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Abstract. Using reduced Gromov-Witten theory, we define new invariants which capture

the enumerative geometry of curves on holomorphic symplectic 4-folds. The invariants are
analogous to the BPS counts of Gopakumar and Vafa for Calabi-Yau 3-folds, Klemm and

Pandharipande for Calabi-Yau 4-folds, and Pandharipande and Zinger for Calabi-Yau 5-folds.

We conjecture that our invariants are integers and give a sheaf-theoretic interpretation
in terms of reduced 4-dimensional Donaldson-Thomas invariants of one-dimensional stable

sheaves. We check our conjectures for the product of two K3 surfaces and for the cotangent
bundle of P2. Modulo the conjectural holomorphic anomaly equation, we compute our in-

variants also for the Hilbert scheme of two points on a K3 surface. This yields a conjectural

formula for the number of isolated genus 2 curves of minimal degree on a very general hy-
perkähler 4-fold of K3[2]-type. The formula may be viewed as a 4-dimensional analogue of

the classical Yau-Zaslow formula concerning counts of rational curves on K3 surfaces.

In the course of our computations, we also derive a new closed formula for the Fujiki
constants of the Chern classes of tangent bundles of both Hilbert schemes of points on K3

surfaces and generalized Kummer varieties.
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0. Introduction

0.1. Gopakumar-Vafa invariants. Gromov-Witten invariants of a smooth projective variety
X are defined by integration over the virtual class [BF, LT] of the moduli space Mg,n(X,β) of
genus g degree β ∈ H2(X,Z) stable maps:〈

τk1(γ1) · · · τkn(γn)
〉GW

g,β
=

∫
[Mg,n(X,β)]vir

n∏
i=1

ev∗i (γi) · ψ
ki
i .(0.1)

Here evi : Mg,n(X,β) → X is the evaluation map at the i-th marking, ψi is the i-th cotangent

line class, and γi ∈ H∗(X,Q) are cohomology classes. Since Mg,n(X,β) is a Deligne-Mumford
stack, Gromov-Witten invariants are in general rational numbers, even if all γi are integral.
Moreover the enumerative meaning of Gromov-Witten invariants is often not clear.

For Calabi-Yau 3-folds, Gopakumar and Vafa [GV] found explicit linear transformations which
transform the Gromov-Witten invariants to a set of invariants (called Gopakumar-Vafa invari-
ants) which they conjectured to be integers. In an ideal geometry, where all curves are isolated,
disjoint and smooth, Gopakumar-Vafa invariants should be the actual count of curves of given
genus and degree. The integrality of Gopakumar-Vafa invariants was proven recently in [IP]. A
similar transformation of Gromov-Witten invariants into (conjectural) Z-valued invariants has
been proposed for Calabi-Yau 4-folds by Klemm and Pandharipande [KP], and for Calabi-Yau
5-folds by Pandharipande and Zinger [PZ]. Universal transformations are expected in every
dimension [KP].

1



2 YALONG CAO, GEORG OBERDIECK, AND YUKINOBU TODA

Let X be a holomorphic symplectic 4-fold, by which we mean a smooth complex projective
4-fold which is equipped with a non-degenerate holomorphic 2-form σ ∈ H0(X,Ω2

X). Since the
obstruction sheaf has a trivial quotient, the ordinary Gromov-Witten invariants of X vanish for
all non-zero curve classes. As a result, also all Klemm-Pandharipande invariants of X vanish.
Instead a reduced Gromov-Witten theory is obtained by Kiem-Li’s cosection localization [KiL].
It is defined as in (0.1) but by integration over the reduced virtual fundamental class:1

(0.2) [Mg,n(X,β)]vir ∈ A2−g+n(Mg,n(X,β)).

We are interested here in integer-valued invariants, which underlie the (reduced) Gromov-
Witten invariants (0.1) of the holomorphic symplectic 4-fold X. In genus 0, all Gromov-Witten
invariants can be reconstructed from the primary invariants, i.e. the integrals (0.1) where all
ki = 0. Our proposal for the genus 0 primary invariants is as follows:

Definition 0.1. (Definition 1.5) For any γ1, . . . , γn ∈ H∗(X,Z), we define the genus 0 Gopakumar-
Vafa invariant n0,β(γ1, . . . , γn) ∈ Q recursively by:〈

τ0(γ1) · · · τ0(γn)
〉GW

0,β
=

∑
k>1,k|β

kn−3 n0,β/k(γ1, . . . , γn).

In fact, through a twistor space construction, this definition follows immediately from a similar
definition on Calabi-Yau 5-folds given in [PZ] (see §1.3 for more explanations).

In genus 1, the situation is more complicated and does not follow from 5-fold geometry.
Since the virtual dimension of (0.2) is 1 + n, we require one marked point and an insertion
γ ∈ H4(X,Z). Because curves in imprimitive curve classes are very difficult to control in an
ideal geometry (see Section 1.4) we will restrict us to a primitive curve class (i.e. where β is not
a multiple of a class in H2(X,Z)).

Definition 0.2. (Definition 1.6) Assume that β ∈ H2(X,Z) is primitive. For any γ ∈ H4(X,Z),
we define the genus 1 Gopakumar-Vafa invariant n1,β(γ) ∈ Q by〈

τ0(γ)
〉GW

1,β
= n1,β(γ)− 1

24

〈
τ0(γ)τ0(c2(TX))

〉GW

0,β
.

In genus 2, the situation is even more complicated and attracting. In fact, the appearance of
genus 2 invariants is a new phenomenon that is not available on ordinary Calabi-Yau 4-folds and
Calabi-Yau 5-folds. By the virtual dimension of (0.2), one expects a finite number of isolated
genus 2 curves. The genus 2 Gopakumar-Vafa invariant should be a count of these curves.

Definition 0.3. (Definition 1.7) Assume that β ∈ H2(X,Z) is primitive. We define the genus
2 Gopakumar-Vafa invariant n2,β ∈ Q by〈

∅
〉GW

2,β
= n2,β −

1

24
n1,β(c2(X)) +

1

2 · 242

〈
τ0(c2(X))τ0(c2(X))

〉GW

0,β
+

1

24
Nnodal,β ,

where Nnodal,β ∈ Q is the virtual count of rational nodal curves as defined in Eqn. (1.4).

Our first main conjecture is about the integrality of these definitions:

Conjecture 0.4. (Conjecture 1.9) With the notations as above, we have

n0,β(γ1, . . . , γn), n1,β(γ), n2,β ∈ Z.

The definitions above are found via computations in an ‘ideal’ geometry where we assume
that algebraic curves behave in the expected way, see §1.4, §1.5.2 We justify Conjecture 0.4 in
such an ideal case, which takes the whole §1.6, §1.7.

0.2. GV/DT4 correspondence. The second main theme of this paper is to give a sheaf the-
oretic interpretation of Gopakumar-Vafa invariants. This is motivated by the parallel work of
[CMT18, CT20a] on ordinary Calabi-Yau 4-folds.

Let Mβ be the moduli scheme of one dimensional stable sheaves F on X with ch3(F ) = β,
χ(F ) = 1. By [KiP, Sav], the ordinary DT4 virtual class [BJ, OT] (see also [CL14]) of Mβ

vanishes. By Kiem-Park’s cosection localization [KiP], we instead have a (reduced) virtual class

[Mβ ]vir ∈ A2(Mβ ,Q).(0.3)

As usual, the virtual class depends on a choice of orientation [CGJ, CL17]. More precisely,
for each connected component of Mβ , there are two choices of orientation which affect the

1We will only work with the reduced virtual class in this paper, hence we will denote it simply by [−]vir.
2Similar considerations in ideal geometries were taken by Klemm-Pandharipande on Calabi-Yau 4-folds [KP]

and Pandharipande-Zinger on Calabi-Yau 5-folds [PZ], though our case looks more complicated (see §1.4 for

details).
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virtual class by a sign (component-wise). To define descendent invariants, consider the insertion
operators:

τi : H∗(X,Z)→ H∗+2i−2(Mβ ,Q),

τi(•) := (πM )∗ (π∗X(•) ∪ ch3+i(Fnorm)) ,

where Fnorm is the normalized universal sheaf, i.e. det(πM∗Fnorm) ∼= OMβ
. As in Gromov-Witten

theory, for any γ1, . . . , γn ∈ H∗(X,Z) and k1, . . . , kn ∈ Z>0, we define DT4 invariants:

〈
τk1(γ1), . . . , τkn(γn)

〉DT4

β
:=

∫
[Mβ ]vir

n∏
i=1

τki(γi) ∈ Q.(0.4)

Here is the second main conjecture of this paper, which gives a sheaf theoretic interpretation
of our Gopakumar-Vafa invariants.

Conjecture 0.5. (Conjecture 2.2) For certain choice of orientation, the following holds.
When β is an effective curve class,〈

τ0(γ1), . . . , τ0(γn)
〉DT4

β
= n0,β(γ1, . . . , γn).(i)

When β is a primitive curve class,〈
τ1(γ)

〉DT4

β
= −1

2

〈
τ1(γ)

〉GW

0,β
− n1,β(γ).(ii)

When β is a primitive curve class,

−
〈
τ3(1)

〉DT4

β
− 1

12

〈
τ1(c2(X))

〉DT4

β
= n2,β .(iii)

As in Conjecture 0.4, we verify these equalities in the ideal geometry (see §2.3, §2.4 and also
§3 for details). An exception is the last equality involving genus 2 invariants, which we obtain
indirectly through stable pair theory [COT22] (see Remark 2.3).

Besides computations in the ideal geometry mentioned above, we study several examples and
prove our conjectures in those cases.

0.3. Verification of conjectures I: K3 × K3. Let X = S × T be the product of two K3
surfaces. When the curve class β ∈ H2(S×T,Z) is of non-trivial degree over both S and T , then
the obstruction sheaf of the moduli space of stable maps has two linearly independent cosections,
which implies that the (reduced) Gromov-Witten invariants of X in this class vanish. Therefore
we always restrict ourselves to curve classes of form

(0.5) β ∈ H2(S) ⊆ H2(X).

By Behrend’s product formula [B99] (see Eqn. (5.1)), we can easily compute all Gromov-Witten
invariants and determine the Gopakumar-Vafa invariants as follows.

Theorem 0.6. (Proposition 5.1) Let γ, γ′ ∈ H4(X), α ∈ H6(X) and let

γ = A1 · 1⊗ p +D1 ⊗D2 +A2 · p⊗ 1, γ′ = A′1 · 1⊗ p +D′1 ⊗D′2 +A′2 · p⊗ 1,

α = θ1 ⊗ p + p⊗ θ2

be their Künneth decompositions. Then we have

n0,β(γ, γ′) = (D1 · β) · (D′1 · β) ·
∫
T

(D2 ·D′2) ·N0

(
β2

2

)
,

n0,β(α) = (θ1 · β)N0

(
β2

2

)
.

If β is primitive, we have

n1,β(γ) = 24A2N1(β2/2), n2,β = N2

(
β2

2

)
,



4 YALONG CAO, GEORG OBERDIECK, AND YUKINOBU TODA

where ∑
l∈Z

N0(l) ql =
1

q

∏
n>1

1

(1− qn)24
,

∑
l∈Z

N1(l) ql =

1

q

∏
n>1

1

(1− qn)24

(q d
dq
G2(q)

)
,

∑
l∈Z

N2(l) ql =

1

q

∏
n>1

1

(1− qn)24

(24q
d

dq
G2 − 24G2 − 1

)
,

with Eisenstein series:

G2(q) = − 1

24
+
∑
n>1

∑
d|n

dqn.

In particular, Conjecture 0.4 holds for X = S × T .

On the Donaldson-Thomas side, a main result of this paper is the explicit computation of all
DT4 invariants of X = S × T for the classes (0.5), see Theorem 5.8 for the formulae. We obtain
a perfect match with our prediction:

Theorem 0.7 (Corollary 5.9). Conjecture 0.5 holds for X = S×T and all effective curve classes
β ∈ H2(S,Z) ⊆ H2(X,Z).

Here, since the moduli space Mβ is connected, there are precisely two choices of orientation.
We pick the one specified in Eqn. (5.10) (invariants for the other differ only by an overall sign).

Contrary to the case of Gromov-Witten invariants, the computation of DT4 invariants on S×T
is highly non-trivial. In Theorem 5.7, we first identify the virtual class explicitly. This expresses
the DT4 invariants as tautological integrals on a (smooth) moduli space of one dimensional stable
sheaves on the K3 surface S. By Markman’s framework of monodromy operators [M08], we then
relate such integrals to tautological integrals on the Hilbert schemes of points on S (see §4.3 and
§4.4 for details). Finally, we determine these integrals explicitly in §4.1 and §4.2 by a combination
of the universality result of Ellingsrud-Göttsche-Lehn [EGL], constraints from Looijenga-Lunts-
Verbitsky Lie algebra [LL, Ver13] and known computations of Euler characteristics.

In particular, we found a remarkable closed formula for Fujiki constants of Chern classes of
Hilbert schemes S[n] of points on S, which takes the following beautiful form (see also Proposition
4.3 for the formula on generalized Kummer varieties):

Theorem 0.8. (Theorem 4.2) Let S be a K3 surface. For any k > 0,∑
n>k

C(c2n−2k(TS[n])) qn =
(2k)!

k!2k

(
q
d

dq
G2(q)

)k ∏
n>1

1

(1− qn)24
.

The right hand side, up to the combinatorical prefactor (2k)!/(k!2k), is precisely the generating
series of counts of genus k curves on a K3 surface passing through k generic points as considered
by Bryan and Leung [BL]. This suggests a relationship to the work of Göttsche on curve counting
on surfaces [G98], which will be taken up in a follow-up work.

0.4. Verification of conjectures II: T ∗P2. Let T ∗P2 be the total space of the cotangent
bundle on P2, which is holomorphic symplectic. Let H ∈ H2(T ∗P2) be the pullback of the
hyperplane class and use the identification H2(T ∗P2,Z) ≡ Z given by taking the degree against
H. By Graber-Pandharipande’s virtual localization formula [GP], we can compute all genus
Gromov-Witten invariants (Proposition 6.1) and determine the Gopakumar-Vafa invariants.

Proposition 0.9. (Corollary 6.2)

n0,d(H
2, H2) =

 1 if d = 1,
−1 if d = 2,

0 otherwise.

n1,1(H2) = 0, n2,1 = 0.

In particular, Conjecture 0.4 holds for T ∗P2.

On the sheaf side, we can compute DT4 invariants for small degree curve classes.
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Proposition 0.10. (Proposition 6.5) For certain choice of orientation, we have〈
τ0(H2), τ0(H2)

〉DT4

1
= 1,

〈
τ0(H2), τ0(H2)

〉DT4

2
= −1,

〈
τ0(H2), τ0(H2)

〉DT4

3
= 0,

〈
τ1(H2)

〉DT4

1
= −1

2
,
〈
τ1(H2)

〉DT4

2
=

1

2
,
〈
τ1(H2)

〉DT4

3
= 0,

〈
τ2(H)

〉DT4

1
= −1

4
,
〈
τ2(H)

〉DT4

2
= −1

4
,
〈
τ2(H)

〉DT4

3
= 0,

〈
τ3(1)

〉DT4

1
= −1

8
,
〈
τ3(1)

〉DT4

2
=

1

8
,
〈
τ3(1)

〉DT4

3
= 0.

In particular, Conjecture 0.5 (i) holds for all d 6 3, and Conjecture 0.5 (ii), (iii) hold.

0.5. Verification of conjectures III: K3[2]. Consider the Hilbert scheme S[2] of two points
on a K3 surface S. By a result of Beauville [Bea], S[2] is irreducible hyperkähler, i.e. it is simply
connected and the space of its holomorphic 2-forms is spanned by a (unique) symplectic form.
Because the genus 0 Gromov-Witten theory of S[2] is completely known by [O18, O21a, O21c] (see
Theorem 7.3 for the primitive case), all genus 0 Gopakumar-Vafa invariants are easily computed.
For simplicity, we check the integrality conjecture in the following basic case (ref. §7.7):

Theorem 0.11. Conjecture 0.4 holds for all effective curve classes on S[2] in genus 0 and with
one marked point.

Higher genus Gromov-Witten invariants are more difficult to compute even for primitive
curve classes. Nevertheless there are several conjectures on the structure of these invariants,
including (i) a quasi-Jacobi form property, and (ii) a holomorphic anomaly equation (see [O22b,
Conj. A & C], see also [O21b] for a progress report). Assuming these conjectures and using
several explicit evaluations of Gromov-Witten invariants, we obtain a complete computation of
all genus 1 and 2 Gromov-Witten invariants of S[2] in primitive classes, see Theorem 7.4. From
this, all Gopakumar-Vafa invariants are computed in Theorems 7.6 and 7.10.

With the help of a computer program, we obtain the following check of integrality:

Theorem 0.12. (Corollaries 7.8 and 7.11) Assume Conjectures A and C of [O22b]. Then the
genus 1 and 2 part of Conjecture 0.4 hold for all primitive curve classes β ∈ H2(S[2],Z) satisfying
(β, β) 6 100, where (−,−) is the Beauville-Bogomolov-Fujiki pairing as in §7.2.

0.6. A Yau-Zaslow type formula on K3[2]. A hyperkähler variety is of K3[2]-type if it is
deformation-equivalent to the Hilbert scheme of 2 points of a K3 surface S. Given a primitive
curve class β ∈ H2(S[2],Z), consider the very general deformation (X,β′) of a pair (S[2], β),
where β stays of Hodge type on all fibers. By the deformation theory of hyperkähler varieties,
the variety X then has Picard rank 1 and the algebraic classes in H2(X,Z) are generated by
β′. In particular β′ is irreducible. In this case, it is natural to expect that curves in (X,β′)
forms an ideal geometry in the sense of §1.4, §1.5. In other words, after a generic deforma-
tion, our Gopakumar-Vafa invariants should give enumerative information about curves in these
hyperkähler varieties of K3[2]-type.

In genus 2, this yields the following conjectural formula for the number of isolated (rigid)
genus 2 curves on a very general hyperkähler variety of K3[2]-type of minimal degree. This may
be viewed as a 4-dimensional analogue of the classical Yau-Zaslow formula concerning counts of
rational curves on K3 surfaces:

Theorem 0.13. (Theorem 7.10) Assume Conjectures A and C of [O22b]. For any hyperkähler
variety X of K3[2]-type and primitive curve class β ∈ H2(X,Z), the genus 2 Gopakumar-Vafa
invariant n2,β is the coefficient determined by β (see Definition 7.1) of the quasi-Jacobi form

Ĩ(y, q) =
Θ2

∆

[
5

384
℘E3

2 +
25

6144
E4

2 +
35

384
℘E2

2 −
5

512
E3

2 +
5

384
℘E2E4 +

7

3072
E2

2E4

− 71

64
℘E2 +

27

512
E2

2 −
47

384
℘E4 +

5

4608
E2E4 −

13

18432
E2

4 −
1

96
℘E6

+
1

1152
E2E6 +

9

8
℘− 5

32
E2 −

23

1536
E4 −

5

1152
E6 +

1

8

]
,

where the functions Θ,∆, ℘, Ei are defined in §7.1.
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In genus 1, it is convenient to encode the invariants in the genus 1 Gopakumar-Vafa class

n1,β ∈ H4(X,Q)

which is defined by

∀ γ ∈ H4(X,Q) :

∫
X

n1,β ∪ γ = n1,β(γ),

where n1,β(γ) is given in Definition 0.2. In an ideal geometry, n1,β is the class of the surface
swept out by elliptic curves in class β. Theorem 7.6 then yields a conjectural formula for this
class. We list the first values of the genus 1 and 2 Gopakumar-Vafa invariants of hyperkähler
varieties of K3[2]-type in Table 1 and Table 2 below. Since the deformation class of a pair
(X,β) where β is a primitive curve class, only depends on the square (β, β) (see [O21a]), the
Gopakumar-Vafa invariants only depend on (β, β).

It is interesting to compare the enumerative significance of the listed invariants with the
known geometry of curves on very general hyperkähler 4-folds of K3[2]-type with curve class β.
In the case (β, β) = −5/2, any curve in class β is a line in a Lagrangian P2 ⊂ X, see [HT]. In
particular, there are no higher genus curves, and indeed we observe the vanishing of the g = 1, 2
Gopakumar-Vafa invariants in this case. Similarly, the case (β, β) = −1/2 corresponds to the
exeptional curve class on K3[2] (the class of the exceptional curve of the Hilbert-Chow morphism
K3[2] → Sym2(K3)), and again there are no higher genus curves. The case (β, β) = −2 is similar,
see [HT]. The first time we see elliptic curves is in case (β, β) = 0, which corresponds to the
fiber class of a Lagrangian fibration X → P2. Elliptic curves appear here in fibers over the
discriminant. The case (β, β) = 3/2 corresponds to a very general Fano variety of lines on a
cubic 4-fold, with β the minimal curve class (of degree 3 against the Plücker polarization). Since
there are no cubic genus 2 curves in a projective space (see also Example 1.10), there are no
genus 2 curves in this class; again, this matches the vanishing observed in the table. The case
(β, β) = 2 are the double covers of EPW sextics [O06]. The first time we should see isolated
smooth genus 2 curves is the case (β, β) = 11/2, which are precisely the Debarre-Voisin 4-folds
[DV]. Here, the explicit geometry of curves has not been studied yet. It would be very interesting
to construct the expected 3465 isolated smooth genus 2 curves explicitly. In fact, to the best of
the authors’ knowledge, there exists so far no known example of a smooth isolated (rigid) genus
2 curves on a hyperkähler 4-fold, and this may be perhaps the simplest case.

(β, β) aβ bβ
−5/2 0 0

−2 0 0

−1/2 0 0

0 6 1

3/2 105 35/8

2 360 30

7/2 3840 40

4 9360 300

11/2 74970 −6405/4

6 157080 −1540

15/2 1034496 −55224

8 1982820 −94570

19/2 11288760 −965720

10 20371680 −1702680

(β, β) aβ bβ
23/2 103461120 −12187560

12 178607520 −21135240

27/2 826591920 −124077800

14 1378589520 −210090760

31/2 5903493120 −1077138720

16 9574935480 −1781067420

35/2 38376042111 −65957272227/8

18 60812926920 −13338391770

39/2 230147470080 −56902511160

20 357559991712 −90266652168

43/2 1286717384040 −359854419320

22 1965075202440 −560881363980

47/2 6762292992000 −2110582343520

24 10172904142800 −3237985250920

Table 1. The first coefficients of the genus 1 Gopakumar-Vafa class3

n1,β =
1

2
aβh

2
β + bβc2(TX)

for a hyperkähler 4-fold of K3[2]-type with primitive curve class β (see §7.2 for
the definition of the dual divisor hβ). In an ideal geometry (ref. §1.5), n1,β is
the class of the surface swept out by the elliptic curves in class β.

