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Motivation

Goal: Compute the Gromov-Witten invariants of a compact Calabi-Yau threefold.
This is very difficult.
Instead it is easier to first consider the local case

X = Tot(ws), S smooth projective surface.

This is best understood for K3 surfaces and says also something about compact CY3
geometry.



K3 surfaces

The moduli space of stable maps to a K3 surface S has a reduced virtual class
[Mg(S, B)]™ € CHg (Mg (S, B))

Let E — Mg(S, B) be the Hodge bundle and let \; = ¢;(E).
We define the invariants

Ngg = /, (=1)8xg
(Mg (S,8)]red

This can be viewed as the definition of GW invariants of the local surface
X = Tot(ws) = S x C (as an equivariant residue).
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Theorem (Maulik-Pandharipande, 2007)

Let w: X — C be a K3-fibered Calabi-Yau threefold with at most nodal fibers. Then
the Gromov-Witten invariants of X in fiber classes is determined by:

(a) Noether-Lefschetz numbers of the family m (modular, easily computable)

(b) The invariants Ng g.



Katz-Klemm-Vafa formula

The invariants N, g have been conjectured by Katz-Klemm-Vafa in 1999 and then
proven in a long journey by many authors (Bryan, Leung, Maulik, Pandharipande,
Thomas, ...).
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Define the Gopakumar-Vafa invariants n, g by
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d>1
This formally subtracts contributions from multiple covers and contracted components.
Theorem (Pandharipande-Thomas, 2015)

(a) The invariants ng g only depend upon (3 through 3 - 3.
(b) If B2 =2h—2 write ngp:=ng 5. Then

C1En (V2 L _ !
2 Wl 2o = 1 gt = amya ey

g,h m>1

Proof: Prove GW/PT correspondence for S X C by reducing it via Noether-Lefschetz theory to GW/PT for compact CY3 where it is

known [P-Pixton]; prove (a) by localization of PT on § X C and constructing additional cosections.



Enriques surfaces

An Enriques surface is a smooth projective surface Y with non-trivial canonical bundle
such that
w$? = Oy, HYY,0y)=0.

The double cover associated to wy is a K3 surface X, so Y = X/Z5.
Hodge diamond of an Enriques:
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No reduction necessary!
[Mg (Y, B)]" € CHg_1(Mg(Y, B))

The Gromov-Witten invariants of the local Enriques are defined by

Nea= [ (1A
(Mg (Y, B)M"



Comments / History

Some previous conjectures and results:

> 1896:
> 1998:
> 2005:
> 2006:

Enriques discovered the Enriques surface
Harvey-Moore made proposal for Ny g
Klemm-Marino conjectured formula for N, 5 (and corrected H-M proposal)

Maulik-Pandharipande: Two results:

(a) If Virasoro constraints hold for GW(Y') in genus 2, then Klemm-Marino
conjecture true in genus 1.

(b) Ng,p related to a certain compact K3-fibered CY3 (the Enriques Calabi-Yau).
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d odd

Conjecture (Klemm-Marino formula)

(a) The invariants ng g only depend upon (3 through 3 - 3.
(b) If B2 =2h—2 write ngp:=ng 5. Then

Z(—l)gflng’h(pl/z — pl/2)2e=24h-1

gh
1
- ,,1;[1 (I-p~1qm)2(1—qm)*(1 )2 ,,gl
m odd

Theorem (0. 2023)

Conjecture holds.



