one gets:

c2(−RπM∗(FS)) =
1

2
B1(1 + p)2 +B2(1 + p).

Hence applying Markman’s Theorem 2.13, we conclude∫
M−1(S,β)

c2d−2(TM−1(S,β)) · c2(−RπM∗(FS))

=

∫
M−1(S,β)

c2d−2(TM−1(S,β)) ·
(

1

2
B1(1 + p)2 +B2(1 + p)

)
=

∫
S[d]

c2d−2(TS[d])

(
1

2
B1(−e+ f − p)2 +B2(−e+ f − p)

)
=

∫
S[d]

c2d−2(TS[d])
1

2

[
G2(−e+ f) +

δ

2d− 2

]2

+

∫
S[d]

c2d−2(TS[d])

(
G3(−e+ f)− δ

2d− 2
G2(−e+ f)− 1

2

δ2

(2d− 2)2
+ G2(p)

)
=

1

2

(
(−e+ f)2 +

δ · δ
(2d− 2)2

)
N1(d− 1)− 1

2

δ · δ
(2d− 2)2

N1(d− 1) +

∫
S[d]

c2d−2(TS[d])G2(p)

=−N1(d− 1) +

∫
S[d]

c2d−2(TS[d])G2(p).

Thus we conclude that

P−1,β = e(T )

(
N1(d− 1)−

∫
S[d]

c2d−2(TS[d])G2(p)

)
.

The desired formula now follows by the evaluation given in [COT22, Prop. 4.6]:∑
d>0

qd
∫
S[d]

c2d−2(TS[d])G2(p) =
∏
n=1

(1− qn)−24

(
G2(q) +

1

24

)
.

Finally, comparing with Proposition 2.1, we are done. �
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Remark 2.16. By the global Torelli theorem, primitive curve classes on K3 surfaces can be
deformed to irreducible curve classes. Combining Theorem 2.11, Theorem 2.14, Theorem 2.15,
we know Conjecture 1.10 also holds for primitive curve classes β ∈ H2(S) ⊆ H2(X).

2.9. Genus 1: multiple fiber classes of elliptic fibrations. Let X = E × E × T be the
product two copies of an elliptic curve E and a K3 surface T . It gives the trivial elliptic
fibration

π : X → Y := E × T.(2.16)

For multiple fiber classes of π (2.16), we have the following closed evaluation:

Theorem 2.17. Let t > 0 and γ ∈ H4(X). For certain choice of orientation, we have∑
r>0

P t0,r[E](γ) qr = 24

(∫
E×E×p

γ

)
·
∑
m>1

∑
n|m

n2qm.(2.17)

Proof. By [CT19, Prop. 5.3], we know P t0(X,n[E]) is independent of the choice of t > 0, so we
may set t→∞ and work with PT stability. As in [CMT19, Lem. 3.5], there is an isomorphism

π∗ : Hilbn(Y ) ∼= P0(X,n[E]), IZ 7→ π∗IZ .

For I = π∗IZ ∈ P0(X,n[E]), by projection formula and

π∗OX ∼= OY ⊕KY [−1],

we obtain

RHomX(I, I) ∼= RHomY (IZ , IZ)⊕RHomY (IZ , IZ ⊗KY )[−1].

By taking the traceless part, we get

Ext2
X(I, I)0

∼= Ext2
Y (IZ , IZ)0 ⊕ Ext1

Y (IZ , IZ)0(2.18)

∼= Ext2
Y (IZ , IZ)0 ⊕ Ext2

Y (IZ , IZ)∨0 ,

where we use Serre duality in the second isomorphism.
Next we compare cosections on these obstruction spaces. By [KiP, Lem. 9.4], we have a

surjective isotropic cosection

φX : Ext2
X(I, I)0

At(I)−→ Ext3
X(I, I ⊗ T ∗X)

tr−→ H3(X,T ∗X)
HσX−→ H4(X,∧4T ∗X)

∫
−→ C,

where At(I) ∈ Ext1
X(I, I ⊗ T ∗X) denotes the Atiyah class of I, H ∈ H1(X,T ∗X) is an ample

divisor and σX ∈ H0(X,∧2T ∗X) is a holomorphic symplectic form of X.
By the compatibility of Atiyah classes with map π : X → Y (ref. [BuFl, Prop. 3.14]), we have

a commutative diagram

Ext2
X(I, I)0

At(I) // Ext3
X(I, I ⊗ T ∗X)

tr // H3(X,T ∗X)
pr // H1,1(S)⊗H0,2(T )