0.7. Appendix. In the appendix §A, we discuss several cases where we can extend the above
GW/GV/DT4 correspondence to imprimitive curve classes.
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(β, β) n2,β

−5/2 0

−2 0

−1/2 0

0 0

3/2 0

2 0

7/2 0

4 0

11/2 3465

6 7920

15/2 153720

8 321300

19/2 3527370

10 6902280

(β, β) n2,β

23/2 55981800

12 104091120

27/2 691537770

14 1234210950

31/2 7087424400

16 12229093800

35/2 62706694050

18 105164743320

39/2 492018813720

20 805306494960

43/2 3490512517800

22 5593478602320

47/2 22715949849120

24 35731375344000

(β, β) n2,β

51/2 137145316350735
26 212193639864360

55/2 775018459086480
28 1181532282033600

59/2 4129199523398880
30 6211686830906340

63/2 20865837137909400
32 31011424430679000

67/2 100506478032240210
34 147733008377317200

71/2 463428612330788160
36 674306145117002160

75/2 2052965259390710250
38 2959299345635755920

79/2 8765107896801841200

Table 2. The first genus 2 Gopakumar-Vafa invariants of a hyperkähler 4-fold
of K3[2]-type in a primitive curve class β.

Notation and convention. All varieties and schemes are defined over C. For a morphism
π : X → Y of schemes and objects F ,G ∈ Db(Coh(X )) we will use

RHomπ(F ,G) := Rπ∗RHomX(F ,G).

A class β ∈ H2(X,Z) is called effective if there exists a non-empty curve C ⊂ X with class
[C] = β. An effective class β is called irreducible if it is not the sum of two effective classes, and
it is called primitive if it is not a positive integer multiple of an effective class.

A holomorphic symplectic variety is a smooth projective variety together with a non-degenerate
holomorphic two form σ ∈ H0(X,Ω2

X). A holomorphic symplectic variety is irreducible hy-
perkähler if X is simply connected and H0(X,Ω2

X) is generated by a symplectic form. A K3
surface is an irreducible hyperkähler variety of dimension 2.
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1. Gopakumar-Vafa invariants

Let X be a holomorphic symplectic 4-fold with symplectic form σ ∈ H0(X,Ω2
X).

In this section we first recall the definition of (reduced) Gromov-Witten invariants, and then
give our definition of Gopakumar-Vafa invariants. In Section 1.4, we justify the definition by
working in an ideal geometry of curves.

1.1. Gromov-Witten invariants. Let Mg,n(X,β) be the moduli space of n-pointed genus
g stable maps to X representing the non-zero curve class β ∈ H2(X,Z). The moduli space
Mg,n(X,β) admits a perfect obstruction theory [BF, LT]. By the construction of [MP13, §2.2]
the symplectic form σ induces an everywhere surjective cosection of the obstruction sheaf. By
Kiem-Li’s theory of cosection localization [KiL] it follows that the standard virtual class as
defined in [BF, LT] vanishes and instead there exists a reduced virtual fundamental class:

[Mg,n(X,β)]vir ∈ A2−g+n(Mg,n(X,β)).

3Although there are fractional numbers in Table 1, the corresponding classes n1,β are integral, see Lemma 7.7.
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In this paper we will always work with the reduced virtual fundamental class which we will hence
simply denote by [−]vir.

Given cohomology classes γi ∈ H∗(X) and integers ki > 0 the (reduced) Gromov-Witten
invariants of X in class β are defined by〈

τk1(γ1) · · · τkn(γn)
〉GW

g,β
=

∫
[Mg,n(X,β)]vir

n∏
i=1

ev∗i (γi) · ψ
ki
i ,(1.1)

where evi : Mg,n(X,β) → X is the evaluation map at the i-th marking and ψi is the i-th
cotangent line class. By the properties of the reduced virtual class, the integral (1.1) is invariant
under deformations of the pair (X,β) with preserve the Hodge type of the class β. We call the
invariant (1.1) a primary Gromov-Witten invariant if all the ki are zero.

1.2. Relations. We record several basic relations among genus 0 Gromov-Witten invariants
which will be used later on in the text. For the first reading, this section map be skipped.

Lemma 1.1. Let D be a divisor on X such that d := D · β 6= 0. Then〈
τ1(γ)

〉GW

0,β
=

1

d2

〈
τ0(γ)τ0(D2)

〉GW

0,β
− 2

d

〈
τ0(γ ·D)

〉GW

0,β
.

Proof. By the divisor equation (e.g. [CK, pp. 305])〈
τ1(γ)τ0(D)2

〉GW

0,β
= d2

〈
τ1(γ)

〉GW

0,β
+ 2d

〈
τ0(γ ·D)

〉GW

0,β
.

On the other hand, by rewriting ψ1 in terms of boundary divisors and using the splitting formula
for reduced virtual classes as in [MPT, §7.3] one gets〈

τ1(γ)τ0(D)2
〉GW

0,β
=
〈
τ0(γ)τ0(D2)

〉GW

0,β
. �

Lemma 1.2. For any γ ∈ H4(X), we have:
〈
τ1(γ)

〉GW

0,β
=
〈
τ2(1)τ0(γ)

〉GW

0,β
.

Proof. Arguing as in Lemma 1.1 we can express both sides in terms of primary Gromov-Witten
invariants, which yields the result. �

Lemma 1.3.
〈
τ3(1)

〉GW

0,β
=
〈
τ2(1)τ2(1)

〉GW

0,β
.

Proof. Let D ∈ H2(X) such that d := D · β 6= 0. Consider the following invariants:

A0 =
〈
τ3(1)

〉GW

0,β
B0 =

〈
τ2(1)τ2(1)

〉GW

0,β

A1 =
〈
τ2(D)

〉GW

0,β
B1 =

〈
τ2(1)τ1(D)

〉GW

0,β

A2 =
〈
τ1(D2)

〉GW

0,β
B0 =

〈
τ2(1)τ0(D2)

〉GW

0,β

A3 =
〈
τ0(D3)

〉GW

0,β

C2 =
〈
τ1(D)τ1(D)

〉GW

0,β
C3 =

〈
τ1(D)τ0(D2)

〉GW

0,β

F =
〈
τ0(D2)τ0(D2)

〉GW

0,β
.

Applying topological recursions to the invariants on the left then yields the following relations
on the right: 〈

τ3(1)τ0(D)τ0(D)
〉GW

0,β
: B2 = d2A0 + 2dA1 +A2〈

τ2(D)τ0(D)τ0(D)
〉GW

0,β
: C3 = d2A1 + 2dA2 +A3〈

τ1(D2)τ0(D)τ0(D)
〉GW

0,β
: F = d2A2 + 2dA3〈

τ2(1)τ0(D3)
〉GW

0,β
: −A3 = dB2 + C3〈

τ1(D)τ0(D2)τ0(D)
〉GW

0,β
: dA3 = dC3 + F〈

τ2(1)τ2(1)τ0(D)
〉GW

0,β
: 0 = dB0 + 2B1〈

τ2(1)τ1(D)τ0(D)
〉GW

0,β
: 0 = dB1 + C2 +B2〈

τ1(D)τ1(D)τ0(D)
〉GW

0,β
: 0 = dC2 + 2C3.

Putting all together (using the assistance of a computer) one finds:

�(1.2)
〈
τ3(1)

〉GW

0,β
= A0 = − 8

d3
A3 +

6

d4
F = B0 =

〈
τ2(1)τ2(1)

〉GW

0,β
.
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Lemma 1.4. Assume that all fibers of the universal curve p : C → M0,0(X,β) are isomorphic

to P1. Let π : M0,1(X,β)→M0,0(X,β) be the forgetful morphism. Then

c1(ωπ) = ψ1.

In particular, with f : C → X the universal map, we have

(1.3)
〈
τ1(γ)

〉GW

0,β
=

∫
p∗[M0,0(X,β)]vir

f∗(γ) c1(ωp).

Proof. Let p̃ : C1 → M0,1(X,β) be the universal curve and let s : M0,1(X,β) → C1 be the
universal section. By definition, we have

ψ1 = s∗(c1(ωp̃)) = s∗c1(Ωp̃).

Recall that we have C ∼= M0,1(X,β). Moreover, since C →M0,0(X,β) parametrizes only smooth
curves, we have

C1 ∼= C ×M0,0(X,β) C.
Under this isomorphism, the section s is identified with the diagonal morphism. We have the
fiber diagram

C ×M0,0(X,β) C C

M0,1(X,β) M0,0(X,β).

π̃

p̃ p

π

s

Hence since π̃ ◦ s = id, we have

ψ1 = s∗c1(Ωp̃) = s∗π̃∗c1(Ωp) = c1(Ωp).

The second part follows since

[M0,1(X,β)]vir = π∗[M0,0(X,β)]vir. �

1.3. Definition of GV invariants. We consider the definition of Gopakumar-Vafa invariants.
In genus 0, by [BL, MP13], reduced Gromov-Witten invariants of X are equal to the (ordi-

nary) Gromov-Witten invariants in fiber classes of the twistor space X → P1 associated to the
symplectic form σ (alternatively, we can view X embedded in a suitable 1-parameter family of
holomorphic symplectic 4-folds such that the corresponding classifying map is transverse to the
Noether-Lefschetz divisor defined by β). The definition of genus 0 Gopakumar-Vafa invariants
for Calabi-Yau 5-folds proposed by Pandharipande and Zinger in [PZ, Eqn. (0.2)] hence can be
viewed as a definition for genus 0 Gopakumar-Vafa invariants of X as follows:

Definition 1.5. For any γ1, . . . , γn ∈ H∗(X,Z), we define the genus 0 Gopakumar-Vafa invari-
ant n0,β(γ1, . . . , γn) ∈ Q by〈

τ0(γ1) · · · τ0(γn)
〉GW

0,β
=

∑
k>1,k|β

kn−3 n0,β/k(γ1, . . . , γn).

The case of genus 1 does not follow from the 5-fold geometry, since the virtual class of the
moduli spaces differ by a factor of (−1)gλg, see [MP13, O21a]. Instead we propose a definition
of genus 1 Gopakumar-Vafa invariants based on computations in an ideal geometry of curves
in class β. Because curves in imprimitive curve classes are very difficult to control, we restrict
hereby to the primitive case (i.e. to those β which are not a multiple in H2(X,Z)). Consider the
Chern classes of the tangent bundle of X:

ck(X) := ck(TX) ∈ H2k(X,Z).

Definition 1.6. Assume that β ∈ H2(X,Z) is primitive. For any γ ∈ H4(X,Z), we define the
genus 1 Gopakumar-Vafa invariant n1,β(γ) ∈ Q by〈

τ0(γ)
〉GW

1,β
= n1,β(γ)− 1

24

〈
τ0(γ)τ0(c2(TX))

〉GW

0,β
.

Next we come to the genus 2 Gopakumar-Vafa invariants. Since the virtual dimension of the
moduli space M2,0(X,β) is zero, GV invariants are defined without cohomological constraints.
In other words, we expect that n2,β should be given by the enumerative count of genus 2 curves
in class β. For the definition we require the following invariant introduced in [NO]:

(1.4) Nnodal,β :=
1

2

[∫
[M0,2(X,β)]vir

(ev1× ev2)∗(∆X)−
∫

[M0,1(X,β)]vir

ev∗1(c(TX))

1− ψ1

]
,

where
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• ∆X ∈ H8(X ×X) is the class of the diagonal, and
• c(TX) = 1 + c2(TX) + c4(TX) is the total Chern class of TX .

The invariant Nnodal,β is the expected number of rational nodal curves in class β [NO, Prop. 1.2]4.

Definition 1.7. Assume that β ∈ H2(X,Z) is primitive. We define the genus 2 Gopakumar-
Vafa invariant n2,β ∈ Q by〈

∅
〉GW

2,β
= n2,β −

1

24
n1,β(c2(X)) +

1

2 · 242

〈
τ0(c2(X))τ0(c2(X))

〉GW

0,β
+

1

24
Nnodal,β .

Remark 1.8. For primitive β ∈ H2(X,Z), we obtain the following:

n0,β(γ1, . . . , γn) =
〈
τ0(γ1) · · · τ0(γn)

〉GW

0,β
,

n1,β(γ) =
〈
τ0(γ)

〉GW

1,β
+

1

24

〈
τ0(γ)τ0(c2(X))

〉GW

0,β
,

n2,β =
〈
∅
〉GW

2,β
+

1

24

〈
τ0(c2(X))

〉GW

1,β
+

1

2 · 242

〈
τ0(c2(X))τ0(c2(X))

〉GW

0,β
− 1

24
Nnodal,β .

It would be interesting to obtain a conceptual understanding for the form of these formulae.

As in the cases of Calabi-Yau 4-folds and 5-folds [KP, PZ], our first main conjecture concerns
the integrality of the Gopakumar-Vafa invariants on holomorphic symplectic 4-folds.

Conjecture 1.9 (Integrality). We have

n0,β(γ1, . . . , γn), n1,β(γ), n2,β ∈ Z.

1.4. Ideal geometry. We will justify our definition of Gopakumar-Vafa invariants by working
in an ‘ideal’ geometry where we assume curves on X deform in families of expected dimensions
and have expected genericity properties. This discussion is inspired by the ‘ideal’ geometry of
curves on Calabi-Yau 4-folds by [KP] and on Calabi-Yau 5-folds by [PZ]. Concretely, since the
virtual dimension of Mg,0(X,β) is 2− g, we expect that:

Any genus g curve moves in a smooth compact (2− g)-dimensional family.

In particular, there are no curves of genus g > 3.
We discuss now the expected behaviour of the curves in these families. We start with genus

zero. Let p : C0
β → S0

β be a family of rational curves in class β over a smooth 2-dimensional

surface S0
β , fiberwise embedded in X. Then we can have the following behaviour:

(i) All the curves parametrized by S0
β can be reducible.

Reason: Let β = β1 + β2 and let C0
βi
→ S0

βi
be a 2-dimensional family of rational

curves in class βi. Let S0
β1,β2

be the preimage of the diagonal under the evaluation maps

j1 × j2 : C0
β1
× C0

β2
→ X ×X.

Then S0
β1,β2

is of expected dimension 3+3−4 = 2, so by gluing the curves we can obtain
a 2-dimensional family of reducible rational curves in class β.

(ii) Given a generic curve C0
s := p−1(s) ⊂ X in the family, there exists another curve C0

s′ ⊂ X
in the family which meets it.

Reason: This follows by the same reasoning as in (i).
(iii) For finitely many s ∈ S, we expect the curve C0

s ⊂ X to be nodal5.
Reason: The moduli space M0,2(X,β) is of expected dimension 4, and hence the

preimage of the diagonal under ev1× ev2 is of expected dimension 0.6

(iv) Even if all fibers of C0
β → Sβ are smooth P1’s, the natural morphism j : C0

β → X is not
necessarily an immersion.

(The differential dj : TC0β → j∗(TX) is expected to have a kernel in codimension > 2.)

Similarly given a family p : C1
β → S1

β of elliptic curves in class β over a smooth 1-dimensional

curve S1
β , fiberwise embedded in X, all the curves parametrized by S1

β can be reducible. The

argument is similar to (i) above, by considering the preimage of the diagonal under the evaluation
maps

j1 × j2 : C0
β1
× C1

β2
→ X ×X, where β = β1 + β2,

where C0
β1

(resp. C1
β2

) is a family of rational curves in class β1 (resp. elliptic curves in class β2).

4Here we use genus reduction to rewrite the term NX in [NO, §1.3] as the first term in Eqn. (1.4).
5A naive model for (ii,iii) would be for the image of C0β in X to be (S×P1)/((s, 0) ∼ (gs,∞)), where g ∈ Aut(S)

is an automorphism with a finite number of fixed points (which lead to nodal curves).
6This is related to what is called the double point number.
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The genus 2 curves we expect to be smooth and finite. By dimension reasons they should be
disjoint from elliptic curves, but can have finite intersection points with the family of rational
curves. In the moduli space M2,0(X,β) we will hence also see genus 2 curves with rational tails.

In summary, the geometry of curves is more complicated then for both CY 4-folds and CY
5-folds. Especially for imprimitive curve classes β, it becomes increasingly difficult to control.

1.5. Ideal geometry: Primitive case. We make the following additional assumptions:

• X is irreducible hyperkähler,
• the effective curve class β ∈ H2(X,Z) is primitive.

By the global Torelli for (irreducible) hyperkähler varieties [Ver13, Huy] (in fact, the local sur-
jectivity of the period map is sufficient) the pair (X,β) is deformation equivalent (through a
deformation with keeps β of Hodge type) to a pair (X ′, β′) where β′ ∈ H2(X,Z) is irreducible.
Hence we may without loss of generality make the following stronger assumption:7

• the effective curve class β ∈ H2(X,Z) is irreducible.

Under these assumptions our ideal geometry of curves simplifies to the following form:

(1) The rational curves in X of class β move in a proper 2-dimensional smooth family
of embedded irreducible rational curves. Except for a finite number of rational nodal
curves, the rational curves are smooth, with normal bundle OP1 ⊕OP1 ⊕OP1(−2).

(2) The arithmetic genus 1 curves in X of class β move in a proper 1-dimensional smooth
family of embedded irreducible genus 1 curves. Except for a finite number of rational
nodal curves, the genus one curves are smooth elliptic curves. For the convenience of
computations, we also assume the normal bundle of elliptic curves is L⊕L−1⊕O, where
L is a generic degree zero line bundle.

(3) All genus two curves are smooth and rigid.
(4) There are no curves of genus g > 3.

Example 1.10. Let Y ⊂ P5 be a very general smooth cubic 4-fold and let F (Y ) ⊂ Gr(2, 6) be
the Fano variety of lines on Y . By a result of Beauville and Donagi [BD], F (Y ) is an irreducible
hyperkähler 4-fold, and together with its Plücker polarization it is the generic member of a locally
complete family of polarized hyperkähler varieties deformation equivalent to the second punctual
Hilbert scheme of a K3 surface. The algebraic classes in H2(F (Y ),Z) are of rank 1. Let β be
the generator which pairs positively with the polarization (it is of degree 3 with respect to the
Plücker polarization). The geometry of curves in class β has been studied in [OSY, NO, GK].
The Chow variety of curves in class β is given by

Chowβ(F (Y )) = S ∪ Σ,

where S ⊂ F (Y ) is the smooth irreducible surface of lines of second type, and Σ is a smooth
curve parametrizing genus 1 curves. There are precisely 3780 rational nodal curves corresponding
to the intersection points S ∩ Σ, and all other rational curves are isomorphic to P1. Moreover,
there are no curves of genus > 2 in class β. We see that the curves in F (Y ) of class β satisfy
the requirements of the ideal geometry.

1.6. Justification: GV in genus 1. For a given class γ ∈ H4(X,Z) let Γ ⊂ X be a generic
topological cycle whose class is Poincaré dual to γ. In an ideal geometry, the Gopakumar-Vafa
invariant n1,β(γ) should be the (enumerative) number n(Γ) of arithmetic genus 1 curves in X
which are incident to Γ. To derive an expression for it using Gromov-Witten invariants, we start
with the genus 1 Gromov-Witten invariant:

(1.5)
〈
τ0(γ)

〉GW

1,β
,

where β ∈ H2(X,Z) is primitive. Assuming the ideal geometry of Section 1.5 we will analyze
the contributions from genus 0 and genus 1 curves to it (there are no contributions from genus
2 curves since they never meet the cycle Γ). We show that the contribution from genus 1 curves
is precisely n(Γ). This will yield the expression for n1,β(γ).

7The statement is false if we do not assume that X is irreducible hyperkähler, for example on X the product
of two K3 surfaces, a class β = (β1, β2) with both βi non-zero effective, any deformation that keeps β Hodge,

will keep both βi Hodge. In particular β stays reducible under deformations.
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1.6.1. Contribution from genus one curves. Let p : C1
β → S1

β be a 1-dimensional family of elliptic

curves of class β as in Section 1.5, and let j : C1
β → X be the evaluation map.

Since Γ (which represents γ ∈ H4(X,Z)) is chosen generic, it intersects C1
β in precisely (C1

β ·γ)
many points. Following Section 1.5, we assume that the incident curves are smooth elliptic
curves E with normal bundle NE/X = L⊕ L−1 ⊕O. We find the contribution of this family to
the invariant (1.5) is

(C1
β · γ)

∫
[M1,1(E,1)]vir

ev∗1(ω) = (C1
β · γ) = n(Γ),

where ω ∈ H2(E,Z) is the class of a point and the trivial factor H1(E,NE/X) = H1(E,OE) = C
in the obstruction sheaf does not appear because we used the reduced virtual fundamental class.

1.6.2. Contribution from genus zero curves. Let p : C0
β → S0

β be a 2-dimensional family of

embedded rational curves of class β in X parametrized by a smooth surface S0
β . The generic

fiber of p is isomorphic to P1 but over finitely many points we can have a rational nodal curve.
The insertion Γ intersects the divisor C0

β in a curve that we can assume maps to a curve in S0
β .

In particular, it avoids the singular fibers. For simplicity we may hence assume that there are
no nodal fibers, and that this is the only family of rational curves in class β. We will compute
the contribution of this family to the genus 1 GW invariant (1.5).

Under these assumptions, for any genus 1 degree β stable map f : C → X, the source curve
splits canonically as C ∼= E ∪ P1, where E is an elliptic curve glued to P1 at one point p. The
map f is of degree 0 on E, and of degree β on P1. Hence

M1,0(X,β) = M0,1(X,β)×M1,1.

By comparing the obstruction theories on the level of virtual classes, we get

[M1,0(X,β)]vir =

[
c(E∨ ⊗ ev∗1(TX))

1− λ1 − ψ1

]
3

∩
(
[M1,1]× [M0,1(X,β)]vir

)
=
(
ψ3

1 − ψ2
1λ1 + ev∗1(c2(X))(ψ1 − λ1)

) (
[M1,1]× [M0,1(X,β)]

)
,

where [−]d denotes taking the degree d part, E→Mg is the Hodge bundle over the moduli space

of curves (having fiber H0(C,ωC) over a point [C]) with first Chern class λ1 = c1(E) ∈ A1(M1,1),

and ψ1 is the usual psi class on the moduli space M0,1(X,β). In the last line we have used that

the dimension of M0,k(X,β) is equal to the expected dimension, so

(1.6) [M0,k(X,β)]vir = [M0,k(X,β)].

