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Abstract

We study the reduced descendent Gromov—Witten theory of K3 surfaces in primitive
curve classes. We present a conjectural closed formula for the stationary theory, which
generalizes the Bryan-Leung formula. We also prove a new recursion that allows to
remove descendent insertions of 1 in many instances. Together this yields an efficient
way to compute a large class of invariants (modulo the conjecture on the stationary
part). As a corollary we conjecture a surprising polynomial structure which underlies
the Gromov—Witten invariants of the K3 surface.

0 Introduction

0.1 State of the art

Let S be a K3 surface and let 8 € Ho(S,Z) be an effective curve class. The (reduced)
descendent Gromov-Witten invariants of S are defined by integrating over the moduli space
of n-marked genus g degree § stable maps:

(7 ()7, G5 = [ [Tevi ()uk, 1)

(M ,.(S.8)] =

where k1,...,k, >0 and v1,...,7, € H*(S). We refer to Section for more details on the
definition. We say that the descendent invariant is:

o stationary if deg(~;) > 0 for all 4,

e primitive if the curve class 8 € Hy(S,Z) is primitive.

For dimension reasons the invariant vanishes unless we haveﬂ

g= Zn:(ki +dege () - 1).

i=1

Hence we fix g by this constraint and often drop it from notation.

The most important conjecture about the Gromov—Witten theory of the K3 surface says
that the descendent invariants are completely determined by the primitive invariants. We
recall the conjecture. Let p e H*(S,Z) denote the class of a point.

Conjecture 0.1 (Multiple cover conjecture [12], Conj. C2]). For every positive divisor k|3
let Sk be a K3 surface and let i, : H*(S,R) —» H?*(Sk,R) be a real isometry such that
wr(B/k) is a primitive effective curve class. Extend oy, to an isomorphism oy : H* (S, R) —
H*(Sk,R) by setting or(1) =1 and i (p) = p. Then we have:

s —34%7 . dego(vs Sk
(T ()T (1)) 5 = 2 KPR 9O (04 (70)) Tk, (98 (1)) ) g o (871 -
k|B

THere dege(7) is the complex cohomological degree of v, that is v € H2de8c(¥) ().



The conjecture was proven by Bae and Biilles [I] when /3 has divisibility 2, but remains
wide open for higher divisibility.

Although the imprimitive invariants are difficult to understand, the situation for the
primitive invariants is much better. Indeed, Maulik, Pandharipande and Thomas provided
in [9] an algorithm which can determine all primitive invariants using a combination of
tautological relations coming from the moduli space of curves and degenerations techniques.
As a corollary they showed that the natural generating series of primitive invariants are
quasi-modular forms. Further in [I3] it was shown using this algorithm that these quasi-
modular forms satisfy a holomorphic anomaly equation. We review these results in Section [I]

One could say that the story is finished here and the primitive invariants are completely
determined. However, there are two problems: First, the algorithm of [9] is extremely
complicated and increasingly slow when the genus grows. We refer to work of Sendra [20]
where this algorithm was implemented. Computations in his implementation are feasible
only up to genus g = 3. Second, very few explicit formulas for the primitive invariants are
known. This is in strong contrast to the case of elliptic curves, where the Bloch-Okounkov
formula explicitly evaluates all invariants in closed form [I5] [16, [I9]. Therefore, when it
comes to actual computations, the structure of the primitive invariants of the K3 surface is
still very mysterious. At this point, the only general formula for the descendent invariants
is the following beautiful result of Bryan and Leungﬂ

For all k > 2 even, define the weight k& Eisenstein series

Gk(q :_7+szkln

n>1 d|n

(with By the Bernoulli numbers) and the modular discriminant

Alg)=qJ](1-¢")*

n>1

Theorem 0.1 (Bryan-Leung, [3]). For primitive 8 we have

mS _ d "
{(To(p) >B = Coeff 52/, [A( ) (Q* Q(Q)) ]
Here Coeff m (f) stands for the ¢™-coefficient of a Laurent series f.

0.2 A conjectural formula for the stationary theory

The first result of this paper is a conjectural formula for the stationary primitive invariants
of the K3 surface, which will generalize the Bryan-Leung evaluation.

To state the formula we use the Laurent expansion of the Weierstraf elliptic function
p(z) around the origin, which reads

k2

0(5)= 5+2 T 0l0) gy

and where we have set GG, = 0 for k£ odd. For all k > 0 define the series

k
A0) = o PrRess-a[(0() 462 ] @)
B = G Resen [(0(2) - 16 262 ®)

2We restrict ourselves here to the pure descendent invariants. There are more formulas known if one
allows more general insertions, such as the Hodge classes \;. Most notable here is the Katz-Klemm-Vafa
formula proven in [I8]. Arbitrary linear Hodge integrals with descendents are better considered as part of
the Pandharipande-Thomas theory of S x C. Their explicit form is taken up in [14]. For Gromov-Witten
invariants of the K3 surface involving the double ramification cycle, see also [6].



and for k, £ > 0 the series
(<1)k+e-1
(2k+ )20+ 1!
Resz,-oResz,-0 [ (p(21) = 4G2)" 2 (p(22) - 4G2) "3 (p(21 - 22) +2Ga) | (4)

Cre(q) =

The Weierstra$ elliptic function p(z) is taken above as a formal power series in z with
coefficients quasi-modular forms (see Section [1.1]), so that

1
p(2) —4G2 = — —4Ga + G422 +0(2Y).

z

Its square root is then computed formally, as in
11 9 1 3 4
(p—4G2)? = = —2G2z + | 2G5 + §G4 22+ 0(2%).
z

We obtain the well-defined z-series with quasi-modular coefficients:

(p — 4G2)"*% = (p(2) -~ 4G2)" (p — 4Go)?

Taking the residue at z = 0 means simply taking the 2! coefficient. The double factorial
stands for the product of odd factors:
(2k+1)!

(2k+ 1)l = T

=(2k+1)(2k-1)---3-1.
For example,

1
A():l, A1 =2G2, A2 =2G§+6G4,

5 8 4 7
By=-2G2+ >G4, Bi=--Gs+-G2G4 - —0GCg,
0 2+6 4 1 3 2+3 2G4 360 6
16 10 7
Coo=0, Cio=By, Cii1=-—Gs+—=GGs—-—G
0,0 s 1,0 05 1,1 3 2t 3 2Gy 7 65

Given cohomology classes vo,71,72, ... € H*(S) define the partition function

Z5(Y0s 71, - - -) = (exp(z Tk(%))>s

k=20 9.8
- 1 mo miy m2 s
= > o (0(00) ™ (7)™ 2 (72) ™)
mo,m1,ma,...20 0125 B

The partition function encodes all Gromov-Witten invariants of S in class 4]
Let (71,72) = [g71 U7z denote the intersection pairing on H*(S).
The following determines all primitive stationary invariants.