Ext2
Y (IZ , IZ)0

i

OO

At(IZ) // Ext3
Y (IZ , IZ ⊗ T ∗Y )

OO

tr // H3(Y, T ∗Y )
∼= // H1,1(E)⊗H0,2(T ),

π∗

OO

(2.19)

where i is the embedding in (2.18), tr denotes the trace map and pr is the projection with respect
to Künneth decomposition. We define a cosection

φY : Ext2
Y (IZ , IZ)0

At(IZ)−→ Ext3
Y (IZ , IZ ⊗ T ∗Y )

tr−→ H3(Y, T ∗Y ) ∼= H1,1(E)⊗H0,2(T )
ε−→ C,

where ε(α) =

∫
X

HσX · π∗α, α ∈ H1,1(E)⊗H0,2(T ).

It is easy to see φY is a positive multiple of the standard cosection of Hilbn(Y ) (see e.g. [O18b,
Eqn. (6)]), hence its reduced virtual class keeps the same.

By diagram (2.19), we have a commutative diagram:

Ext2
X(I, I)0

φX // C

Ext2
Y (IZ , IZ)0.

i

OO

φY

99
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We claim that Ker(φY ) is a maximal isotropic subspace of Ker(φX)/Im(φ∨X). In fact, by taking
dual, we have a commutative diagram

C

=

��

φ∨X // Ext2
X(I, I)∨0

i∨

��

QSerre

∼=
// Ext2

X(I, I)0
∼= Ext2

Y (IZ , IZ)0 ⊕ Ext2
Y (IZ , IZ)∨0

π2ss
C

φ∨Y // Ext2
Y (IZ , IZ)∨0 .

Since φY is surjective, so φ∨Y is injective, therefore

Im(φ∨X) ∩Ker(φY ) ⊆ Im(φ∨X) ∩ Ext2
Y (IZ , IZ)0 = 0,

and Ker(φY ) defines a subspace of Ker(φX)/Im(φ∨X). This is a maximal isotropic subspace as

i : Ext2
Y (IZ , IZ)0 → Ext2

X(I, I)0 is so.
The above construction works in family and therefore we have

[P0(X,n[E])]vir = [Hilbn(Y )]vir ∈ A1(P0(X,n[E])),

for certain choice of orientation in the LHS. Consider a commutative diagram:

X

π

��

X × P0(X,n[E])

π̄=(π,(π∗)−1)

��

πXoo πP // P0(X,n[E])

(π∗)−1 ∼=
��

Y Y ×Hilbn(Y )
πYoo πM // Hilbn(Y ),

and denote Z ↪→ Y ×Hilbn(Y ) to be the universal 0-dimensional subscheme. Then

P0,n[E](γ) =

∫
[P0(X,n[E])]vir

πP∗(π
∗
Xγ · π̄∗ ch3(OZ))

=

∫
[Hilbn(Y )]vir

πM∗π̄∗(π
∗
Xγ · π̄∗ ch3(OZ))

=

∫
[Hilbn(Y )]vir

πM∗(ch3(OZ) · π̄∗(π∗Xγ))

=

∫
[Hilbn(Y )]vir

πM∗(ch3(OZ) · π∗Y π∗γ).

The statement now follows from Proposition 2.18 below. �

Proposition 2.18. Let ω ∈ H2(E,Z) be the class of point and D ∈ H2(T,Q) any class. Then
for any n > 1 we have:∫

[Hilbn(T×E)]vir
πM∗

(
ch3(OZ)π∗Y (ω ⊗ 1)

)
= (−1)n+1e(T )

∑
d|n

d2,

∫
[Hilbn(T×E)]vir

πM∗
(

ch3(OZ)π∗Y (1⊗D)
)

= 0.

Proof. Write Hilb = Hilbn(T × E) and consider the diagram

T × E Hilb×T × E Hilb

Hilb×T×E
E Hilb /E,

πT×E πM

p̃ p

πM/E

where the quotient by E is taken in the stacky sense. The universal subscheme Z ⊂ Hilb×T ×
E has a natural E-linearization and hence arises from the pullback of a subscheme Z/E ⊂
(Hilb×T × E)/E. Moreover, as in [O18b], there exists a natural (0-dimensional) virtual class
[Hilb /E]vir such that

[Hilb]vir = p∗[Hilb /E]vir.