Finally, as we will do often, we have suppressed pullback maps along the projection to the factors.
Consider the forgetful morphism π : M1,1(X,β)→M1,0(X,β) which at the same time is the

universal curve over the moduli space. In particular, we have a decomposition

M1,1(X,β) = E ∪ P,

where E → M1,1 and P → M0,1(X,β) are the universal curves. Since π is flat of relative
dimension 1, we have

[M1,1(X,β)] = π∗[M1,0(X,β)] = a∗
(
[M1,2]× [M0,1(X,β)]

)
+ b∗

(
[M1,1]× [M0,2(X,β)]

)
,

where a : E →M1,1(X,β) and b : P →M1,1(X,β) are the natural inclusions. We find

(1.7)

〈
τ0(γ)

〉GW

1,β
=

∫
[M1,1]×[M0,2(X,β)]vir

ev∗2(γ)π∗(ψ3
1 − ψ2

1λ1 + ev∗1(c2(X))(ψ1 − λ1))

+

∫
[M1,2]×[M0,1(X,β)]vir

ev∗1(γ)π∗(ψ3
1 − ψ2

1λ1 + ev∗1(c2(X))(ψ1 − λ1)),

where for the second summand the γ is pulled back along the evaluation map ev1 : M0,1(X,β)→
X (since the map is constant on the elliptic curve).

In the second term in Eqn. (1.7), the integrand over the factor M1,2 is pulled back from M1,1;
hence this term vanishes. We conclude that Eqn. (1.7) is equal to:∫

M1,1

(−λ1)

∫
[M0,2(X,β)]vir

ev∗2(γ)π∗(ψ2
1 + ev∗1(c2(X)))

= − 1

24

(〈
τ2(1)τ0(γ)

〉GW

0,β
+
〈
τ0(c2(X))τ0(γ)

〉GW

0,β
−
〈
τ1(γ)

〉GW

0,β

)
= − 1

24

〈
τ0(c2(X))τ0(γ)

〉GW

0,β
.
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Here in the second step, we used that π∗(ψ1) = ψ1 − s∗(1), where s : M0,1(X,β)→M0,2(X,β)
is the section, so that π∗(ψ2

1) = ψ2
1 − s∗(ψ1), and in the last step we used Lemma 1.2.

1.6.3. Conclusion. By the discussion above we have obtained that in the ideal geometry we have〈
τ0(γ)

〉GW

1,β
= n(Γ)− 1

24

〈
τ0(c2(X))τ0(γ)

〉GW

0,β
.

Since n(Γ) is the Gopakuma-Vafa invariant n1,β(γ) in the ideal geometry, this ends the justifi-
cation for both Definition 1.6 and integrality of genus 1 invariants in Conjecture 1.9.

1.7. Justification: GV in genus 2. In the ideal geometry of Section 1.5, the genus two
Gopakumar-Vafa invariant n2,β should be the (enumerative) number of genus 2 curves in the
irreducible curve class β. We hence make the ansatz

(1.8)
〈
∅
〉GW

2,β
=

∫
[M2,0(X,β)]vir

1 = n2,β + · · · ,

where the dots stand for the contributions from curves of genus 6 1. In this section we derive
an expression for these lower genus contributions.

1.7.1. Contribution from genus one curves. We consider first the contributions from a 1-dimensional
family of elliptic curves C1

β → S1
β parametrized by a smooth curve S1

β , but with the additional
assumption that there are no nodal rational curves in the family.

For simplicity of notation we also assume that the family C1
β parametrizes all curves in class β

(so there are no rational or genus 2 curves). We compute the invariant
〈
∅
〉GW

2,β
in this geometry.

Under the above assumption we have the isomorphism

M2,0(X,β) = M1,1(X,β)×M1,1,

and with an argument parallel to Section 1.6.2, the virtual class is:

[M2,0(X,β)]vir =

[
c(E∨ ⊗ ev∗1(TX))

1− λ1 − ψ1

]
3

∩ [M1,1(X,β)]vir × [M1,1],

where ψ1 is the cotangent line class on M1,1(X,β) and λ1 ∈ H2(M1,1), both pulled back to the
product via the projection to the factors. One obtains that:〈

∅
〉GW

2,β
=

∫
[M1,1(X,β)]vir×[M1,1]

−λ1ψ
2
1 − λ1 ev∗1(c2(TX))

= − 1

24

∫
[M1,1(X,β)]vir

ψ2
1 + ev∗1(c2(X)).

By our assumption there are no family of rational curves in class β, so that we have ψ1 = τ∗(ψ1),
where τ : M1,1(X,β) → M1,1 is the forgetful morphism to the moduli space of stable curves,
and therefore ψ2

1 = 0. We conclude that〈
∅
〉GW

2,β
= − 1

24

〈
τ0(c2(X))

〉GW

1,β
= − 1

24
n1,β(c2(X)).

In total hence we see that the family C1
β → S1

β contributes − 1
24n1,β(c2(X)) to the integral (1.8).

Assume more generally that there are both rational and elliptic curves in class β, but still
no nodal rational curves. Then by the discussion in Section 1.6 and the above computation we
have that − 1

24n1,β(c2(X)) is precisely the contribution from the elliptic curves to (1.8). Hence
this contribution remains valid also in the presence of rational curves.

1.7.2. Contribution from genus zero curves. Let p : C0
β → S0

β be a family of degree β embedded

rational curves in X parametrized by a smooth surface S0
β . We assume that there are no curves of

genus 1 or 2, and that all rational curves parametrized by S0
β are smooth. Since β is irreducible,

this means that all of them are isomorphic to P1.
By our assumption, we have an isomorphism of moduli spaces:

M := M2,0(X,β) ∼= M2,0(C0
β/S

0
β , 1),
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where the right hand side is the moduli space of genus 2 degree 1 stable maps to the fibers of
C0
β → S0

β . In particular, we have a diagram:

C q∗C0
β C0

β X

M S0
β ,

π

ρ

f̃

q̃

p̃

fβ

p

q

where C →M is the universal curve over the moduli space (for bothM2,0(X,β) andM2,0(C0
β/S

0
β , 1)),

f̃ : C → C0
β is the universal map of M2,0(C0

β/S
0
β , 1), and q is the structure morphism to the base.

By definition the middle square is fibered. The moduli space M2,0(C0
β/S

0
β , 1) carries naturally a

virtual fundamental class which we denote by

[M ]rel := [M2,0(C0
β/S

0
β , 1)]vir ∈ A6(M).

We also denote the reduced virtual fundamental class of M2,0(X,β) by

[M ]vir := [M2,0(X,β)]vir ∈ A0(M).

Since fβ is fiberwise an embedding we have the subbundle Tp ⊂ f∗β(TX). Let

N = f∗β(TX)/Tp

be the quotient, which is locally free of rank 3. The key to our discussion is the following
comparision of virtual fundamental classes.

Proposition 1.11. We have

[M ]vir = e
(
p̃∗
(
(R1ρ∗OC)⊗ q̃∗N

))
∩ [M ]rel.

For the proof we start with the two basic lemmata:

Lemma 1.12. We have

π∗(f̃
∗N) ∼= q∗(TS0

β
).

Proof. By the Cohomology and Base Change Theorem we have

ρ∗(OC) = Oq∗C0β .

Hence we find that

π∗f̃
∗N = p̃∗ρ∗ρ

∗q̃∗N

= p̃∗(ρ∗(OC)⊗ q̃∗N)

= p̃∗q̃
∗N

= q∗p∗N

= q∗TS0
β
,

where in the second equality we used that N is locally free, and in the forth equality we used
flat base change. For the last step we used that S0

β = M0,0(X,β) is smooth with tangent bundle

given by p∗N (which at each point s ∈ S0
β has fiber H0(C0

β,s, NC0β,s/X)). �

Lemma 1.13. We have the exact sequence:

0→ p̃∗
(
(R1ρ∗OC)⊗ q̃∗N

)
→ R1π∗(f̃

∗N)→ R1p̃∗(q̃
∗N)→ 0

and R1p̃∗(q̃
∗N) = OM .

Proof. The first statement is just an application of the Leray-Serre spectral sequence for the
composition π = p̃ ◦ ρ. For the second statement, we have by flat base change that:

R1p̃∗(q̃
∗N) ∼= q∗(R1p∗N).

By the existence of a global cosection, we have a surjection R1p∗N → OS0
β
. Since p∗N is locally

free of rank 2, R1p∗N is locally free of rank 1, so using the cosection it is isomorphic to OS0
β
. �
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Proof of Proposition 1.11. The ‘standard’ virtual tangent bundle8 of M2,0(X,β) relative to the
Artin stack of prestable curves M2 is by definition given by

T std
M2,0(X,β)/M2

= Rπ∗f
∗(TX),

where f = fβ ◦ f̃ : C → X is the universal map. The reduced virtual tangent bundle is defined
to be the cone:

T vir
M2,0(X,β)/M2

= (Rπ∗f
∗TX)

red
:= Cone(Rπ∗f

∗(TX)
srσ−−→ O[−1])[−1],

where srσ is the semi-regularity map associated to the symplectic form σ, see [MP13, MPT].
The inclusion Tp ⊂ f∗β(TX) induces a natural distinguished triangle:

(1.9) Rπ∗f̃
∗Tp → (Rπ∗f

∗TX)
red →

(
Rπ∗f̃

∗N
)red

.

where the third term is defined as the cone of the first map. By Lemma 1.13 and since the
restriction of srσ to p̃∗

(
(R1ρ∗OC)⊗ q̃∗N

)
vanishes, we have

(1.10) h1
(

(Rπ∗f̃
∗N)red

)
= p̃∗

(
(R1ρ∗OC)⊗ q̃∗N

)
.

Similarly, the virtual tangent bundle of the perfect obstruction theory of M2,0(C0
β/S

0
β) fits into

the distinguished triangle

(1.11) Rπ∗(f̃
∗Tp)→ T vir

M2,0(C0β/S
0
β ,1)/M2

→ q∗(TS0
β
).

By Lemma 1.12 there exists a natural morphism

q∗(TS0
β
)→

(
Rπ∗f̃

∗N
)red

,

which induces an isomorphism in degree 0 cohomology. This morphism induces a morphism
from the complex (1.11) to the complex (1.9), and combining with Eqn. (1.10), we obtain the
distinguished triangle:

T vir
M2,0(C0β/S

0
β ,1)/M2

→ T vir
M2,0(X,β)/M2

→ p̃∗
(
(R1ρ∗OC)⊗ q̃∗N

)
[−1].

The claim now follows from the excess intersection formula. �

The moduli space M decomposes naturally as the union

M = M1 ∪ (M2/Z2),

where

M1 = M2,1 ×M0,1(C0
β/S

0
β , 1),

M2 = M1,1 ×M1,1 ×M0,2(C0
β/S

0
β , 1),

and Z2 acts by interchanging the two factors ofM1,1 and switching the markings onM0,2(C0
β/S

0
β , 1).

The class [M ]rel is of dimension 6, but the dimensions of M1 and M2 are 7 and 6 respectively.
In particular, there exists some class α ∈ A6(M1) such that

[M ]rel = ξ1∗(α) +
1

2
ξ2∗[M2],

where ξi : Mi →M are the natural (gluing) morphisms.9 By Proposition 1.11, we find that:

(1.12)

〈
∅
〉GW

2,β
=

∫
[M ]rel

e
(
p̃∗
(
(R1ρ∗OC)⊗ q̃∗N

))
=

∫
α

ξ∗1e
(
p̃∗
(
(R1ρ∗OC)⊗ q̃∗N

))
+

1

2

∫
M1,1×M1,1×M0,2(C0β/S

0
β ,1)

ξ∗2e
(
p̃∗
(
(R1ρ∗OC)⊗ q̃∗N

))
.

These two terms are analyzed as follows:

8If E• → LM is a perfect obstruction theory, then the associated virtual tangent bundle is T vir
M := (E•)∨.

9The näıve splitting of the virtual class [M2,0(X,β)]vir as the sum

[M2,1 ×M0,1(X,β)]

[
c(E∨ ⊗ ev∗1(TX))

1− ψ1 − ψ′1

]
7

+
1

2
[M

2
1,1 ×M0,2(X,β)]vir

[
c(E∨a ⊗ ev∗1(TX))

1− λa,1 − ψ1

c(E∨b ⊗ ev∗2(TX))

1− λb,1 − ψ2

]
6

does not hold. The long detour to the relative virtual class [M ]rel is necessary to decompose the virtual class!
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Lemma 1.14. We have the vanishing

e
(
ξ∗1 p̃∗

(
(R1ρ∗OC)⊗ q̃∗N

))
= 0.

Proof. Let C → M be the universal curve as before, and let C ′ → M1 be its pull back along
ξ1 : M1 →M . There exists a natural decomposition C ′ = R∪q Z where R is the pullback of the

universal curve over M0,1(X,β) and Z is the pullback of the universal curve from M2,1. The
curves R and Z are glued along the marked points v : M1 → C. In particular, we have the
diagram

C ′ C

ξ∗1q
∗C0
β q∗C0

β

M1 M,

ρ′ ρ

ξ̃1

p̃′ p̃

ξ1

v

x

where x = ρ′ ◦ v is the image of the gluing point. Applying ρ′∗ to the normalization exact
sequence

0→ OC′ → OR ⊕OZ → Ov → 0

shows that

ξ∗1R
1ρ∗(OC) = R1ρ′∗OC = R1ρ′∗(OZ) = x∗(pr∗1E∨),

where pr1 : M1 →M2,1 is the projection and E→M2,1 is the Hodge bundle (pulled back to the
product). We obtain that:

ξ∗1 p̃∗
(
(R1ρ∗OC)⊗ q̃∗N

) ∼= ẽv∗1(N)⊗ pr∗1(E∨),

where ẽv1 = q̃ ◦ ξ̃1 ◦ x : M1 → C0
β is the evaluation map.

Using the defining exact sequence 0→ Tp → f∗β(TX)→ N → 0 and that ẽv∗1(Tp) is isomorpic

to the cotangent line bundle of M0,1(C0
β/S

0
β , 1) at the marking, i.e. ẽv∗1(Tp) ∼= L∨p1 , we obtain

the exact sequence

0→ E∨ ⊗ L∨p1 → E∨ ⊗ ev∗1(TX)→ ẽv∗1(N)⊗ pr∗1(E∨)→ 0,

where ev1 : M0,1(C0
β/S

0
β , 1) ∼= M0,1(X,β) → X is the evaluation map to X and we surpressed

the pullbacks by the projection to the factors. We conclude that

e
(
ξ∗1 p̃∗

(
(R1ρ∗OC)⊗ q̃∗N

))
=

[
c(E∨ ⊗ ev∗1(TX))

c(E∨ ⊗ L∨p1)

]
6

=

[
c(E∨)4 + 2 ev∗1(c2(TX))c(E∨)(1− λ1)

(1− ψ1)2 − λ1(1− ψ1) + λ2

]
6

,

where in the second equality we used the splitting principle and the Mumford relation

(1.13) c(E) c(E∨) = (1 + λ1 + λ2)(1− λ1 + λ2) = 1 + 2λ2 − λ2
1 + λ2

2 = 1.

Now a straightforward computation (using that M0,1(X,β) is of dimension 3 and the Mum-
ford relation, and which may be performed by a computer program) shows that this degree 6
component vanishes. �

Lemma 1.15.∫
M1,1×M1,1×M0,2(C0β/S

0
β ,1)

ξ∗2e
(
p̃∗
(
(R1ρ∗OC)⊗ q̃∗N

))
=

1

242

〈
τ0(c2(X))τ0(c2(X))

〉GW

0,β
.

Proof. Let C ′ → M2 be the pullback of the universal curve C → M to M2. We have a decom-
position C ′ = R∪E1 ∪E2, where R is the universal 2-pointed genus 0 curve, and the Ei are the
universal genus 1 curves. Let

x1, x2 : M2 → ξ∗2q
∗C0
β

be the image of the marked points under the evaluation map ρ′ : C ′ → ξ∗2q
∗C0
β . We have

ξ∗2R
1ρ∗OC = R1ρ′∗(OC′) = x1∗(E∨1 )⊕ x2∗(E∨2 ),

where Ei = pr∗i (E) are the Hodge bundles pulled-back from the first or second copy of M2. We
argue as in Lemma 1.14, that is first we have

ẽvi = q̃ ◦ ξ̃2 ◦ xi.
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Then with πi : M0,2(C0
β/S

0
β , 1) → M0,1(C0

β/S
0
β , 1) the morphism that forgets all but the i-th

marking we have that

ẽv∗i (Tp) = π∗i ẽv∗(Tp) = π∗i (L∨pi).

(Here, we need the precompose with the forgetful morphism because the two markings can lie
on a bubble in which case the tangent space to a marking maps with zero to the tangent space
of the image point; by precomposing with the forgetful map, we contract the bubbles). As in
Lemma 1.14 we then obtain that

(1.14)

∫
M1,1×M1,1×M0,2(C0β/S

0
β ,1)

ξ∗2e
(
p̃∗
(
(R1ρ∗OC)⊗ q̃∗N

))
=

∫
M1,1×M1,1×M0,2(C0β/S

0
β ,1)

c(E∨1 ⊗ ev∗1(TX))c(E∨2 ⊗ ev∗1(TX))

(1− c1(E1)− π∗1(ψ1))(1− c1(E1)− π∗2(ψ2))
.

For i = 1, 2 and (λ, ψ, ev) := (c1(Ei), π∗i (ψi), evi), we have

c(E∨ ⊗ ev∗(TX))

1− λ− ψ
= ((1− λ)4 + ev∗(c2(X))(1− λ)2)(1 + λ+ ψ + 2λψ + ψ2 + 3λψ2 + ψ3

1 + 4λψ3)

= λ
(

(1 + ev∗ c2(X))(1 + 2ψ + 3ψ2 + 4ψ3) + (−4− 2 ev∗ c2(X))(1 + ψ + ψ2 + ψ3)
)

+ (· · · )

= λ
(
− 3− 2ψ − ψ2 − ev∗(c2(X))

)
+ (· · · ),

where (· · · ) are terms that are not multiples of λ.
Using this and Eqn. (1.6), the term (1.14) becomes:

1

242

∫
[M0,2(X,β)]vir

(ev∗1(c2(X)) + π∗1(ψ1)2)(ev∗2(c2(X)) + π∗2(ψ2)2).(1.15)

On M0,2(X,β) we have

ψ1 = π∗1(ψ1) + s∗(1),

where s : M0,1(X,β)→M0,2(X,β) is the canonical section, and therefore

π∗1(ψ1)2 = ψ2
1 − s∗(ψ1).

Applying Lemma 1.2, we find that:∫
[M0,2(X,β)]vir

π∗1(ψ1)2 ev∗2(c2(X)) =
〈
τ2(1)τ0(c2(X))

〉GW

0,β
−
〈
τ1(c2(X))

〉GW

0,β
= 0.

With a similar reasoning, using Lemma 1.3, we also get that:∫
[M0,2(X,β)]vir

π∗1(ψ1)2π∗2(ψ2)2 =
〈
τ2(1)τ2(1)

〉GW

0,β
−
〈
τ3(1)

〉GW

0,β
= 0.

Inserting both these vanishings into Eqn. (1.15) concludes the claim. �

Inserting the two lemmata above into Eqn. (1.12), the whole computation collpases into the
following simple evaluation:〈

∅
〉GW

2,β
=

1

2 · 242

〈
τ0(c2(X))τ0(c2(X))

〉GW

0,β
.

We hence conclude that the family C0
β → S0

β of rational curves with only smooth fibers contributes〈
τ0(c2(X))τ0(c2(X))

〉GW

0,β
/(2 · 242) to the Gopakumar-Vafa invariant n2,β .

1.7.3. Conclusion and contribution from nodal rational curves. Consider an ideal geometry of
curves as in Section 1.5 without any additional assumptions. We expect the contributions from

genus 0 and genus 1 curves to the invariant
〈
∅
〉GW

2,β
to be as discussed above, plus a correction

term coming from the nodal rational curves. This correction term should be local, and hence a
multiple of the expected number of nodal rational curves Nnodal,β . We hence make the ansatz:

(1.16)
〈
∅
〉GW

2,β
= n2,β −

1

24
n1(c2(X)) +

1

2 · 242

〈
τ0(c2(X))τ0(c2(X))

〉GW

0,β
+ aNnodal,β

for a constant a ∈ Q independent of (X,β).
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We determine now a with a test calculation. Let X be the Fano variety of lines on a very
general cubic 4-fold, and let β ∈ H2(X,Z) be the minimal effective curve class. As we will see
in Section 7 we have the evaluations (assuming the conjectural holomorphic anomaly equation):〈

∅
〉GW

2,β
= −11445/128,

n1,β(c2(X)) = 5985,〈
τ0(c2(X))τ0(c2(X))

〉GW

0,β
= 2835.

Moreover, by [NO, Thm. 1.3], we have

Nnodal,β = 3780.

Since there are no genus 2 curves on X in class β (see [NO]) we set

n2,β = 0.

Inserting this into Eqn. (1.16) yields:

a =
1

24
.

This conclude the justification of Definition 1.7. While the last step (i.e. §1.7.3) requires two
assumption (locality of the contribution of nodal rational curves, and the holomorphic anomaly
equation), the remainder of the paper yields plenty of numerical support for this definition.

2. Donaldson-Thomas invariants

For a holomorphic symplectic 4-fold, we define (reduced) Donaldson-Thomas invariants (DT4

invariants for short) of one dimensional stable sheaves. We then use them to give a sheaf theoretic
approach to Gopakumar-Vafa invariants defined in the previous section. In the last section we
justify the definition by computations in the ideal geometry of curves.

2.1. Definitions. Let Mβ be the moduli scheme of one dimensional stable sheaves F on X
with [F ] = β, χ(F ) = 1. Such moduli spaces are independent of the choice of polarization
(e.g. [CMT18, Rmk. 1.2]) and are used in [CMT18, CT20a] to give sheaf theoretic interpreta-
tion of Gopakumar-Vafa type invariants of ordinary Calabi-Yau 4-folds [KP]. We also refer to
[CMT19, CT19, CT20b, CT20c] for related conjectures and computations, which build on the
works of virtual class constructions [BJ, OT] (see also [CL14]).

Parallel to Gromov-Witten theory, the ordinary virtual class of Mβ vanishes [KiP, Sav]. For
a choice of ample divisor H, one can define a reduced virtual class due to Kiem-Park [KiP,
Def. 8.7, Lem. 9.4]:

[Mβ ]vir ∈ A2(Mβ ,Q),(2.1)

depending on the choice of orientation [CGJ, CL17]. To define descendent invariants, we need
insertions:

τi : H∗(X,Z)→ H∗+2i−2(Mβ ,Q),

τi(•) := (πM )∗ (π∗X(•) ∪ ch3+i(Fnorm)) ,

where Fnorm is the normalized universal sheaf, i.e. det(πM∗Fnorm) ∼= OMβ
(ref. [CT20a, §1.4]).