Conjecture 0.2. Let 8 € Hy(S,Z) be primitive and assume that deg(y;) > 0 for alli. Then:

ZB(FYOvFYh .. ) = Coeﬁ‘Bz/Q

ﬁ exp (k;(% B)Ax(q) + g%(% 1)Bi(q) + % k%o(% : W)Ckf(‘I))] :

3Concretely, choose a basis (eq)23, of H*(S), let ¢, be formal variables and consider the classes

Vi = Zzio tq,k€a- Then we can extract Gromov—Witten series from the partition function Zg by the rule:

S

(e o, (o)) = (G g 2o (7200

an,kn

t=0



For example, we obtain the full evaluation of the descendents of point classes:

S
(g’rkz(p))g - C ﬂqﬁ /2[ A(q) ]

This generalizes the Bryan-Leung formula by the simple observation:

d
By=q—G
0 qdq2

If e H?(S) is a class satisfying F2 =0 and 8- F = 1 we obtain

S
- _ Ak, (@) A, (9)
<1I]1 Tki(F))ﬁ = Coeﬁqﬂ2/2 [A(q)] .

For a,a’ € H%(S) with a- 8 =0a’- =0 we get:

(7i(a)7e(a)); = Coeff g2 (o, 0') e (g) A(g) ™.

The structure of the conjecture is inspired by the structure of multiplicative genera of
the Hilbert schemes of points of a surface, as given in [5].

0.3 Descendents of 1

For elliptic curves there are explicit rules (called Virasoro constraints) which recursively
remove the descendents insertions 74 (1) from the Gromov—Witten bracket [16]. This means
that for elliptic curves, the stationary theory determines all Gromov—Witten invariants,
see [19] for explicit formulas. Virasoro constraints have been conjectured to hold for any
smooth projective variety [I7]. However, for K3 surfaces we use reduced Gromov—Witten
theory which is non-standard. One can check that the usual Virasoro constraints do not
hold in this case. A modified formulation of Virasoro constraints for reduced invariants is
not known currently, not even on a conjectural level. Hence currently it is not clear what
the dependence on 7 (1) factors should be for K3 surfaces.

In this paper we will explain a simple trick that still allows us to gain information about
descendents of 1 for a large class of invariants. The trick is based on the holomorphic
anomaly equation and yields a recursion. We start with a basic example:

Theorem 0.2. Let 8 be primitive. For k > 2 we have

(Tk(1)>z = (ms(P))Z +2(k - 2)(7—k—1(F)>Z
where F € H*(S) is any class such that - F =1 and F? = 0.
A more complicated example is:
Theorem 0.3. Let 8 be primitive. For k >2 and £ >0 we have

(Te(D)7e(p)) = (Te-3(P)7e(P)) + (Th-2(P)7e-1(P))
+(2k + 20) (-1 (F)70(p)) = (-1 (1) Tes1 (02))

where the class F € H*(S,Q) is as before and oy, s € H*(S,Q) are any classes orthogonal
to B and F satisfying a? =0 and oy - ag = 1.

Remark 0.3. The formulas in Theorem and also hold for k € {0,1} if we use the
convention 7x(7y) = dx+2,0 fsfy for all k£ <0.



An even more general example can be found in Theorem [2.1] below. Our recursion applies
to a very large class of descendent invariants, but does not seem to give nice formulas in
general. Hence for now we just formulate the existence of the recursion and its scope and
refer to Section 2l for details.

Theorem 0.4. For vyy,...,v, € H*(S) let v = |{i : dege(y:) = 1}|. Assume that there are
agi),aéi) € H*(S,C), i=1,...,2r
such that
e cach aéi) is orthogonal to 3 and all ; that lie in H?(S),

° agi) -agi) = aéi) -aéi) =0 and agi) -agi) =1

° aéi) -047(12) =0 forall /,m and 1,j.
Then the recursion described in Section [J determines the primitive descendent invariant
(g, (1) 7k, (’yn))gﬂ in terms of the stationary invariants.

For example, if v; € {1, 5,p}, then the assumption of Theorem is satisfied for r < 5.

Together with Conjecture this allows to (conjecturally) compute a large class of
primitive invariants. An implementation of this algorithm has been made by the author and
can be found on his webpage. To give a concrete example, a short computer computation
and assuming Conjecture [0.2] gives the genus 29 invariant

13094491
333598540006510406597452234752000000

(7s(1)75(1)m10(1)74(P)73(P) Vo202 25 = —

0.4 Polynomial behaviour

There is a striking polynomial behaviour that can be numerically observed in the descendent
invariants of the K3 surface. Let 8 € Ho(S,Z) be a primitive effective curve class with 2 # 0,
let d1,...,0; € H?(S) with §; - 3 =0, and consider the descendent invariant:
T s t u s
HTkl(l)HTli(ﬁ)HTml(él)HTnl(p) . (5)
el i=1 i=1 8

i=1

Assuming k;,m; > 1, we can normalize the invariant by a certain combinatorial factor,
defining:

S

<<137ki(1) 137’@(5) ngi(éi) liTm(P)»

B

1=

(-4)Fi=1 (2k; — 1) f[(—4)‘i(2£i + 1) f[(—4)mi‘1(2mi - 11[(—4)”1'(27% + 1)
=1

i=1 i=1 i=1
T s t u S
< qu(l)HT/7(ﬂ)HTm1(51)HTn7(p) .
i=1 i=1 i=1 i=1 8
We then make the following conjecture:
Conjecture 0.4. There exists a polynomial p(x1,...,Tprisitru) Of degree B2 +2—-2u—t+7r
such that for all
1
k1252/2+3—(u+§t)7 Ciymiyng 2 f2[2+1 = (u+t/2), (6)
we have
T s t u S
<<HT]€1(1) HTE’L(ﬁ) HTmz((sl) HTn’L(p)>> :p(kla . '7kra‘€la s >£Sam1a cee, Mg, Mgy - 7nu)~
i=1 i=1 i=1 i=1 8



In the above conjecture we define the degree of a multivariable polynomial p(x1,...,2,) =
Xivin aih_,,,i"xil---xi{‘ to be the maximum of ¢; +... + 14, for which a;, ., #0.

