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Abstract

We study the reduced descendent Gromov–Witten theory of K3 surfaces in primitive
curve classes. We present a conjectural closed formula for the stationary theory, which
generalizes the Bryan-Leung formula. We also prove a new recursion that allows to
remove descendent insertions of 1 in many instances. Together this yields an efficient
way to compute a large class of invariants (modulo the conjecture on the stationary
part). As a corollary we conjecture a surprising polynomial structure which underlies
the Gromov–Witten invariants of the K3 surface.

0 Introduction

0.1 State of the art

Let S be a K3 surface and let β ∈ H2(S,Z) be an effective curve class. The (reduced)
descendent Gromov–Witten invariants of S are defined by integrating over the moduli space
of n-marked genus g degree β stable maps:

⟨τk1(γ1)⋯τkn(γn)⟩
S
g,β = ∫

[M
○
g,n(S,β)]

red
∏
i

ev∗i (γi)ψ
ki
i , (1)

where k1, . . . , kn ≥ 0 and γ1, . . . , γn ∈H∗(S). We refer to Section 1.2 for more details on the
definition. We say that the descendent invariant (1) is:

� stationary if deg(γi) > 0 for all i,

� primitive if the curve class β ∈H2(S,Z) is primitive.

For dimension reasons the invariant (1) vanishes unless we have1

g =
n

∑
i=1

(ki + degC(γi) − 1).

Hence we fix g by this constraint and often drop it from notation.
The most important conjecture about the Gromov–Witten theory of the K3 surface says

that the descendent invariants are completely determined by the primitive invariants. We
recall the conjecture. Let p ∈H4(S,Z) denote the class of a point.

Conjecture 0.1 (Multiple cover conjecture [12, Conj. C2]). For every positive divisor k∣β
let Sk be a K3 surface and let φk ∶ H2(S,R) → H2(Sk,R) be a real isometry such that
φk(β/k) is a primitive effective curve class. Extend φk to an isomorphism φk ∶H∗(S,R) →
H∗(Sk,R) by setting φk(1) = 1 and φk(p) = p. Then we have:

⟨τk1(γ1)⋯τkn(γn)⟩
S
g,β = ∑

k∣β

k2g−3+∑
n
i=1 degC(γi) ⟨τk1(φk(γ1))⋯τkn(φk(γn))⟩

Sk

g,φk(β/k)
.

1Here degC(γ) is the complex cohomological degree of γ, that is γ ∈ H2degC(γ)(S).
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The conjecture was proven by Bae and Bülles [1] when β has divisibility 2, but remains
wide open for higher divisibility.

Although the imprimitive invariants are difficult to understand, the situation for the
primitive invariants is much better. Indeed, Maulik, Pandharipande and Thomas provided
in [9] an algorithm which can determine all primitive invariants using a combination of
tautological relations coming from the moduli space of curves and degenerations techniques.
As a corollary they showed that the natural generating series of primitive invariants are
quasi-modular forms. Further in [13] it was shown using this algorithm that these quasi-
modular forms satisfy a holomorphic anomaly equation. We review these results in Section 1.

One could say that the story is finished here and the primitive invariants are completely
determined. However, there are two problems: First, the algorithm of [9] is extremely
complicated and increasingly slow when the genus grows. We refer to work of Sendra [20]
where this algorithm was implemented. Computations in his implementation are feasible
only up to genus g = 3. Second, very few explicit formulas for the primitive invariants are
known. This is in strong contrast to the case of elliptic curves, where the Bloch-Okounkov
formula explicitly evaluates all invariants in closed form [15, 16, 19]. Therefore, when it
comes to actual computations, the structure of the primitive invariants of the K3 surface is
still very mysterious. At this point, the only general formula for the descendent invariants
is the following beautiful result of Bryan and Leung:2

For all k ≥ 2 even, define the weight k Eisenstein series

Gk(q) = −
Bk
2 ⋅ k
+ ∑
n≥1
∑
d∣n

dk−1qn

(with Bk the Bernoulli numbers) and the modular discriminant

∆(q) = q∏
n≥1

(1 − qn)24.

Theorem 0.1 (Bryan-Leung, [3]). For primitive β we have

⟨τ0(p)n⟩Sβ = Coeffqβ2/2 [
1

∆(q)
(q d
dq
G2(q))

n

] .

Here Coeffqm(f) stands for the qm-coefficient of a Laurent series f .

0.2 A conjectural formula for the stationary theory

The first result of this paper is a conjectural formula for the stationary primitive invariants
of the K3 surface, which will generalize the Bryan-Leung evaluation.

To state the formula we use the Laurent expansion of the Weierstraß elliptic function
℘(z) around the origin, which reads

℘(z) = 1

z2
+ 2∑

k≥4

Gk(q)
zk−2

(k − 2)!
,

and where we have set Gk = 0 for k odd. For all k ≥ 0 define the series

Ak(q) =
(−1)k

(2k + 1)!!
Resz=0 [(℘(z) − 4G2)k+

1
2 ] (2)

Bk(q) =
(−1)k

(2k + 3)!!
Resz=0 [(℘(z) − 4G2)k+

3
2 (℘ + 2G2)] (3)

2We restrict ourselves here to the pure descendent invariants. There are more formulas known if one
allows more general insertions, such as the Hodge classes λi. Most notable here is the Katz-Klemm-Vafa
formula proven in [18]. Arbitrary linear Hodge integrals with descendents are better considered as part of
the Pandharipande-Thomas theory of S × C. Their explicit form is taken up in [14]. For Gromov–Witten
invariants of the K3 surface involving the double ramification cycle, see also [6].
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and for k, ℓ ≥ 0 the series

Ckℓ(q) =
(−1)k+ℓ−1

(2k + 1)!!(2ℓ + 1)!!

⋅Resz1=0Resz2=0 [(℘(z1) − 4G2)k+
1
2 (℘(z2) − 4G2)ℓ+

1
2 (℘(z1 − z2) + 2G2)] . (4)

The Weierstraß elliptic function ℘(z) is taken above as a formal power series in z with
coefficients quasi-modular forms (see Section 1.1), so that

℘(z) − 4G2 =
1

z2
− 4G2 +G4z

2 +O(z4).

Its square root is then computed formally, as in

(℘ − 4G2)
1
2 = 1

z
− 2G2z + (−2G2

2 +
1

2
G4) z3 +O(z4).

We obtain the well-defined z-series with quasi-modular coefficients:

(℘ − 4G2)k+
1
2 ∶= (℘(z) − 4G2)k(℘ − 4G2)

1
2

Taking the residue at z = 0 means simply taking the z−1 coefficient. The double factorial
stands for the product of odd factors:

(2k + 1)!! = (2k + 1)!
2k ⋅ k!

= (2k + 1)(2k − 1)⋯3 ⋅ 1.

For example,

A0 = 1, A1 = 2G2, A2 = 2G2
2 +

1

6
G4, . . .

B0 = −2G2
2 +

5

6
G4, B1 = −

8

3
G3

2 +
4

3
G2G4 −

7

360
G6, . . .

C0,0 = 0, C1,0 = B0, C1,1 = −
16

3
G3

2 +
10

3
G2G4 −

7

72
G6, . . . .

Given cohomology classes γ0, γ1, γ2, . . . ∈H∗(S) define the partition function

Zβ(γ0, γ1, . . .) ∶= ⟨exp(∑
k≥0

τk(γk))⟩
S

g,β

= ∑
m0,m1,m2,...≥0

1

m0!m1!m2!⋯
⟨τ0(γ0)m0τ1(γ1)m1τ2(γ2)m2⋯⟩

S

β
.

The partition function encodes all Gromov–Witten invariants of S in class β.3

Let (γ1, γ2) = ∫S γ1 ∪ γ2 denote the intersection pairing on H∗(S).
The following determines all primitive stationary invariants.