Definition 2.1. For any γ1, . . . , γn ∈ H∗(X) and ki ∈ Z>0 the DT4 invariants are defined by〈
τk1(γ1), . . . , τkn(γn)

〉DT4

β
:=

∫
[Mβ ]vir

n∏
i=1

τki(γi) ∈ Q.(2.2)

2.2. Conjectures. As in [CMT18, CT20a], we propose the following sheaf theoretic interpre-
tation of all genus Gopakumar-Vafa invariants:

Conjecture 2.2. For certain choice of orientation, the following equalities hold.
When β is an effective curve class,〈

τ0(γ1), . . . , τ0(γn)
〉DT4

β
= n0,β(γ1, . . . , γn).(i)

When β is a primitive curve class,〈
τ1(γ)

〉DT4

β
= −1

2

〈
τ1(γ)

〉GW

0,β
− n1,β(γ).(ii)

When β is a primitive curve class,

−
〈
τ3(1)

〉DT4

β
− 1

12

〈
τ1(c2(X))

〉DT4

β
= n2,β .(iii)
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By Proposition 1.1,
〈
τ1(γ)

〉GW

0,β
can be deduced by g = 0 primary Gromov-Witten invariants.

Therefore these formulae determine all genus Gopakumar-Vafa invariants from primary and
descendent DT4 invariants, which give a sheaf theoretic interpretation for them.

Remark 2.3. The way we write down Conjecture 2.2 (iii) is indirect. By [COT22, App. A],
the LHS of (iii) is equal to stable pair invariant P−1,β which is conjecturally the same as genus
2 Gopakumar-Vafa invariants [COT22, Conj. 1.10]. We believe there is also a formula relating〈
τ2(θ)

〉DT4

β
to genus 2 Gopakumar-Vafa invariants, which we haven’t found so far.

Remark 2.4. Our conjecture implicitly includes the independence of DT4 invariants on the
choice of ample divisor in defining reduced virtual classes (2.1).

2.3. Justification: Primary DT4 invariants. For Conjecture 2.2 (i), we consider the case
γ1, γ2 ∈ H4(X,Z) for simplicity. These two 4-cycles (generically) cut out finite number of
rational curves and miss high genus curves.

As in [CMT18, §1.4], any one dimensional stable sheaf F with [F ] = β is OC for some rational
curve C. Their moduli space Mβ is identified with the moduli space S0

β of rational curves and

[Mβ ]vir = [S0
β ],(2.3)

for some choice of orientation. After imposing the primary insertion, we have∫
[Mβ ]vir

τ0(γ1) τ0(γ2) =

∫
S0
β

p∗(f
∗γ1) · p∗(f∗γ2),

where p : C0
β → S0

β is the total space of rational curve family (RCF) of class β and f : C0
β → X is

the evaluation map. Therefore Conjecture 2.2 (i) is confirmed in this ideal setting as both sides
of the equation are (virtually) enumerating rational curves of class β incident to cycles dual to
γ1 and γ2.

2.4. Justification: Descendent DT4 invariants. For Conjecture 2.2 (ii), as we put the in-

cident condition with one 4-cycle γ in
〈
τ1(γ)

〉DT4

β
which generically does not intersect genus 2

curves, so we only need to consider the contributions from RCF and ECF (elliptic curve family).
(1) For any RCF of class β, we have an embedding i : C0

β ↪→ S0
β ×X fitting into the diagram:

C0
β

i //

p
""

f

66

S0
β ×X

πS

��

πX

""
S0
β X.

(2.4)

By Grothendieck-Riemann-Roch (GRR) formula, we have

ch(i∗OC0β ) = i∗(td
−1(NC0β/S0

β×X)).(2.5)

Obviously Fnorm = OC0β , and therefore

τ1(γ) = πS∗(ch4(OC0β ) · π∗Xγ)

= −1

2
πS∗(i∗c1(ωp) · π∗Xγ)

= −1

2
πS∗(i∗(c1(ωp) · f∗γ))

= −1

2
p∗(c1(ωp) · f∗γ),

where ωp is the relative cotangent bundle of p.

Combining with Eqn. (2.3), we see RCF in class β contributes to
〈
τ1(γ)

〉DT4

β
by∫

[Mβ ]vir
τ1(γ) = −1

2

∫
S0
β

p∗(c1(ωp) · f∗γ).(2.6)

As β is primitive, we may deform it to the irreducible case where RCF consists of smooth rational
curves (except at some finite number of fibers of nodal curves which can be ignored by insertion

γ ∈ H4(X)). By Lemma 1.4, the RHS of Eqn. (2.6) is equal to − 1
2

〈
τ1(γ)

〉GW

0,β
. This justifies the

first term in the RHS of Conjecture 2.2 (ii).
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(2) Next we consider the contribution from ECF. Let p : C1
β → S1

β be the total space of ECF of

class β and j : C1
β → X be the evaluation map. The insertion γ ∈ H4(X) (generically) intersects

C1
β in a finite number of points. We may assume C1

β = E ×S1
β is the product, p is the projection

and j is an embedding in our computations. We further assume E is smooth with normal bundle
L⊕ L−1 ⊕O for a generic degree zero line bundle L on E.

Lemma 2.5. Let p : C1
β → S1

β be a one dimensional family of smooth elliptic curves E on X

with normal bundle NE/X = L⊕L−1⊕O for a generic L ∈ Pic0(E). Then any one dimensional
stable sheaf F supported on this family is scheme theoretically supported on a fiber of p.

Proof. By [CMT18, Lem. 2.2], we know F is scheme theoretically supported on TotE(L⊕ L−1)
for a fiber E of p. By [HST, Prop. 4.4], F is scheme theoretically supported on the its zero
section, so we are done. �

By the above lemma, there exists a morphism

Mβ → S1
β ,(2.7)

whose fiber over {E} is the moduli space M1,1(E) of stable bundles on E with rank 1 and χ = 1.
Note that M1,1(E) ∼= E. A family version of such isomorphism gives

Mβ
∼= C1

β ,(2.8)

such that the virtual class satisfies

[Mβ ]vir = [C1
β ],(2.9)

for certain choice of orientation.
Next we compute the descendent insertion. In the following diagram:

F

��

E

��
C1
β ×X C1

β × C1
β

p̄=(p,p)//j̄=(id,j)oo S1
β × S1

β ,

a universal one dimensional sheaf F can be chosen as

F = j̄∗E, E := Op̄∗(∆
S1
β

)(∆C1β ),

where we treat ∆C1β as a divisor of p̄∗(∆S1
β
) via

∆C1β =
{

(x, x) |x ∈ C1
β

}
↪→
{

(x, p−1p(x)) |x ∈ C1
β

}
= p̄∗(∆S1

β
).

It is straightforward to check that F is normalized.
Below, we use notations from the following diagram

C1
β ×X

πX

��

πC

||

C1
β × C1

β

π2

��

π1

""

j̄=(id,j)oo

C1
β X C1

β

joo C1
β .

The GRR formula gives

ch4(j̄∗E) = j̄∗

(
1

2
ch1(E) · π∗2c1(C1

β) + ch2(E)

)
.(2.10)

Therefore, we have

τ1(γ) = πC∗(ch4(j̄∗E) · π∗Xγ)(2.11)

= πC∗j̄∗

((
1

2
ch1(E) · π∗2c1(C1

β) + ch2(E)

)
· j̄∗π∗Xγ

)
=

1

2
π1∗

(
ch1(E) · π∗2c1(C1

β) · π∗2j∗γ
)

+ π1∗ (ch2(E) · π∗2j∗γ)

= π1∗ (ch2(E) · π∗2j∗γ) ,

where the last equality is because dimC C1
β = 2 and c1(C1

β) · j∗γ ∈ H6(C1
β) = 0.

From the exact sequence in Coh(C1
β × C1

β):

0→ Op̄∗(∆
S1
β

) → Op̄∗(∆
S1
β

)(∆C1β )→ O∆C1
β

(∆C1β )→ 0,
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we obtain

ch2(E) = ch2

(
Op̄∗(∆

S1
β

)

)
+ ch2

(
O∆C1

β

(∆C1β )

)
(2.12)

= p̄∗ ch2(O∆
S1
β

) + [∆C1β ]

= −1

2
p̄∗(∆S1

β
)∗(c1(S1

β)) + [∆C1β ],

where ∆S1
β

: S1
β → S1

β × S1
β denotes the diagonal embedding and we use GRR formula for the

map ∆S1
β

in the last equation.

Combining Eqns. (2.11), (2.12), we obtain

τ1(γ) = −1

2
π1∗

(
p̄∗(∆S1

β
)∗(c1(S1

β)) · π∗2j∗γ
)

+ π1∗

(
[∆C1β ] · π∗2j∗γ

)
= j∗γ,(2.13)

where we note that p̄∗(∆S1
β
)∗(c1(S1

β)) is some multiple of the fiber class of p̄, so the first term in

above vanishes. Therefore, ECF of class β contributes to
〈
τ1(γ)

〉DT4

β
by∫

[Mβ ]vir
τ1(γ) =

∫
C1β
j∗γ,

which gives exactly the genus 1 GV invariant n1,β(γ) for primitive β as they are (virtually)
enumerating elliptic curves of class β incident to the cycle dual to γ.

Remark 2.6. For a general curve class β and any k > 1 such that k|β, one can similarly show

that any elliptic curve family C1
β/k of class β/k contributes to

〈
τ1(γ)

〉DT4

β
by∫

C1
β/k

j∗γ = n1,β/k(γ).

Therefore, all elliptic curve families contribute to
〈
τ1(γ)

〉DT4

β
by
∑
k|β n1,β/k(γ).

3. The embedded rational curve family

As a first illustration of the general case, we work out here all Gromov-Witten, Gopakumar-
Vafa and Donaldson-Thomas invariants for a family of smooth irreducible rational curves globally
embedding in a holomorphic symplectic 4-fold. We will see that the global embedding assumption
forces already almost all of our invariants to vanish.

3.1. Setting. Let X be a holomorphic symplectic 4-fold with symplectic form σ ∈ H0(X,Ω2
X).

Consider a family p : C → S of embedded rational curves in the irreducible curve class β ∈
H2(X,Z) parametrized by a smooth surface S.

We make the following assumptions:

(i) All fibers of p are non-singular (isomorphic to P1).
(ii) The evaluation map j : C → X is a (global) embedding.
(iii) All curves in class dβ for all d > 1 are unions of curves of the family C → S.

Let σ ∈ H0(X,Ω2
X) be the holomorphic symplectic form. Since the pullback j∗(σ) ∈

H0(C,Ω2
C) vanishes on Tp, there exists a 2-form α ∈ H0(S,Ω2

S) such that

p∗(α) = j∗(σ).

If α vanishes at a point s ∈ S, then for every point x in the fiber Cs := p−1(s) the form σ vanishes
on the image of TC,x → TX,j(x). Since σj(x) is non-degenerate, it can only vanish on a subspace
of at most half the dimension of TX,j(x), so this is impossible. Hence α does not vanish. We
conclude that S is a holomorphic symplectic surface, hence either an abelian or a K3 surface.

Moreover, consider the sequence

0→ TC → j∗(TX)→ NC/X → 0.

The form σ′ = σ|C ∈ H0(C, j∗Ω2
X) is non-degenerate; so the vanishing σ′(Tp, TC) = 0 implies

that we have an isomorphism

σ′ : Tp
∼=−→ N∨C/X .

Example 3.1. Let S[2] be the Hilbert scheme of two points on a holomorphic symplectic surface
S. The Hilbert-Chow map from S[2] to the second symmetric product of S:

π : S[2] → Sym2(S)
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is a resolution of singularity [F], whose exceptional divisor D fits into the Cartesian diagram

D

p

��

j // S[2]

π

��
S

∆ // Sym2(S),

where ∆ is the diagonal embedding and p : D → S is a P1-bundle. The pair (S[2], β := j∗[Ds])
satisfies the assumptions (i-iii) for the family D → S.

3.2. Gromov-Witten invariants. In the setting (i-iii), we have the following computation of
Gromov-Witten invariants. In genus 0, one has the following description:

Lemma 3.2. For any γ1, . . . , γn ∈ H∗(X), we have〈
τ0(γ1) · · · τ0(γn)

〉GW

0,dβ
= d−3+n

∫
S

n∏
i=1

p∗(j
∗(γi)).

Proof. By condition (iii) the evaluation map factors as

ev : M0,n(X, dβ)
ρ−→ C ×S · · · ×S C︸ ︷︷ ︸

n times

j×···×j−−−−−→ Xn.

Since M0,n(X, dβ) is of virtual dimension 2 + n = dim(C ×S · · · ×S C) we have

ev∗[M0,n(X, dβ)]vir = ad[C ×S · · · ×S C].

By restriction to a fiber and using the Aspinwall-Morrison formula (see e.g. [O18, Prop. 7(i)] for
our context), we have

ad = d−3+n.

Consider the fiber diagram

C C×Sn Xn

S C×S(n−1)

p

πn

π

j×n

p

where πn and π are the projections to the n-th and the first (n− 1)-factors respectively, and p
is the structure morphism. We obtain:∫

C×Sn
(j×n)(γ1 ⊗ · · · ⊗ γn) =

∫
C×Sn

π∗
(
(j×(n−1))∗(γ1 ⊗ · · · ⊗ γn−1)

)
π∗nj
∗(γn)

=

∫
C×S(n−1)

(
(j×(n−1))∗(γ1 ⊗ · · · ⊗ γn−1)

)
p∗(p∗(j

∗(γn)))

=

∫
S

n∏
i=1

p∗(j
∗(γi)),

where we used that π∗π
∗
n(j∗γn) = p∗p∗(j

∗γn) and then induction in the last step. The claim
follows by putting these two statements together. �

In genus 1 and 2, we have:

Lemma 3.3. For any γ ∈ H4(X,Z) and d > 1, we have〈
τ0(γ)

〉GW

1,dβ
=
〈
∅
〉GW

2,dβ
= 0.

Proof. Under our assumptions we have an isomorphism of moduli spaces

M1,1(X,β) ∼= M1,1(C, dF ) ∼= M1,1(C/S, d),

where M1,1(C, dF ) is the moduli space of stable maps to the (total space of) C of degree d times

the fiber class F , and M1,1(C/S, d) is the moduli space of stable maps into fibers of C → S. By
comparing the perfect-obstruction theories of the first two moduli spaces one finds that:〈

τ0(γ)
〉GW

1,dβ
=

∫
[M1,1(C,dF )]vir

ev∗1(j∗(γ)) e(V),

where the fiber of the bundle V at a point [f : Σ → C, p1] ∈ M1,1(C, dF ) is the kernel of the
semiregularity map H1(Σ, f∗(NC/X))→ H1(Σ, ωΣ) = C.
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Similarly, the virtual classes of the latter two moduli spaces are related by

[M1,1(C, dF )]vir = [M1,1(C/S, d)]vir · e(E∨ ⊗ p∗(TS)).

Since S is symplectic, we have: e(E∨ ⊗ p∗TS) = c2(TS)− λ1c1(TS) = c2(TS). Hence〈
τ0(γ)

〉GW

1,dβ
=

∫
[M1,1(C,dF )]vir

ev∗1(j∗(γ)) p∗(c2(TS))e(V)

=

∫
[M1,1(C,dF )]vir

ev∗1(j∗(γ) p∗c2(TS))e(V)

= 0,

where in the last step we used that j∗(γ) p∗c2(TS) = 0 ∈ H∗(C) for dimension reasons.
The case of genus 2 is similar (using the Mumford relation (1.13)). �

We also have the following vanishing:

Lemma 3.4. For any γ ∈ H4(X,Q) and d > 1 we have:〈
τ0(γ)τ0(c2(X))

〉GW

0,dβ
= 0.

Proof. Consider the invariant
〈
τ1(γ)

〉GW

0,β
. By Lemma 1.4, we have

(3.1)
〈
τ1(γ)

〉GW

0,β
=

∫
C
j∗(γ) c1(ωp).

Applying Lemma 1.1 to the divisor [C] ∈ H2(X,Z) which satisfies [C] · β = −2, we also have:

(3.2)
〈
τ1(γ)

〉GW

0,β
=

1

4

〈
τ0(γ)τ0([C]2)

〉GW

0,β
+
〈
τ0(γ · [C])

〉GW

0,β
.

Since NC/X ∼= T∨p = ωp, we have〈
τ0(γ · [C])

〉GW

0,β
=

∫
C
j∗(γ · [C]) =

∫
C
j∗(γ) c1(ωp).

Comparing Eqn. (3.1) and Eqn. (3.2), we conclude with the help of Lemma 3.2 that:

(3.3) 0 =
〈
τ0(γ)τ0([C]2)

〉GW

0,β
=

∫
S

p∗(j
∗(γ)) · p∗(c1(Tp)

2).

The pair of short exact sequences

0→ TC → j∗TX → T∨p → 0,

0→ Tp → TC → p∗(TS)→ 0

shows that

j∗(c(X)) = 1 + p∗(c2(S))− c1(Tp)
2

and hence

(3.4) j∗(c2(X)) = p∗(c2(S))− c1(Tp)
2.

Inserting into Eqn. (3.3), we find∫
S

p∗(j
∗(γ)) · p∗(j∗(c2(X))) = 0.

By Lemma 3.2 this implies the claim (for all d > 1). �

We will also require the following evaluation.

Lemma 3.5. For any γ ∈ H4(X,Q), we have

(3.5)
〈
τ1(γ)

〉GW

0,dβ
=

1

d3

∫
C
j∗(γ) c1(ωp).

Proof. By Lemma 1.1 applied to D = [C] ∈ H2(X,Z) (which satisfies D · β = −2) we have:〈
τ1(γ)

〉GW

0,dβ
=

1

4d2

〈
τ0(γ)τ0([C]2)

〉GW

0,dβ
+

1

d

〈
τ0(γ · [C])

〉GW

0,dβ
.

By Eqn. (3.3) and Lemma 3.2 the first term vanishes. And by Lemma 3.2 again we get:〈
τ0(γ · [C])

〉GW

0,dβ
=

1

d2

∫
C
j∗(γ · [C]) =

1

d2

∫
C
j∗(γ)c1(ωp). �
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3.3. Gopakumar-Vafa invariants. We compute all g > 1 Gopakumar-Vafa invariants in the
setting (i-iii).

Lemma 3.6. For any γ ∈ H4(X,Z), we have

n1,β(γ) = n2,β = 0.

Proof. By Lemmata 3.3 and 3.4 and the definition of Gopakumar-Vafa invariants it suffices to
show that Nnodal,β vanishes. Since M0,2(X,β) = C ×S C we have

Nnodal,β =
1

2

[∫
C×SC

(j × j)∗(∆X)−
∫

[M0,1(X,β)]vir
ψ3

1 + ev∗1(c2(X))ψ1

]
.

To evaluate the first term we use that the preimage of the diagonal under j×j : C×S C → X×X
is equal to C and that the refined intersection has an excess bundle which is an extension of TS
and T∨p . For the second term we use Eqn. (3.4) and that by Lemma 1.4 we have ψ1 = −c1(Tp)

under the isomorphism M0,1(X,β) ∼= C. With this the above becomes:

=
1

2

[∫
C
e(TS)c1(T∨p )−

∫
C
(−c1(Tp))

3 + (p∗(c2(S))− c1(Tp)
2)(−c1(Tp))

]
=

1

2
[−2e(S) + 2e(S)] = 0,

where we used ψ1 = −c1(Tp) under the isomorphism M0,1(X,β) ∼= C by Lemma 1.4. �

3.4. DT4 invariants.

Lemma 3.7. In the setting (i-iii), for certain choice of orientation, we have〈
τ0(γ1), · · · , τ0(γn)

〉DT4

β
=

∫
S

n∏
i=1

(p∗j
∗γi),

〈
τ1(γ)

〉DT4

β
= −1

2

∫
C
j∗(γ) c1(ωp),〈

τ2(θ)
〉DT4

β
=

1

12

∫
C
j∗(θ) c1(ωp)

2 − 1

12

∫
C
j∗(c2(X) · θ),〈

τ3(1)
〉DT4

β
=

1

24

∫
C
j∗(c2(X)) c1(ωp).

Moreover, all DT4 invariants vanish in curve class dβ for d > 1.

Proof. The computation is essentially done in §2.4. By [CMT18, Lem. 2.2], any one dimensional
stable sheaf in class dβ is scheme theoretically supported on a fiber of p : C → S. Therefore

Mβ
∼= S, Mdβ = ∅, if d > 2.(3.6)

And their virtual classes satisfy

(3.7) [Mβ ]vir = ±[S], [Mdβ ]vir = 0, if d > 2.

Under the isomorphism (3.6) and the commutative diagram

C
i=(p,j)//

p
""

j

77

S ×X

πS

��

πX

##
S X,

the normalized universal family Fnorm is i∗OC . By Grothendieck-Riemann-Roch formula,

ch(i∗OC) = i∗(td
−1(NC/S×X))(3.8)

= i∗

(
1− 1

2
c1(ωp) +

1

12

(
c1(ωp)

2 − j∗c2(X)
)

+
1

24
c1(ωp) · j∗c2(X)

)
.

Therefore

τk(γ) = πS∗ (π∗Xγ ∪ chk+3(i∗OC))

= πS∗

(
π∗Xγ ∪ i∗

[
td−1(NC/S×X)

]
degC k

)
= p∗

(
j∗γ ∪

[
td−1(NC/S×X)

]
degC k

)
.

Combining with Eqns. (3.7), (3.8), we are done. �
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To sum up, combining Lemmata 3.2–3.7, we obtain:

Theorem 3.8. Conjecture 1.9 and Conjecture 2.2 hold in the setting specified in §3.1.

4. Tautological integrals on moduli spaces of sheaves on K3 surfaces

In this section, we compute several tautological integrals on moduli spaces of one dimensional
stable sheaves on K3 surfaces. These will be used in Section 5 to compute DT4 invariants on
the product of K3 surfaces, though they are interesting in their own right.

4.1. Fujiki constants. The second cohomology H2(M,Z) of an irreducible hyperkähler variety
carries a integral non-degenerate quadratic form

q : H2(M,Z)→ Z,

called the Beauville-Bogomolov-Fujiki form. By the following result of Fujiki [Fuji] (and its
generalization in [GHJ]) it controls the intersection numbers of products of divisors against
Hodge cycles which stay Hodge type on all deformations of M :

Theorem 4.1. ([Fuji], [GHJ, Cor. 23.17]) Assume α ∈ H4j(M,C) is of type (2j, 2j) on all
small deformation of M . Then there exists a unique constant C(α) ∈ C depending only on α
and called the Fujiki constant of α such that for all β ∈ H2(M,C) we have

(4.1)

∫
M

α · β2n−2j = C(α) · q(β)n−j .

In this section, we consider the Hilbert scheme S[n] of n-points of a K3 surface S, which by
the work of Beauville [Bea] is irreducible hyperkähler. We will prove a closed formula for the
Fujiki constants of all Chern classes of its tangent bundle.

For k > 2 even, we define the classical Eisenstein series

(4.2) Gk(q) = − Bk
2 · k

+
∑
n>1

∑
d|n

dk−1qn,

where Bk are Bernoulli numbers, i.e. B2 = 1
6 , B4 = − 1

30 , · · · . For example, we have

G2(q) = − 1

24
+
∑
n>1

∑
d|n

dqn.