The bound 8%/2 + 1 - (u +t/2) is precisely the dimension of the locus of curves in the
linear system |O(f)| incident to u points as well as to generic smooth cycles representing
the classes §;. This points to a geometric reason for the polynomiality.

Example 0.5. Let 52 = -2, so that § is the class of a smooth rational curve. Then all
reduced invariants have been computed by Maulik [8]. The bracket vanishes if ¢ > 0 or
u > 0 (since the rational curve cannot move). For the remaining terms the formula is:

T S S T
<<H7—k1(1)HT&(5)>> :(5'5)SH(2g+p+s—3),
i=1 i=1 3 =1
where k; > 2 and ¢; > 0. Since g = ¥; k; + 3; ¢; —r, we find that this matches Conjecture [0.4

Remark 0.6. If some of the k;, ¢;,m;,n; lie outside the polynomial range (i.e. do not satisfy
@), then we still expect the invariant to be polynomial in those parameters which lie in the
polynomial range. A precise conjecture is given in Section [3.3] For example, for k,¢>1 we
expect in the polynomial range the following:

(71 (P)Te(P)) 52 jgmp = 8K + 8I% = 12k — 121 + 20.

Let P(k,¢) denote the polynomial on the right. Then for £ = 0 (which is outside the
polynomial range) one has:

(71(P)70(P)) 52 g = 8K — 12k +28 = P(k,0).

The polynomial behaviour of the descendent invariants is a strong constraint on them.
In basic cases it can be used to determines the Gromov—Witten invariants invariants. We
explain this in the case of point insertions:

Theorem 0.5. The following statements are equivalent:
(i) For every primitive 3, the series (Tk(p))g equals a polynomial of degree 32 for k > 5%/2.

(i) For every primitive B, we have the generalized Bryan-Leung formula:

S
(HTkL(p)>ﬂ - C Hqﬁ /2 |: A(q) ]

The proof relies on a characterization of the function Bg(g) in terms of its (partial)
polynomial behaviour. Similar characterizations exists for A, and Cj ¢, see Section [3| The
partial polynomiality explains the shape of the formulas for A, B, C.

The characterization for the function Ay is the simplest. It simply reads:

Theorem 0.6. The series of functions Ak(q), k >0 (defined in ) s the unique series of
power series satisfying the following conditions:

(a) Ar(q) is a quasi-modular form of weight 2k satisfying ﬁAk =241 (with A_; =0),

(b) for every n >0 there exists a polynomial p,(k) of degree 2n such that for every k >n
we have

1
[A/c(Q)]qn = mpn(k)7

(c) Ao =1+0(q).

0.5 Plan of the paper

In Section [I] we review what is known about the Gromov—Witten theory of K3 surface. In
Section [2] we give the recursion removing descendents of 1. In Section [3] we give and prove
the characterization of the functions Ay, By, Cke. The appendices give further examples of
the polynomiality, and a conjectural Virasoro-type constraint in a special case.
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1 Background

We state some background formulae on the Gromov—Witten invariants of the K3 surface.

1.1 Quasi-modular forms

The algebra of quasi-modular forms is the free polynomial algebra
QMOd = C[GQ, G4, G6]

We have Gi € QMod for all k, and QMod is graded by weight of the generators. The

differential operators D := qd% and d%:g act on QMod and satisfy

d
— D, =-2wt 7
|67 Da] = 2w (7)
where the weight operator wt € End(QMod) acts on the space QMod, of quasi-modular
forms of weight k by multiplication by k.

1.2 Gromov—Witten theory of K3 surfaces

Let S be an algebraic K3 surface. Let 8 € Ho(S,Z) be an effective curve class, i.e. there
exists a non-empty algebraic curve C ¢ S with [C] = 8. Let M;n(S,ﬂ) be the moduli
space of n-marked genus g degree § stable maps (f : C — S,p1,...,p,) where the domain
C is allowed to be disconnected but with the following assumption: For every connected
component C’ c C' we have that (1) the restriction f|cr is non-constant, or (2) the component
C" together with the markings incident to C” is stable.

The usual virtual fundamental class of the moduli space M;n(S, B) vanishes because of
the existence of a holomorphic 2-form on S. Instead, Gromov-Witten theory is defined by
a reduced virtual fundamental class [7]

(M, ,.(S.8)]"* € CHysn (M, ,,(S, B)).

where CHj, denotes the Chow groups. The descendent invariants are defined by

(s (1), (Vi = [ [Tevi ()ul. ®)

(M . (S.8)]

where 1; € H? (M;)R(S, B)) are the cotangent line classes, and ev; :M;,n(s, B) — S are the
evaluation maps at the markings.

The integrals are invariant under deformations of (S, 3) which preserve the Hodge
type of the class 8. This shows the following result:

Theorem 1.1. The invariant (T, (y1)- T, ('yn))jﬁ depends upon (S,B,71,...,7n), where
~; are homogeneous, only through following data:

(i) the divisibility 8 and the square B - f3,
(i) the cohomological degrees of v;,



(iii) for all v; € H°(S) the degree [P, and for all ~; € H*(S) the degree Js%is
(i) for all i,j with dege(7;) =1 the pairings 5-v; and v; -7;.
In other words, if (S',5',71,...,7,,) has the same data as (S,B,71,...,7n), then

(T ()T (V) 5 = (7 (V1) T (V) 51

Proof. This was proven first by Buelles [2], see also [I1 Sec.2.2]. We sketch the argument:
By the moduli theory of K3 surfaces there exists a deformation from (S’,53’) to (S, ) that
keeps B’ of Hodge type. Hence by deformation invariance, we can assume that S’ = S and
B’ = B. Moreover, any isometry m : H*(S,Z) - H*(S,Z) which preserves 8 and the Kéhler
cone, can be realized by a deformation of the K3 surface which preserves the Hodge type of
B. Thus again by deformation invariance we have:

(T (M(71)) 7k, (M1 )))5 5 = (g (71) T, () )5 5 -

The group of such isometries m is Zariski dense in the group O(H?(S,C))s, by which we
denote the stabilizer of 3 in the complex orthogonal group O(H?(S,C)). Tt follows:

ev, (ﬁ zbfi n [M;n(S,ﬂ)]md) € H*(S”)O(H2(S"C))a_ 9)
i=1

The invariants of the orthogonal group are well-understand. Concretely, one has that the
2
ring H*(S”)O(H (5.5 ig generated by the pullbacks of the classes 3 and p from factors,
and the big diagonals A;;. It follows that if (v1,...,7,) and (7{,...,7,,) have the same
pairing data, their intersection with @[) is the same. This finishes the proof. O
For convenience we state the divisor, string and dilaton equation.

