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Motivation

Goal: Compute the Gromov-Witten invariants of a compact Calabi-Yau threefold.

This is very difficult.

Instead it is easier to first consider the local case

X = Tot(ωS ), S smooth projective surface.

This is best understood for K3 surfaces and says also something about compact CY3
geometry.



K3 surfaces

The moduli space of stable maps to a K3 surface S has a reduced virtual class

[Mg (S, β)]red ∈ CHg (Mg (S, β))

Let E→ Mg (S , β) be the Hodge bundle and let λi = ci (E).
We define the invariants

Ng,β :=

∫
[Mg (S,β)]red

(−1)gλg

This can be viewed as the definition of GW invariants of the local surface
X = Tot(ωS ) = S × C (as an equivariant residue).

Theorem (Maulik-Pandharipande, 2007)
Let π : X → C be a K3-fibered Calabi-Yau threefold with at most nodal fibers. Then
the Gromov-Witten invariants of X in fiber classes is determined by:

(a) Noether-Lefschetz numbers of the family π (modular, easily computable)

(b) The invariants Ng,β .
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Katz-Klemm-Vafa formula

The invariants Ng,β have been conjectured by Katz-Klemm-Vafa in 1999 and then
proven in a long journey by many authors (Bryan, Leung, Maulik, Pandharipande,
Thomas, ...).

Define the Gopakumar-Vafa invariants ng,β by

∑
β

∑
g

Ng,βu
2g−2tβ =

∑
β

∑
g

ng,βu
2g−2

∑
d≥1

1

d

(
sin(du/2)

u/2

)2g−2

tdβ

This formally subtracts contributions from multiple covers and contracted components.

Theorem (Pandharipande-Thomas, 2015)

(a) The invariants ng,β only depend upon β through β · β.

(b) If β2 = 2h − 2 write ng,h := ng,β . Then∑
g,h

(−1)gng,h(p1/2 − p−1/2)2gqh =
∏
m≥1

1

(1− p−1qm)2(1− qm)20(1− pqm)2

Proof: Prove GW/PT correspondence for S × C by reducing it via Noether-Lefschetz theory to GW/PT for compact CY3 where it is

known [P-Pixton]; prove (a) by localization of PT on S × C and constructing additional cosections.



Katz-Klemm-Vafa formula

The invariants Ng,β have been conjectured by Katz-Klemm-Vafa in 1999 and then
proven in a long journey by many authors (Bryan, Leung, Maulik, Pandharipande,
Thomas, ...).
Define the Gopakumar-Vafa invariants ng,β by

∑
β

∑
g

Ng,βu
2g−2tβ =

∑
β

∑
g

ng,βu
2g−2

∑
d≥1

1

d

(
sin(du/2)

u/2

)2g−2

tdβ

This formally subtracts contributions from multiple covers and contracted components.

Theorem (Pandharipande-Thomas, 2015)

(a) The invariants ng,β only depend upon β through β · β.

(b) If β2 = 2h − 2 write ng,h := ng,β . Then∑
g,h

(−1)gng,h(p1/2 − p−1/2)2gqh =
∏
m≥1

1

(1− p−1qm)2(1− qm)20(1− pqm)2

Proof: Prove GW/PT correspondence for S × C by reducing it via Noether-Lefschetz theory to GW/PT for compact CY3 where it is

known [P-Pixton]; prove (a) by localization of PT on S × C and constructing additional cosections.



Katz-Klemm-Vafa formula

The invariants Ng,β have been conjectured by Katz-Klemm-Vafa in 1999 and then
proven in a long journey by many authors (Bryan, Leung, Maulik, Pandharipande,
Thomas, ...).
Define the Gopakumar-Vafa invariants ng,β by

∑
β

∑
g

Ng,βu
2g−2tβ =

∑
β

∑
g

ng,βu
2g−2

∑
d≥1

1

d

(
sin(du/2)

u/2

)2g−2

tdβ

This formally subtracts contributions from multiple covers and contracted components.

Theorem (Pandharipande-Thomas, 2015)

(a) The invariants ng,β only depend upon β through β · β.