Since the virtual class of Hilb /E arises from a symmetric obstruction theory (on an étale cover
of Hilb /E), its degree can be computed by as an Behrend weighted Euler characteristic [B]:∫

[Hilb /E]vir
1 = e (Hilb /E, ν) .
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We argue now as follows: Applying the pushpull formula and using p ◦ πM = πM/E ◦ p̃ we have

Nn :=

∫
[Hilb]vir

πM∗
(

ch3(OZ)π∗T×E(ω ⊗ 1)
)

=

∫
[Hilb /E]vir

πM/E∗p̃∗
(

ch3(OZ)π∗T×E(ω ⊗ 1)
)

=

∫
[Hilb /E]vir

πM/E∗
(

ch3(OZ/E)p̃∗(π
∗
T×E(ω ⊗ 1))

)
.

Then by checking on fibers we have p̃∗(π
∗
T×E(ω⊗1)) = 1 as well as πM/E∗ ch3(OZ/E) = n. This

implies that

Nn = n

∫
[Hilb /E]vir

1 = n · e (Hilb /E, ν) = 24(−1)n−1
∑
d|n

d2,

where for the last equality we have used [OS, Cor. 1].
For the second integral we argue identically, but observe that we have

ch3(OZ)π∗T×E(1⊗D) = p̃∗(ch3(OZ/E)π∗T (D)),

so when pushing forward by p̃ the integral vanishes. �

Similarly, we can consider a nontrivial elliptic fibration:

p̄ = (p, idT ) : X = S × T → P1 × T,
where p : S → P1 is an elliptic K3 surface with a section i. Let f be a generic fiber of p̄.

Theorem 2.19. Let t > 0 and γ ∈ H4(X). Then for certain choice of orientation, we have∑
r>0

P t0,r[f ](γ) qr = 24

(∫
S×p

γ

)
·
∑
m>1

∑
n|m

n2qm.(2.20)

Proof. The first proof is parallel to the proof of Theorem 2.17. For the second part, we need to
evaluate

(2.21)

∫
[Hilbn(T×P1)]vir

πM∗
(

ch3(OZ)π∗Y (ω ⊗ 1)
)
,

where ω ∈ H2(P1) is the class of a point. We consider the degeneration of T × P1 given by
the product of T with the degeneration of P1 into a chain of three P1’s. By specializing the
insertion ω to the middle factor, we are reduced to an integral of the relative Hilbert schemes
Hilbn(T×P1/T0∪T∞) with the same integrand. But this integral is also the outcome of applying
the degeneration formula to the integrals considered in Proposition 2.18 (under the degeneration
of E to a nodal P1). Hence (2.21) is given by (−1)n+1e(T )

∑
d|n d

2 as well. For the analogue of

the second integral in Proposition 2.18, the localization formula applied to the scaling action of
C∗ on P1 shows that it vanishes. �

Remark 2.20. On the product of two K3 surfaces, genus 1 Gopakumar-Vafa invariants in
imprimitive classes are defined in [COT22, Def. A.1]. In particular, for multiple fiber classes
β = r[f ] above, by using [COT22, Eqn. (5.7)], we know n1,r[f ](γ) = 0 if r > 1.

3. Hilbert schemes of two points on K3

3.1. Rational curves on exceptional locus. Let S be a K3 surface. Consider the Hilbert-
Chow map

π : Hilb2(S)→ Sym2(S)

to the symmetric product of S. Let D be the exceptional divisor fitting into Cartesian diagram:

D

π

��

i // Hilb2(S)

π

��
S

∆ // Sym2(S),

where ∆ is the diagonal embedding. Note that π : D → S is a P1-bundle and any fiber of it has
normal bundle OP1(−2, 0, 0).

Theorem 3.1. When t = n
ω·β + 0+ (i.e. in JS chamber), Conjecture 1.10 (1), (2) hold for

multiple fiber classes β = r[P1] (r > 1) of π as above.
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Proof. By Jordan-Hölder filtration, the JS moduli space P JS
n (X, d[P1]) is nonempty only if

d |n, n > 0.

so we may assume n = m · d for m ∈ Z>1. Consider the map

f : P JS
md(X, d[P1])→ Symd(S), (F, s) 7→ π∗[F ].(3.1)

As the insertion (1.7) only involves fundamental cycle of the universal one dimensional sheaf F,
we have

[F] = f̄∗[Z],

where [Z] ↪→ Symd(S)× S is the class of incident subvariety and f̄ = (f, idS). Therefore∫
[P JS
md(X,d[P1])]vir

l∏
i=1

τ(γi) =

∫
[P JS
md(X,d[P1])]vir

f∗Φ,

for some Φ ∈ H2(md+1)(Symd(S)). When m > 1, we have md+ 1 > 2d, therefore Φ = 0 and

P JS
md,d[P1](γ1, . . . , γl) = 0, if m > 1.

