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Abstract. We study the reduced Donaldson–Thomas theory of abelian
threefolds using Bridgeland stability conditions. The main result is the
invariance of the reduced Donaldson–Thomas invariants under all de-
rived autoequivalences, up to explicitly given wall-crossing terms. We
also present a numerical criterion for the absence of walls in terms of
a discriminant function. For principally polarized abelian threefolds of
Picard rank one, the wall-crossing contributions are discussed in detail.
The discussion yield evidence for a conjectural formula for curve count-
ing invariants by Bryan, Pandharipande, Yin, and the first author.

For the proof we strengthen several known results on Bridgeland sta-
bility conditions of abelian threefolds. We show that certain previously
constructed stability conditions satisfy the full support property. In par-
ticular, the stability manifold is non-empty. We also prove the existence
of a Gieseker chamber and determine all wall-crossing contributions. A
definition of reduced generalized Donaldson–Thomas invariants for ar-
bitrary Calabi–Yau threefolds with abelian actions is given.
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1. Introduction

1.1. Overview. Let X be a smooth projective Calabi–Yau threefold with

an ample divisor H, and let Γ be the image of the Chern character map

ch: K(X)� Γ ⊂ H2∗(X,Q).
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For every v ∈ Γ consider the Donaldson–Thomas invariant

DTH(v) ∈ Q.

If the moduli space MH(v) of H-Gieseker semistable sheaves of Chern char-

acter v consists of stable sheaves, then DTH(v) is defined by

(1) DTH(v) :=

∫
MH(v)

ν de :=
∑
k∈Z

k · e
(
ν−1(k)

)
,

where ν : MH(v) → Z is the Behrend function [Beh09] and e(−) is the

topological Euler characteristic. In general, DTH(v) is defined via the mo-

tivic Hall algebra [JS12]. The invariants DTH(v) enumerate (with weights)

Gieseker semistable sheaves on the threefold.

An interesting question is the following: Given a derived autoequivalence

g ∈ AutDb(X), how are the Donaldson–Thomas invariants DTH(v) and

DTH(g∗v) related? For the dualizing functor and curve counting Donaldson–

Thomas invariants such a relation was established in [Tod10, Bri11, Tod] and

proved the rationality and functional equation part of the GW/DT corre-

spondence conjecture [MNOP06]. Another instance is [OS2] where an au-

toequivalence on elliptically fibered Calabi–Yau threefolds yielded modular

properties of generating series of Donaldson–Thomas invariants.

In this paper we answer the above question in full generality for the

reduced1 Donaldson–Thomas invariants of abelian threefolds. The results

are strong constraints on these invariants, and may be leveraged later for

their explicit computation. Our approach is based on Bridgeland stabil-

ity conditions [Bri07] and wall-crossing techniques. In particular, this pa-

per is the first instance that Bridgeland stability conditions of a compact

Calabi–Yau threefold have been applied to Donaldson–Thomas theory in

this context (earlier work either used weak/limit stability conditions, e.g.

[Tod10, Bri11, Tod, OS2] mentioned above, or considered Bridgeland stabil-

ity conditions for local surfaces, e.g. [Tod12, MT] for local K3 surfaces).

Abelian threefolds are ‘simple’ enough among all Calabi–Yau threefolds

such that the technical difficulties regarding Bridgeland stability conditions

can be overcome. Yet they are also ‘complicated’ enough for interesting

phenomena to appear. We hope this case provides insights into the applica-

tion of Bridgeland stability conditions to the Donaldson–Thomas theory of

compact Calabi–Yau threefolds in general.

1.2. Reduced Donaldson–Thomas invariants. Let A be a non-singular

abelian threefold over C. With H and Γ as before, let MH(v) be the moduli

space of H-Gieseker semistable sheaves on A of Chern character v ∈ Γ. The

1For an abelian threefold A with dual Â = Pic0(A), the group A× Â acts on the moduli
spaces MH(v) and forces the Donaldson–Thomas invariants (1) to vanish. The theory is
only interesting after reduction, see Section 1.2.
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product A× Â acts on MH(v) by

(a, L) · E = T ∗aE ⊗ L

where Ta : A→ A is the translation x 7→ x+ a.