Lemma 1.1. For any effective 3 € Hy(S,7Z) and class D € H*(S) we have

(Tl (1) T, (3) T0(D)); 4
=(B-D) (7, (1), (V) 5

n

+ 37y (1) T (1 D)7, (7)) 5

iz
- s
o ¥ LrnD) G ), ()
1<i<j<n 7S 9,8
ki=k,;=0
and
5w s
(Thy (V1) Tk, (’Yn)To(l»g,g = Z (Thy (Y1) Thi1 ()T (%»g,g
iz
- s
e ¥ (L) (e G0 m G G, ()
1<i<j<n \/S 9.8
ki=k;=0
and

{7y (71) 7, (1) 71 (1)) 5 = (29 = 1+ 1) {7, (71) 7, (7)) -

Proof. This follows by the usual arguments. The non-standard formulation arises because
we use moduli space of stable maps with disconnected domain and the marking that we
consider can lie on a component which becomes unstable if we would forget the marking.
This components yield the extra contributions. Then we use the evaluation of the (usual)
virtual class of the moduli space of connected stable maps Mg_’n(S, B) in degree zero:

[Mo,, x S] ifg=0
[Mg.n(S,0)]™ = {prica(S) n [My, x S] ifg=1 (10)
0 ifg>2

O



Remark 1.2. (On the relationship between connected and disconnected invariants; this
remark may be skipped) We can also define connected Gromov—Witten invariants

S,connected * k;
T T = ev; (vi)v.",
(Th: (71) T, (V) g 5 f[ﬂg,n<s,a>1red IiI i (i)
by integrating over the moduli space of stable maps f: C' > S with connected domain curve

C. The relationship to the disconnected invariants is as follows:

Lemma 1.3. If k; > 2 - degc(y;) for all i (that is, the divisor, string and dilaton equation
can not be applied), then the connected and disconnected invariants coincide:

)S connected

(T (01) T, ()5 5 = (T (1) T, ()

Proof. The reduced virtual class of M;n(s , ) vanishes on all components which parametrize
maps f: C — S where f is non-constant on more than one connected component, because
then the standard obstruction theory has two trivial summands, but only one is removed by
the reduction procedure. Hence the only contributing components to the left side are

Mg'7n'(s7ﬁ) X HMQL,TLI(S7O)

for some g',n’, g;,n;. The reduced virtual class of this component is

Z .
[Mg (S, 8)]"* x [T[M g, . (5,0)]7".
=1
By one sees that this component contributes zero if £ > 1. O

1.3 Elliptic K3 surfaces and generating series

As discussed in the last section, in order to evaluate primitive invariants we can specialize
to any K3 surface that we like, as long as it has primitive curve classes of arbitrary square.
The most useful K3 surface to choose is an elliptically fibered one.

Hence let S — P! be an elliptic K3 surface with section B and fiber class F. Let also
W = B + F'. This choice is made so that W, F' span the standard hyperbolic lattice:

Ww?=0, W-F=1, F?=0.

We define the multilinear bracket
= s
(Tkl (m1)- Thy, (’Yn Z Tkl (71)- Thy, (’7n)>q,B+hF

where on the right the genus is specified by the dimension constraint.
If v € H*(S) is an eigenvectors of the operator,

[B- (=), 7" m.]: H*(S) > H*(S5)
then we let wt(7y) be its eigenvalue. Concretely,

1 ifye{p, W}
wt(y)=4-1 ifye{l,F}
0 ifyL{p,1,W,F}.

We assume below that all ; are homogeneous with respect to this grading.
Recall the following two basic results:



Theorem 1.2 (Quasimodularity, [9] together with [4, Sec.4.6]). We have that

))GW

1
(T (1) T, (T € mQM°d2g+n+Zi wt(y;)

Remark 1.4. Alternatively, by the dimension constraint the weight is given by
29 +n + Zwt(%) = Z(ZkZ +2dege (i) + wt(y:) — 1).

Theorem 1.3 (Holomorphic anomaly equation [I3]).

d

i (i, (1) T (Y)Y = 27y (71) T, () 70 (1) 70 (F)) S

n

=23 {7y (Y1) The1 (T ) T, (Y
i=1

+20 3" (i, F) (7, (71) -7, (F) 7, (3))

=1

=23 {7y (1) 7k, (01 (33,%7)) 7, (02 (72, 73)) -+ T, (V)

i<j
where o : H*(S?) - H*(S?) is defined by
o(ymy') =0 whenever vy or ' lic in H*(S) ® QF ® H*(S),

)>GW

>GW

and by
c(WrW)=Ay, c(Wra)=-ar F,
olarW)=-FRa, o(a,a') =(a,d")FRF
for all a,a’ € V = {W, F}* c H*(S).
We also recall a basic splitting statement. Define the normalized correlators:

)0 _ (i, (1) T ()

<1)GW
= A(Q) <Tk1 (71)"'Tlcn ("

{7rs (V1) Tk, (Y

))GW.

The standard degeneration argument given in [9] yields:
Lemma 1.5. Assume that v; € {F,p} for all i, and aj € {B,F}* c H*(S). Then

GW,s

(6o 17, (aj>> T )™ (H - <aj>)

K3

GW,s

1.4 Two more remarks

We end this section with two more remarks, which will not be used later on.

Remark 1.6. We can restate Conjecture [0.2] in the language of elliptic K3 surfaces as
follows. Define

GW
Z(v0,71,---) = (exp(z Tk(’Yk))) .
k>0
Then Conjecture is equivalent the statement: for all ; with degc(7;) > 0 we have

Z(Y0,71,---) = ! exp Z(%;VVJFDqF)Ak(CI)+Z(%,l)Bk(CI)JF1 > (v - 70)Cre(q)
A(q) k>0 2

k>0 k,0>0

where the D,’s in the formula above stand for commuting the operators to the left and
applying them to the full series.