Conjecture 0.2. Let β ∈H2(S,Z) be primitive and assume that deg(γi) > 0 for all i. Then:

Zβ(γ0, γ1, . . .) = Coeffβ2/2

⎡⎢⎢⎢⎢⎣

1

∆(q)
exp
⎛
⎝∑k≥0
(γk, β)Ak(q) + ∑

k≥0

(γk,1)Bk(q) +
1

2
∑
k,ℓ≥0

(γk ⋅ γℓ)Ckℓ(q)
⎞
⎠

⎤⎥⎥⎥⎥⎦
.

3Concretely, choose a basis (ea)23a=0 of H∗(S), let ta,k be formal variables and consider the classes

γk = ∑23
a=0 ta,kea. Then we can extract Gromov–Witten series from the partition function Zβ by the rule:

⟨τk1
(ea1)⋯τkn(ean)⟩

S

β
= ( d

dta1,k1

⋯ d

dtan,kn

Zβ(γ1(t), γ2(t), . . . , ))
RRRRRRRRRRRt=0

.
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For example, we obtain the full evaluation of the descendents of point classes:

⟨
n

∏
i=1

τki(p)⟩
S

β

= Coeffqβ2/2 [
Bk1(q)⋯Bkn(q)

∆(q)
] .

This generalizes the Bryan-Leung formula by the simple observation:

B0 = q
d

dq
G2

If F ∈H2(S) is a class satisfying F 2 = 0 and β ⋅ F = 1 we obtain

⟨
n

∏
i=1

τki(F )⟩
S

β

= Coeffqβ2/2 [
Ak1(q)⋯Akn(q)

∆(q)
] .

For α,α′ ∈H2(S) with α ⋅ β = α′ ⋅ β = 0 we get:

⟨τk(α)τℓ(α′)⟩
S

β
= Coeffβ2/2(α,α′)Ckℓ(q)∆(q)−1.

The structure of the conjecture is inspired by the structure of multiplicative genera of
the Hilbert schemes of points of a surface, as given in [5].

0.3 Descendents of 1

For elliptic curves there are explicit rules (called Virasoro constraints) which recursively
remove the descendents insertions τk(1) from the Gromov–Witten bracket [16]. This means
that for elliptic curves, the stationary theory determines all Gromov–Witten invariants,
see [19] for explicit formulas. Virasoro constraints have been conjectured to hold for any
smooth projective variety [17]. However, for K3 surfaces we use reduced Gromov–Witten
theory which is non-standard. One can check that the usual Virasoro constraints do not
hold in this case. A modified formulation of Virasoro constraints for reduced invariants is
not known currently, not even on a conjectural level. Hence currently it is not clear what
the dependence on τk(1) factors should be for K3 surfaces.

In this paper we will explain a simple trick that still allows us to gain information about
descendents of 1 for a large class of invariants. The trick is based on the holomorphic
anomaly equation and yields a recursion. We start with a basic example:

Theorem 0.2. Let β be primitive. For k ≥ 2 we have

⟨τk(1)⟩
S

β
= ⟨τk−3(p)⟩

S

β
+ 2(k − 2)⟨τk−1(F )⟩

S

β

where F ∈H2(S) is any class such that β ⋅ F = 1 and F 2 = 0.

A more complicated example is:

Theorem 0.3. Let β be primitive. For k ≥ 2 and ℓ ≥ 0 we have

⟨τk(1)τℓ(p)⟩ = ⟨τk−3(p)τℓ(p)⟩ + ⟨τk−2(p)τℓ−1(p)⟩
+ (2k + 2ℓ)⟨τk−1(F )τℓ(p)⟩ − ⟨τk−1(α1)τℓ+1(α2)⟩

where the class F ∈ H2(S,Q) is as before and α1, α2 ∈ H2(S,Q) are any classes orthogonal
to β and F satisfying α2

i = 0 and α1 ⋅ α2 = 1.

Remark 0.3. The formulas in Theorem 0.2 and 0.3 also hold for k ∈ {0,1} if we use the
convention τk(γ) = δk+2,0 ∫S γ for all k < 0.

4



An even more general example can be found in Theorem 2.1 below. Our recursion applies
to a very large class of descendent invariants, but does not seem to give nice formulas in
general. Hence for now we just formulate the existence of the recursion and its scope and
refer to Section 2 for details.

Theorem 0.4. For γ1, . . . , γn ∈H∗(S) let r = ∣{i ∶ degC(γi) = 1}∣. Assume that there are

α
(i)
1 , α

(i)
2 ∈H

2(S,C), i = 1, . . . ,2r

such that

� each α
(i)
ℓ is orthogonal to β and all γi that lie in H2(S),

� α
(i)
1 ⋅ α

(i)
1 = α

(i)
2 ⋅ α

(i)
2 = 0 and α

(i)
1 ⋅ α

(i)
2 = 1

� α
(i)
ℓ ⋅ α

(j)
m = 0 for all ℓ,m and i, j.

Then the recursion described in Section 2 determines the primitive descendent invariant
⟨τk1(γ1)⋯τkn(γn)⟩Sg,β in terms of the stationary invariants.

For example, if γi ∈ {1, β,p}, then the assumption of Theorem 0.4 is satisfied for r ≤ 5.
Together with Conjecture 0.2 this allows to (conjecturally) compute a large class of

primitive invariants. An implementation of this algorithm has been made by the author and
can be found on his webpage. To give a concrete example, a short computer computation
and assuming Conjecture 0.2 gives the genus 29 invariant

⟨τ8(1)τ5(1)τ10(1)τ4(p)τ3(p)⟩Sg=29,β2/2=3 = −
13094491

333598540006510406597452234752000000
.

0.4 Polynomial behaviour

There is a striking polynomial behaviour that can be numerically observed in the descendent
invariants of the K3 surface. Let β ∈H2(S,Z) be a primitive effective curve class with β2 ≠ 0,
let δ1, . . . , δt ∈H2(S) with δi ⋅ β = 0, and consider the descendent invariant:

⟨
r

∏
i=1

τki(1)
s

∏
i=1

τℓi(β)
t

∏
i=1

τmi(δi)
u

∏
i=1

τni(p)⟩
S

β

. (5)

Assuming ki,mi ≥ 1, we can normalize the invariant by a certain combinatorial factor,
defining:

⟪
r

∏
i=1

τki(1)
s

∏
i=1

τℓi(β)
t

∏
i=1

τmi(δi)
u

∏
i=1

τni(p)⟫
S

β

∶=
r

∏
i=1

(−4)ki−1(2ki − 1)!!
s

∏
i=1

(−4)ℓi(2ℓi + 1)!!
t

∏
i=1

(−4)mi−1(2mi − 1)!!
t

∏
i=1

(−4)ni(2ni + 1)!!

⋅ ⟨
r

∏
i=1

τki(1)
s

∏
i=1

τℓi(β)
t

∏
i=1

τmi(δi)
u

∏
i=1

τni(p)⟩
S

β

.

We then make the following conjecture:

Conjecture 0.4. There exists a polynomial p(x1, . . . , xr+s+t+u) of degree β2 + 2 − 2u − t + r
such that for all

ki ≥ β2/2 + 3 − (u + 1

2
t), ℓi,mi, ni ≥ β2/2 + 1 − (u + t/2), (6)

we have

⟪
r

∏
i=1

τki(1)
s

∏
i=1

τℓi(β)
t

∏
i=1

τmi(δi)
u

∏
i=1

τni(p)⟫
S

β

= p(k1, . . . , kr, ℓ1, . . . , ℓs,m1, . . . ,mt, n1, . . . , nu).
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In the above conjecture we define the degree of a multivariable polynomial p(x1, . . . , xn) =
∑i1,...,in ai1,...,inx

i1
1 ⋯xinn to be the maximum of i1 + . . . + in for which ai1,...,in ≠ 0.