We define reduced Donaldson–Thomas invariants DTH(v) ∈ Q which

count A× Â-orbits of Gieseker semistable sheaves as follows.2

If the A×Â action has finite stabilizers and MH(v) consists of H-Gieseker

stable sheaves, following Gulbrandsen [Gul13] we define reduced Donaldson–

Thomas invariants by integrating over the stack quotient:

DTH(v) :=

∫
[MH(v)/(A×Â)]

ν de

where ν : [MH(v)/(A×Â)]→ Z is the Behrend function of the stack and the

topological Euler characteristic is taken in the orbifold sense. For arbitrary

v ∈ Γ the reduced invariant DTH(v) is defined via the A × Â-equivariant

motivic Hall algebra, see Section 2.

1.3. Autoequivalences. A sheaf E ∈ Coh(A) is called semihomogeneous

if its stabilizer group under the A× Â action

Ξ(E) = {(a, L) ∈ A× Â : T ∗aE ⊗ L ∼= E}(2)

is of dimension 3. Consider the subset of semihomogeneous classes

C := {± ch(E) : E is a semihomogeneous sheaf } ⊂ Γ.(3)

Let also χ : Γ× Γ→ Z be the Euler pairing on Γ.

We prove the following invariance property in Section 4.4.

Theorem 1.1. Suppose v ∈ Γ can not be written as γ1 + γ2 for any γi ∈ C
with χ(γ1, γ2) 6= 0. Then DTH(v) is independent of H and

DTH(g∗v) = DTH(v).

for every autoequivalence g ∈ Aut(Db(A)).

If v ∈ Γ does not satisfy the assumption of Theorem 1.1, then DTH(v)

and DTH(g∗v) are related by a wall-crossing formula. The wall-crossing

formula depends only on the derived equivalence g and the possible ways in

which v can be written as a sum of two semihomogeneous classes. The wall-

crossing contributions are determined in Lemma 4.13. In particular, the

precise wall-crossing formula can be worked out explicitly in any concrete

case. An example of non-trivial wall-crossing is discussed in Theorem 1.3.

2We have chosen here the same notation for the reduced invariants as for the (standard)
Donaldson–Thomas invariants defined in (1). However, from now on all our invariants are
reduced, so this choice should not create confusion.



4 GEORG OBERDIECK, DULIP PIYARATNE, AND YUKINOBU TODA

The assumption of Theorem 1.1 is often cumbersome to check in practice.

We state a numerical criterion in its place. Consider the discriminant

∆ : H2∗(A,Q)→ Q,

that is the unique homogeneous degree 4 polynomial function which is in-

variant under the spin group and is normalized by ∆(1 + p) = −1. Here

p ∈ H6(A,Z) is the class of a point. We refer to Appendix A for details and

an explicit formula in case A = E1 × E2 × E3. We have the following.

Proposition 1.2. Let v ∈ Γ. If ∆(v) ≥ 0, then v satisfies the assumption

of Theorem 1.1.

Proposition 1.2 is in perfect agreement with physical arguments by Sen

on the behaviour of the partition function of 1/8 BPS dyones under change

of stability: wall-crossing contributions can appear only for classes with

negative discriminant, see [Sen08, Section 4].

1.4. Principally polarized abelian threefolds of Picard rank one.

Let (A,H) be a principally polarized abelian threefold with ρ(A) = 1. By

Mukai [Muk81] the group SL2(Z) acts on Db(A) (modulo shifts) by

T =

(
1 1
0 1

)
7→ (−)⊗OX(H), S =

(
0 −1
1 0

)
7→ ΦP ,(4)

where ΦP is the Fourier-Mukai transform with kernel the normalized Poincaré

line bundle on A×A. Moreover, any autoequivalence acts by an element in

SL2(Z) (moduli shifts, translation and twisting by degree 0 line bundles).