10



Remark 1.7. By the degeneration argument of [9] we obtain relatively nice expressions for
the two most basic invariants

(me(F), (7 (p))

This was already used in [9, App.B|. Explicit formulas can be found in [I0, Appendix]. Let
us recall the expression in the first case:

Consider for g > 0 (with obvious notation) the following generating series of Gromov—
Witten invariants of an elliptic curve E,

o EOFR evs(1)04)
gk =
(-1)* 9=0,
where we used the inverse Hodge class

Ev(l):1—>\1+)\2+...+(—1)gAg.

E
g>1
g

)

Then one has: .
aw 1 & ~Go)k9
{((F))" = g,ki( 2) -
A(g) 40 (k-g)!
The right hand side can be effectively computed using the methods of [15]. However, it is
unclear to the author how to deduce the corresponding case of Conjecture from this.

2 Descendents of 1

We present here the new recursion that allows one to compute a large class of descendent
invariants effectively in terms of the stationary theory.

2.1 Removing insertions with W

Let S — P! be an elliptic K3 surface as in Section and set
V={xeH*(S,C)|z-W=x-F=0}.

For 0; € V arbitrary classes and d > 1 consider a general descendent invariant
s

T s s’ t u
i=1 i=1 i=1 i=1 i=1 B=W+dF
Our first observation is that whenever there are not too many ¢;, one can get rid of the
factors 7, ().
Proposition 2.1. Assume that there are oy, o €V such that
Oé%ZOé:O, 041'O¢2=1, Vi:al-éi:ag-éi:O.

Then we have
s

(ITI 7r: (1) ISI 72 (F) ISI 7, (W) [T 7m. (6:) Iul Tni(p)>
i=1 i=1 i=1 i=1 i=1 W+dF
S

_ (f{m(l)f{m(p N az)f—{rg;(dF ) [T, (60 ﬁTm(p)>

Proof. The set of classes
(W +dF,W,F,5;), (W+dF,dF +a1,F+a,6;)

have the same intersection pairings. Hence the claim follows from Proposition (What is
curious is that there is no isometry that can send W +dF, W, F to W +dF,dF + a1, F + as,
since the second set of vectors is linearly independent, while the first one is not. Nevertheless,
we still have an equality of Gromov—Witten invariants.) O

W+dF
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2.2 The main recursion step
Since we have Proposition [2.1] let us consider an invariant where there are no W-factors:

GW

= ljﬂci(l)ﬁTzi(F)qui(éi)ﬁTm(p) 7

where §; € V. By the string and dilaton equation we can assume that k; > 2 for all 4.
Assume that there are classes oy, as € H?(S,C) such that

a%:agzo, ar-ag =1, Vi: a;-6;=as-6; =0.

We give a formula for I that involves only (r — 1) many factors of 74,(1). Consider the
modified invariant

s s t u GW
IW = Tkl(W) HTkz(l) HTfi (F) HTmi (51) HT’ﬂl(p)
i=2 i=1 i=1 i=1
Lemma 2.2. We have d
— Iy =-21 11
T =2+ (. )

where (...) stands for terms involving invariants with < (r — 1) factors of 7 (1).

Proof. This follows immediately from applying the holomorphic anomaly equation (Theo-
rem to Iy,. Here the first term on the right side of the holomorphic anomaly equation
can be reduced by the string equation (Lemma to involve only r — 1 factors of 75 (1).
The second term for ¢ = 1 yields the term —21I since 7*7, (W) = 1. The other terms do not
create any new 74 (1) factors. O

On the other hand, we can also first apply Proposition to Iy before applying the
holomorphic anomaly equation. First, by Proposition [2.I] we have:

GW
Iy - (( IO (F)H%(a)nm(p)) )

T s t U GwW
+ <Tk1(a1) QTki(l) Ilefi(F + a2) q7m1(51) anl(p)>

(where we don’t have any as in the first line by applying Theorem . Next we apply dgz .
Using the commutation relation we obtain three terms:

T s t U GW
d;(d}'glw =-2wt (<Tk1(F) ngi(l) QT&:(F) -I]lTW(éi) I:!Tnl(p)> )

GW
+D qu <Tk1(F)HTk (1 HTg (F)HTm7((5 HTM(P)> (12)

J GW
dG (Tkl al)HTk (D) HT[ (F+a2)HTml(5)HTnl(p > .

The dgz -derivative can be evaluated by the holomorphic anomaly equation plus the string
equation. The outcome is that all terms only involve at most (r—1) descendents of 1. (Since
the only way new descendents of 1 appear is via the 7*,(~;) term, hence from cohomology
insertions 7; = W).

We now simply equate with (| . ) and solve for I. This gives:

12



Proposition 2.3. Assume that there are classes oy, oo € H*(S,C) such that
a%za%zo, arrag =1, Vi: ay-0; =as-0; =0.
Let (...) stand for the same term as in Lemma[2.4 Then
-2I = (Right hand side of (12)) + (...).
In particular, I can be expressed as a sum of invariants involving < (r — 1) factors 7(1).

We get our general recursion by first applying Proposition 2.1} then applying Proposi-
tion then repeating the process. In each step we have one less factor of 74(1). After
finitely many steps we are left with evaluating a stationary invariant. This proves Theo-
rem (to go from the general K3 surface to the elliptic one, one uses Theorem [1.1]).

2.3 An example of the recursion

The above recursion can be made explicit in a very basic, but still somewhat general case.
We omit the somewhat tedious computation and just state the result.
Let S — P! be the elliptic K3 and consider a orthogonal decomposition

H*(S,2)=U,eUs® L
where U; = Span(W, F') and U, = Span(ay, a2) with
2

alzagzo,al-agzl.

Theorem 2.1. For any v1,...,7n € {F,p, L} and k > 2 we have

(1 (D)7t (1), (7))

(Qk‘ —4d-n+|{i:y=p}+2 2(7%‘ + degc(%‘))) (i1 (F) 7oy (71) T (%))GW

+(Tk—2(P)7'0(1) ﬁﬂci(%))cw

- ¥ {mat@)mn o) [Tm 0:))™"
* 8 Ema6o [T 0))™
- N ewmeaen)m (a0 (F) ln_m(m)‘;w.

3 Polynomial behaviour

The main goal of this section is to characterize the functions Ay, By, Cys defined in , ,
in terms of some basic qualitative properties. This will provide the connection between
Conjecture (which evaluates explicitly the stationary theory) and Conjecture (which
describes the polynomial structure).