The bound β2/2 + 1 − (u + t/2) is precisely the dimension of the locus of curves in the
linear system ∣O(β)∣ incident to u points as well as to generic smooth cycles representing
the classes δi. This points to a geometric reason for the polynomiality.

Example 0.5. Let β2 = −2, so that β is the class of a smooth rational curve. Then all
reduced invariants have been computed by Maulik [8]. The bracket (5) vanishes if t > 0 or
u > 0 (since the rational curve cannot move). For the remaining terms the formula is:

⟪
r

∏
i=1

τki(1)
s

∏
i=1

τℓi(β)⟫
S

β

= (β ⋅ β)s
r

∏
p=1

(2g + p + s − 3),

where ki ≥ 2 and ℓi ≥ 0. Since g = ∑i ki +∑i ℓi − r, we find that this matches Conjecture 0.4.

Remark 0.6. If some of the ki, ℓi,mi, ni lie outside the polynomial range (i.e. do not satisfy
(6)), then we still expect the invariant to be polynomial in those parameters which lie in the
polynomial range. A precise conjecture is given in Section 3.3. For example, for k, ℓ ≥ 1 we
expect in the polynomial range the following:

⟪τk(p)τℓ(p)⟫Sβ2/2=2 = 8k
2 + 8l2 − 12k − 12l + 20.

Let P (k, ℓ) denote the polynomial on the right. Then for ℓ = 0 (which is outside the
polynomial range) one has:

⟪τk(p)τ0(p)⟫Sβ2/2=2 = 8k
2 − 12k + 28 ≠ P (k,0).

The polynomial behaviour of the descendent invariants is a strong constraint on them.
In basic cases it can be used to determines the Gromov–Witten invariants invariants. We
explain this in the case of point insertions:

Theorem 0.5. The following statements are equivalent:

(i) For every primitive β, the series ⟨τk(p)⟩Sβ equals a polynomial of degree β2 for k ≥ β2/2.
(ii) For every primitive β, we have the generalized Bryan-Leung formula:

⟨
n

∏
i=1

τki(p)⟩
S

β

= Coeffqβ2/2 [
Bk1(q)⋯Bkn(q)

∆(q)
] .

The proof relies on a characterization of the function Bk(q) in terms of its (partial)
polynomial behaviour. Similar characterizations exists for Ak and Ck,ℓ, see Section 3. The
partial polynomiality explains the shape of the formulas for A,B,C.

The characterization for the function Ak is the simplest. It simply reads:

Theorem 0.6. The series of functions Ak(q), k ≥ 0 (defined in (2)) is the unique series of
power series satisfying the following conditions:

(a) Ak(q) is a quasi-modular form of weight 2k satisfying d
dG2

Ak = 2Ak−1 (with A−1 = 0),
(b) for every n ≥ 0 there exists a polynomial pn(k) of degree 2n such that for every k ≥ n

we have

[Ak(q)]
qn
= 1

(−4)k(2k + 1)!!
pn(k),

(c) A0 = 1 +O(q).

0.5 Plan of the paper

In Section 1 we review what is known about the Gromov–Witten theory of K3 surface. In
Section 2 we give the recursion removing descendents of 1. In Section 3 we give and prove
the characterization of the functions Ak, Bk, Ckℓ. The appendices give further examples of
the polynomiality, and a conjectural Virasoro-type constraint in a special case.
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1 Background

We state some background formulae on the Gromov–Witten invariants of the K3 surface.

1.1 Quasi-modular forms

The algebra of quasi-modular forms is the free polynomial algebra

QMod = C[G2,G4,G6].

We have Gk ∈ QMod for all k, and QMod is graded by weight of the generators. The
differential operators Dq ∶= q ddq and d

dG2
act on QMod and satisfy

[ d

dG2
,Dq] = −2wt (7)

where the weight operator wt ∈ End(QMod) acts on the space QModk of quasi-modular
forms of weight k by multiplication by k.

1.2 Gromov–Witten theory of K3 surfaces

Let S be an algebraic K3 surface. Let β ∈ H2(S,Z) be an effective curve class, i.e. there

exists a non-empty algebraic curve C ⊂ S with [C] = β. Let M
○

g,n(S,β) be the moduli
space of n-marked genus g degree β stable maps (f ∶ C → S, p1, . . . , pn) where the domain
C is allowed to be disconnected but with the following assumption: For every connected
component C ′ ⊂ C we have that (1) the restriction f ∣C′ is non-constant, or (2) the component
C ′ together with the markings incident to C ′ is stable.

The usual virtual fundamental class of the moduli space M
○

g,n(S,β) vanishes because of
the existence of a holomorphic 2-form on S. Instead, Gromov–Witten theory is defined by
a reduced virtual fundamental class [7]

[M○

g,n(S,β)]red ∈ CHg+n(M
○

g,n(S,β)),

where CHk denotes the Chow groups. The descendent invariants are defined by

⟨τk1(γ1)⋯τkn(γn)⟩
S
g,β = ∫

[M
○
g,n(S,β)]

red
∏
i

ev∗i (γi)ψ
ki
i . (8)

where ψi ∈ H2(M○

g,n(S,β)) are the cotangent line classes, and evi ∶M
○

g,n(S,β) → S are the
evaluation maps at the markings.

The integrals (8) are invariant under deformations of (S,β) which preserve the Hodge
type of the class β. This shows the following result:

Theorem 1.1. The invariant ⟨τk1(γ1)⋯τkn(γn)⟩
S
g,β depends upon (S,β, γ1, . . . , γn), where

γi are homogeneous, only through following data:

(i) the divisibility β and the square β ⋅ β,
(ii) the cohomological degrees of γi,
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(iii) for all γi ∈H0(S) the degree ∫S pγi, and for all γi ∈H4(S) the degree ∫S γi,
(iv) for all i, j with degC(γi) = 1 the pairings β ⋅ γi and γi ⋅ γj.
In other words, if (S′, β′, γ′1, . . . , γ′n) has the same data as (S,β, γ1, . . . , γn), then

⟨τk1(γ1)⋯τkn(γn)⟩
S
g,β = ⟨τk1(γ

′
1)⋯τkn(γ′n)⟩

S′

g,β′ .

Proof. This was proven first by Buelles [2], see also [11, Sec.2.2]. We sketch the argument:
By the moduli theory of K3 surfaces there exists a deformation from (S′, β′) to (S,β) that
keeps β′ of Hodge type. Hence by deformation invariance, we can assume that S′ = S and
β′ = β. Moreover, any isometry m ∶H∗(S,Z) →H∗(S,Z) which preserves β and the Kähler
cone, can be realized by a deformation of the K3 surface which preserves the Hodge type of
β. Thus again by deformation invariance we have:

⟨τk1(m(γ1))⋯τkn(m(γn))⟩
S
g,β = ⟨τk1(γ1)⋯τkn(γn)⟩

S
g,β .

The group of such isometries m is Zariski dense in the group O(H2(S,C))β , by which we
denote the stabilizer of β in the complex orthogonal group O(H2(S,C)). It follows:

ev∗ (
n

∏
i=1

ψkii ∩ [M
○

g,n(S,β)]red) ∈H∗(Sn)O(H
2
(S,C))β . (9)

The invariants of the orthogonal group are well-understand. Concretely, one has that the

ring H∗(Sn)O(H
2
(S,C))β is generated by the pullbacks of the classes β and p from factors,

and the big diagonals ∆ij . It follows that if (γ1, . . . , γn) and (γ′1, . . . , γ′n) have the same
pairing data, their intersection with (9) is the same. This finishes the proof.

For convenience we state the divisor, string and dilaton equation.