For m = 1, we have an isomorphism

Hilbd(S)
π∗∼= P JS

d (D, d[P1]) ∼= P JS
d (X, d[P1]),

IZ 7→ π∗IZ 7→ (OX → i∗π
∗OZ).

For IX = (OX → i∗π
∗OZ), we write ID = (OD → π∗OZ). As in [CMT19, Prop. 4.3], [CKM20,

Prop. 4.2], we have a canonical isomorphism

Ext0
D(ID, π

∗OZ) ∼= Ext1
X(IX , IX)0,

and an inclusion of maximal isotropic subspace

Ext1
D(ID, π

∗OZ) ↪→ Ext2
X(IX , IX)0.(3.2)

From distinguished triangle

ID → OD → π∗OZ ,
we obtain a distinguished triangle

RHomD(π∗OZ , π∗OZ)→ RHomD(OD, π∗OZ)→ RHomD(ID, π
∗OZ).

By projection formula, we have

RHomD(π∗OZ , π∗OZ) ∼= RHomS(OZ ,OZ), RHomD(OD, π∗OZ) ∼= RHomS(OS ,OZ).

Therefore we get an exact sequence

0 = H1(S,OZ) ∼= H1(D,π∗OZ)→ Ext1
D(ID, π

∗OZ)→ Ext2
S(OZ ,OZ)→ 0.(3.3)

By Serre duality, we have

Ext2
S(OZ ,OZ) ∼= Ext0

S(OZ ,OZ)∨ ∼= H0(S,OZ)∨.(3.4)

Combining Eqns. (3.2), (3.3), (3.4), we obtain a maximal isotropic subspace

H0(S,OZ)∨ ↪→ Ext2
X(IX , IX)0.

Working in family, we see that the dual of tautological bundle O[d]
S on Hilbd(S) is a maximal

isotropic subbundle of the obstruction bundle of P JS
d (X, d[P1]). By Lemma 2.6, we obtain

[P JS
d (X, d[P1])]vir = [Hilbd(S)] ∩ cd−1

(
O[d]
S

)
,

for certain choice of orientation. As for insertions, consider the following diagram

S D
πoo i // X

S ×Hilbd(S)

πM

��

πS

OO

D ×Hilbd(S)

πD

OO

πM

��

π̄=(π,id)oo ī=(i,id)// X ×Hilbd(S)

πM

��

πX

OO

Hilbd(S) Hilbd(S) Hilbd(S),
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let Z ↪→ Hilbd(S)× S denote the universal zero dimensional subscheme, then

τ(γ) = πM∗ (π∗Xγ · ch3(̄i∗π̄
∗OZ))

= πM∗ (π∗Xγ · ī∗π̄∗[Z])

= πM∗ī∗ (̄i∗π∗Xγ · π̄∗[Z])

= πM∗π̄∗ (π∗Di
∗γ · π̄∗[Z])

= πM∗ (π̄∗π
∗
Di
∗γ · [Z])

= πM∗ (π∗Sπ∗i
∗γ · [Z]) ∈ H2(Hilbd(S)),

which depends only on [Z] and hence it is a pullback from Symd(S) by the Hilbert-Chow map

HC: Hilbd(S)→ Symd(S).

To sum up, we have

P JS
d,d[P1](γ1, . . . , γl) =

∫
Hilbd(S)

cd−1

(
O[d]
S

)
·
l∏
i=1

πM∗ (π∗Sπ∗i
∗γi · [Z]) .(3.5)

When d = 1, this reduces to [COT22, Lem. 3.7]. When d > 1, we claim the above integral is
zero. In fact, by [Lehn, Thm. 4.6], we have the formula

∑
m>0

c
(
O[m]
S

)
zm = exp

∑
m>1

(−1)m−1

m
qm(1)zm

 · 1
where qm(1) are linear maps (called Nakajima operators)

qm(1) ∈ End(H), H =
⊕
m>0

H∗(Hilbm(S),Q),

which is of bidegree (m, 2m− 2). By looking at the bidegree (d, 2d− 2)-part, we have

cd−1

(
O[d]
S

)
= qd(1)(1), where 1 ∈ H0(Hilb0(S)).