Reformulation in genus 1 (for fun)

In genus 1 we can restate the Klemm-Marino formula as

2
1+ 1t8 a(p%/2)
E: Bl —
exp Ny gt = || (1—#3)

B#0 B>0

where the coefficients a(n) are defined by
1 n\8
S a(ma” =] % =14 16q + 14462 + 960q3 + 5264¢* + .. ..
n>0 n>1 (1 -4 )

This can be identified with Borcherds famous automorphic form on the moduli space
of Enriques surfaces.
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1+ 1t8 a(p%/2)
E: Bl —
exp Ny gt = || (1_#3)
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where the coefficients a(n) are defined by

n_ (L+q7% 2 3 4

E a(n)q" = | | —— = =1+ 16q + 144q° + 960q° + 5264¢" + . ...
(1—q)B

n>0 n>1

This can be identified with Borcherds famous automorphic form on the moduli space
of Enriques surfaces. Let M = U @ U(2) ® Eg(—2) and

Dy ={xeP(M®C)|x-x=0,x-X> 0}

The moduli space of Enriques surfaces is the arithmetic quotient Dy;/O(M) — Ha.
Thm(Borcherds) 3 automorphic form ®(t) of weight 4 on Dy for O(M).
Corollary

The series exp(Zﬁ#0 Ny tP) is the Fourier expansion of the automorphism form
®(t)~1/8 around the level 1 cusp.



Strategy of the proof

Consider splitting (we ignore all torsion)
H2(Y,Z) = U & Eg(—1).
U spanned by half-fiber f and 2-section s of an elliptic fibration Y — P!

=0, s-f=1, f2=0.
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Then some modular form magic determines the rest. Let me explain this 'magic’.
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Proof: Indeed, let ¢ = ged(r,d) < r and let (rg, do) = (r,d)/¢. Then (r,d) and
£(1, rodp) have the same square and divisibility. By Property (a) thus

Ng . rs+df = Ng g(s+rdy) Which is known by induction.

Question: How do we determine N, o /7
<= How do we go from knowing divisibility < r to divisibility r?

Proposition

Let r > 3. Let f(q) be a modular form for ['y(2) with Fourier expansion
f=ao+aiq" +aq” +a3g¥ +...

(so all Fourier coefficients vanish if r does not divide the exponent). Then f = 0.

Proof of Main Theorem.
> Property (b): Fg,r =2 4 Ng7r5+dfqd is a quasi-modular form for [o(2).
> Conjectural answer Féf’,\/’ is quasi-modular for y(2)
» Lemma: Fg ., — FgK,’,V’ has Fourier coefficients only if r divides the exponent
>

Proposition: Fg , — ngf’y =0.



Proof of Proposition

A modular form for a congruence subgroup I' C SLy(Z) is a holomorphic function on
the upper half plane f : H — C satisfying

f<aT+b
ct+d

) = ter+ i) @
for all (2 5) € I (and a boundedness condition).

If ((1J }) €T this says that f(7 + 1) = f(7), so f can be expanded in g = ™7,
If f =ap+ ai1qg" + a2q®" + ... then we also have f(r+1/r) = f(7).

= f satisfies (1) for all elements in T := (o(2), (101/1'")).

Small check: T is dense in SLy(R).

= f satisfies (1) for all elements in SLa(R) by continuity.

= f=0.

vyVVvyVvyYy VVY



Rest of proof

It remains to prove the three properties we used:

Property (b): The partial series Fg,, = Zdzo ZaeEg(—l) gdce Ng . rs4df+o are
quasi-Jacobi forms for g(2) of weight 2g — 2.

Proof: Use degeneration of the elliptic fibration Y — P! to a rational elliptic surface
glued with (P! x E)/(invp1, —1). Then use work of Pixton and myself.

Property (a): Ng g depends on 3 only through the square 3-8 and the divisibility of 3.

Proof: Use compact CY3 geometry and sheaves. This is next topic. O



Compact CY3 geometry

> Let X — Y be the K3 cover, let 7: X — X be the covering involution.
» The Enriques Calabi-Yau threefold is

Q= (XXxE)/Z
where Z, acts by (x, e) — (7(x), —e).
» The projection to the second factor

7:Q— E/Zy =P

is an isotrivial K3 fibration (with generic fiber X) and 4 double Enriques fibers
(isomorphic to Y).