Theorem 4.2. Let S be a K3 surface. For any k > 0,∑
n>k

C(c2n−2k(TS[n])) qn =
(2k)!

k!2k

(
q
d

dq
G2(q)

)k ∏
n>1

(1− qn)−24.

The first coefficients are listed in Table 3. Remarkablely, the right hand side in Theorem 4.2
is up to the prefactor (2k)!/(k!2k) precisely the generating series of counts of genus k curves on
a K3 surface passing through k generic points [BL]. This suggests a relationship to the work of
Göttsche on curve counting on surfaces [G98]. The proof presented below uses similar ideas as
in [G98], but we could not directly deduce it from there. The relationship to curve counting on
K3 surfaces will be taken up in a follow-up work.

Proof. Let L ∈ Pic(S) be a line bundle on an arbitrary surface S. Consider the series

ΦS,L =

∞∑
n=0

qn
∫
S[n]

c(TS[n]) ec1(Ln),

where we let Ln = det(L[n])⊗ det(O[n]
S )−1. Since the integrand is multiplicative, by [NW, Prop

3] (which immediately follows from [EGL]), there exists power series A,B,C,D in q such that for
any surface S and line bundle L, we have

ΦS,L = exp
(
c1(L)2A + c1(L) · c1(S)B + c1(S)2C + c2(S)D

)
.

The Göttsche formula

ΦS,0 =
∑
n>0

qn
∫
S[n]

c2n(TS[n]) =
∏
n>1

1

(1− qn)e(S)

shows then that C = 0 and provides an explicit expression for D. Hence we have

ΦS,L =
∏
n>1

(1− qn)−e(S) exp
(
c1(L)2A + c1(L)c1(S)B

)
.
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c0 c2 c4 c6 c8 c10 c12

S[0] 1

S[1] 1 24

S[2] 3 30 324

S[3] 15 108 480 3200

S[4] 105 630 2016 5460 25650

S[5] 945 5040 13500 26184 49440 176256

S[6] 10395 51030 122220 198300 266490 378420 1073720

Table 3. The first non-trivial Fujiki constants of the Chern classes ck :=
ck(TS[n]) of Hilbert schemes of points on a K3 surface. The modularity of
Theorem 4.2 appears in the diagonals, e.g. the cases k = 0, 1 are the functions:∏

n>1

(1− qn)−24 = 1 + 24q + 324q2 + 3200q2 + · · · .(
q
d

dq
G2(q)

)∏
n>1

(1− qn)−24 = q + 30q2 + 480q3 + 5460q4 + · · · .

Replacing L by L⊗t for t ∈ Z shows that

(4.3)

∞∑
n=0

qn
∫
S[n]

c(TS[n]) etc1(Ln) =
∏
n>1

(1− qn)−e(S) exp
(
c1(L)2t2A + c1(L)c1(S)tB

)
.

Since both sides are power series with coefficients which are polynomials in t, and the equality
holds for all t ∈ Z, we find that Eqn. (4.3) also holds for t, a formal variable. We write ΦS,L(t)
for the series (4.3). We argue now in two steps.

Step 1: Specialization to K3 surfaces. Let S be a K3 surface. Since S[n] is holomorphic
symplectic, its odd Chern classes vanish. Together with Eqn. (4.1) and q(Ln) = c1(L)2 this gives

ΦS,L(t) =
∑
n>0

qn
n∑
k=0

1

(2k)!

∫
S[n]

c2n−2k(TS[n])c1(Ln)2kt2k

=
∑
k>0

t2k
(
c1(L)2

)k
(2k)!

∑
n>k

C(c2n−2k(TS[n]))qn.

On the other hand, we have

ΦS,L(t) =
∏
n>1

(1− qn)−24 · exp(c1(L)2t2A).

By taking the t2k coefficient we obtain that

(4.4)
∑
n>k

C(c2n−2k(TS[n])) qn =
(2k)!

k!
A(q)k

∏
n>1

(1− qn)−24.

Step 2: Specialization to abelian surfaces. Let A be an abelian surface with a line bundle
L ∈ Pic(A) such that c1(L)2 6= 0. Let σ : A[n] → A be the sum map, and let

Kumn−1(A) = σ−1(0A)

be the generalized Kummer variety of dimension 2n− 2. We have the fiber diagram

A×Kumn−1(A) A[n]

A A.

ν

pr1 σ

n×

In particular ν is étale (of degree n4), which implies that

ν∗TA[n]
∼= pr∗1(TA)⊕ pr∗2(TKumn−1(A)).

Since the Chern classes of an abelian surface vanish, we obtain

ν∗c(TA[n]) = pr∗2c(TKumn−1(A)).

Moreover one has (see [NW, Eqn. (2)]) that

ν∗(Ln) = pr∗1(L⊗n)⊗
(
Ln|Kumn−1(A)

)
.
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We obtain that∫
A[n]

c1(Ln)2c2n−2(TA[n]) =
1

n4

∫
A×Kumn−1(A)

c1(ν∗(Ln))2c2n−2(ν∗TKumn−1(A))

=
1

n2
(c1(L)2) ·

∫
Kumn−1(A)

c2n−2(TKumn−1(A))

=
1

n2
(c1(L)2) e(Kumn−1(A)).

Using that e(Kumn−1(A)) = n3
∑
d|n d (ref. [GS]) and Eqn. (4.3), we conclude that

(c1(L)2) · A(q) = [ΦA,L(t)]t2 =
1

2

∑
n>0

qn
∫
A[n]

c1(Ln)2c2n−2(TA[n])

=
(c1(L)2)

2

∑
n>1

n
∑
d|n

dqn,

where [−]t2 denotes the coefficient of t2 term. Hence

A(q) =
1

2
q
d

dq
G2(q).

Combining with Eqn. (4.4), we are done. �

For completeness we also state the Fujiki constants of Chern classes of the second known
infinite family of hyperkähler varieties, the generalized Kummer varieties.

Proposition 4.3. For any k > 0 and abelian surface A, we have∑
n>k

C(c2n−2k(TKumn(A))) q
n+1 =

(2k)!

(k + 1)!2k

(
q
d

dq

)2(
q
d

dq
G2

)k+1

.

Proof. Using the universality (4.3) and the value of A(q) we computed above, one concludes that
for any line bundle L on A, we have:

(2k)!

k!2k

(
q
d

dq
G2

)k
(c1(L)2)k

=
∑
n>0

qn
∫
A[n]

c2n−2k(TA[n])c1(Ln)2k

=
∑
n>0

qn
1

n4

∫
A×Kumn−1(A)

c2n−2k(ν∗(TA[n]))c1(ν∗Ln)2k

=
∑
n>0

qn
1

n2

(
2k

2

)(∫
A

c1(L)2

)
q(Ln|Kumn−1(A))

k−1C(c2n−2k(TKumn−1(A))).

Using q(Ln|Kumn−1(A)) = c1(L)2 we conclude the claim. �

Remark 4.4. It is remarkable that all Fujiki constants of ck(TX) for X ∈ {S[n],Kumn(A)}
are positive integers. By the software package ‘bott’ of J. Song [Son], the same can be checked
numerically for arbitrary products of Chern classes of the tangent bundle (up to n 6 10). We also
refer to [CJ, J] for some general results on positivity of Todd classes of hyperkähler varieties, and
to [OSV] for a discussion on positivity of Chern (character) numbers. This suggests the question
whether all (non-trivial) Fujiki constants of products of Chern classes on irreducible hyperkähler
varieties positive. This question was raised independently and then studied in [BS, Saw].

4.2. Descendent integrals on the Hilbert scheme. We now turn to integrals over descen-
dents on Hilbert schemes, which are defined for α ∈ H∗(S) and d > 0 by

Gd(α) := πHilb ∗(π
∗
S(α) chd(OZ)) ∈ H∗(S[n]),

where πHilb, πS are projections from S[n]×S to the factors. We prove the following evaluations:

Proposition 4.5. Let p ∈ H4(S) be the point class. Then∑
n>0

qn
∫
S[n]

c(TS[n])G2(p) =

(
1

24
+G2

)∏
n>1

(1− qn)−24.
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Proof. This is a special case of [QS], but we can give a direct argument. For any surface S and
K-theory class x ∈ K(S) with ch0(x) = ch1(x) = 0 consider the series

ΦS,x =
∑
n>0

qn
∫
S[n]

c(TS[n])ech2(x[n]).

By [EGL] and since we know the answer for x = 0, there exists a series A(q) such that

ΦS,x =
∏
n>1

(1− qn)−24 exp (ch2(x)A) .

Setting x = tOp, we in fact get the equality of

ΦS,t :=
∑
n>0

qn
∫
S[n]

c(TS[n])ech2(O[n]
p )t =

∏
n>1

(1− qn)−24 exp (At) .

Case 1: K3 surfaces. By GRR and taking the t1-coefficient, one finds that

(4.5)
∑
n>0

qn
∫
S[n]

c(TS[n])G2(p) = [ΦS,t]t1 = A(q)
∏
n>1

(1− qn)−24.

Case 2: Abelian surfaces. For an abelian surface A, similar as before, we have∫
A[n]

c2n−2(TA[n]) ch2(O[n]
p ) =

1

n4

∫
A×Kumn−1(A)

ν∗(ch2(O[n]
p ))c2n−2(TKumn−1(A))

=
e(Kumn−1(A))

n3
=

1

n3

n3
∑
d|n

d

 =
∑
d|n

d.

Here we used that ν∗ ch2(O[n]
p )|A×pt = np. (To see the last statement, consider the diagram

A×Kumn−1(A)×A A[n] ×A

A×Kumn−1(A) A[n]

A A.

ν×id

π

ν

pr1 σ

n×

Let Z ⊂ A[n]×A be the universal subscheme, and let ZKum ⊂ Kumn−1(A)×A be its restriction
to the Kummer. Inside A×Kumn−1 → A, we have an equality of subschemes:

(ν × id)−1(Z) = m−1
13 (ZKum),

where m13 is the addition map on the outer factors. Restricting to A × pt × A we find that
m13|∗A×pt×A(np) = n∆A. Then the claim follows from the definition). We hence obtain that

A(q) = [ΦA,t]t1 =
∑
n>0

qn
∫
A[n]

c2n−2(TA[n]) ch2(O[n]
p ) =

1

24
+G2(q).

Combining with Eqn. (4.5), we are done. �

Proposition 4.6.∫
S[d]

c2d−2(S[d])G3(D) = 0 for all divisors D ∈ H2(S,Q),(i) ∑
n>0

qn
∫
S[n]

c(TS[n])G4(1) =
(
−20G2

2 − 2G2 − 5/3G4 − 1/24
) ∏
n>1

(1− qn)−24,(ii)

where Gk is given in (4.2).

Proof. Recall that for any hyperkähler variety X, the Looijenga-Lunts-Verbitsky Lie algebra
g(X) is isomorphic to so(H2(X,Q)⊕ UQ), where U =

(
0 1
1 0

)
is the hyperbolic lattice [LL, Ver95,

Ver96]. The degree 0 part of the Lie algebra splits as g0(X) = Qh ⊕ so(H2(X,Q)) where
h is the degree grading operator. Looijenga and Lunts show that for the natural action of
g(X) on cohomology, the subliealgebra so(H2(X,Q)) acts by derivations. In other words, if
t ⊂ so(H2(X)) is a maximal Cartan, we have a decomposition

H∗(X) =
⊕
λ:t→Z

Vλ,
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which is multiplicative, i.e. Vλ · Vµ ⊂ Vλ+µ. Here λ runs over all weights of the torus and Vλ is
the corresponding eigenspace.

For a Hilbert scheme, let δ = c1(O[n]
S ) and recall the natural decomposition

H2(S[d]) = H2(S)⊕Qδ.

We consider the subliealgebra so(H2(S)) ⊂ so(H2(X,Q)) and for a Cartan t′ ⊂ so(H2(S)) the
associated decomposition

H∗(S[d]) =
⊕
µ:t′→Z

Vµ.

Since Chern classes are monodromy invariant, they lie in V0; see [LL] for a discussion. If D = 0
there is nothing to prove. Otherwise, we can choose the Cartan t′ such that D lies in a non-zero
eigenspace of the action of so(H2(S)) on H2(S,Q). Since the map γ 7→ πHilb ∗ (chd(OZ)π∗S(γ))

is equivariant with respect to the action of so(H2(S)) on H∗(S[d]) and H∗(S) respectively, we
conclude that also

G3(D) = πHilb ∗ (ch3(OZ)π∗S(γ))

is of non-trivial weight with respect to t′, i.e. lies in Vµ for µ 6= 0.

By multiplicativity of the decomposition, it follows that the integrand c2d−2(S[d]) ·G3(D) is
of non-zero weight, hence its integral must be zero. This proves (i).

For part (ii) we start with the vanishing from part (i): For any divisor W ∈ H2(S,Q) we have∫
S[n]

c2d−2(S[n])G3(W ) = 0.

In the notation of [NOY, Eqn. (36)] consider the element hFδ = F ∧ δ in so(H2(X,Q)) for some
F ∈ H2(S,Q). Since the integrated degree 0 part of the LLV algebra acts as ring isomorphisms
and preserves the Chern classes (see [LL]), we have∫

S[n]

c2d−2(S[n])et·hFδ(G3(W )) =

∫
S[n]

et·hFδ(c2d−2(S[n])G3(W ))(4.6)

=

∫
S[n]

c2d−2(S[n])G3(W ) = 0.

By [NOY, Prop. 4.4], we have that

hFδ(G3(D1)) = −G2(F )G2(W )−
〈
F,W

〉
G2(1)G2(p)−

〈
F,W

〉
G4(1).

Taking the derivative d
dt |t=0 of Eqn. (4.6), we find that:〈

F,W
〉 ∫

S[n]

c(TS[n])G4(1) = −
∫
S[n]

c(TS[n])G2(F )G2(W )− n
〈
F,W

〉 ∫
S[n]

c(TS[n])G2(p).

Note that by Theorem 4.2, we have∑
n>0

qn
∫
S[n]

c(TS[n])G2(F )G2(W ) =
〈
F,W

〉 ∏
n>1

(1− qn)−24q
d

dq
G2(q).

Moreover, by considering log-derivative, one has

(4.7) q
d

dq

∏
n>1

(1− qn)−24 =
∏
n>1

(1− qn)−24(1 + 24G2).

Therefore we find as desired∑
n>0

qn
∫
S[n]

c(TS[n])G4(1) = −
∏
n>1

(1− qn)−24

(
2q

d

dq
G2(q) + (

1

24
+G2)(1 + 24G2)

)
(4.8)

= −
∏
n>1

(1− qn)−24(5/3G4 + 20G2
2 + 2G2 + 1/24),

where we used the following Ramanujan differential equation [BGHZ, pp. 49, Prop. 15]

q
d

dq
G2(q) = −2G2(q)2 +

5

6
G4(q). �
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4.3. Descendent integrals on moduli spaces of 1-dimensional sheaves. Let β ∈ H2(S,Z)
be an effective curve class and let MS,β be the moduli space of one dimensional stable sheaves
F on S with [F ] = β and χ(F ) = 1. By a result of Mukai [M], MS,β is a smooth projective
holomorphic symplectic variety of dimension β2 + 2. Let F be the normalized universal family,
i.e. which satisfies det RπM∗F = OMS,β

. For α ∈ H∗(S), we define the descendents

σd(α) = πM∗(π
∗
S(α) chd(F)).

We have the following evaluations:

Proposition 4.7. Let β ∈ H2(S,Z) be an effective curve class. For the point class p ∈ H4(S)
and D ∈ H2(S), we have ∫

MS,β

c(TMS,β
)σ2(p) = N1

(
β2

2

)
,(i) ∫

MS,β

c(TMS,β
)σ3(D) = −(D · β)N ′

(
β2

2

)
,(ii) ∫

MS,β

c(TMS,β
)σ4(1) = −N ′

(
β2

2

)
,(iii)

where N1(l), N ′(l) for all l ∈ Z are defined by the generating series

∑
l∈Z

N1(l) ql =

1

q

∏
n>1

1

(1− qn)24

(q d
dq
G2(q)

)
(4.9)

= 1 + 30q + 480q2 + 5460q3 + 49440q4 + 378420q5 + 2540160q6 + · · · ,

∑
l∈Z

N ′(l) ql =

1

q

∏
n>1

1

(1− qn)24

(q d
dq
G2 +G2 +

1

24

)
= 2 + 57q + 880q2 + 9735q3 + 86160q4 + 646850q5 + 4269888q6 + · · · .

4.4. Transport of integrals to Hilbert schemes. For the proof of Proposition 4.7 we will use
the general framework of monodromy operators of Markman [M08] (see also [O22a]) to transport
the integrals to the Hilbert schemes.

Consider the Mukai lattice, which is the lattice Λ = H∗(S,Z) endowed with the Mukai pairing〈
x, y
〉

:= −
∫
S

x∨y,

where, if we decompose an element x ∈ Λ according to degree as (r,D, n), we write x∨ =
(r,−D,n). Given a sheaf or a complex of sheaves E on S, its Mukai vector is defined by

v(E) :=
√

tdS · ch(E) ∈ Λ.

Let M(v) be a proper smooth moduli space of stable sheaves on S with Mukai vector v ∈ Λ
(where stability is with respect to some fixed polarization). We assume that there exists a
universal family F on M(v)× S. If it does not exist, everything below can be made to work by
working with the Chern character ch(F) of a quasi-universal family, see [M08] or [O22a]. Let
πM , πS be the projections to M(v) and S. One has the Mukai morphism θF : Λ → H2(M(v))
defined by

θF(x) =
[
πM∗

(
ch(F) ·

√
tdS · x∨

)]
deg=2

,

where [−]deg=k stands for extracting the degree k component and where (as we will also do
below) have suppressed the pullback maps from the projection to S. The morphism restricts to
an lattice isometry

(4.10) θF : v⊥ → H2(M(v),Z)

where on the right we consider the Beauville-Bogomolov-Fujiki form. Define the universal class

uv = exp

(
θF(v)〈
v, v
〉) ch(F)

√
tdS ,

which is independent of the choice of universal family F. For x ∈ Λ, consider the normalized
descendents:

B(x) := πM∗(uv · x∨),

and let Bk(x) = [B(x)]deg=2k its degree 2k component.
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Example 4.8. For v = (1, 0, 1 − d), the moduli space becomes the punctual Hilbert scheme:
M(v) = S[n]. Then we have

uv = exp

(
−δ

2d− 2

)
ch(IZ)

√
tdS ,

where we let δ = π∗ ch3(OZ) (so that −2δ is the class of the locus of non-reduced subschemes).
We define the standard descendents on the Hilbert scheme by

Gd(α) = πHilb ∗(π
∗
S(α) chd(OZ)) ∈ H∗(S[d]),

where α ∈ H∗(S). One obtains that

B1(p) = − δ

2d− 2
,

B2(p) =
1

2

δ2

(2d− 2)2
−G2(p).

For a divisor D ∈ H2(S) one finds

B1(D) = G2(D),

B2(D) = G3(D)− δ

2d− 2
G2(D).

And for the unit,

B1(1) = −1

2
δ,

B2(1) =
3

4

δ2

2d− 2
−G2(p)−G4(1).

Example 4.9. Let β ∈ Pic(S) be an effective class of square β · β = 2d − 2. For the Mukai
vector v = (0, β, 1) the moduli space is M(v) = MS,β. Let F be the normalized universal family,
i.e. which satisfies det RπM∗F = O. For α ∈ H∗(S), we define as before the descendents

σd(α) = πM∗(π
∗
S(α) chd(F)).

By the normalization condition and GRR, we have:

(4.11) c1(RπM∗F) = σ3(1) + 2σ1(p) = 0.

Moreover, by a direct computation, one also has:

B1(p) = σ1(p),

θF(v) = −σ2(β) + σ1(p),

Using the vanishing c1(RπM∗F) = 0 again yields

B1(1 + p) =

[
ch(RπM∗F) exp

(
θF(v)

2d− 2

)]
deg 2

=
θF(v)

2d− 2
=

1

2d− 2
(σ1(p)− σ2(β)).

This shows

σ2(β) = σ1(p)− (2d− 2)B1(1 + p),

θF(v) = (2d− 2)B1(1 + p).

By rewriting the B’s in terms of the σ’s using the formulae above and then inverting the relation,
we obtain for all D ∈ H2(S) by a straightforward calculation the following:

σ1(p) = B1(p),

σ2(D) = −(D · β)B1(1 + p)−B1(D),

and

σ2(p) = B2(p)−B1(p)B1(1 + p),

σ3(D) = −B2(D) +B1(D)B1(1 + p) +
1

2
(D · β)B1(1 + p)2,

σ4(1) = B2(1− p) + 2B1(p)B1(1 + p)− 1

2
B1(1 + p)2

= B2(1− p)− 1

2
B1(1 + p)B1(1− 3p).

For later, we also record some pairings with respect to the Beauville-Bogomolov-Fujiki form:
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Lemma 4.10.

σ3(1) · σ1(p) = 0, σ1(p) · σ2(D) = D · β, σ3(1) · σ2(D) = −2(D · β).

Proof. By Eqn. (4.11) and since (4.10) is an isometry and moreover B1(−)|v⊥ = θF|v⊥ we have

σ3(1) · σ1(p) = −2σ1(p) · σ1(p) = −2B1(p) ·B1(p) = 0.

Similarly,

σ1(p) · σ2(D) = B1(p) · (−(D · β)B1(1 + p)−B1(D)) = −(D · β)(p · 1) = D · β.
The last one uses again Eqn. (4.11). �

Using the descendents Bk(x), one allows to move between any two moduli spaces of stable
sheaves on S just by specifying a Mukai lattice isomorphism g : Λ ⊗ Q → Λ ⊗ Q. We give the
details in the case of our interest, see [M08, O22a] for the general case.

We want to connect the moduli spaces

MS,β  S[d].

Define the isomorphism g : Λ⊗Q→ Λ⊗Q by

1 7→ (0, 0, 1), p 7→ (1,−β, d− 1), (0, D, 0) 7→ (0, D,−(D · β)),

for all D ∈ H2(S,Z). The isomorphism was constructed so that

(0, β, 1) 7→ (1, 0, 1− d), 1 7→ (0, 0, 1), (2d− 2, β, 0) 7→ (0, β, 0), g|{1,β,p}⊥ = id,

which shows that it is a lattice isomorphism. Then one has:

Theorem 4.11. (Markman [M08, Thm. 1.2], reformulation as in [O22a, Thm. 4]) For any
ki > 0, αi ∈ H∗(S) and any polynomial P ,∫

MS,β

P (Bki(αi), cj(TMS,β
)) =

∫
S[d]

P (Bki(gαi), cj(TS[n])).