(b) If β2 = 2h − 2 write ng,h := ng,β . Then∑
g,h

(−1)gng,h(p1/2 − p−1/2)2gqh =
∏
m≥1

1

(1− p−1qm)2(1− qm)20(1− pqm)2

Proof: Prove GW/PT correspondence for S × C by reducing it via Noether-Lefschetz theory to GW/PT for compact CY3 where it is

known [P-Pixton]; prove (a) by localization of PT on S × C and constructing additional cosections.



Enriques surfaces

An Enriques surface is a smooth projective surface Y with non-trivial canonical bundle
such that

ω⊗2
Y
∼= OY , H1(Y ,OY ) = 0.

The double cover associated to ωY is a K3 surface X , so Y = X/Z2.
Hodge diamond of an Enriques:

1

0 0

0 10 0

0 0

1

No reduction necessary!

[Mg (Y , β)]vir ∈ CHg−1(Mg (Y , β))

The Gromov-Witten invariants of the local Enriques are defined by

Ng,β =

∫
[Mg (Y ,β)]vir

(−1)g−1λg−1
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Comments / History

Some previous conjectures and results:

I 1896: Enriques discovered the Enriques surface

I 1998: Harvey-Moore made proposal for N1,β

I 2005: Klemm-Marino conjectured formula for Ng,β (and corrected H-M proposal)

I 2006: Maulik-Pandharipande: Two results:

(a) If Virasoro constraints hold for GW(Y ) in genus 2, then Klemm-Marino
conjecture true in genus 1.

(b) Ng,β related to a certain compact K3-fibered CY3 (the Enriques Calabi-Yau).



The Klemm-Marino formula

Define twisted Gupakumar-Vafa invariants ng,β of the local Enriques surface by

∑
β

∑
g

Ng,βu
2g−2tβ =

∑
β

∑
g

ng,βu
2g−2

∑
d≥1
d odd

1

d

(
sin(du/2)

u/2

)2g−2

tdβ

Conjecture (Klemm-Marino formula)

(a) The invariants ng,β only depend upon β through β · β.

(b) If β2 = 2h − 2 write ng,h := ng,β . Then

∑
g,h

(−1)g−1ng,h(p1/2 − p−1/2)2g−2qh−1

=
∏
m≥1
m odd

1

(1− p−1qm)2(1− qm)4(1− pqm)2

∏
m≥1

1

(1− qm)8

Theorem (O. 2023)
Conjecture holds.
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Reformulation in genus 1 (for fun)

In genus 1 we can restate the Klemm-Marino formula as

exp

∑
β 6=0

N1,βt
β

 =
∏
β>0

(
1 + tβ

1− tβ

)a(β2/2)

where the coefficients a(n) are defined by

∑
n≥0

a(n)qn =
∏
n≥1

(1 + qn)8

(1− qn)8
= 1 + 16q + 144q2 + 960q3 + 5264q4 + . . . .

This can be identified with Borcherds famous automorphic form on the moduli space
of Enriques surfaces.

Let M = U ⊕ U(2)⊕ E8(−2) and

DM = {x ∈ P(M ⊗ C)|x · x = 0, x · x > 0}.

The moduli space of Enriques surfaces is the arithmetic quotient DM/O(M)−H2.
Thm(Borcherds) ∃ automorphic form Φ(t) of weight 4 on DM for O(M).

Corollary
The series exp(

∑
β 6=0 N1,βt

β) is the Fourier expansion of the automorphism form

Φ(t)−1/8 around the level 1 cusp.
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Strategy of the proof

Consider splitting (we ignore all torsion)

H2(Y ,Z) ∼= U ⊕ E8(−1).

U spanned by half-fiber f and 2-section s of an elliptic fibration Y → P1

s2 = 0, s · f = 1, f 2 = 0.

To prove the Klemm-Marino formula we prove three properties:

(a) Ng,β depends on β only through the square β · β and the divisibility of β.

(b) The partial series

Fg,r =
∑
d≥0

∑
α∈E8(−1)

qdζαNg,rs+df +α

are quasi-Jacobi forms for Γ0(2) of weight 2g − 2.

(c) Explicit computation of Fg,1 and Fg,2.

Then some modular form magic determines the rest. Let me explain this ’magic’.
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Magic

We need to determine Ng,rs+df (ignore α). Argue by induction on r . Assume r ≥ 3.