Lemma 1.1. For any effective β ∈H2(S,Z) and class D ∈H2(S) we have

⟨τk1(γ1)⋯τkn(γn)τ0(D)⟩
S
g,β

=(β ⋅D) ⟨τk1(γ1)⋯τkn(γn)⟩
S
g,β

+
n

∑
i=1

⟨τk1(γ1)⋯τki−1(γiD)⋯τkn(γn)⟩
S
g,β

+ ∑
1≤i<j≤n
ki=kj=0

(∫
S
γiγjD) ⟨τk1(γ1)⋯τ̂ki(γi)⋯τ̂kj(γj)⋯τkn(γn)⟩

S

g,β

and

⟨τk1(γ1)⋯τkn(γn)τ0(1)⟩
S
g,β =

n

∑
i=1

⟨τk1(γ1)⋯τki−1(γi)⋯τkn(γn)⟩
S
g,β

+ ∑
1≤i<j≤n
ki=kj=0

(∫
S
γiγj) ⟨τk1(γ1)⋯τ̂ki(γi)⋯τ̂kj(γj)⋯τkn(γn)⟩

S

g,β

and
⟨τk1(γ1)⋯τkn(γn)τ1(1)⟩

S
g,β = (2g − 1 + n) ⟨τk1(γ1)⋯τkn(γn)⟩

S
g,β .

Proof. This follows by the usual arguments. The non-standard formulation arises because
we use moduli space of stable maps with disconnected domain and the marking that we
consider can lie on a component which becomes unstable if we would forget the marking.
This components yield the extra contributions. Then we use the evaluation of the (usual)
virtual class of the moduli space of connected stable maps Mg,n(S,β) in degree zero:

[Mg,n(S,0)]vir =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[M0,n × S] if g = 0
pr∗2c2(S) ∩ [M1,n × S] if g = 1
0 if g ≥ 2

(10)
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Remark 1.2. (On the relationship between connected and disconnected invariants; this
remark may be skipped) We can also define connected Gromov–Witten invariants

⟨τk1(γ1)⋯τkn(γn)⟩
S,connected
g,β ∶= ∫

[Mg,n(S,β)]red
∏
i

ev∗i (γi)ψ
ki
i ,

by integrating over the moduli space of stable maps f ∶ C → S with connected domain curve
C. The relationship to the disconnected invariants is as follows:

Lemma 1.3. If ki ≥ 2 − degC(γi) for all i (that is, the divisor, string and dilaton equation
can not be applied), then the connected and disconnected invariants coincide:

⟨τk1(γ1)⋯τkn(γn)⟩
S
g,β = ⟨τk1(γ1)⋯τkn(γn)⟩

S,connected
g,β

Proof. The reduced virtual class ofM
○

g,n(S,β) vanishes on all components which parametrize
maps f ∶ C → S where f is non-constant on more than one connected component, because
then the standard obstruction theory has two trivial summands, but only one is removed by
the reduction procedure. Hence the only contributing components to the left side are

Mg′,n′(S,β) ×∏
i

Mgi,ni(S,0)

for some g′, n′, gi, ni. The reduced virtual class of this component is

[Mg′,n′(S,β)]red ×
ℓ

∏
i=1

[Mgi,ni(S,0)]vir.

By (10) one sees that this component contributes zero if ℓ ≥ 1.

1.3 Elliptic K3 surfaces and generating series

As discussed in the last section, in order to evaluate primitive invariants we can specialize
to any K3 surface that we like, as long as it has primitive curve classes of arbitrary square.
The most useful K3 surface to choose is an elliptically fibered one.

Hence let S → P1 be an elliptic K3 surface with section B and fiber class F . Let also
W = B + F . This choice is made so that W,F span the standard hyperbolic lattice:

W 2 = 0, W ⋅ F = 1, F 2 = 0.

We define the multilinear bracket

⟨τk1(γ1)⋯τkn(γn)⟩
GW ∶=

∞

∑
h=0

qh−1 ⟨τk1(γ1)⋯τkn(γn)⟩
S
g,B+hF

where on the right the genus is specified by the dimension constraint.
If γ ∈H∗(S) is an eigenvectors of the operator,

[B ⋅ (−), π∗π∗] ∶H∗(S) →H∗(S)

then we let wt(γ) be its eigenvalue. Concretely,

wt(γ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if γ ∈ {p,W}
−1 if γ ∈ {1, F}
0 if γ ⊥ {p,1,W,F}.

We assume below that all γi are homogeneous with respect to this grading.
Recall the following two basic results:
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Theorem 1.2 (Quasimodularity, [9] together with [4, Sec.4.6]). We have that

⟨τk1(γ1)⋯τkn(γn)⟩
GW ∈ 1

∆(q)
QMod2g+n+∑i wt(γi).

Remark 1.4. Alternatively, by the dimension constraint the weight is given by

2g + n +∑
i

wt(γi) = ∑
i

(2ki + 2degC(γi) +wt(γi) − 1).

Theorem 1.3 (Holomorphic anomaly equation [13]).

d

dG2
⟨τk1(γ1)⋯τkn(γn)⟩

GW = 2 ⟨τk1(γ1)⋯τkn(γn)τ0(1)τ0(F )⟩
GW

− 2
n

∑
i=1

⟨τk1(γ1)⋯τki+1(π∗π∗γi)⋯τkn(γn)⟩
GW

+ 20
n

∑
i=1

(γi, F ) ⟨τk1(γ1)⋯τki(F )⋯τkn(γn)⟩
GW

− 2∑
i<j

⟨τk1(γ1)⋯τki(σ1(γi, γj))⋯τkj(σ2(γi, γj))⋯τkn(γn)⟩
GW

where σ ∶H∗(S2) →H∗(S2) is defined by

σ(γ ⊠ γ′) = 0 whenever γ or γ′ lie in H0(S) ⊕QF ⊕H4(S),

and by

σ(W ⊠W ) =∆V , σ(W ⊠ α) = −α ⊠ F,
σ(α ⊠W ) = −F ⊠ α, σ(α,α′) = (α,α′)F ⊠ F

for all α,α′ ∈ V ∶= {W,F}⊥ ⊂H2(S).

We also recall a basic splitting statement. Define the normalized correlators:

⟨τk1(γ1)⋯τkn(γn)⟩
GW,′ = ⟨τk1(γ1)⋯τkn(γn)⟩

GW

⟨1⟩GW

=∆(q) ⟨τk1(γ1)⋯τkn(γn)⟩
GW

.

The standard degeneration argument given in [9] yields:

Lemma 1.5. Assume that γi ∈ {F,p} for all i, and αj ∈ {B,F}⊥ ⊂H2(S). Then

⟨
n

∏
i=1

τki(γi)
n′

∏
j=1

τℓj(αj)⟩
GW,′

=
n

∏
i=1

⟨τki(γi)⟩
GW,′ ⋅ ⟨

n′

∏
j=1

τℓj(αj)⟩
GW,′

.

1.4 Two more remarks

We end this section with two more remarks, which will not be used later on.

Remark 1.6. We can restate Conjecture 0.2 in the language of elliptic K3 surfaces as
follows. Define

Z(γ0, γ1, . . .) ∶= ⟨exp(∑
k≥0

τk(γk))⟩
GW

.

Then Conjecture 0.2 is equivalent the statement: for all γi with degC(γi) > 0 we have

Z(γ0, γ1, . . .) =
1

∆(q)
exp
⎛
⎝∑k≥0
(γk,W +DqF )Ak(q) + ∑

k≥0

(γk,1)Bk(q) +
1

2
∑
k,ℓ≥0

(γk ⋅ γℓ)Ckℓ(q)
⎞
⎠

where the Dq’s in the formula above stand for commuting the operators to the left and
applying them to the full series.
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Remark 1.7. By the degeneration argument of [9] we obtain relatively nice expressions for
the two most basic invariants

⟨τk(F )⟩GW, ⟨τk(p)⟩GW

This was already used in [9, App.B]. Explicit formulas can be found in [10, Appendix]. Let
us recall the expression in the first case:

Consider for g ≥ 0 (with obvious notation) the following generating series of Gromov–
Witten invariants of an elliptic curve E,

Lg,k =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⟨E∨(1) ev
∗
1(p)

1−ψ1
ev∗2(1)ψk2 ⟩

E

g
g ≥ 1

(−1)k g = 0,

where we used the inverse Hodge class

E∨(1) = 1 − λ1 + λ2 + . . . + (−1)gλg.