3.1 Characterization of the A series

Recall the definition of the A-series:

(-D*

D) = o

Res,_o [(p(z) -4G2)k+%]. (13)

We want to prove here the following characterization:

13



Theorem 3.1. The series of functions Ar(q), k >0 (defined in (2)) is the unique series of
power series satisfying the following conditions:

(a) Ar(q) is a quasi-modular form of weight 2k satisfying ﬁAk =2Ak1 (with A_; =0),

(b) For every n >0 there exists a polynomial p, (k) of degree 2n such that for every k >n
we have

[4k@)], o (8):

1
n (—4)k(2k +1
(c) Ag=1+0(q)
We will first prove the uniqueness part of Theorem [3.1}

Lemma 3.1. There is at most one series Ag(q) for k > 0 satisfying conditions (a-c) of
Theorem [l

To prove the lemma we will use the following well-known fact:
Lemma 3.2. Let f € Mody,. If [f(q)],e =0 for all £ <[], then f(q) =0.

Proof of Lemma[3.1. We argue by induction on k that Ay, ..., Ax_1 uniquely determine Ay.
By (a) and (c) we have Ag = 1. Hence assume that A; is known for ¢ < k — 1. By condition
(a) and Lemma it is enough to know the first |k/12] Fourier-coefficients of Aj. Hence
let n < k/12 and let us find [Ax(¢)]4». By (b) and since k > n we have

1
[Ar(q)]gn = mpn(k)

The polynomial p, (k) is of degree 2n < k/6. By induction we know the value of p,, for all k'
where n < k' < k, in particular for all k/12 < k' < k. Hence p,, is uniquely determined already
by these values, and hence so is p, (k). O

Next we prove that Ag(q) defined by satisfies the conditions (a-c). For (a) and (c)
this is easy by considering the z-expansion of p(z), and left to the reader. We need to prove
(b). We do this in two parts. The first part is also not difficult:

Let p = e* and consider the Fourier expansion of the Weierstrass elliptic functionﬂ

1 D k _ky d
p(p,q) =5+ + k(p" -2+p")q".
ERNCEERPIPY

We obtain that:
1(p+1)?
1(p-1)2
Consider now the square root, taken formally as a power series in g with coefficients Laurent
series (this is possible since the ¢°-coefficient is a square):

Volpa) =1Ga(0) = 5 )+ LR PR D g r )+ (19

where a,,(p) = p"bn(p)/(p+1)?>""! for some polynomial b, (p) € Q[p].

p(p,q) —4G2(q) = +(p—6+p’1)q+....

Proposition 3.3. There exists polynomials p,, (k) of degree 2n such that for all k:

Ve =G| = g T palin

4To distinguish between the Fourier expansion ©(p,q) and the z-series p(z) we will always include the
g-dependence in the former in the notation.
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Proof. The series F(p,q) = 4(p(p, w) —4G2(q)) and H(p,q) = 21/p(p,q) —4G2(q) are both

of the form
(]. +ap1p+ a02p2 + .. ) + (aly,lp_l +aio+.. )q + (ag’,gp_2 + ag,,lp_l +ago + .. )q2 + ...

for some a;; € Q. Hence F(p,gp) and H(p,qp) lie in C[[p,q]] and the result follows from
Lemma c¢) below. O

Lemma 3.4. (a) Let f €1+ R[[q]] be a power series with constant term one and coeffi-
cients in a ring R. Then the q"-coefficient of f* is polynomial of degree < n in k with
coefficients in R.

(b) Let f = 224,50 aijpiqj and h =%, 5o hijpiqj be power series in p,q with agg = 1. Then
the coefficient [fkh]pmqn is a polynomial in k of degree < m +mn. If hog =0, then it is
of degree <m +mn —1.

Proof. For (a) by the binomial theorem we can write f* =3, (I:)qz(l +agqt +azg® +.. )%
Taking the ¢™-coefficient the claim follows since only terms with 4 < n contribute. Part (b)
in case h = 1 reduces to part (a) by factoring out fo =1+ ¥;5; a;op’ and applying (a) twice.
The case of general h reduces to case h =1 by multiplying out. O

The second, upcoming step is to compare the [~],0 and [-],-1 coefficient. Together with
Prop it immediately implies property (b) of Theorem

Proposition 3.5. For any k >0 we have

el 2k+1
Res.-o(p —4G2)""7 =2 [\/@(p, q) —4G2(q) ]
Proof. We let z = 2miz and define

f(x) =p2miz) —4Gs, g(x):=+p(2mix) — 4Gs.

(In our convention g(z) is double-periodic under z — z + m +n - 2wit for m,n € Z. The
scaled function g(2miz) is then double-periodic under = ~ x + m + n7 and is the usual
convention for the Weierstraf elliptic function found in the literature.) The function g(x) is
a priori multivalued. However, in a neighbourhood of x = 0 we can choose the unique branch
such that the Laurent expansion of g(x) starts with 1/(2miz). Recall that the Weierstrass
function p(2miz) and hence also f(x) has two zeros x1,zy in each fundamental domain,
counted with multiplicities. (Since f(—z) = f(x) is even, we have x2 = —z1 up to translation
by an element of the lattice Z7 + Z.) When extending g(z) to the whole plane C,, we hence
run into the sign ambiguity when extending beyond the zeros. The possible solution is
to extend the function away from an appropriate branch cut of these two zeros (and its
translates).
In the limit |g| <« 1 the situation is as follows: Observe that

; 2
1™ +1
f($)|q:0 - Z (627”‘70 — 1)

has a double zero at x = % and its Z-translates, so for small g the two zeros of f(x) are close
to x = 1/2 (modulo Z-translates) and so we can choose the branch cut between these two
adjacent zeros. We now integrate over the boundary v of a fundamental domain with left
corner at ag, for some |g| < 1, as in Figure

Consider the winding numbelﬂ w(a) € Z of f(x) along the straight path from a € R to
a+ 7. We claim that w(a) = -1 for 0 < a « 1, and w(a) = 1 for some a < 1 sufficiently close

+ O(qk+1)
PO

5The winding number along a closed path of f along 7 is defined by ffO’Y dzi =/, ff'((;)) dx. It is the

number of times that f(v(t)) goes in counterclockwise direction around the origin.
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1+7

T2 Re(z)

Figure 1: We integrate over the orange path 7. We assume |g| <« 1, so that the roots z1,x9

of f(x) are close to x = 1/2. The function g(x) =/ f(x) is defined away from the branch
cut (the red line).

to 1. (To see this, note that w(a) is locally constant in a and only jumps when the vertical
line crosses either a zero or a pole of f, where it jumps by 1 when we cross a zero from left
to right, and by —1 when we cross a pole. Since f is 1-periodic, w(a) is 1-periodic in a,
and since f is even, one has that w(-a) = —w(a). Hence for € sufficiently small we obtain
w(l-€)=w(-€) =w(e)+2 and w(l-€) = —w(e-1) = —w(e), and hence w(e) +2 = —w(e), so
w(e) = —=1.) Further, let w'(b) be the winding number of f when moving from br to br + 1
along a straight horizontal line. For ¢ = 0 one easily sees that w’(d) = 0 for b >> 0. Hence,
for |q| < 1, we have that w’(b) = 0 for b close to 1/2.