Lemma We know Ng,rs+df if r - d .
Proof: Indeed, let ` = gcd(r , d) < r and let (r0, d0) = (r , d)/`. Then (r , d) and
`(1, r0d0) have the same square and divisibility. By Property (a) thus
Ng,rs+df = Ng,`(s+r0d0) which is known by induction.

Question: How do we determine Ng,rs+rd′f ?
⇐⇒ How do we go from knowing divisibility < r to divisibility r?

Proposition
Let r ≥ 3. Let f (q) be a modular form for Γ0(2) with Fourier expansion

f = a0 + a1q
r + a2q

2r + a3q
3r + . . .

(so all Fourier coefficients vanish if r does not divide the exponent). Then f = 0.

Proof of Main Theorem.
I Property (b): Fg,r =

∑
d Ng,rs+df q

d is a quasi-modular form for Γ0(2).

I Conjectural answer FKM
g,r is quasi-modular for Γ0(2)

I Lemma: Fg,r − FKM
g,r has Fourier coefficients only if r divides the exponent

I Proposition: Fg,r − FKM
g,r = 0.
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Proof of Proposition

A modular form for a congruence subgroup Γ ⊂ SL2(Z) is a holomorphic function on
the upper half plane f : H→ C satisfying

f

(
aτ + b

cτ + d

)
= (cτ + d)k f (τ) (1)

for all
(a b
c d

)
∈ Γ (and a boundedness condition).

I If
(1 1

0 1

)
∈ Γ this says that f (τ + 1) = f (τ), so f can be expanded in q = e2πiτ .

I If f = a0 + a1qr + a2q2r + . . . then we also have f (τ + 1/r) = f (τ).

I ⇒ f satisfies (1) for all elements in Γ̃ := 〈Γ0(2),
(1 1/m

0 1

)
〉.

I Small check: Γ̃ is dense in SL2(R).

I ⇒ f satisfies (1) for all elements in SL2(R) by continuity.

I ⇒ f = 0.



Rest of proof

It remains to prove the three properties we used:

Property (b): The partial series Fg,r =
∑

d≥0

∑
α∈E8(−1) q

dζαNg,rs+df +α are

quasi-Jacobi forms for Γ0(2) of weight 2g − 2.

Proof: Use degeneration of the elliptic fibration Y → P1 to a rational elliptic surface
glued with (P1 × E)/〈invP1 ,−1〉. Then use work of Pixton and myself.

Property (a): Ng,β depends on β only through the square β ·β and the divisibility of β.

Proof: Use compact CY3 geometry and sheaves. This is next topic.



Compact CY3 geometry

I Let X → Y be the K3 cover, let τ : X → X be the covering involution.

I The Enriques Calabi-Yau threefold is

Q = (X × E)/Z2

where Z2 acts by (x , e)→ (τ(x),−e).

I The projection to the second factor

π : Q → E/Z2 = P1

is an isotrivial K3 fibration (with generic fiber X ) and 4 double Enriques fibers
(isomorphic to Y ).

I The projection to the first factor

p : Q → X/Z2 = Y

is an isotrivial elliptic fibration with section.

I H2(Q,Z) = H2(Y ,Z)⊕ Z[E ]



Finishing the proof

I Maulik-Pandharipande: For β ∈ H2(Y ,Z), we have NQ
g,β = 4N

KY
g,β

I Pandharipande-Pixton: The GW/PT correspondence holds for Q

I Let DT(v) be the generalized DT invariants counting semistable sheaves
supported on fibers of π : Q → P1 in class v ∈ H∗(Y ,Z).

I Theorem(O., based on work of Toda):

∑
β∈H2(Y ,Z)

∑
n∈Z

PTn,β(−p)nqβ =
∏
r≥0
β>0
n≥0

exp
(

(n + r)DT(r , β, n)qβpn
)

×
∏
r>0
β>0
n>0

exp
(

(n + r)DT(r , β, n)qβp−n
)

I Prop(O., based on Toda) DT(gv) = DT(v) for all autoequivalences of Db(Y )

I Prop(O., based on Macri-Mehrotra-Stellari) DMon(Y ) = O+(H∗(X ,Z)τ ).