4.5. Proof of Proposition 4.7. Let β ∈ H2(S,Z) be an effective curve class with β2 = 2d− 2.
We begin with the first evaluation. The strategy is to use Theorem 4.11 and the formulae given
in Examples 4.8, 4.9 to move between the standard descendents and Markman’s B-classes. We
obtain: ∫

MS,β

c2d−2(TMS,β
)σ2(p)

=

∫
MS,β

c2d−2(TMS,β
)(B2(p)−B1(p)B1(1 + p))

=

∫
S[d]

c2d−2(TS[d])(B2(1− β + (d− 1)p)−B1(1− β + (d− 1)p)B1(1− β + dp)).

Observe that:

B1(1− β + (d− 1)p) = −δ −G2(β),

B1(1− β + dp) = −δ −G2(β)− δ

2d− 2
,

B2(1− β + (d− 1)p) =
δ2

2d− 2
− dG2(p)−G4(1)−

(
G3(β)− δ

2d− 2
G2(β)

)
,

Using the vanishing in Proposition 4.6 (i) we find that∫
S[d]

c2d−2(TS[d])B2(1− β + (d− 1)p)

=

∫
S[d]

c2d−2(TS[d])

(
δ2

2d− 2
− dG2(p)−G4(1)

)
=− C(c2d−2(TS[d]))−

∫
S[d]

c2d−2(TS[d])(dG2(p) + G4(1)),

as well as ∫
S[d]

c2d−2(TS[d])B1(1− β + (d− 1)p)B1(1− β + dp) = −C(c2d−2(TS[d])).

Let us write

Ad =

∫
MS,β

c2d−2(TMS,β
)σ2(p),
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which is well-defined since the above shows that the right hand side only depends on d. Taking
generating series and using the evaluations of descendents on S[d] (in particular, the expression
(4.8) and the differential equation (4.7)), we conclude∑

d

Adq
d = −

∑
d>0

qd
∫
S[d]

c2d−2(TS[d])(dG2(p) + G4(1))

= −q d
dq

(M(q)(1/24 +G2)) +M(q)

(
2q

d

dq
G2 +

(
1

24
+G2

)
(1 + 24G2)

)
= M(q)q

d

dq
G2,

where we denote M(q) =
∏
n>1(1 − qn)−24. This proves the first evaluation (after shifting the

generating series by q).
For the second case, one argues similarly, and obtains∫

MS,β

c2d−2(TMS,β
)σ3(D) = −(D · β)

(∫
S[d]

c2d−2(TS[d])G2(p) + C(c2d−2(TS[d]))

)
.

In the third case, one obtains∫
MS,β

c2d−2(TMS,β
)σ4(1) =

∫
S[d]

c2d−2(TS[d])(G4(1) + (d− 1)G2(p)). �

5. Product of K3 surfaces

In this section, we consider the product of two K3 surfaces S and T :

X = S × T.

If the curve class β ∈ H2(S × T,Z) is of non-trivial degree over both S and T , then one can
construct two linearly independent cosections, which imply that the reduced invariants of X in
this class vanish.10 Because of that we always take β in the image of the natural inclusion

ι∗ : H2(S,Z) ↪→ H2(X,Z),

where ι : S × {t} ↪→ X is the inclusion of a fiber. In §5.1, we first discuss the computations of
GW/GV invariants. Then we completely determine all DT4 invariants. By comparing them, we
prove Conjecture 2.2 for X = S × T .

5.1. Gromov-Witten invariants. For β ∈ H2(S,Z) ⊆ H2(X,Z), by the product formula in
Gromov-Witten theory [B99], the reduced virtual classes satisfy

(5.1) [Mg,n(X,β)]vir =


[M0,n(S, β)]vir × [T ] if g = 0

[M1,n(S, β)]vir × (c2(T ) ∩ [T ]) if g = 1

0 if g > 2.

The Gromov-Witten theory of K3 surfaces in low genus is well-known.
In genus 0, one defines BPS numbers n0,β(S) by the multiple cover formula

(5.2) deg[M0,0(S, β)]vir =
∑

k>1,k|β

1

k3
· n0,β/k(S).

By the Yau-Zaslow formula proven by Klemm, Maulik, Pandharipande and Scheidegger [KMPS],
the invariant n0,β(S) only depends on the square β2. By the evaluation for primitive curve classes
due to Bryan and Leung [BL], one then has

(5.3) n0,β(S) = N0

(
β2

2

)
,

where ∑
l∈Z

N0(l) ql =
1

q

∏
n>1

1

(1− qn)24
(5.4)

= q−1 + 24 + 324q + 3200q2 + 25650q3 + · · · .

10Of course, one may work with 2-reduced invariants but the moduli spaces becomes more difficult to handle.

We leave the study of the 2-reduced theory to a future work.
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In genus 1, by Pandharipande-Yin [PY, pp. 12, (8)], we have the multiple cover formula

(5.5)

∫
[M1,1(S,β)]vir

ev∗(p) =
∑

k>1,k|β

k ·N1

(
β2

2k2

)
,

where N1(l) is defined as in (4.9) of the last section, that is

∑
l∈Z

N1(l) ql =

1

q

∏
n>1

1

(1− qn)24

(q d
dq
G2(q)

)
= 1 + 30q + 480q2 + 5460q3 + 49440q4 + 378420q5 + · · · .

We remark that although genus 2 Gromov-Witten invariants are zero (5.1), the corresponding
Gopakumar-Vafa invariants are nontrivial (Proposition 5.1).

5.2. Gopakumar-Vafa invariants. Let γ, γ′ ∈ H4(X) be cohomology classes and

γ = A1 · 1⊗ p +D1 ⊗D2 +A2 · p⊗ 1,

γ′ = A′1 · 1⊗ p +D′1 ⊗D′2 +A′2 · p⊗ 1

be their decompositions under the Künneth isomorphism:

H4(X) ∼= (H0(S)⊗H4(T ))⊕ (H2(S)⊗H2(T ))⊕ (H4(S)⊗H0(T )).

Fix also a curve class

α = θ1 ⊗ p + p⊗ θ2 ∈ H6(X) ∼= (H2(S)⊗H4(T ))⊕ (H4(S)⊗H2(T )).

Proposition 5.1. For any effective curve class β ∈ H2(S,Z) ⊆ H2(X,Z), we have

n0,β(γ, γ′) = (D1 · β) · (D′1 · β) ·
∫
T

(D2 ·D′2) ·N0

(
β2

2

)
,

n0,β(α) = (θ1 · β)N0

(
β2

2

)
.

If β is primitive, we have

n1,β(γ) = 24A2N1

(
β2

2

)
, n2,β = N2

(
β2

2

)
,

where N1(l) is defined as in (4.9) and

∑
l∈Z

N2(l) ql =

1

q

∏
n>1

1

(1− qn)24

(24q
d

dq
G2 − 24G2 − 1

)
(5.6)

= 72q + 1920q2 + 28440q3 + 305280q4 + 2639760q5 + 19450368q6 + · · · .

In particular, Conjecture 1.9 holds for X = S × T .

Proof. By the divisor equation, we have〈
τ0(γ)τ0(γ′)

〉GW

0,β
= (D1 · β) · (D′1 · β) ·

∫
T

(D2 ·D′2) · deg([M0,0(S, β)]vir),〈
τ0(α)

〉GW

0,β
= (θ1 · β) · deg([M0,0(S, β)]vir).

The genus 0 formula hence follows from Eqn. (5.2) and the Yau-Zaslow formula (5.3). In genus
1, the product formula (5.1) and Eqn. (5.5) imply that for any effective class β ∈ H2(S,Z) we
have:

(5.7)
〈
τ0(γ)

〉GW

1,β
= A2 e(T )

∫
[M1,1(S,β)]vir

ev∗(p) = A2 e(T )
∑

k>1,k|β

k ·N1

(
β2

2k2

)
.

Moreover, by the first part we have〈
τ0(γ)τ0(c2(X))

〉GW

0,β
= 0.

Hence taking these formulae for primitive β yields the result.
For the genus 2 Gopakumar-Vafa invariant, let β be primitive. Observe that we have〈

∅
〉GW

2,β
= 0, n1,β(c2(X)) = 242N1(β2/2),

〈
τ0(c2(X))2

〉GW

0,β
= 0.
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The nodal invariant is computed as follows:

Nnodal,β =
1

2

[〈
τ0(∆X)

〉GW

0,β
−
〈
τ1(c2(TX))

〉GW

0,β

]
=

1

2

[
24

∫
[M0,2(S,β)]vir

(ev1× ev2)∗(∆S)− 24

∫
[M0,1(S,β)]vir

ψ1

]

=
1

2

[
24(β · β)N0(β2/2) + 2 · 24N0(β2/2)

]
.

If βh is a primitive curve class of square β2
h = 2h− 2, we conclude:∑

h>0

Nnodal,βhq
h−1 =

1

2

[
48q

d

dq

(
1

∆(q)

)
+ 48

1

∆(q)

]
= 242G2(q)

1

∆(q)
+ 24

1

∆(q)
,

where we used ∆(q) = q
∏
n>1(1− qn)24 and the identity (ref. Eqn. (4.7)):

q
d

dq

(
1

∆(q)

)
=

24G2(q)

∆(q)
.

Using the definition of n2,β , we conclude that:∑
h>0

n2,βhq
h−1 =

(
24

1

∆(q)
q
d

dq
G2(q)

)
−
(

24G2(q)
1

∆(q)
+

1

∆(q)

)

=
1

∆(q)

(
24q

d

dq
G2(q)− 24G2(q)− 1

)
.

This is exactly the desired result. �

We will also need the following later (in the appendix):

Lemma 5.2. For any effective curve class β ∈ H2(S,Z) ⊆ H2(X,Z), we have〈
τ1(γ)

〉GW

0,β
= −2A1

∑
k>1,k|β

1

k3
·N0

(
(β/k)2

2

)
.

Proof. Consider a divisor D = pr∗1(α) ∈ H2(X) with d := α · β 6= 0. By Lemma 1.1 and
Eqn. (5.1) we have〈

τ1(γ)
〉GW

0,β
= −2

d

〈
τ0(γ ·D)

〉GW

0,β

= −2

d

(
A1

〈
τ0(α⊗ p)

〉GW

0,β
+ (D1 · α)

〈
τ0(p⊗D2)

〉GW

0,β

)
= −2

d
A1

∫
[M0,1(S,β)]vir

ev∗(α)

= −2A1 deg[M0,0(S, β)]vir.

By Eqn. (5.2) and the Yau-Zaslow formula (5.3), we obtain the claim. �

5.3. DT4 virtual classes. The moduli spaceMβ of one dimensional stable sheaves onX satisfies
(e.g. [CMT18, Lem. 2.2]):

Mβ
∼= MS,β × T,(5.8)

where MS,β is the moduli space of one dimensional stable sheaves F on S with [F ] = β and
χ(F ) = 1. By a result of Mukai [M], MS,β is a smooth projective holomorphic symplectic variety
of dimension β2 + 2. In order to determine the DT4 virtual class of Mβ , we first recall:

Definition 5.3. ([Sw, Ex. 16.52, pp. 410], [EG, Lem. 5]) Let E be a SO(2n,C)-bundle with
a non-degenerate symmetric bilinear form Q on a connected scheme M . Denote E+ to be its
positive real form 11. The half Euler class of (E,Q) is

e
1
2 (E,Q) := ± e(E+) ∈ H2n(M,Z),

where the sign depends on the choice of orientation of E+.

11This means a real half dimensional subbundle such that Q is real and positive definite on it. By homotopy

equivalence SO(m,C) ∼ SO(m,R), it exists and is unique up to isomorphisms.
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Definition 5.4. ([EG], [KiP, Def. 8.7]) Let E be a SO(2n,C)-bundle with a non-degenerate
symmetric bilinear form Q on a connected scheme M . An isotropic cosection of (E,Q) is a map

φ : E → OM ,
such that the composition

φ ◦ φ∨ : OM → E∨
Q∼= E → OM

is zero. If φ is furthermore surjective, we define the (reduced) half Euler class:

e
1
2

red(E,Q) := e
1
2

(
(φ∨OM )⊥/(φ∨OM ), Q̄

)
∈ H2n−2(M,Z),

as the half Euler class of the isotropic reduction. Here Q̄ denotes the induced non-degenerate
symmetric bilinear form on (φ∨OM )⊥/(φ∨OM ).

We show reduced half Euler classes are independent of the choice of surjective isotropic co-
section.

Lemma 5.5. Let E be a SO(2n,C)-bundle with a non-degenerate symmetric bilinear form Q on
a connected scheme M and

φ : E → OM
be a surjective isotropic cosection. Then we can write the positive real form E+ of E as

E+ = E+ ⊕ R2

such that

e
1
2

red(E,Q) = ± e(E+).

Moreover, it is independent of the choice of surjective cosection.

In particular, when E = O⊕2 ⊕ V such that Q =

(
0 1
1 0

)
⊕Q|V , we have

e
1
2

red(E,Q) = ± e 1
2 (V,Q|V ).

Proof. Let E− :=
√
−1 · E+, then E = E+ ⊕ E−. Since φ is surjective, φ∨ determines a trivial

subbundle OM of E. In the diagram:

OM
φ∨ //

&&

E = E+ ⊕ E−
π±

��
E±,

for v ∈ φ∨(OM ), write v = v+ +v− based on above decomposition. The isotropic condition gives

0 = Q(v, v) = Q(v+, v+) + 2Q(v+, v−) +Q(v−, v−).

If v+ = 0, then Q(v−, v−) = 0 which implies v− = 0 as Q on E− is negative definite. Therefore
the composition π± ◦ φ∨ determines a trivial subbundle R ⊂ E±.

We write (φ∨OM )⊥ = V+ ⊕ V− for V± = E±
⋂

(φ∨OM )⊥, which fits in the diagram

φ∨(OM )
⊂ //

=

��

(φ∨OM )⊥

=

��

⊂ // E

=

��
R⊕ R V+ ⊕ V− E+ ⊕ E−.

Then rankR V+ + rankR V− = 4n− 2 and rankR V± 6 rankRE±. As (φ∨OM )⊥/(φ∨OM ) has an
induced non-degenerate symmetric bilinear form, so

rankR V+ = rankR V− = 2n− 1.

Let E+ := V+/R, by the metric Q|V+
on V+, we may write

V+ = E+ ⊕ R.(5.9)

Under the identification E∨
Q∼= E, we have

Ker(φ) =
{
v ∈ E |φ(Q(v,−)) = 0

}
=
{
v ∈ E |Q(v, φ∨OM ) = 0

}
= (φ∨OM )⊥.
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Therefore E/(φ∨OM )⊥
φ∼= OM . By using the metric Q|E+

on E+, we may write

E+ = V+ ⊕ R.
Combining with Eqn. (5.9), we have

E+ = E+ ⊕ R2.

By definition, the reduced half Euler class is the Euler class of E+.
Given two surjective cosections φ1, φ2, if φ∨1OM = φ∨2OM , then the bundle E+ they determine

are the same, so are the reduced half Euler classes. If φ∨1OM 6= φ∨2OM , we divide into two cases:
(1) when φ∨2OM ⊆ (φ∨1OM )⊥ (which automatically implies φ∨1OM ⊆ (φ∨2OM )⊥), it is easy to
see the corresponding E+ has a trivial subbundle R, so both reduced half Euler classes vanish.
(2) when φ∨2OM * (φ∨1OM )⊥ (hence also φ∨1OM * (φ∨2OM )⊥), then we have

E ∼= (φ∨1OM )⊥ ⊕ φ∨2OM ∼= (φ∨2OM )⊥ ⊕ φ∨1OM .
Taking quotient by φ∨1OM ⊕ φ∨2OM , we obtain

(φ∨1OM )⊥/φ∨1OM ∼= (φ∨2OM )⊥/φ∨2OM ,
whose half Euler classes are the same. Therefore we know the reduced half Euler class is inde-
pendent of the choice of surjective isotropic cosection. The last statement when E = O⊕2 ⊕ V

such that Q =

(
0 1
1 0

)
⊕Q|V follows from this. �

Recall a Sp(2r,C)-bundle (or symplectic vector bundle) is a complex vector bundle of rank
2r with a non-degenerate anti-symmetric bilinear form. One class of quadratic vector bundles
is given by tensor product of two symplectic vector bundles V1, V2. Their half Euler classes can
be computed using Chern classes of V1, V2. For our purpose, we restrict to the following case.

Lemma 5.6. Let (V1, ω1), (V2, ω2) be a Sp(2r,C) (resp. Sp(2,C)-bundle) on a connected scheme
M . Then

(V1 ⊗ V2, ω1 ⊗ ω2)

defines a SO(4r,C)-bundle whose half Euler class satisfies

e
1
2 (V1 ⊗ V2, ω1 ⊗ ω2) = ±

(
e(V1)− c2r−2(V1) · e(V2)

)
.

Proof. Consider the universal Sp(2r,C)-bundle V1 (resp. Sp(2,C)-bundle V2) on the classify-
ing space BSp(2r,C) (resp. BSp(2,C)). Their tensor product gives a SO(4r,C)-bundle on

BSp(2r,C)× BSp(2,C), whose half Euler class is denoted by e
1
2 (V1 ⊗ V2).

By the property of half Euler class (e.g. [EG, Prop. 2]):

e
1
2 (V1 ⊗ V2)2 = e(V1 ⊗ V2) = c2r(V1)2 − 2c2r(V1)c2r−2(V1)c2(V2),

where we use the fact that the odd Chern classes of Vi vanish in the second equality. Note that
above expression is the same as the square of c2r(V1)− c2r−2(V1)c2(V2). Since H∗(BSp(2r,C)×
BSp(2,C)) is the tensor product of two polynomial rings (e.g. [Sw, Thm. 16.10]), hence it is an
integral domain. Therefore

e
1
2 (V1 ⊗ V2) = ± (c2r(V1)− c2r−2(V1)c2(V2)).

Since this construction is universal, we are done. �

Finally, we can determine the (reduced) virtual class of Mβ .

Theorem 5.7. For certain choice of orientation, we have

(5.10) [Mβ ]vir = e(MS,β) · [T ]− e(T ) · cβ2(MS,β).

Proof. Under the isomorphism (5.8):

Mβ
∼= MS,β × T,

a universal family F of Mβ satisfies

F = FS �O∆T
,(5.11)

where FS is a universal sheaf of MS,β and ∆T denotes the diagonal in T × T .
Then the obstruction sheaf of Mβ :

Ext2πMβ (F,F) ∼= Ext2πMS,β (FS ,FS)⊕ Ext1πMS,β (FS ,FS)� TT ⊕ Ext0πMS,β (FS ,FS)� ∧2TT

is a vector bundle with two trivial subbundles Ext2πMS,β (FS ,FS), and Ext0πMS,β (FS ,FS)� ∧2TT .

By Lemmata 5.5, 5.6, we are done. �
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5.4. DT4 invariants and proof of conjectures. In this section, we determine all DT4 invari-
ants of S × T . Let γ, γ′ ∈ H4(X) be cohomology classes and decompose them as

γ = A1 · 1⊗ p +D1 ⊗D2 +A2 · p⊗ 1,

γ′ = A′1 · 1⊗ p +D′1 ⊗D′2 +A′2 · p⊗ 1,

according to the Künneth decomposition:

H4(X) ∼= (H0(S)⊗H4(T ))⊕ (H2(S)⊗H2(T ))⊕ (H4(S)⊗H0(T )).

Fix also a divisor class
θ = θ1 + θ2 ∈ H2(X) ∼= H2(S)⊕H2(T ),

and a curve class

α = θ1 ⊗ p + p⊗ θ2 ∈ H6(X) ∼= (H2(S)⊗H4(T ))⊕ (H4(S)⊗H2(T )).

Theorem 5.8. Let β ∈ H2(S,Z) ⊆ H2(X,Z) be any effective curve class. With respect to the
choice of orientation (5.10), we have〈

τ0(α)
〉DT4

β
= (θ1 · β)N0

(
β2

2

)
,(i)

〈
τ1(γ)

〉DT4

β
= A1N0

(
β2

2

)
−A2 e(T )N1

(
β2

2

)
,(ii)

〈
τ2(θ)

〉DT4

β
= (θ1 · β)N ′′

(
β2

2

)
,(iii)

〈
τ3(1)

〉DT4

β
= N ′′

(
β2

2

)
,(iv)

〈
τ0(γ), τ0(γ′)

〉DT4

β
= (D1 · β) · (D′1 · β) ·

(∫
T

D2 ∪D′2
)
·N0

(
β2

2

)
,(v)

〈
τ0(γ), τ1(θ)

〉DT4

β
= (D1 · β)

(∫
T

D2 ∪ θ2

)
N0

(
β2

2

)
− 24A2(θ1 · β)N1

(
β2

2

)
,(vi)

〈
τ0(γ), τ2(1)

〉DT4

β
= 0,(vii)

〈
τ1(θ), τ2(1)

〉DT4

β
= 48(θ1 · β)N1

(
β2

2

)
,(viii)

where N0(l), N1(l) are defined in Eqns. (5.4), (4.9) respectively and∑
l∈Z

N ′′(l) ql =
1

q

∏
n>1

(1− qn)−24

(
24q

d

dq
G2(q) + 24G2(q)− 1

)
= −2q−1 + 720q + 14720q2 + 182340q3 + 1715328q4 + · · · .

The above theorem immediately implies the following:

Corollary 5.9. Conjecture 2.2 holds for the product X = S × T and β ∈ H2(S,Z) ⊆ H2(X,Z).

Proof. This follows by inspection using Theorem 5.8 on DT4 invariants and Proposition 5.1 and
Lemma 5.2 for the GV/GW invariants respectively. �

Another remarkable consequence of Theorem 5.8 is that all DT4 invariants of S × T depend
upon the curve class β only via the square β2 and not the divisibility. More precisely, given pairs
(S, β) and (S′, β′) of a K3 surface and an effective curve class such that β2 = β′2, let

ϕ : H2(S,R)→ H2(S′,R)

be any real isometry such that ϕ(β) = β′. Extend ϕ to the full cohomology by setting ϕ(1) = 1
and ϕ(pS) = pS′ where pS ∈ H4(S,Z) is the point class.

Corollary 5.10. With respect to the choice of orientation (5.10), we have〈
τk1(γ1), . . . , τkn(γn)

〉DT4,S×T
β

=
〈
τk1((ϕ⊗ id)γ1), . . . , τkn((ϕ⊗ id)γn)

〉DT4,S
′×T

β′

for any γi ∈ H∗(X) and ki > 0.

This raises the question whether a similar independence of the divisibility holds for Donaldson-
Thomas invariants of holomorphic symplectic 4-folds more generally.
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5.5. Proof of Theorem 5.8. We split the proof in two parts.