» The projection to the first factor
p:Q—=>X/Zy=Y

is an isotrivial elliptic fibration with section.
Hx(Q,Z) = Ha(Y,Z) ® Z[E]

v



Finishing the proof

> Maulik-Pandharipande: For 3 € Ha(Y,Z), we have NS, = 4N,
» Pandharipande-Pixton: The GW/PT correspondence holds for Q

vV vVvyYVyVYyy

Let DT(v) be the generalized DT invariants counting semistable sheaves
supported on fibers of 7: Q@ — P! in class v € H*(Y,Z).

Theorem(O., based on work of Toda):

> > PTo5(=p)"a" = [] exp ((n + r)DT(r, B, n)qﬂp”>
BEH(Y,Z) nEZ r>0
B>0
n>0

X H exp <(n + r)DT(r,B3,n)q p7")
50
n>0

Prop(O., based on Toda) DT(gv) = DT(v) for all autoequivalences of D?(Y)
Prop(O., based on Macri-Mehrotra-Stellari) DMon(Y) = OF(H*(X,Z)7).
H*(X,Z)T =2 U® U(2) ® Eg(—2)

Cor: DT(v) only depends on square v - v, div(v) and type(v) € {odd, even}
This implies NgQﬂ only depends on the square 52 and the divisibility of £.



Further conjectures

What can we say about the Gromov-Witten theory of the Enriques Calabi-Yau?

The Enriques Calabi-Yau 3-fold may be the most tractable compact Calabi-
Yau with nontrivial Gromov-Witten theory. Certainly the higher genus study
of the quintic 3-fold in P4 appears more difficult.

- Maulik, Pandharipande, 'New Calculations in Gromov-Witten Theory’, 2008
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The results so far determine the N9 in case d = 0.
g,(8,d)



Another viewpoint and a conjecture

Let 7w : Y — P! be an elliptic fibration on the Enriques surface.
We have the induced abelian surface fibration:
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The generic fiber is the product of two elliptic curves E x F, 12 fibers are of the form
E x C for a nodal genus 1 curve C, and 2 double bielliptic fibers.



Another viewpoint and a conjecture

Let 7w : Y — P! be an elliptic fibration on the Enriques surface.
We have the induced abelian surface fibration:

p:Q&Yl)]P’l.

The generic fiber is the product of two elliptic curves E x F, 12 fibers are of the form
E x C for a nodal genus 1 curve C, and 2 double bielliptic fibers.

Define the generating series of Pandharipande-invariants counting curves of degree ¢
over the base:

Z2(pt,q,0) = > > (—p)"t t°3q%¢" PT 1 tstdf+atelE]-
d,e,a n€Z

In degree zero this is not difficult to evaluate (e.g. method of Bryan):

4
R

d
k>1 d>1 q

—-12 n(2r)*
R

In degree 1 we get the analoge of the lgusa cusp form formula for K3 x E.



Define two Borcherds lifts

xw(p.a,t) =pat [] (1—p q'en)atint=r=

(¢,n,r)>0
®4(p,q,t) = pqt/? [ (- prg*en)2tntn)
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where (£, n,r) > 0 stands forn>0or£>0or (n=¢=0and r <0).
> X10 is the well-known Igusa cusp form (a Siegel modular form for Sp,(Z)).
> &, is a cusp form of weight 4 for a level 2 paramodular group

Both product expansions were first found by Gritsenko-Nikulin (1995).

Let also 9£,(¢, q) = ZaeEg Co‘qaz/2 the theta function of the Eg-lattice.
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Unfortunately, a formula for Zf for £ > 2 seems difficult to guess at this point.
Problem: Ng g 41g) for 8 € Ha(Y',Z) does not only depend on B% and div(B).



The coefficients ¢; in the last slide were defined by
Z c1(4n — r2)p'q" = 24@2@
n,r

Z a(n, r)p'q" = ©*(12p% — 20G,)

n,r

where L
1— pg™)(1—p~lq™
O(p,q) = (p'/2 - p1/? H( pq mg 9")
m>1 —4q )
@(p,Q)zl )2+szp —2+pH)q?
d>1 K|d

Gk(q): _,’_szk 1_.n

n>1d|n



Thank you for the attention.