By the definition of qd(1) in [Lehn, Def. 2.3], we have qd(1)(1) = p1∗[Q] where Q is the cycle on

Hilbd(S)×S supported on (x, ξ) with Supp(ξ) = x. Therefore we know cd−1

(
O[d]
S

)
is supported

on HC−1(∆), where

∆ =
{

(x, · · · , x) ∈ Symd(S)
}
⊆ Symd(S)

is the small diagonal. Our insertion is a pullback from Symd(S) and gives (d + 1)-dimensional

constrain on Symd(S). If d > 1, d+ 1 > 2 = dimC ∆, therefore the integral (3.5) is zero. �

3.2. Small degree curve classes on X = T ∗P2. When the K3 surface S has a (−2)-curve
C ⊂ S, the Hilbert scheme Hilb2(S) contains Sym2(C) ⊂ Hilb2(S) as a Lagrangian subvariety.
For curve classes coming from Sym2(C) ∼= P2, our invariants can be studied on the local model
X = T ∗P2.

We have an identification of curve classes:

H2(X,Z) = H2(P2,Z) = Z[`],

where ` ⊂ P2 is a line. Let H ∈ H2(T ∗P2) be the pullback of hyperplane class and identify
H2(T ∗P2,Z) ≡ Z by its degree against H. Gopakumar-Vafa invariants are given as follows:

Proposition 3.2. ([COT22, Cor. 6.2])

n0,d(H
2, H2) =

 1 if d = 1,
−1 if d = 2,

0 otherwise.

n1,1(H2) = 0, n2,1 = 0.

In the stable pair side, we compute invariants for small degree curve classes.

Proposition 3.3. For certain choice of orientation, we have

P1,1(H2, H2) = 1, P1,2(H2, H2) = −1, P1,3(H2, H2) = 0,

P0,1(H2) = P0,2(H2) = 0, P0,3(H2) = 1, P−1,1 = P−1,2 = P−1,3 = 0.

Moreover, P tn(X, d) is independent of the choice of t > n/d in the listed cases above.
In particular, for X = T ∗P2, we have

• Conjecture 1.10 (2) holds when d 6 3.
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• Conjecture 1.10 (3), (4) hold.

Proof. As noted in [COT22, Proof of Lem. 6.3], we have a diagram

X = T ∗P2 �
� i // OP2(−1)⊕3

π

��
T,

where i is a closed imbedding and π contracts P2 to a point in an affine scheme T . It is easy to see
that any one dimensional closed subscheme C ⊂ X with [C] = d (d = 1, 2) satisfies χ(OC) > 1.
Therefore by [CT19, Prop. 1,12], we know for n = −1, 0, 1 and d 6 3, the moduli space P tn(X, d)
is independent of the choice of t > n/d. So we may take t → ∞ and work with PT stability.

Using similar analysis as [CKM20, Prop. 3.9], we know all stable pairs (OX
s→ F ) in the above

cases are scheme theoretically supported on the zero section P2 ⊂ X and F are stable. Then
obviously P−1(X, d) = ∅ if d 6 3 and corresponding invariants vanish.

When n = 1, d 6 3, the isomorphism

P1(X, d) ∼= M1(X, d), (OX → F ) 7→ F,

to the moduli space of one dimensional stable sheaves F with [F ] = d[`] and χ(F ) = 1 will
reduce the computation to the corresponding one on M1(X, d) [COT22, Prop. 6.5].

When d = 1, 2, we have P0(X, d) = ∅, so invariants are zero. For d = 3, the support map

P0(X, 3) ∼= P0(P2, 3)
∼=→ |OP2(3)| ∼= P9, F 7→ supp(F )

is an isomorphism. The universal one dimensional sheaf satisfies F = OC for the universal (1, 3)-
divisor C ↪→ P9 × P2. Let πM : P0(X, 3) × P2 → P0(X, 3) be the projection. Bott’s formula
implies that

RHomπM (O,O(−C)� T ∗P2) ∼= OP9(−1)[−2]⊕8,

RHomπM (O,O(C)� T ∗P2) ∼= OP9(−1)⊕8,

RHomπM (O,O � T ∗P2) ∼= OP9 [−1].