Proof of Theorem 5.8 Part (i), (v). We begin with part (v). By Eqn. (5.11), the primary inser-
tion becomes

τ0(γ) = (D1 · β)⊗D2 +A2 πMS,β∗(π
∗
Sp · ch1(FS))⊗ 1,

where πS , πMS,β
are projections to each factor of S ×MS,β . Therefore

τ0(γ) · τ0(γ′) = (D1 · β) · (D′1 · β)⊗ (D2 ·D′2) +A2A
′
2

(
πMS,β∗ (π∗Sp · ch1(FS))

)2 ⊗ 1 + others,

where “others” lie in H2(MS,β)⊗H2(T ). Combining with Theorem 5.7, we get〈
τ0(γ), τ0(γ′)

〉DT4

β
=(D1 · β) · (D′1 · β) · e(MS,β)

∫
T

(D2 ·D′2)(5.12)

−A2A
′
2 e(T )

∫
MS,β

(
πMS,β∗ (π∗Sp · ch1(FS))

)2 · cβ2(MS,β).

There exists a Hilbert-Chow map

HC : MS,β → |β| = P
1
2β

2+1,

to the linear system |β| and ch1(FS) = (idS × HC)∗[C], where C is the universal curve of the
linear system:

C ↪→ S × |β|

p

��

q // |β|

S.

Since [C] = p∗β + q∗h for the hyperplane class h of |β|, we have

πMS,β∗ (π∗Sp · ch1(FS)) = πMS,β∗ (π∗Sp · (idS ×HC)∗[C])
= HC∗q∗([C] · p∗p)

= HC∗(h).

By Theorem 4.1, we have∫
MS,β

(
πMS,β∗ (π∗Sp · ch1(FS))

)2 · cβ2(MS,β)

= C(cβ2(MS,β)) · q(HC∗(h))

= C(cβ2(MS,β))

(
C(1)−1 ·

∫
M

(
HC∗(hβ

2+2)
)) 1

β2+2

= 0.

Therefore Eqn. (5.12) becomes〈
τ0(γ), τ0(γ′)

〉DT4

β
= (D1 · β) · (D′1 · β) · (D2 ·D′2) · e(MS,β).

Finally, since MS,β is deformation equivalent to S[d] (β2 = 2d−2) (e.g. [Y09, Cor. 3.5, pp. 136]),
they have the same Euler numbers:

e(MS,β) = e(S[d]),

which is given by N0(β2/2) due to Göttsche [G90]. This proves (v).
For (i), we similarly have

τ0(α) = πMS,β∗(π
∗
Sθ1 · ch1(FS))⊗ p + πMS,β∗(π

∗
Sp · ch1(FS))⊗ θ2,〈

τ0(α)
〉DT4

β
= (θ1 · β) · e(MS,β) = (θ1 · β) ·N0(β2/2). �

Proof of Theorem 5.8 Parts (ii-iv) and (vi-viii). We first express the DT4 descendent invariants
as integrals on MS,β . Let Fnorm

S be the normalized universal sheaf on MS,β × S, i.e.

det(πMS,β∗Fnorm
S ) ∼= OMS,β

,

where πMS,β
: MS,β × S →MS,β is the projection. By Eqn. (5.11), we have

F = FS �O∆T
.

Hence the family F is normalized if and only if FS is so. Moreover, for the diagonal embedding
∆ : T → T × T , by GRR, we have

ch(O∆) = ∆∗(1− 2p).
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We obtain

τ1(γ) = A1 πMS,β∗(ch2(Fnorm
S ))⊗ p +A2 πMS,β∗(π

∗
Sp · ch2(Fnorm

S ))⊗ 1

+ πMS,β∗(π
∗
S(D1) · ch2(Fnorm

S ))⊗D2.

By base change to a point, we have

πMS,β∗(ch2(Fnorm
S )) = 1.

Combining with Theorem 5.7, we obtain that〈
τ1(γ)

〉DT4

β
= A1 e(MS,β)−A2 e(T )

∫
MS,β

cβ2(MS,β) · πMS,β∗ (ch2(Fnorm
S )π∗Sp).

Part (ii) now follows from Proposition 4.7(i).
Similarly, for (iii) we have

ch5(Fnorm) = ch3(Fnorm
S ) ·∆∗1− 2 ch1(Fnorm

S ) ·∆∗(p).

Hence

τ2(θ) = πM∗(ch5(Fnorm)π∗Xθ)

= πMS,β∗(ch3(Fnorm
S )π∗Sθ1) + πMS,β∗(ch3(Fnorm

S ))� θ2 − 2πMS,β∗(ch1(Fnorm
S )π∗Sθ1)� p

= πMS,β∗(ch3(Fnorm
S )π∗Sθ1) + πMS,β∗(ch3(Fnorm

S ))� θ2 − 2(θ1 · β)� p,

where the last equality is by base change to a point. Using Theorem 5.7, we obtain〈
τ2(θ)

〉DT4

β
= −2(θ1 · β) e(MS,β)− 24

∫
MS,β

cβ2(MS,β) · πMS,β∗ (ch3(Fnorm
S )π∗Sθ1).

Thus with Proposition 4.7, we obtain that〈
τ2(θ)

〉DT4

β
= (θ1 · β)

(
−2N0

(
β2

2

)
+ 24N ′

(
β2

2

))
.

For part (iv), one similarly establishes:〈
τ3(1)

〉DT4

β
= −2 e(MS,β)− 24

∫
MS,β

cβ2(MS,β) · πMS,β∗(ch4(Fnorm
S ))

= −2N0

(
β2

2

)
+ 24N ′

(
β2

2

)
,

For (vi), we compute using Lemma 4.10 that〈
τ0(γ), τ1(θ)

〉DT4

β
= (D1 · β)(D2 · θ2) e(MS,β)

− 24A2

∫
MS,β

cβ2(MS,β) · πMS,β∗ (ch1(Fnorm
S )π∗Sp) · πMS,β∗ (ch2(Fnorm

S )π∗Sθ1)

= (D1 · β)(D2 · θ2) e(MS,β)− 24A2(θ1 · β)C(cβ2(TMS,β
)).

Since MS,β and S[d] are deformation equivalent they share the same Fujiki constants:

C(cβ2(TMS,β
)) = C(c2d−2(TS[d])) = N1(β2/2),

where β2 = 2d− 2. This implies the claim. Finally for (vii) and (viii), we similarly find:〈
τ0(γ), τ2(1)

〉DT4

β
= −24A2

∫
MS,β

cβ2(MS,β) · πMS,β∗ (ch1(Fnorm
S )π∗Sp) · πMS,β∗ (ch3(Fnorm

S ))

= 0,〈
τ1(θ), τ2(1)

〉DT4

β
= −24

∫
MS,β

cβ2(MS,β) · πMS,β∗ (ch2(Fnorm
S )π∗Sθ1) · πMS,β∗ (ch3(Fnorm

S ))

= −24 · (−2) · (θ1 · β)C(cβ2(TMS,β
))

= 48(θ1 · β)N1(β2/2). �

6. Cotangent bundle of P2

We consider the geometry X = T ∗P2. There is a natural identification of curve classes:

H2(X,Z) = H2(P2,Z) = Z[`],

where ` ⊂ P2 is a line.
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6.1. GW and GV invariants. Let H ∈ H2(T ∗P2) be the pullback of hyperplane class. We
identify H2(T ∗P2,Z) ≡ Z by its degree against H.

Proposition 6.1.〈
τ0(H2), τ0(H2)

〉GW

0,d
=

(−1)d−1

d
,
〈
τ0(H2)

〉GW

1,d
=

(−1)d−1

8
d,

〈
∅
〉GW

2,d
=

(−1)d−1

128
d3.

Proof. This follows by a direct calculation using Graber-Pandharipande virtual localization for-
mula [GP]. We refer to [PZ, §3] for a computation with parallel features. �

Based on Definition 1.5, 1.6, 1.7, we then obtain the following:

Corollary 6.2.

n0,d(H
2, H2) =

 1 if d = 1,
−1 if d = 2,

0 otherwise.

n1,1(H2) = 0, n2,1 = 0.

In particular, Conjecture 1.9 holds for T ∗P2.

Proof. In genus 0 and 1, this follows from a direct calculation using the definition and that

c2(TX)|P2 = −3H2.

In genus 2, it remains to determine the nodal invariant Nnodal,β . In H∗(P2 × P2), we have

∆X |P2×P2 = ∆P2 · pr∗1(c2(ΩP2)) = 3pr∗1(H2)pr∗2(H2).

Using Lemma 1.1 and Eqn. (1.2) we find that

Nnodal,1 =
1

2

[
3−

(〈
τ1(c2(TX))

〉GW

0,1
+
〈
τ3(1)

〉GW

0,1

)]
=

1

2
[3− (−3 + 6)] = 0.

The vanishing n2,1 = 0 follows now from a direct calculation. �

6.2. DT4 invariants. Let MT∗P2,d (resp. MP2,d) be the moduli scheme of compactly supported
one dimensional stable sheaves F on T ∗P2 (resp. P2) with [F ] = d[`] (d > 1) and χ(F ) = 1.

Lemma 6.3. Let ι : P2 → T ∗P2 be the zero section. Then the pushforward map

ι∗ : MP2,d →MT∗P2,d(6.1)

is an isomorphism.

Proof. The map ι∗ is obviously injective. We show that ι∗ is also surjective. As T ∗P2 admits a
birational contraction T ∗P2 → Y which contracts the zero section P2 ↪→ T ∗P2 to 0 ∈ Y and Y
is affine, any one dimensional sheaf on T ∗P2 is set theoretically supported on the zero section.
It is enough to show that any one dimensional stable sheaf F on T ∗P2 is scheme theoretically
supported on the zero section.

Recall the following fact as stated in [CMT18, Lem. 2.2]: let g : Z → T be a morphism of
C-schemes, and take a closed point t ∈ Z. Let Zt ⊂ Z be the scheme theoretic fiber of g at t.
Suppose that F ∈ Coh(Z) is set theoretically supported on Zt and satisfies End(F ) = C. Then
F is scheme theoretically supported on Zt.

It should be well-known (and easy) that the scheme theoretic fiber of T ∗P2 → Y at 0 ∈ Y is
the reduced zero section, then surjectivity of ι∗ follows from the above fact. As we cannot find
its reference, we give another argument here. Consider the closed embedding T ∗P2 ⊂ OP2(−1)⊕3

induced by the Euler sequence on P2. Note that OP2(−1)⊕3 is an open subscheme of [C6/C∗],
where C∗ on C6 by

t(x1, x2, x3, y1, y2, y3) = (tx1, tx2, tx3, t
−1y1, t

−1y2, t
−1y3),

and corresponds to (x1, x2, x3) 6= (0, 0, 0). The stack [C6/C∗] admits a good moduli space

[C6/C∗]→ T := SpecC[xi, yi]
C∗ = SpecC[xiyj : 1 6 i, j 6 3].

One can easily calculates that the scheme theoretic fiber of the above morphism restricted to
(x1, x2, x3) 6= (0, 0, 0) is (y1 = y2 = y3 = 0). It follows that the scheme theoretic fiber of
T ∗P2 ⊂ OP2(−1)⊕3 → T at 0 ∈ T is the reduced zero section P2. As T is affine, any one
dimensional stable sheaf is set theoretically supported on the (scheme theoretic) fiber of 0 ∈ T .
Using the above fact, it is also scheme theoretically supported on it. Therefore ι∗ is surjective.
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Since MP2,d is smooth and ι∗ is bijective on closed points, it remains to show that ι∗ induces
an isomorphisms on tangent spaces. For a one dimensional stable sheaf F on P2, the tangent
space of MT∗P2,d at ι∗F is

Ext1
T∗P2(ι∗F, ι∗F ) ∼= Ext1

P2(F, F )⊕Hom(F, F ⊗ T ∗P2).

By the Euler sequence and stability, we have

Hom(F, F ⊗ T ∗P2) ⊂ Hom(F, F ⊗OP2(−1)⊕3) = 0.

Therefore ι∗ induce an isomorphism of tangent spaces. �

Then the following result is straightforward.

Lemma 6.4. Under the isomorphism (6.1), we have

[MT∗P2,d]
vir = PD

(
e

1
2

red

(
Ext1πM (F,F� T ∗P2), Q

))
∈ H4(MP2,d,Z).

Here PD denotes the Poincaré dual, e
1
2

red is the reduced half Euler class as in Definition 5.4, F
denotes a universal sheaf of MP2,d and πM : MP2,d × P2 →MP2,d is the projection.

Proposition 6.5. For certain choice of orientation, we have〈
τ0(H2), τ0(H2)

〉DT4

[`]
= 1,

〈
τ0(H2), τ0(H2)

〉DT4

2[`]
= −1,

〈
τ0(H2), τ0(H2)

〉DT4

3[`]
= 0,〈

τ1(H2)
〉DT4

[`]
= −1

2
,
〈
τ1(H2)

〉DT4

2[`]
=

1

2
,
〈
τ1(H2)

〉DT4

3[`]
= 0,〈

τ2(H)
〉DT4

[`]
= −1

4
,
〈
τ2(H)

〉DT4

2[`]
= −1

4
,
〈
τ2(H)

〉DT4

3[`]
= 0,〈

τ3(1)
〉DT4

[`]
= −1

8
,
〈
τ3(1)

〉DT4

2[`]
=

1

8
,
〈
τ3(1)

〉DT4

3[`]
= 0.

In particular, for X = T ∗P2, we have

• Conjecture 2.2 (i) holds when d 6 3.
• Conjecture 2.2 (ii), (iii) hold.

Proof. We present the proof of d = 2 case (the d = 1 case follows similarly). The support map

MP2,2

∼=→ |OP2(2)| ∼= P5, F 7→ supp(F )

is an isomorphism. The normalized universal sheaf satisfies Fnorm = OC for the universal (1, 2)-
divisor C ↪→ P5 × P2. Let πM : MP2,2 × P2 →MP2,2 be the projection. Bott’s formula implies

RHomπM (O,O(−C)� T ∗P2) ∼= OP5(−1)[−2]⊕3,

RHomπM (O,O(C)� T ∗P2) ∼= OP5(−1)⊕3,

RHomπM (O,O � T ∗P2) ∼= OP5 [−1].

Therefore, we have

RHomπM (OC ,OC � T ∗P2)[1]

∼= RHomπM (O(−C)→ O, (O(−C)→ O)� T ∗P2)[1]

∼= OP5(−1)⊕3 ⊕OP5(1)⊕3 ⊕OP5 ⊕OP5 .

By Grothendieck-Verdier duality, it is easy to see

OP5(−1)⊕3 ⊕OP5

is a maximal isotropic subbundle of RHomπM (OC ,OC � T ∗P2)[1]. Hence the reduced virtual
class satisfies

[MT∗P2,2]vir = ±e(OP5(−1)⊕3) ∩ [P5] ∈ H4(P5).

Let h ∈ H2(P5) denote the hyperplane class. It is straightforward to check

τ0(H2) = [h], τ1(H2) = −1

2
h2, τ2(H) =

1

4
h2, τ3(1) = −1

8
h2.

By integration again the virtual class, we have the desired result for d = 2 case.
The d = 3 case can be computed by a torus localization as in [CKM19, CKM20]. One sees

that for any torus fixed point, the reduced obstruction space has a trivial factor12 which implies
the vanishing of (reduced) invariants. �

12We thank Sergej Monavari for his observation and help on this.
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7. Hilbert scheme of two points on a K3 surface

Let S be a K3 surface. There are three fundamental conjectures which govern the Gromov-
Witten invariants of the Hilbert scheme of points S[n]:

(i) Multiple cover conjecture (proposed in [O21a], and proven partially in [O21c]) which
expresses Gromov-Witten invariants for imprimitive curve classes as an explicit linear
combination of primitive invariants,

(ii) Quasi-Jacobi form property (proposed in [O18, O22b]),
(iii) Holomorphic anomaly equation (proposed in [O22b], see also [O21b] for a progress re-

port).

For the Hilbert scheme of two points S[2] these conjectures have been established in genus
0 by [O18, O21c, O22b]. Together with [O18] they yield a complete evaluation of all genus 0
Gromov-Witten invariants of S[2], that is for all curve classes and all insertions. We consider
here the case of genus 1 and genus 2 Gromov-Witten invariants of S[2] for primitive curve classes.
The strategy is to assume both the quasi-Jacobi form property (ii) and the holomorphic anomaly
equation (iii). Under this assumption, the natural generating series of genus 1 and 2 Gromov-
Witten invariants are given in terms of Jacobi forms and are determined up to finitely many
coefficients. Using our earlier computations in ideal geometries we are able to uniquely fix these
finitely many coefficients. Modulo the above conjectures, this leads to a complete evaluation of
Gopakumar-Vafa invariants for S[2] in all genera.

7.1. Quasi-Jacobi forms. To state the result we will work with quasi-Jacobi forms. We refer
to [Lib, vIOP] for an introduction to quasi-Jacobi forms, and to [O18, App. B] for the variable
conventions that we follow here. We work here entirely on the level of (q, y)-series. We need the
following series:

Ek(q) = 1− 2k

Bk

∑
n>1

∑
d|n

dk−1qn, ∆(q) = q
∏
n>1

(1− qn)24,

Θ(y, q) = (y1/2 + y−1/2)
∏
m>1

(1 + yqm)(1 + y−1qm)

(1− qm)2
,

℘(y, q) =
1

12
− y

(1 + y)2
+
∑
d>1

∑
m|d

m((−y)m − 2 + (−y)−m)qd.

Sometimes it will also be convenient to use the following alternative convention of Eisenstein
series:

Gk(q) = − Bk
2 · k

Ek = − Bk
2 · k

+
∑
n>1

∑
d|n

dk−1qn.

The algebra of quasi-Jacobi forms is then the subring of

C
[
Θ,

1

Θ
y
d

dy
Θ, G2, G4, ℘, y

d

dy
℘

]
consisting of all series which define holomorphic functions C × H → C in (z, τ) where y =
e2πi(z+1/2) and q = e2πiτ . A key fact is that the generator G2(q) is algebraically independent in
the algebra of quasi-Jacobi forms from the other generators. Hence for any quasi-Jacobi form
F (y, q) we can speak of its ‘holomorphic anomaly’, which is defined by d

dG2
F (y, q), see [vIOP].

7.2. Curve classes. Since X := S[2] is irreducible hyperkähler, recall from Section 4.1 the
integral, even, non-degenerate Beauville-Bogomolov-Fujiki form

q : H2(X,Z)→ Z.
Since q is non-degenerate, we obtain an inclusion of finite index

H2(X,Z) ↪→ H2(X,Z)∗ ∼= H2(X,Z), D 7→ (D,−),

where we write (−,−) for the induced inner product on H2(X,Z). By extending q, we hence
obtain a Q-valued non-degenerate quadratic form

q : H2(X,Z)→ Q, β 7→ (β, β).

Given a class β ∈ H2(X,Z), we write

hβ = (β,−) ∈ (H2(X,Q)∗) ∼= H2(X,Q)

for its dual with respect to the Beauville-Bogomolov-Fujiki form (−,−). We have

(hβ , hβ) = (β, β).
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Let also
cBB ∈ H2(X)⊗H2(X)

be the inverse of the Beauville-Bogomolov-Fujiki form, i.e. the image of q ∈ H2(X)∗ ⊗H2(X)∗

under the natural isomorphism H2(X,Q)∗ ∼= H2(X,Q) induced by q.
We will also require the following definition:

Definition 7.1. Let F (y, q) be a quasi-Jacobi form of index 1 which satisfies the transformation
law of Jacobi forms for the elliptic transformation z 7→ z + τ (in generators this means it is
independent of 1

Θy
d
dyΘ; we will only encounter such kind here).

For any class β ∈ H2(X,Z), the β-coefficient of F (y, q),

Fβ ∈ Q,
is defined to be the coefficient of qdyk for any d, k ∈ Z such that (β, β) = 2d− k2/2.

Remark 7.2. The choice of d, k is not unique, but the coefficient Fβ is independent of the choice
by the elliptic transformation law of Jacobi forms [EZ].

7.3. Gromov-Witten invariants. We first recall the genus 0 Gromov-Witten invariants of S[2]

which are completely determined by the following two quasi-Jacobi forms:

F (y, q) :=
Θ(y, q)2

∆(q)
,

G(y, q) :=
Θ(y, q)2

∆(q)
(−℘(y, q) +

1

12
E2(q)).

The first coefficients read:

F (y, q) =
(
y−1 + 2 + y

)
q−1 +

(
2y−2 + 32y−1 + 60 + 32y + 2y2

)
+ (y−3 + 60y−2 + 555y−1 + 992 + 555y + 60y2 + 1y2)q + · · · ,

G(y, q) = q−1 + (4y + 30 + 4y−1) + (30y−2 + 120y−1 + 504 + 120y + 30y3)q + · · · .

The following completely determines all primary Gromov-Witten invariants of X = S[2] in
primitive curve classes (see [O21c] for the imprimitive case):

Theorem 7.3 ([O18, O21a]). Let β ∈ H2(X,Z) be a primitive curve class. We have

ev∗[M0,1(X,β)]vir = Gβhβ ,

ev∗
(
ψ1 · [M0,1(X,β)]vir

)
=

1

2
Fβh

2
β −

1

15

(
Gβ +

1

4
(β, β)Fβ

)
c2(X),

ev∗
(
ψ2

1 · [M0,1(X,β)]vir
)

= −3Fβ · β,
ev∗

(
ψ3

1 · [M0,1(X,β)]vir
)

= 6Fβ [p],

as well as:

ev∗[M0,2(X,β)]vir =
1

4
Fβ(h2

β ⊗ h2
β) +Gβ

(
hβ ⊗ β + β ⊗ hβ + (hβ ⊗ hβ) · cBB

)
+

(
− 1

30
(h2
β ⊗ c2(X) + c2(X)⊗ h2

β) +
1

900
(β, β)c2(X)⊗ c2(X)

)(
Gβ +

1

4
(β, β)Fβ

)
.

Modulo conjectures we have the following evaluation of genus 1, 2 Gromov-Witten invariants:

Theorem 7.4. Assume Conjectures A and C of [O22b]. Then for any primitive curve class
β ∈ H2(X,Z), in genus 1, we have:

ev∗[M1,1(X,β)]vir =
1

2
Aβh2

β + Bβc2(TX),

where

A =
Θ2

∆

(
1

4
℘E2 +

3

32
E2

2 +
1

96
E4

)
,

B =
Θ2

∆

(
− 5

46
℘3 +

5℘E2
2

384
+

5E3
2

1536
− ℘E4

2944
+

5E2E4

4608
+

5

184

(
y
d

dy
℘

)2

− 5E6

39744

)
.

In genus 2, we have 〈
∅
〉GW

2,β
= Iβ ,

where

I(y, q) =
Θ2

∆

(
5℘E3

2

384
+

25E4
2

6144
+

5℘E2E4

384
+

7E2
2E4

3072
− 13E2

4

18432
− ℘E6

96
+
E2E6

1152

)
.
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The first coefficients of A and B and I are as follows:

A(y, q) =
(y + y−1)

8
q−1 +

(
1

8
y3 +

315

8
y + 160 +

315

8
y−1 +

1

8
y−3

)
q + · · · ,

B(y, q) =
(y + y−1)

192
q−1 + 1

+

(
1

192
y−3 + y−2 +

385

64
y−1 +

110

3
+

385

64
y + y2 +

1

192
y3

)
q + · · · ,

I(y, q) =
(y + y−1)

128
q−1 − 15

2

+

(
1

128
y−3 − 15

2
y−2 − 11445

128
y−1 − 485− 11445

128
y − 15

2
y2 +

1

128
y3

)
q +O(q2).