We conclude that for |g| < 1, the function g(x) (as defined away from its branch cut)
satisfies g(z + 1) = g(«) but g(z + 7) = —g(z). Hence we find the evaluation

Jo@?*ax=2 [ :°+1 o) d =2 Vo lpra) - 4G2(q)2k+1]p0 . (15)

On the other hand, we may apply the Cauchy integral formula to the integral [ g(z)?**dz.
The contribution from the pole at x =0 is the residue

1
—Resg—0g(2)?*" = Res,—o(p - 4G2)k+%.
211

The contribution from the branch cut is given by

I= :t2/ 2g(ac)%”d;t
z1

where we choose one of the two branches of g(z) in a neighbourhood of the line between the
zeros r1,xo. We will show that for |¢| << 1 we have I = O(g**1).
Consider the asymptotic expansion of f(z) near x =1/2 in ¢:

o) = 02D

1-1) +(p-6+p Ng+...
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where p = €2™*_ We find the asymptotic expansion of the zeros x;,zs to be

1iMq1/24-...
7T

z;
2

where the higher order terms are multiples of ¢*2,¢%? etc. (Note that since f(-z) = f(x)
and f(x+1) = f(z), we have f(1/2-x) = f(1/2+z).) The function g(z) has the asymptotic
expansion (14)). Hence if we set x = % +2miT so that p = —e” we obtain the expansion

g(% +T) =Tho(T) + #q-ﬁ- hszZ)

@+ ..

where h(T') are power series in T. Hence
1 2k+1 B " .
g (5 + T) =T ho(T) + T?**  hy (T)q + T* 3ho(T)g? + . ..

for some power series h;(T). We obtain that

4iV2
T =/ ~ ~ ~
£ f * g(0) 2+ de = fwﬁf (T2 g (T) + T2y (T)q + T 2o (T)g?+) dT+. .. = O(¢"*),
z1 T V4
where ... stands for terms of higher order in q. Combining with the Cauchy integral
formula gives

fg(x)zk”da: = Res,_o(p — 4G2)**7 + 2 f : 9(2)**d
¥ ”

and hence completes the claim. O

3.2 Characterization of the B and C series
The characterization of Bg(q) is similar:

Proposition 3.6. The series Bi(q), k >0 defined by is the unique series of power series
which satisfies the following conditions:

(a) Bi(q) is a quasi-modular form of weight 2k + 4 satisfying ﬁBk =2Bj_1 —2A.1.

(b) For every mn > 0 there exists a polynomial q,(k) of degree 2n — 2 such that for every

k>n-1 we have
k!

o = m%(k)

[Bk(Q)]
(¢c) Bo=q+0(q?).

Proof. The proof follows along the lines of the proof of Theorem The uniqueness is
completely parallel. To check that By, satisfies (a) and (c) is again straightforward. To show
(b) one uses the same residue argument to show that

Res.-o (0 - 462) 3 (9. +262)) =2 [Volp ) ~1Ga(@) (0(p.0) +2G2(@)]  +0(*?)

where O(¢**?) appears instead of O(g**!) here because we integrate p — 4G with exponent
k +3/2 instead of k + 1/2. Tt remains to show the desired polynomiality of the first term on
the right. Since p(p,q) + 2G2(q) has constant term zero, the application of Lemma b)
shows that there exists polynomials p,, (k) of degree 2n — 1 such that for all &:

[(6(p.0) - 4G2(a))"* 2 (0 (p.0) + 2Gs(a)) | | = 2% > Pa(k)q".

0
P n>0

Moreover, since we have [p(p, ¢) +2G2],0 = 0 this expression vanishes whenever k = -3/2, so
the polynomial p, (k) is divisible by 2k + 3. The claim follows. O
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Proof of Theorem[0.5, By Lemma [L.5 we know that

GW ~ ~
= _ Bk, (9)-Bk, ()
(H Tkn(p)) - A(q) 5

for some power series Bj(q). If we know (i) then it follows that By, (q) satisfies property
(b) of Propositioil Propoerty (a) follows immediately from (1.3)). Property (c) is clear.
Hence one gets By = B. The converse direction is also by Proposition O

We also record the properties of Ci,. Since by definition we have Cyg = Cox = Bi—1 we
will assume k, ¢ > 1.

Proposition 3.7. The series Cye(q), k,€ > 1 defined by satisfies the following conditions:

(a) Cye is a quasi-modular form of weight 2k + 20 + 2 satisfying

d

——Chp = 2C)- 2C) -1 — 2AR Ay

G k¢ k-1,0 + 20k 0-1 ke

(b) For every n > 0 there exists a polynomial P, (k,¢) of degree 2n — 2 such that for all
kl>n-1:

B 1

C(=4)R(2k - )N (=4)E(2¢ - 1!

[Crelgn P, (k).

(¢) For every £ >1 and every n >0 there exists a polynomial p,(k) of degree 2n —2 such

that for all k>n—1:
1

[Ck,é]q" = mpn

(k).
(d) Cre=0(q).
(e) Cre=Clyy for all k, L.

The Cr¢ are uniquely determined by properties (a,c,e).

Proof. The uniqueness is straightforward (determine first Cj; for all k, then Cyo for all k,
and so on). Conversely, (a,e) is clear and (d) follows from (b) using n = 0. To show (b)
one argues as in the proof of Proposition (in particular, using that for fixed zo, the p°-
coefficient of (21 — 22) + 2G2 vanishes). For part (¢) one argues similarly using Lemma
below, which is an analogue of Lemma [3.4] and whose proof is left to the reader. O

Lemma 3.8. (a) Let f,g € 1+qR[[q]] power series with constant term one and coefficients
in a ring R. Then [f*g'4 is a polynomial in k,l of degree <n.