I H∗(X ,Z)τ ∼= U ⊕ U(2)⊕ E8(−2)

I Cor: DT(v) only depends on square v · v , div(v) and type(v) ∈ {odd, even}
I This implies NQ

g,β only depends on the square β2 and the divisibility of β.



Further conjectures

What can we say about the Gromov-Witten theory of the Enriques Calabi-Yau?

The Enriques Calabi-Yau 3-fold may be the most tractable compact Calabi-
Yau with nontrivial Gromov-Witten theory. Certainly the higher genus study
of the quintic 3-fold in P4 appears more difficult.

- Maulik, Pandharipande, ’New Calculations in Gromov-Witten Theory’, 2008

The results so far determine the NQ
g,(β,d)

in case d = 0.



Further conjectures

What can we say about the Gromov-Witten theory of the Enriques Calabi-Yau?

The Enriques Calabi-Yau 3-fold may be the most tractable compact Calabi-
Yau with nontrivial Gromov-Witten theory. Certainly the higher genus study
of the quintic 3-fold in P4 appears more difficult.

- Maulik, Pandharipande, ’New Calculations in Gromov-Witten Theory’, 2008

The results so far determine the NQ
g,(β,d)

in case d = 0.



Another viewpoint and a conjecture

Let π : Y → P1 be an elliptic fibration on the Enriques surface.
We have the induced abelian surface fibration:

ρ : Q
p−→ Y

π−→ P1.

The generic fiber is the product of two elliptic curves E × F , 12 fibers are of the form
E × C for a nodal genus 1 curve C , and 2 double bielliptic fibers.

Define the generating series of Pandharipande-invariants counting curves of degree `
over the base:

ZQ
` (p, t, q, ζ) =

∑
d,e,α

∑
n∈Z

(−p)nte−
1
2 qdζαPTn,`s+df +α+e[E ].

In degree zero this is not difficult to evaluate (e.g. method of Bryan):

ZQ
0 (p, t, q, ζ) = t−1/2

∏
k≥1

(1− tk )−12 ·
∏
d≥1

(
1 + qd

1− qd

)4

.

= η(t)−12 ·
η(2τ)4

η(τ)8
.

In degree 1 we get the analoge of the Igusa cusp form formula for K3× E .
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ρ : Q
p−→ Y

π−→ P1.
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E × C for a nodal genus 1 curve C , and 2 double bielliptic fibers.

Define the generating series of Pandharipande-invariants counting curves of degree `
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ZQ
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∑
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∑
n∈Z

(−p)nte−
1
2 qdζαPTn,`s+df +α+e[E ].
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Define two Borcherds lifts

χ10(p, q, t) = pqt
∏

(`,n,r)>0

(1− prq`tn)c1(4n`−r2)

Φ4(p, q, t) = pqt1/2
∏

(`,n,r)>0

(1− prq2`tn)c2(n`,r)

where (`, n, r) > 0 stands for n > 0 or ` > 0 or (n = ` = 0 and r < 0).

I χ10 is the well-known Igusa cusp form (a Siegel modular form for Sp2(Z)).

I Φ4 is a cusp form of weight 4 for a level 2 paramodular group

Both product expansions were first found by Gritsenko-Nikulin (1995).

Let also ϑE8
(ζ, q) =

∑
α∈E8

ζαqα
2/2 the theta function of the E8-lattice.

Conjecture (O. 2023)

ZQ
1 (p, t, q, ζ) = 8

Φ4(p, q, t)

χ10(p, q, t)
ϑE8

(ζ, q)

Unfortunately, a formula for ZQ
` for ` ≥ 2 seems difficult to guess at this point.

Problem: Ng,β+d [E ] for β ∈ H2(Y ,Z) does not only depend on β2 and div(β).
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The coefficients ci in the last slide were defined by∑
n,r

c1(4n − r2)prqn = 24Θ2℘

∑
n,r

c2(n, r)prqn = Θ4(12℘2 − 20G4)

where

Θ(p, q) = (p1/2 − p−1/2)
∏
m≥1

(1− pqm)(1− p−1qm)

(1− qm)2

℘(p, q) =
1

12
+

p

(1− p)2
+
∑
d≥1

∑
k|d

k(pk − 2 + p−k )qd

Gk (q) = −
Bk

2 · k
+
∑
n≥1

∑
d|n

dk−1qn



Thank you for the attention.