7.4. Proof of Theorem 7.4: Holomorphic anomaly equations. The global Torelli theorem
for hyperkähler varieties implies that the Hilbert scheme S[2] has a large monodromy group, we
refer to [M11] for an introduction. In our case, as [OSY, §2.7] or [O21a] the monodromy implies
that for a primitive curve class, we have

ev∗[M1,1(X,β)]vir =
1

2
Aβh2

β + Bβc2(TX),(7.1) 〈
∅
〉GW

2,β
= Iβ ,

for some constants Aβ ,Bβ , Iβ ∈ Q which only depend on the square (β, β) of the class.
To determine these constants, we can work with an elliptic K3 surface S → P1 with section.

The Hilbert scheme in this case has an induced Lagrangian fibration S[2] → P2 with section. Let
B,F be the section and fiber class of S respectively, and let A ∈ H2(S[2],Z) be the class of the
locus of non-reduced subschemes supported at a single point. There exists a natural isomorphism

H2(S[2],Z) = H2(S,Z)⊕ ZA

given by the Nakajima basis [O18, §0.2]. For h > 0 and k ∈ Z, we consider the classes

βh,k = B + hF + kA,

which are of square

(βh,k, βh,k) = 2h− 2− k2

2
.

The set of these squares contains all possible squares of curve classes β ∈ H2(X,Z), we see that
any (X,β) can be deformed to (S[2], βh,k) for some h, k. We form the generating series

Fg(γ1, . . . , γn) =
∑
d>0

∑
k∈Z

〈
τ0(γ1), . . . , τ0(γn)

〉S[2]

g,B+dF+kA
qd−1yk.

The Fg’s are conjectured to be quasi-Jacobi forms and that their formal derivatives d
dG2

Fg are

determined by a holomorphic anomaly equation [O22b].
Below we will freely use the language of Nakajima operators

qi(α) : H∗(S[m])→ H∗(S[m+i])

for all i ∈ Z and α ∈ H∗(S), where we follow the conventions of [NOY]. Given γ1, . . . , γk ∈ H∗(S)
and n1, . . . , nk > 1, we will write

γ1[n1] · · · γk[nk] := qn1(γ1) · · · q`k(nk)1 ∈ H∗(S[
∑
i ni]),

where the unit 1 ∈ H∗(S[0]) is also sometimes called the vacuum.

Proof of Theorem 7.4: Genus 1 case. By [O22b, Conj. C], we have for any γ ∈ H4(X) the fol-
lowing holomorphic-anomaly equation:

d

dG2
F1(γ) = F0(γ, U)− 2F1(λ1;U(γ))

= y
d

dy
F0(γ, F [2]) + 2F0(γ, F [1]W [1] + 1S [1]p[1])

+ 2q
d

dq
F0(γ, F [1]2)− 2F1(λ1;U(γ)),

where

W = B + F
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and

U = −1

4
q2q−2(F1 + F2)− q1q−1(F1 + F2)

= −1

4
q2q−2(F1 + F2) + q1q1q−1q−1((F1 + F4)∆23)

= −1

4
q2q
′
2(F1 + F2)(1⊗ 1) + q1q1q

′
1q
′
1((F1 + F4)∆23)(1⊗ 1),

which is viewed here both as a morphism H∗(S[2]) → H∗(S[2]) and by Poincarë duality in the
last line as a class in H∗(S[2] × S[2]) (we let q′i denote the Nakajima operator acting on the
second factor of H∗(S[n])⊗H∗(S[m])). Moreover, Fg(λ1; . . .) stands for the (obvious) generating
series where we integrate also over the tautological class λ1, see [O22b].

We consider the invariant F1(q1(F )21). Using the holomorphic anomaly equation above, the
known results in genus 0 (Theorem 7.3) and the discussion in [O18, OP] on how to reduce the
series F1(λ1; ...) to genus 0 invariants, we have:

d

dG2
F1(q1(F )2) =

Θ2

∆
(−6℘+ 108G2) .

Integrating with respect to G2 yields

F1(q1(F )2) =
Θ2

∆

(
aE4 − 6℘G2 + 54G2

2

)
,

where ℘2 does not appear, because it would yield the only pole on the left hand side (contradicting
Conjecture A of [O22b] or also monodromy invariance). By Proposition 6.1, we have

Coeffq−1y−1(F1(q1(F )21)) =
〈
τ0(F [1]2)

〉GW

g=1,B−A =
〈
τ0(H2)

〉GW,T∗P2

g=1,1
=

1

8
.

Solving for a one finds a = 1/96, and hence

F1(q1(F )21) =
Θ2

∆

(
1

4
℘E2 +

3

32
E2

2 +
1

96
E4

)
.

Similarly, we have

d

dG2
F1(c2(X)) =

Θ2

∆

(
−105℘E2 +

135

8
E2

2 −
5

8
E4

)
,

where we used that U(c2(X)) = 30q1(F )q1(1)1. This yields

F1(c2(X)) =
Θ2

∆

(
35

16
℘E2

2 −
15

64
E3

2 +
5

192
E2E4 + aE4℘+ bE6

)
,

where, since there are no poles on the left hand side, the poles in (Dz℘)2 and ℘3 cancel and give
the Eisenstein series E6. By Proposition 6.1 and since the pair (S[2], B + F +A) is deformation
equivalent to (S[2], A) and we have seen in Lemma 3.3 that the genus 1 invariants vanishing in
this case, we have: 〈

c2(X)
〉GW

1,B−A = −3
〈
τ0(H2)

〉GW,T∗P2

g=1,1
= −3

8
,〈

c2(X)
〉GW

1,B+F+A
= 0.

Solving with these conditions for a and b, we obtain

F1(c2(X)) =
Θ2

∆

(
35℘E2

2

16
− 15E3

2

64
− 47℘E4

16
+

5E2E4

192
− 5E6

48

)
= −3/8(y−1+y)q−1+828+O(q).

Finally, by Lemma 7.5 below and the definition of Aβ ,Bβ in (7.1), the functions

A =
∑
d,k

Aβh,kqh−1yk, B =
∑
d,k

Bβh,kqh−1yk

satisfy:

F1(q1(F )21) = A, F1(c2(X)) = 30

(
q
d

dq
− 1

4

(
y
d

dy

)2
)
A+ 828B.

This proves the claim by solving for A and B.
We remark that determining F1(q1(F )21) only required a single geometric constraint, namely

the computation for class B−A. However, the formula also matches the vanishings obtained from
computations in the ideal geometry (which applies to classes β ∈ {B,B+F+A}). For F1(c2(X))
the system is likewise overdetermined: we only used 2 of the 3 available constraints. �
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Proof of Theorem 7.4: Genus 2 case. Using Lemma 7.5 below, the standard intersections

c2(X) · q1(p)q1(1)1 = 27, c2(X) · q1(W )q1(F )1 = 3

and the genus 1 part of Theorem 7.4, the holomorphic anomaly equation of [O22b] reads:

d

dG2
F2 = F1(U) = 3

(
2q

d

dq
− 1

2

(
y
d

dy

)2
)
A+ 60B.

Integration with respect to G2 yields

F2 =
Θ2

∆

(
5

384
℘E3

2 +
25

6144
E4

2 +
5

384
℘E2E4 +

7

3072
E2

2E4 +
1

1152
E2E6 + aE2

4 + b℘E6

)
for some a, b ∈ C. Here we used that F2 is determined up to the functions ℘4, ℘(y d

dy℘)2, ℘2E4, E4

and that the poles in the first of these functions have to cancel which replaces them with a E6℘
term and then that ℘2E4 can also not appear because of holomorphicity. Finally, using the
following evaluations (ref. Proposition 6.1, Lemma 3.3):〈

∅
〉GW

2,B−A =
1

128
,
〈
∅
〉GW

2,B+F+A
= 0

yields that a = −13/18432 and b = −1/96 and thus

F2(∅) =
Θ2

∆

(
5℘E3

2

384
+

25E4
2

6144
+

5℘E2E4

384
+

7E2
2E4

3072
− 13E2

4

18432
− ℘E6

96
+
E2E6

1152

)
.

This implies the result by monodromy invariance (we even have one more condition to spare,

namely the vanishing of
〈
∅
〉GW

2,B
). �

Lemma 7.5. Let β̃d,k = W + dF + kA and let hd,k = β̃∨d,k be the dual. Then

h2
d,k · q1(F )21 = 2, h2

d,k · q1(p)q1(1)1 = 2d− k2/4,

h2
d,k · q2(F )1 = −2k, h2

d,k · q1(W )q1(F )1 = 2d− k2/4,

h2
d,k · c2(X) = 30(2d− k2/2).

Proof. Let δ = c1(O[2]
S ) = − 1

2∆S[2] and D(α) = q1(α)q1(1)1. We have

hd,k = β̃∨d,k = D(W ) + dD(F )− k

2
δ.

This yields, for example∫
h2
d,k · q2(F )1 = −k

∫
q2(F )1 · δ ·D(W ) = −2k.

The other cases are similar (use that q1(W )q1(F ) · δ2 = q1(p)q1(1) · δ2 = −1). For the last
expression we use the Fujiki constant C(c2) = 30. �

7.5. Genus 1 Gopakumar-Vafa invariants. A hyperkähler variety X is of K3[2]-type if it is
deformation equivalent to the Hilbert scheme S[2] for a K3 surface S. For any primitive curve
class β ∈ H2(X,Z), we define the genus 1 Gopakumar-Vafa class

n1,β ∈ H4(X,Q)

by ∫
X

n1,β ∪ γ = n1,β(γ), ∀ γ ∈ H4(X,Q),

where n1,β(γ) is given in Definition 1.6. In an ideal geometry (ref. §1.5), n1,β is the class of the
surface swept out by the elliptic curves in class β.

Our discussion above leads to the following formula. Define

A′ =
Θ2

∆

(
−1

4
℘− 5

48
E2

)
= − (y + y−1)

8
q−1 + 6 +O(q),

B′ =
Θ2

∆

(
− 1

96
℘E2 −

1

256
E2

2 −
1

2304
E4

)
= − (y + y−1)

192
q−1 +O(q),

and recall the series A,B from Theorem 7.4.
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Theorem 7.6. Assume Conjectures A and C of [O22b]. For any hyperkähler variety X of K3[2]

type and for any primitive curve class β ∈ H2(X,Z), we have

n1,β =
1

2
aβh

2
β + bβc2(TX),

where aβ = Aβ +A′β and bβ = Bβ + B′β.

Proof. Since the Chern class c2(X) is monodromy invariant, we can write

1

24
ev1∗(ev∗2(c2(X))[M0,2(X,β)]vir) =

1

2
A′βh2

β + B′βc2(TX).

for some A′β ,B′β . Using Theorem 7.3, one computes that these are precisely the β-coefficients of

the functions A′,B′ defined above. The claim now follows from Theorem 7.4 and the definition
of genus 1 Gopakumar-Vafa invariants. �

The integrality conjecture for Gopakumar-Vafa invariants (Conjecture 1.9) would imply that
n1,β ∈ H4(X,Q) is an integral class. We give the following criterion:

Lemma 7.7. n1,β is integral, i.e. lies in H4(X,Z) if and only if the following holds:

(i) If (β, β) ∈ 2Z, then aβ is an even integer and 3bβ ∈ Z.
(ii) If (β, β) = 2d− 1

2 , then aβ, 24bβ, 1
8aβ − 3bβ all lie in Z.

Proof. Using deformation invariance (e.g. [O21a, Cor. 2]), we may work with X = S[2] for an
elliptic K3 surface S with Pic(S) generated by the class of a section B and the fiber class F ,
Moreover, we can use the curve class

β := β̃d,k = W + dF + kA,

for d > −1 and k ∈ {0, 1}. With the notation of Lemma 7.5, we then have:

n1,β =
1

2
aβD(W )2 + daβD(W )D(F ) +

1

2
aβd

2D(F )2 +−kaβD(W )δ − kdD(F )δ +
k2

4
δ2.

By the main result of [Nova], a basis for the Hodge classes

H2,2(S[2],Z) = H4(S[2],Z) ∩H2,2(S[2],C)

is given by the 7 classes

D(W )2, D(W )D(F ), D(F )2, δ2

ex :=
1

2

(
D(x)2 +D(x)δ

)
for x ∈ {W,F}

V :=
1

24
c2(TS[2]) +

1

8
δ2.

The class n1,β has the following expansion in this integral basis:

n1,β =
k + 1

2
aβD(W )2 − kaβeW

+
d(d+ k)

2
aβF

2 − kdaβeF
+ daβD(W )D(F )

+ 24bβV +

(
k2

8
aβ − 3bβ

)
δ2.

If (β, β) ∈ Z then k = 0, so integrality of n1,β impies (by the first summand) that aβ ∈ 2Z and
by the last summand that 3bβ ∈ Z, and this is clearly sufficient. If (β, β) = 2d − 1

2 , we have

k = 1, which gives aβ , 24bβ ,
1
8aβ − 3bβ ∈ Z and this is clearly sufficient. �

The criterion of the lemma can be easily checked using a computer program. We obtain:

Corollary 7.8. Under the assumptions of Theorem 7.6, n1,β is integral for all (β, β) 6 100.

Example 7.9 (A real life example). Let F (Y ) ⊂ Gr(2, 6) be the Fano variety of lines on a very
general cubic 4-fold Y ⊂ P5. Let U ⊂ O⊗6

Gr be the universal subbundle on Gr(2, 6) and set

g = c1(U∨), c = c2(U∨).

The unique primitive curve class is β = 1
2g
∨ and is of square (β, β) = 3/2 since (g, g) = 6. The

basic geometry of these classes is discussed in [Ot], in particular we have

c2(X) = 5g2 − 8c.
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Theorem 7.6 implies that the surface in F (Y ) swept out by elliptic curves in class β has class:

n1,β = 35(g2 − c).

This is indeed integral and effective (the surface of lines meeting a given line is 1
3 (g2 − c)).

7.6. Genus 2 Gopakumar-Vafa invariants. Since we can control now all Gromov-Witten
invariants for S[2] in arbitrary genus (for primitive classes), it is also straightforward to compute
genus 2 Gopakumar-Vafa invariants (see [NO] for the computation of the nodal invariants):

Theorem 7.10. Assume Conjectures A and C of [O22b]. For any hyperkähler variety X of
K3[2] type and for any primitive curve class β ∈ H2(X,Z), we have

n2,β = Ĩβ ,

where

Ĩ(y, q) =
Θ2

∆

[
5

384
℘E3

2 +
25

6144
E4

2 +
35

384
℘E2

2 −
5

512
E3

2 +
5

384
℘E2E4 +

7

3072
E2

2E4

− 71

64
℘E2 +

27

512
E2

2 −
47

384
℘E4 +

5

4608
E2E4 −

13

18432
E2

4 −
1

96
℘E6

+
1

1152
E2E6 +

9

8
℘− 5

32
E2 −

23

1536
E4 −

5

1152
E6 +

1

8

]
.

Using a computer program, we immediately obtain:

Corollary 7.11. Under the assumptions of Theorem 7.10, n2,β is integral for all (β, β) 6 138.

7.7. Genus 0 Gopakumar-Vafa invariants. For completeness, we also give a proof of the
integrality of genus 0 Gopakumar-Vafa invariants discussed in the introduction.

Proof of Theorem 0.11. Inverting the definition of genus 0 Gopakumar-Vafa invariants, we have

n0,β(γ1, . . . , γn) =
∑
k|β

µ(k)k−3+n
〈
τ0(γ1) · · · τ0(γn)

〉GW

0,β
,

where µ(k) is the Möbius function. Consider also the “BPS invariants” introduced in [O21a]:

ñ0,β(γ1, . . . , γn) =
∑
k|β

µ(k)k−3+n(−1)[β]+[β/k]
〈
τ0(γ1) · · · τ0(γn)

〉GW

0,β
.

Then it is straightforward to show that (see [O21a, Def. 1] for the notation [−]):

(i) If
[

β
div(β)

]
= 0, then n0,β(γ1, . . . , γn) = ñ0,β(γ1, . . . , γn),

(ii) If
[

β
div(β)

]
= 1, then

n0,β(γ1, . . . , γn) =

{
ñ0,β(γ1, . . . , γn) if div(β) is odd or 4|div(β),

ñ0,β(γ1, . . . , γn)− ñ0,β/2(γ1, . . . , γn) if div(β) is even but div(β/2) is odd.

Hence it suffices to show that ñ0,β(γ) is integral for any effective curve class β ∈ H2(X,Z). As
conjectured in [O21a] and proven in [O21c], the invariant ñ0,β(γ) only depends on

q(β), [β/div(β)] , and (β, γ).

Hence we may assume that β is primitive. But here the result follows since for a very general
pair (X,β), where X is a hyperkähler variety of K3[2]-type, it is well-known that M0,1(X,β) is
an algebraic space (there are no non-trivial automorphisms) of expected dimension (e.g. [OSY,
§1.1]), therefore

ev∗[M0,1(X,β)]vir = ev∗[M0,1(X,β)]

is integral (the same argument also shows the integrality of n0,β(γ1, . . . , γn) for arbitrary number
of markings if β is primitive). �
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Appendix A. Imprimitive curve classes

Let X be a holomorphic symplectic 4-fold. We consider here the Gromov-Witten, Gopakumar-
Vafa and DT4 invariants of X in a (possibly imprimitive) curve class β ∈ H2(X,Z). As discussed
in Section 1.4, the ideal geometry of curves in this case is very difficult to control. Moreover, there
are only very few geometries where both the GW and DT4 invariants can be completely com-
puted, and these geometries do not reflect the general structure of the GW/GV/DT4 invariants.
As such, the general definition of Gopakumar-Vafa invariants ng,β for g > 0 and imprimitive
β is not clear at this point. Nevertheless, in this section we define genus 1 Gopakumar-Vafa
invariants for imprimtive curve classes in the two geometries where all the invariants can be
controlled, and then prove a GV/DT4 relation.

A.1. Genus 1 Gopakumar-Vafa invariants. There are two geometries where we know all
GW and DT4 invariants:

(i) The Embedded Rational Curve family of Section 3
(ii) The product of two K3 surfaces S × T for all curve classes which lie in H2(S,Z).

These geometries are special because all primary GW and DT4 invariants with insertion c2(TX)
vanish. This implies that the genus 1 Gopakumar-Vafa invariants do not have any contributions
from genus 0 curves. Based on a computation in the ideal geometry following Section 1.6.1, one
expects that 〈

τ0(γ)
〉GW

1,β
“ = ”

∑
k|β

σ(k)n1,β/k(γ) + (· · · ),(A.1)

where σ(k) :=
∑
l|k l and (· · · ) stands for contributions from genus 0 curves. This suggests that

for the geometries (i) and (ii), there should be no contributions in genus 0. Hence we make the
following adhoc definition in this case:

Definition A.1. Let X be a holomorphic symplectic 4-fold and β ∈ H2(X,Z) be an effective
curve class of type (i) or (ii) above. For any γ ∈ H4(X,Z), we define n1,β(γ) by:

(A.2)
〈
τ0(γ)

〉GW

1,β
=

∑
k>1,k|β

σ(k)n1,β/k(γ).

We also introduce the following:

Definition A.2. For any γ ∈ H4(X,Z), we define n0,β(γ;ψ) ∈ Q by the multiple cover formula:〈
τ1(γ)

〉GW

0,β
=

∑
k>1,k|β

1

k3
n0,β/k(γ;ψ).

We then can prove the following generalization of the genus one part of Conjecture 2.2:

Proposition A.3. Let X be a holomorphic symplectic 4-fold, and β ∈ H2(X,Z) be an effective
curve class of type (i) or (ii) above. For certain choice of orientation, we have〈

τ1(γ)
〉DT4

β
= −1

2
n0,β(γ;ψ)−

∑
k>1,k|β

n1,β/k(γ), ∀ γ ∈ H4(X,Z).(A.3)

Remark A.4. The second part in the RHS of the above equality is also consistent with the ideal
geometry computation (see Remark 2.6).

A.2. Proof of Proposition A.3: Embedded rational curve family. Let X be a holomor-
phic symplectic 4-fold and let β ∈ H2(X,Z) be a curve class which satisfy conditions (i-iii) of
Section 3. Then by Lemma 3.3, all genus 1 GV invariants n1,β(γ) vanish. Moreover, by Lemma
3.5 and with the notation of that section, we have

n0,dβ(γ;ψ) =

{∫
C j
∗(γ) c1(ωp) if d = 1,

0 if d > 1.

Similarly, by Lemma 3.7, for certain choice of orientation we have

〈
τ1(γ)

〉DT4

β
=

{
− 1

2

∫
C j
∗(γ) · c1(ωp) if d = 1,

0 if d > 1.

This implies the claim. �
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A.3. Proof of Proposition A.3: K3×K3. Let X = S × T and β ∈ H2(S,Z) be an effective
curve class. Consider a cohomology class γ ∈ H4(X,Z) with Künneth decomposition

γ = A1 · 1⊗ p +D1 ⊗D2 +A2 · p⊗ 1.

The claim follows from the following two lemmata:

Lemma A.5. n0,β(γ;ψ) = −2A1 ·N0

(
β2

2

)
.

Proof. This follows from Lemma 5.2 and the definition. �

Lemma A.6. We have

(A.4)
∑

k>1,k|β

n1,β/k(γ) = A2 e(T )N1(β2/2).

Proof. Recall that by (5.7) we have〈
τ0(γ)

〉GW

1,β
= A2 e(T )

∑
k>1,k|β

k ·N1

(
β2

2k2

)
.

Hence by Eqn. (A.2), n1,β(γ)’s are the unique (recursively defined) integers which satisfy the
relation

(A.5)
∑
k|β

∑
l|k

l n1,β/k(γ) = A2 e(T )
∑
k|β

k ·N1

(
β2

2k2

)
.

We show that the integers n1,β(γ) defined by Eqn. (A.4) satisfy the relation (A.5). This then
completes the proof. Indeed, using Eqn. (A.4), the right hand side of Eqn. (A.5) becomes

A2 e(T )
∑
k|β

k ·N1

(
β2

2k2

)
=
∑
k|β

k

∑
a|β/k

n1,β/ka(γ)


(set m := ka) =

∑
m|β

∑
k|m

kn1,β/m,

which is precisely the left hand side of Eqn. (A.5). Hence Eqn. (A.4) holds. �

We conclude the proof of Proposition A.3: By Theorem 5.8, we have〈
τ1(γ)

〉DT4

β
= A1N0

(
β2

2

)
−A2 e(T )N1

(
β2

2

)
,

which is precisely the right hand side of (A.3) by the two lemmata above. �
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