Then one has:

⟨τk(F )⟩
GW = 1

∆(q)

k

∑
g=0

Lg,k
(−G2)k−g

(k − g)!
.

The right hand side can be effectively computed using the methods of [15]. However, it is
unclear to the author how to deduce the corresponding case of Conjecture 0.2 from this.

2 Descendents of 1

We present here the new recursion that allows one to compute a large class of descendent
invariants effectively in terms of the stationary theory.

2.1 Removing insertions with W

Let S → P1 be an elliptic K3 surface as in Section 1.3 and set

V = {x ∈H2(S,C) ∣x ⋅W = x ⋅ F = 0}.

For δi ∈ V arbitrary classes and d ≥ 1 consider a general descendent invariant

⟨
r

∏
i=1

τki(1)
s

∏
i=1

τℓi(F )
s′

∏
i=1

τℓ′i(W )
t

∏
i=1

τmi(δi)
u

∏
i=1

τni(p)⟩
S

β=W+dF

.

Our first observation is that whenever there are not too many δi, one can get rid of the
factors τℓ(W ).
Proposition 2.1. Assume that there are α1, α2 ∈ V such that

α2
1 = α2

2 = 0, α1 ⋅ α2 = 1, ∀i ∶ α1 ⋅ δi = α2 ⋅ δi = 0.

Then we have

⟨
r

∏
i=1

τki(1)
s

∏
i=1

τℓi(F )
s′

∏
i=1

τℓ′i(W )
t

∏
i=1

τmi(δi)
u

∏
i=1

τni(p)⟩
S

W+dF

= ⟨
r

∏
i=1

τki(1)
s

∏
i=1

τℓi(F + α2)
s′

∏
i=1

τℓ′i(dF + α1)
t

∏
i=1

τmi(δi)
u

∏
i=1

τni(p)⟩
S

W+dF

.

Proof. The set of classes

(W + dF,W,F, δi), (W + dF, dF + α1, F + α, δi)

have the same intersection pairings. Hence the claim follows from Proposition 1.1. (What is
curious is that there is no isometry that can send W + dF,W,F to W + dF, dF +α1, F +α2,
since the second set of vectors is linearly independent, while the first one is not. Nevertheless,
we still have an equality of Gromov–Witten invariants.)
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2.2 The main recursion step

Since we have Proposition 2.1, let us consider an invariant where there are no W -factors:

I = ⟨
r

∏
i=1

τki(1)
s

∏
i=1

τℓi(F )
t

∏
i=1

τmi(δi)
u

∏
i=1

τni(p)⟩
GW

,

where δi ∈ V . By the string and dilaton equation we can assume that ki ≥ 2 for all i.
Assume that there are classes α1, α2 ∈H2(S,C) such that

α2
1 = α2

2 = 0, α1 ⋅ α2 = 1, ∀i ∶ α1 ⋅ δi = α2 ⋅ δi = 0.

We give a formula for I that involves only (r − 1) many factors of τk(1). Consider the
modified invariant

IW = ⟨τk1(W )
r

∏
i=2

τki(1)
s

∏
i=1

τℓi(F )
t

∏
i=1

τmi(δi)
u

∏
i=1

τni(p)⟩
GW

.

Lemma 2.2. We have
d

dG2
IW = −2I + (...) (11)

where (...) stands for terms involving invariants with ≤ (r − 1) factors of τk(1).

Proof. This follows immediately from applying the holomorphic anomaly equation (Theo-
rem 1.3) to IW . Here the first term on the right side of the holomorphic anomaly equation
can be reduced by the string equation (Lemma 1.1) to involve only r − 1 factors of τk(1).
The second term for i = 1 yields the term −2I since π∗π∗(W ) = 1. The other terms do not
create any new τk(1) factors.

On the other hand, we can also first apply Proposition 2.1 to IW before applying the
holomorphic anomaly equation. First, by Proposition 2.1 we have:

IW =Dq

⎛
⎝
⟨τk1(F )

r

∏
i=2

τki(1)
s

∏
i=1

τℓi(F )
t

∏
i=1

τmi(δi)
u

∏
i=1

τni(p)⟩
GW⎞
⎠

+ ⟨τk1(α1)
r

∏
i=2

τki(1)
s

∏
i=1

τℓi(F + α2)
t

∏
i=1

τmi(δi)
u

∏
i=1

τni(p)⟩
GW

(where we don’t have any α2 in the first line by applying Theorem 1.1). Next we apply d
dG2

.

Using the commutation relation (7) we obtain three terms:

d

dG2
IW = − 2wt

⎛
⎝
⟨τk1(F )

r

∏
i=2

τki(1)
s

∏
i=1

τℓi(F )
t

∏
i=1

τmi(δi)
u

∏
i=1

τni(p)⟩
GW⎞
⎠

+Dq
d

dG2
⟨τk1(F )

r

∏
i=2

τki(1)
s

∏
i=1

τℓi(F )
t

∏
i=1

τmi(δi)
u

∏
i=1

τni(p)⟩
GW

+ d

dG2
⟨τk1(α1)

r

∏
i=2

τki(1)
s

∏
i=1

τℓi(F + α2)
t

∏
i=1

τmi(δi)
u

∏
i=1

τni(p)⟩
GW

.

(12)

The d
dG2

-derivative can be evaluated by the holomorphic anomaly equation plus the string

equation. The outcome is that all terms only involve at most (r−1) descendents of 1. (Since
the only way new descendents of 1 appear is via the π∗π∗(γi) term, hence from cohomology
insertions γi =W ).

We now simply equate (12) with (11) and solve for I. This gives:
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Proposition 2.3. Assume that there are classes α1, α2 ∈H2(S,C) such that

α2
1 = α2

2 = 0, α1 ⋅ α2 = 1, ∀i ∶ α1 ⋅ δi = α2 ⋅ δi = 0.

Let (...) stand for the same term as in Lemma 2.2. Then

−2I = (Right hand side of (12)) + (...).

In particular, I can be expressed as a sum of invariants involving ≤ (r − 1) factors τk(1).

We get our general recursion by first applying Proposition 2.1, then applying Proposi-
tion 2.3, then repeating the process. In each step we have one less factor of τk(1). After
finitely many steps we are left with evaluating a stationary invariant. This proves Theo-
rem 0.4 (to go from the general K3 surface to the elliptic one, one uses Theorem 1.1).

2.3 An example of the recursion

The above recursion can be made explicit in a very basic, but still somewhat general case.
We omit the somewhat tedious computation and just state the result.

Let S → P1 be the elliptic K3 and consider a orthogonal decomposition

H2(S,Z) = U1 ⊕U2 ⊕L

where U1 = Span(W,F ) and U2 = Span(α1, α2) with

α2
1 = α2

2 = 0, α1 ⋅ α2 = 1.

Theorem 2.1. For any γ1, . . . , γn ∈ {F,p, L} and k ≥ 2 we have

⟨τk(1)τk1(γ1)⋯τkn(γn)⟩
GW =

(2k − 4 − n + ∣{i ∶ γi = p}∣ + 2
n

∑
i=1

(ki + degC(γi))) ⟨τk−1(F )τk1(γ1)⋯τkn(γn)⟩
GW

+⟨τk−2(p)τ0(1)
n

∏
i=1

τki(γi)⟩
GW

− ∑
i∶γi=p

⟨τk−1(α1)τki+1(α2)∏
j≠i

τkj(γj)⟩
GW

+ ∑
i∶γi∈L

⟨τki(F )τk−1(γi)∏
j≠i

τkj(γj)⟩
GW

− ∑
i≠j∶γi,γj∈L

(γi, γj)⟨τk−1(α1)τki(α2)τkj(F ) ∏
ℓ≠i,j

τkℓ(γℓ)⟩
GW
.