Therefore, we have

RHomπM (OC ,OC � T ∗P2)[1]

∼= RHomπM (O(−C)→ O, (O(−C)→ O)� T ∗P2)[1]

∼= OP9(−1)⊕8 ⊕OP9(1)⊕8 ⊕OP9 ⊕OP9 .

By Grothendieck-Verdier duality, it is easy to see

OP9(−1)⊕8 ⊕OP9

is a maximal isotropic subbundle of RHomπM (OC ,OC � T ∗P2)[1]. The reduced virtual class
satisfies

[P0(X, 3)]vir = ±e
(
OP9(−1)⊕8

)
∩ [P9] ∈ H2(P9).

Let h ∈ H2(P9) denote the hyperplane class. It is straightforward to check

τ0(H2) = [h].

By integration again the virtual class, we have the desired result. �

Appendix A. A conjectural virtual pushforward formula

Let β ∈ H2(X,Z) be an irreducible curve class on a holomorphic symplectic 4-fold X. There
is a well-defined forgetful map

f : Pn(X,β)→Mn(X,β), (OX → F ) 7→ [F ],

to the coarse moduli scheme of one dimensional stable sheaves F with [F ] = β, χ(F ) = n.
Motivated by the Thom-Porteus formula (Proposition 2.9), we conjecture the following:

Conjecture A.1. In the above setting, there exists a choice of orientation such that

f∗[Pn(X,β)]vir = c1−n(−RπM∗(F)) ∩ [Mn(X,β)]vir,

where πM : Mn(X,β)×X →Mn(X,β) is the projection and F is a universal sheaf (if exists).

Remark A.2. This should be proved by adapting Park’s beautiful work on virtual pullback [Park]
to the cosection localized version.
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We can rewrite the degree of [P−1(X,β)]vir as a descendent integral on [M1(X,β)]vir. Let
Fnorm be the normalized universal sheaf on M1(X,β)×X, i.e. det(RπM∗Fnorm) ∼= OM1(X,β).

Proposition A.3. Assume Conjecture A.1. For certain choice of orientation, we have

P−1,β = −
∫

[M1(X,β)]vir
πM∗ (ch6(Fnorm))− 1

12

∫
[M1(X,β)]vir

πM∗ (ch4(Fnorm)π∗X(c2(X))) .

Using notations from [COT22, §2.1], this is written as

(A.1) P−1,β = −〈τ3(1)〉DT4

β − 1

12
〈τ1(c2(X))〉DT4

β .

Proof. The derived dual gives an isomorphism

M−1(X,β) ∼= M1(X,β), F 7→ F∨.

Then the computation is finished by applying the Grothendieck-Riemann-Roch formula. �

Remark A.4. Based on Conjecture 1.10 (4), this reproduces genus 2 Gopakumar-Vafa invari-
ants of X and therefore providing a sheaf theoretic approach to them using descendent integrals
on moduli spaces of one dimensional stable sheaves as [CT20a].

Proposition A.5. Conjecture A.1 holds on the product X = S × T of two K3 surfaces. In
particular, Eqn. (A.1) holds in this case.

Proof. Say β ∈ H2(S,Z) ⊆ H2(X,Z), we have

f = fS × idT : Pn(X,β) ∼= Pn(S, β)× T →Mn(X,β) ∼= Mn(S, β)× T,
for forgetful map fS : Pn(S, β)→Mn(S, β).

By Theorem 2.8 and [COT22, Thm. 5.7], for certain choice of orientation, we have

[Pn(X,β)]vir =
(
[Pn(S, β)] ∩ f∗Se(TMn(S,β))

)
× [T ]− e(T )

(
[Pn(S, β)] ∩ f∗Scβ2(TMn(S,β))

)
,

(A.2)

[Mn(X,β)]vir =
(
[Mn(S, β)] ∩ e(TMn(S,β))

)
× [T ]− e(T )

(
[Mn(S, β)] ∩ cβ2(TMn(S,β))

)
.

Also note that a universal sheaf F on Mn(X,β)×X (if exists) is of form

F = FS �O∆T
,

where FS is a universal sheaf on Mn(S, β)× S and ∆T is the diagonal of T × T . So

(A.3) RπM∗F = RπMS∗FS ,
where πMS

: Mn(S, β)× S →Mn(S, β) is the projection. Combining Eqns. (A.2), (A.3), we are
reduced to Proposition 2.9. �
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