(b) Let f(p1,q) € C[[p1,q]] and g(p2,q) € C[[p2,q]] be power series, both with constant
term one, and let h(p1,p2,q) € C[[p1,p2,q]] be any power series. Then the coefficient
[fkglh]p;nlp;nzqn is a polynomial in k,€ of degree < my + mao +n, and of degree <
my +mg+n—1if h has zero constant term.

Remark 3.9. Using the above characterizations of the functions A, B, C' one can show that
Conjecture implies Conjecture in the stationary case.

3.3 An upgrade of Conjecture

We record here the following conjectural strengthening of the polynomiality property:
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Conjecture 3.10 (Upgrade of Conjecture [0.4). For any subsets I, c {1,...,z} for x €
(r,s,t,u), and for k;,€;,m;,n; fixed whenever i does not lie in I,., I, Iy, I, respectively (and
satisfying k;,m; > 1), there exists a polynomial p of degree 2 +2—2u—t+7r such that for all
ki, li,mi,n; satisfying @ foriin I., I, I}, I,, we have

T S t u S
<<H T, (1) [T 76, (B) [T, (00) T T Tn,;(P)» = p ((ki)ier, » (0i)ier, , (Mi)ier, > (Ni)ier,, ) -
=1 =1 =1 =1 B

Example 3.11. For k, /> %/2 + 3 we have:
(T (1) 7e(1)) 52 jammy = 2(k +1-3)(2k + 21 - 5)
(V) 7e(1) )32 jamg = 16(k + 1 = 3)(4k> + 4?1 + 4kI* + 41°
— 16k* — 12kl — 161> + 29k + 291 — 29)
(7 (1) 7e(1) )52 jomy = 8(k + 1= 3) (32K + 32k*1 + 128k%1% + 128k%1° + 32K1* + 321
- 336k* — 448k31 — 704Kk%1% - 448K1® - 3361* + 1392k> + 1328K?1
+1328k(* + 13921° - 2236k” — 1624kl — 2236> + 1780k + 17801 — 1049)

On the other hand, for £ < 3 we have polynomiality only in k for k > 5%/2 + 3. For example,

()T (1)) 52000 = 32(K* =2k +3)(2k -3)(k=1) = P(k, 1) +32k° - 112k* + 192k - 96
(D)2 (1)) 52900 = 16 (2% = 5K + 12k - 6)(2k - 1) = P(k,2) +48

(7 ()73 (1)) 52900 = 16 (4% — 4K° + 29k + 22) k = P(k,3)

where

P(k,1) =16(k + 1 - 3)(4k> + 4k>1 + 4k1* + 41° — 16k” — 12k — 161 + 29k + 291 — 29)

is the polynomial answer for k,¢ > 3. By definition we have excluded here the case £ = 0.

A Further examples

We list some more computations for Gromov—Witten invariants in the polynomial range.
This assumes Conjecture (in order that we can apply our algorithm of Theorem, and
Conjecture [0.4] to get a bound on the degree of the polynomial. However, the computations
are also always a check on the polynomiality since we computed more terms than was
required to fix the degree of the polynomial.

Example A.1. For k,¢ > 3?/2 - 1 we have:
<<Tk(P)T£(P)>>§2/2:1 =1
(i (P)Te(P) )52 j9mg = 8K + 817 = 12k — 121 + 20
512 4 1712

64 64 512
S
(7 (P)Te(P) ) 32 j2=3 = gk“ +64k%1% + 3 — It = k3 - 96K21 - 96k1* - 3 == 3 —
1712 , 1 24 1024
lddpg ¢ S2p 1024, 1024,
3 3 3
Example A.2. Let aj,as L 3 with af =a3 =0 and g - ag = 1. For k, ¢ > max(3?/2,1) we
have:
{(m(a)me(@2) ) 52 pomg = ~1/4
29
(mi(an)Te(a2) V3o omy = =2k =2kl =207 + Tk + 71 - 5
16 32 64 32,5 16, 368
(7(n)Te(02) )52 jom 2_——k4 3 L k212 3 iy 75 3 It 64K+ = k%
. 368 016 1016 ,

?kl+64l3—Tk -432kl - 3 —— 1 +678k + 6781 - 606
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Example A.3. For k,/ > 3?/2 we have:

(7 (P)Te(F)) 52900 = 1
(e (P)Te(F) )52 0y = 8™ + 1617 — 12k — 241 + 6

4 12
(7 (P)Te(F)) 52 9m0 = %k‘* +128k21% + 641 - %k?’ — 192k - 192k1* - 51213

s ?k’z + 288K + 13441° - ?k - 4721 -512

Example A.4. For ky, ko, ks > 3%/2 + 3 we have

(7ky (D) Ty (D)Tky (1)) 52921 = 41 + ke + kg = 4)(2ky + 2k + 2k = 7) (ky + ki + ks = 3)

Ty (D)7, (1) 7k (1) )52 2o = 32 (kr + kg + kg = 4) (2ky + 2kz + 2k — 7) (2k5 + 2kTka + 2k k3
+2k5 + 2k% k3 + 2k3 k3 + 2k k3 + 2kok3 + 2k5 — 9kT — 6k ko
~ 9k3 — 6k k3 — 6kokz — 9K3 + 17k + 17kg + 17ks — 21)

7y (D) Thy (1) 7k (1) )52 oy = 16(ky + kg + ks = 4) (2ky + 2k + 2k — 7) (16K + 16k ky + 647 k3
+64k2kS + 16k, k5 + 16k5 + 16k1 ks + 64k kaks + 16ksks + 64k k2
+64kTkok3 + 64k  k3k3 + 64k5k3 + 64K kS + 64k3k3 + 16k, k3 + 16kok3
+16k5 — 176k — 224k3 ky — 384k2 k2 — 224k, k3 — 176k5 — 224k3 k3
—192kTkoks — 192k k3 ks — 224k5 ks — 384k% k3 — 192k kok3 — 384k k3
— 224k k3 — 224kok3 — 176k5 + T92K3 + T44k3 ko + T4dk1 k3 + 792k
+ T44k3 kg + 432k koks + T44k2 ks + 744k, k2 + T44kok? + T92k5 — 1402k%
— 980k ky — 1402k3 — 980k: ks — 980koks — 1402k + 1221k,
+1221ky + 1221k3 — 873)
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