3 Polynomial behaviour

The main goal of this section is to characterize the functions Ak,Bk,Ckℓ defined in (2), (3),
(4) in terms of some basic qualitative properties. This will provide the connection between
Conjecture 0.2 (which evaluates explicitly the stationary theory) and Conjecture 0.4 (which
describes the polynomial structure).

3.1 Characterization of the A series

Recall the definition of the A-series:

Ak(q) =
(−1)k

(2k + 1)!!
Resz=0 [(℘(z) − 4G2)k+

1
2 ] . (13)

We want to prove here the following characterization:
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Theorem 3.1. The series of functions Ak(q), k ≥ 0 (defined in (2)) is the unique series of
power series satisfying the following conditions:

(a) Ak(q) is a quasi-modular form of weight 2k satisfying d
dG2

Ak = 2Ak−1 (with A−1 = 0),

(b) For every n ≥ 0 there exists a polynomial pn(k) of degree 2n such that for every k ≥ n
we have

[Ak(q)]
qn
= 1

(−4)k(2k + 1)!!
pn(k),

(c) A0 = 1 +O(q)

We will first prove the uniqueness part of Theorem 3.1:

Lemma 3.1. There is at most one series Ak(q) for k ≥ 0 satisfying conditions (a-c) of
Theorem 3.1.

To prove the lemma we will use the following well-known fact:

Lemma 3.2. Let f ∈Modk. If [f(q)]qℓ = 0 for all ℓ ≤ ⌊ k
12
⌋, then f(q) = 0.

Proof of Lemma 3.1. We argue by induction on k that A0, . . . ,Ak−1 uniquely determine Ak.
By (a) and (c) we have A0 = 1. Hence assume that Ai is known for i ≤ k − 1. By condition
(a) and Lemma 3.2 it is enough to know the first ⌊k/12⌋ Fourier-coefficients of Ak. Hence
let n ≤ k/12 and let us find [Ak(q)]qn . By (b) and since k ≥ n we have

[Ak(q)]qn =
1

(−4)k(2k + 1)!!
pn(k).

The polynomial pn(k) is of degree 2n ≤ k/6. By induction we know the value of pn for all k′

where n ≤ k′ < k, in particular for all k/12 ≤ k′ < k. Hence pn is uniquely determined already
by these values, and hence so is pn(k).

Next we prove that Ak(q) defined by (13) satisfies the conditions (a-c). For (a) and (c)
this is easy by considering the z-expansion of ℘(z), and left to the reader. We need to prove
(b). We do this in two parts. The first part is also not difficult:

Let p = ez and consider the Fourier expansion of the Weierstrass elliptic function:4

℘(p, q) = 1

12
+ p

(1 − p)2
+ ∑
d≥1

∑
k∣d

k(pk − 2 + p−k)qd.

We obtain that:

℘(p, q) − 4G2(q) =
1

4

(p + 1)2

(p − 1)2
+ (p − 6 + p−1)q + . . . .

Consider now the square root, taken formally as a power series in q with coefficients Laurent
series (this is possible since the q0-coefficient is a square):

√
℘(p, q) − 4G2(q) =

1

2

(p + 1)
(p − 1)

+ (p − 1)(p − 6 + p
−1)

(p + 1)
q + a2(p)q2 + a3(p)q3 + . . . (14)

where an(p) = p−nbn(p)/(p + 1)2n−1 for some polynomial bn(p) ∈ Q[p].

Proposition 3.3. There exists polynomials pn(k) of degree 2n such that for all k:

[
√
℘(p, q) − 4G2(q)

2k+1
]
p0
= 1

22k+1
∑
n≥0

pn(k)qn.

4To distinguish between the Fourier expansion ℘(p, q) and the z-series ℘(z) we will always include the
q-dependence in the former in the notation.
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Proof. The series F (p, q) = 4(℘(p,w) − 4G2(q)) and H(p, q) = 2
√
℘(p, q) − 4G2(q) are both

of the form

(1 + a01p + a02p2 + . . .) + (a1,−1p−1 + a10 + . . .)q + (a2,−2p−2 + a2,−1p−1 + a20 + . . .)q2 + . . .

for some aij ∈ Q. Hence F (p, qp) and H(p, qp) lie in C[[p, q]] and the result follows from
Lemma 3.4(c) below.

Lemma 3.4. (a) Let f ∈ 1 +R[[q]] be a power series with constant term one and coeffi-
cients in a ring R. Then the qn-coefficient of fk is polynomial of degree ≤ n in k with
coefficients in R.

(b) Let f = ∑i,j≥0 aijpiqj and h = ∑i,j≥0 hijpiqj be power series in p, q with a00 = 1. Then

the coefficient [fkh]pmqn is a polynomial in k of degree ≤ m + n. If h00 = 0, then it is
of degree ≤m + n − 1.

Proof. For (a) by the binomial theorem we can write fk = ∑i≥0 (ki)q
i(1 + a2q1 + a3q2 + . . .)i.

Taking the qn-coefficient the claim follows since only terms with i ≤ n contribute. Part (b)
in case h = 1 reduces to part (a) by factoring out f0 = 1 +∑i≥1 ai0pi and applying (a) twice.
The case of general h reduces to case h = 1 by multiplying out.

The second, upcoming step is to compare the [−]p0 and [−]z−1 coefficient. Together with
Prop 3.3 it immediately implies property (b) of Theorem 3.1.

Proposition 3.5. For any k ≥ 0 we have

Resz=0(℘ − 4G2)k+
1
2 = 2 [

√
℘(p, q) − 4G2(q)

2k+1
]
p0
+O(qk+1)

Proof. We let z = 2πix and define

f(x) = ℘(2πix) − 4G2, g(x) ∶=
√
℘(2πix) − 4G2.

(In our convention ℘(z) is double-periodic under z ↦ z +m + n ⋅ 2πiτ for m,n ∈ Z. The
scaled function ℘(2πix) is then double-periodic under x ↦ x + m + nτ and is the usual
convention for the Weierstraß elliptic function found in the literature.) The function g(x) is
a priori multivalued. However, in a neighbourhood of x = 0 we can choose the unique branch
such that the Laurent expansion of g(x) starts with 1/(2πix). Recall that the Weierstrass
function ℘(2πix) and hence also f(x) has two zeros x1, x2 in each fundamental domain,
counted with multiplicities. (Since f(−x) = f(x) is even, we have x2 = −x1 up to translation
by an element of the lattice Zτ +Z.) When extending g(x) to the whole plane Cx we hence
run into the sign ambiguity when extending beyond the zeros. The possible solution is
to extend the function away from an appropriate branch cut of these two zeros (and its
translates).

In the limit ∣q∣ ≪ 1 the situation is as follows: Observe that

f(x)∣q=0 =
1

4
(e

2πix + 1
e2πix − 1

)
2

has a double zero at x = 1
2
and its Z-translates, so for small q the two zeros of f(x) are close

to x = 1/2 (modulo Z-translates) and so we can choose the branch cut between these two
adjacent zeros. We now integrate over the boundary γ of a fundamental domain with left
corner at a0, for some ∣q∣ ≪ 1, as in Figure 1.

Consider the winding number5 w(a) ∈ Z of f(x) along the straight path from a ∈ R to
a + τ . We claim that w(a) = −1 for 0 < a≪ 1, and w(a) = 1 for some a < 1 sufficiently close

5The winding number along a closed path of f along γ is defined by ∫f○γ
dz
z
= ∫γ

f ′(x)
f(x)

dx. It is the

number of times that f(γ(t)) goes in counterclockwise direction around the origin.
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1 + τ

x1

γ

Re(x)

Rτ

x2
1

Figure 1: We integrate over the orange path γ. We assume ∣q∣ ≪ 1, so that the roots x1, x2
of f(x) are close to x = 1/2. The function g(x) =

√
f(x) is defined away from the branch

cut (the red line).

to 1. (To see this, note that w(a) is locally constant in a and only jumps when the vertical
line crosses either a zero or a pole of f , where it jumps by 1 when we cross a zero from left
to right, and by −1 when we cross a pole. Since f is 1-periodic, w(a) is 1-periodic in a,
and since f is even, one has that w(−a) = −w(a). Hence for ϵ sufficiently small we obtain
w(1− ϵ) = w(−ϵ) = w(ϵ)+2 and w(1− ϵ) = −w(ϵ−1) = −w(ϵ), and hence w(ϵ)+2 = −w(ϵ), so
w(ϵ) = −1.) Further, let w′(b) be the winding number of f when moving from bτ to bτ + 1
along a straight horizontal line. For q = 0 one easily sees that w′(b) = 0 for b >> 0. Hence,
for ∣q∣ ≪ 1, we have that w′(b) = 0 for b close to 1/2.

We conclude that for ∣q∣ ≪ 1, the function g(x) (as defined away from its branch cut)
satisfies g(x + 1) = g(x) but g(x + τ) = −g(x). Hence we find the evaluation

∫
γ
g(x)2k+1dx = 2∫

a0+1

a0
g(x)2k+1dx = 2 [

√
℘(p, q) − 4G2(q)

2k+1
]
p0
. (15)

On the other hand, we may apply the Cauchy integral formula to the integral ∫γ g(x)
2k+1dx.

The contribution from the pole at x = 0 is the residue

1

2πi
Resx=0g(x)2k+1 = Resz=0(℘ − 4G2)k+

1
2 .

The contribution from the branch cut is given by

I = ±2∫
x2

x1

g(x)2k+1dx

where we choose one of the two branches of g(x) in a neighbourhood of the line between the
zeros x1, x2. We will show that for ∣q∣ ≪ 1 we have I = O(qk+1).

Consider the asymptotic expansion of f(x) near x = 1/2 in q:

f(x) = 1

4

(p + 1)2

(p − 1)2
+ (p − 6 + p−1)q + . . .
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where p = e2πix. We find the asymptotic expansion of the zeros x1, x2 to be

xi =
1

2
± 4i
√
2

π
q1/2 + . . .

where the higher order terms are multiples of q3/2, q5/2 etc. (Note that since f(−x) = f(x)
and f(x+1) = f(x), we have f(1/2−x) = f(1/2+x).) The function g(x) has the asymptotic
expansion (14). Hence if we set x = 1

2
+ 2πiT so that p = −eT we obtain the expansion

g (1
2
+ T) = Th0(T ) +

h1(T )
T

q + h2(T )
T 3

q2 + . . .

where h(T ) are power series in T . Hence

g (1
2
+ T)

2k+1

= T 2k+1h̃0(T ) + T 2k−1h̃1(T )q + T 2k−3h̃2(T )q2 + . . .

for some power series h̃i(T ). We obtain that

±2∫
x2

x1

g(x)2k+1dx = ∫
4i
√

2
π

√
q

− 4i
√

2
π

√
q
(T 2k+1h̃0(T ) + T 2k−1h̃1(T )q + T 2k−3h̃2(T )q2+)dT+. . . = O(qk+1),

where . . . stands for terms of higher order in q. Combining (15) with the Cauchy integral
formula gives

∫
γ
g(x)2k+1dx = Resz=0(℘ − 4G2)k+

1
2 + ±2∫

x2

x1

g(x)2k+1dx

and hence completes the claim.

3.2 Characterization of the B and C series

The characterization of Bk(q) is similar:

Proposition 3.6. The series Bk(q), k ≥ 0 defined by (3) is the unique series of power series
which satisfies the following conditions:

(a) Bk(q) is a quasi-modular form of weight 2k + 4 satisfying d
dG2

Bk = 2Bk−1 − 2Ak+1.
(b) For every n ≥ 0 there exists a polynomial qn(k) of degree 2n − 2 such that for every

k ≥ n − 1 we have

[Bk(q)]
qn
= k!

(2k + 1)!(−2)k
qn(k).

(c) B0 = q +O(q2).

Proof. The proof follows along the lines of the proof of Theorem 3.1. The uniqueness is
completely parallel. To check that Bk satisfies (a) and (c) is again straightforward. To show
(b) one uses the same residue argument to show that

Resz=0 ((℘ − 4G2)k+
3
2 (℘ + 2G2)) = 2 [

√
℘(p, q) − 4G2(q)

2k+3
(℘(p, q) + 2G2(q))]

p0
+O(qk+2)

where O(qk+2) appears instead of O(qk+1) here because we integrate ℘−4G2 with exponent
k + 3/2 instead of k + 1/2. It remains to show the desired polynomiality of the first term on
the right. Since ℘(p, q) + 2G2(q) has constant term zero, the application of Lemma 3.4(b)
shows that there exists polynomials pn(k) of degree 2n − 1 such that for all k:

[(℘(p, q) − 4G2(q))k+
3
2 (℘(p, q) + 2G2(q))]

p0
= 1

22k
∑
n≥0

pn(k)qn.

Moreover, since we have [℘(p, q)+2G2]p0 = 0 this expression vanishes whenever k = −3/2, so
the polynomial pn(k) is divisible by 2k + 3. The claim follows.
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Proof of Theorem 0.5. By Lemma 1.5 we know that

⟨
n

∏
i=1

τki(p)⟩
GW

= B̃k1(q)⋯B̃kn(q)
∆(q)

,

for some power series B̃k(q). If we know (i) then it follows that B̃k(q) satisfies property
(b) of Proposition 3.6. Propoerty (a) follows immediately from (1.3). Property (c) is clear.
Hence one gets B̃k = Bk. The converse direction is also by Proposition 3.6.

We also record the properties of Ckℓ. Since by definition we have Ck0 = C0k = Bk−1 we
will assume k, ℓ ≥ 1.

Proposition 3.7. The series Ckℓ(q), k, ℓ ≥ 1 defined by (4) satisfies the following conditions:

(a) Ckℓ is a quasi-modular form of weight 2k + 2ℓ + 2 satisfying

d

dG2
Ckℓ = 2Ck−1,ℓ + 2Ck,ℓ−1 − 2AkAℓ.

(b) For every n ≥ 0 there exists a polynomial Pn(k, ℓ) of degree 2n − 2 such that for all
k, ℓ ≥ n − 1:

[Ck,ℓ]qn =
1

(−4)k(2k − 1)!!(−4)ℓ(2ℓ − 1)!!
Pn(k, ℓ).

(c) For every ℓ ≥ 1 and every n ≥ 0 there exists a polynomial pn(k) of degree 2n − 2 such
that for all k ≥ n − 1:

[Ck,ℓ]qn =
1

(−4)k(2k − 1)!!
pn(k).

(d) Ckℓ = O(q).
(e) Ckℓ = Cℓk for all k, ℓ.

The Ckℓ are uniquely determined by properties (a,c,e).

Proof. The uniqueness is straightforward (determine first Ck1 for all k, then Ck2 for all k,
and so on). Conversely, (a,e) is clear and (d) follows from (b) using n = 0. To show (b)
one argues as in the proof of Proposition 3.6 (in particular, using that for fixed z2, the p

0-
coefficient of ℘(z1 − z2) + 2G2 vanishes). For part (c) one argues similarly using Lemma 3.8
below, which is an analogue of Lemma 3.4 and whose proof is left to the reader.

Lemma 3.8. (a) Let f, g ∈ 1+qR[[q]] power series with constant term one and coefficients
in a ring R. Then [fkgl]qn is a polynomial in k, l of degree ≤ n.

(b) Let f(p1, q) ∈ C[[p1, q]] and g(p2, q) ∈ C[[p2, q]] be power series, both with constant
term one, and let h(p1, p2, q) ∈ C[[p1, p2, q]] be any power series. Then the coefficient
[fkglh]pm1

1 p
m2
2 qn is a polynomial in k, ℓ of degree ≤ m1 + m2 + n, and of degree ≤

m1 +m2 + n − 1 if h has zero constant term.

Remark 3.9. Using the above characterizations of the functions A,B,C one can show that
Conjecture 0.2 implies Conjecture 0.4 in the stationary case.

3.3 An upgrade of Conjecture 0.4

We record here the following conjectural strengthening of the polynomiality property:
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Conjecture 3.10 (Upgrade of Conjecture 0.4). For any subsets Ix ⊂ {1, . . . , x} for x ∈
(r, s, t, u), and for ki, ℓi,mi, ni fixed whenever i does not lie in Ir, Is, It, Iu respectively (and
satisfying ki,mi ≥ 1), there exists a polynomial p of degree β2 + 2− 2u− t+ r such that for all
ki, ℓi,mi, ni satisfying (6) for i in Ir, Is, It, Iu we have

⟪
r

∏
i=1

τki(1)
s

∏
i=1

τℓi(β)
t

∏
i=1

τmi(δi)
u

∏
i=1

τni(p)⟫
S

β

= p ((ki)i∈Ir , (ℓi)i∈Is , (mi)i∈It , (ni)i∈Iu) .

Example 3.11. For k, ℓ ≥ β2/2 + 3 we have:

⟪τk(1)τℓ(1)⟫Sβ2/2=−1 = 2(k + l − 3)(2k + 2l − 5)

⟪τk(1)τℓ(1)⟫Sβ2/2=0 = 16(k + l − 3)(4k
3 + 4k2l + 4kl2 + 4l3

− 16k2 − 12kl − 16l2 + 29k + 29l − 29)
⟪τk(1)τℓ(1)⟫Sβ2/2=1 = 8(k + l − 3)(32k

5 + 32k4l + 128k3l2 + 128k2l3 + 32kl4 + 32l5

− 336k4 − 448k3l − 704k2l2 − 448kl3 − 336l4 + 1392k3 + 1328k2l
+ 1328kl2 + 1392l3 − 2236k2 − 1624kl − 2236l2 + 1780k + 1780l − 1049)

On the other hand, for ℓ < 3 we have polynomiality only in k for k ≥ β2/2 + 3. For example,

⟪τk(1)τ1(1)⟫Sβ2/2=0 = 32 (k
2 − 2k + 3)(2k − 3)(k − 1) = P (k,1) + 32k3 − 112k2 + 192k − 96

⟪τk(1)τ2(1)⟫Sβ2/2=0 = 16 (2k
3 − 5k2 + 12k − 6)(2k − 1) = P (k,2) + 48

⟪τk(1)τ3(1)⟫Sβ2/2=0 = 16 (4k
3 − 4k2 + 29k + 22)k = P (k,3)

where

P (k, l) = 16(k + l − 3)(4k3 + 4k2l + 4kl2 + 4l3 − 16k2 − 12kl − 16l2 + 29k + 29l − 29)

is the polynomial answer for k, ℓ ≥ 3. By definition we have excluded here the case ℓ = 0.

A Further examples

We list some more computations for Gromov–Witten invariants in the polynomial range.
This assumes Conjecture 0.2 (in order that we can apply our algorithm of Theorem 0.4), and
Conjecture 0.4 to get a bound on the degree of the polynomial. However, the computations
are also always a check on the polynomiality since we computed more terms than was
required to fix the degree of the polynomial.

Example A.1. For k, ℓ ≥ β2/2 − 1 we have:

⟪τk(p)τℓ(p)⟫Sβ2/2=1 = 1

⟪τk(p)τℓ(p)⟫Sβ2/2=2 = 8k
2 + 8l2 − 12k − 12l + 20

⟪τk(p)τℓ(p)⟫Sβ2/2=3 =
64

3
k4 + 64k2l2 + 64

3
l4 − 512

3
k3 − 96k2l − 96kl2 − 512

3
l3 + 1712

3
k2

+ 144kl + 1712

3
l2 − 1024

3
k − 1024

3
l − 64

Example A.2. Let α1, α2 ⊥ β with α2
1 = α2

2 = 0 and α1 ⋅ α2 = 1. For k, ℓ ≥ max(β2/2,1) we
have:

⟪τk(α1)τℓ(α2)⟫Sβ2/2=0 = −1/4

⟪τk(α1)τℓ(α2)⟫Sβ2/2=1 = −2k
2 − 2kl − 2 l2 + 7k + 7 l − 29

2

⟪τk(α1)τℓ(α2)⟫Sβ2/2=2 = −
16

3
k4 − 32

3
k3l − 64

3
k2l2 − 32

3
kl3 − 16

3
l4 + 64k3 + 368

3
k2l

+ 368

3
kl2 + 64 l3 − 1016

3
k2 − 432kl − 1016

3
l2 + 678k + 678 l − 606
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Example A.3. For k, ℓ ≥ β2/2 we have:

⟪τk(p)τℓ(F )⟫Sβ2/2=0 = 1

⟪τk(p)τℓ(F )⟫Sβ2/2=1 = 8k
2 + 16l2 − 12k − 24l + 6

⟪τk(p)τℓ(F )⟫Sβ2/2=2 =
64

3
k4 + 128k2l2 + 64l4 − 512

3
k3 − 192k2l − 192kl2 − 512l3

+ 1376

3
k2 + 288kl + 1344l2 − 520

3
k − 472l − 512

Example A.4. For k1, k2, k3 ≥ β2/2 + 3 we have

⟪τk1(1)τk2(1)τk3(1)⟫Sβ2/2=−1 = 4(k1 + k2 + k3 − 4)(2k1 + 2k2 + 2k3 − 7)(k1 + k2 + k3 − 3)

⟪τk1(1)τk2(1)τk3(1)⟫Sβ2/2=0 = 32 (k1 + k2 + k3 − 4) (2k1 + 2k2 + 2k3 − 7) (2k
3
1 + 2k21k2 + 2k1k22

+ 2k32 + 2k21k3 + 2k22k3 + 2k1k23 + 2k2k23 + 2k33 − 9k21 − 6k1k2
− 9k22 − 6k1k3 − 6k2k3 − 9k23 + 17k1 + 17k2 + 17k3 − 21)

⟪τk1(1)τk2(1)τk3(1)⟫Sβ2/2=1 = 16(k1 + k2 + k3 − 4)(2k1 + 2k2 + 2k3 − 7)(16k
5
1 + 16k41k2 + 64k31k22

+ 64k21k32 + 16k1k42 + 16k52 + 16k41k3 + 64k21k22k3 + 16k42k3 + 64k31k23
+ 64k21k2k23 + 64k1k22k23 + 64k32k23 + 64k21k33 + 64k22k33 + 16k1k43 + 16k2k43
+ 16k53 − 176k41 − 224k31k2 − 384k21k22 − 224k1k32 − 176k42 − 224k31k3
− 192k21k2k3 − 192k1k22k3 − 224k32k3 − 384k21k23 − 192k1k2k23 − 384k22k23
− 224k1k33 − 224k2k33 − 176k43 + 792k31 + 744k21k2 + 744k1k22 + 792k32
+ 744k21k3 + 432k1k2k3 + 744k22k3 + 744k1k23 + 744k2k23 + 792k33 − 1402k21
− 980k1k2 − 1402k22 − 980k1k3 − 980k2k3 − 1402k23 + 1221k1
+ 1221k2 + 1221k3 − 873)
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