The image of the Chern character map is

Γ = Z⊕ Z[H]⊕ Z[H2/2]⊕ Z[H3/6].(5)

Since the only semihomogeneous sheaves on A are vector bundles3 or have

0-dimensional support the subset of semihomogeneous classes is

C = {r(p3, p2q, pq2, q3) : (p, q, r) ∈ Z3, r 6= 0, gcd(p, q) = 1}.

For any v = r(p3, p2q, pq2, q3) ∈ C define its slope by

Θ(v) =
q

p
∈ Q ∪ {∞}(6)

with the convention Θ(v) = ∞ if p = 0. If γ1, γ2 ∈ Γ, then χ(γ1, γ2) 6= 0 if

and only if Θ(γ1) 6= Θ(γ2). We have the following result.

Theorem 1.3. Suppose v = γ1 + γ2 for some γi ∈ C with Θ(γ1) < Θ(γ2),

and let

g =

(
a b
c d

)
∈ SL2(Z).

3If E is a semihomogeneous vector bundle, then ch(E) = r(E) exp(c1(E)/r(E)) where
r(E) is the rank of E, see [Muk].
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(i) If −d
c /∈ [Θ(γ1),Θ(γ2)) or c = 0 then

DTH(g∗v) = DTH(v).

(ii) If −d
c ∈ [Θ(γ1),Θ(γ2)) then

DTH(v)−DTH(g∗v) = (−1)r1r2αr1r2α
9

( ∑
k1≥1
k1|r1

1

k2
1

)
·
( ∑
k2≥1
k2|r2

1

k2
2

)

where γi = ri(p
3
i , p

2
i qi, piq

2
i , q

3
i ) and α = p1q2 − p2q1.

1.5. Curve counting. As before let (A,H) be a principally polarized abelian

threefold of Picard rank ρ(A) = 1. For any non-zero (β, n) ∈ Z2 define

DTβ,n = DTH(1, 0,−β,−n).

The invariant DTβ,n enumerates algebraic curves C ⊂ A with [C] = βH2/2

and χ(OC) = n up to translation.

A conjecture for DTβ,n was proposed in [BOPY18, Section 7.6] as follows.

Define the theta functions

θ2(q) =
∑
n∈Z

q(n+ 1
2

)2 , θ3(q) =
∑
n∈Z

qn
2
.

Let a(n) ∈ Z be defined by the Fourier expansion∑
n

a(n)qn =
−16

θ2(q)4θ3(q)
= −q−1 + 2− 8q3 + 12q4− 39q7 + 56q8 + . . . .

Let also n(β, k) =
∑

δ δ
2 where δ runs over all positive divisors of k, β, β2/k

and β3/k2 if these numbers are integers, and let n(β, k) = 0 otherwise.

If β < 0, or β = 0 and n < 0 the invariant DTβ,n vanishes since the

moduli space is empty. In all other cases we have the following.

Conjecture 1.4 ([BOPY18]). Assume β > 0, or β = 0 and n > 0. Then

(7) DTβ,n = (−1)n
∑
k≥1
k|n

1

k
n(β, k)a

(
4β3 − n2

k2

)

We have the following corollary of Theorem 1.3.

Corollary 1.5. Let (β, n) ∈ Z2 be non-zero, and suppose (c, d) is an integer

solution of the equation d3 − 3βc2d− nc3 = 1. Define

(β′, n′) = (d2β + ncd+ β2c2, 6β2d2c+ 6c2dβn+ n+ 2c3n2 − 2c3β3).

If 4β3 − n2 ≥ 0, then DTβ,n = DTβ′,n′, and moreover DTβ,n satisfies Con-

jecture 1.4 if and only if DTβ′,n′ does.

In Corollary 1.5 the pairs (β, n) and (β′, n′) are related by a derived

autoequivalence. The discriminant specializes to ∆ = 4β3 − n2.
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Corollary 1.5 yields evidence for Conjecture 1.4. In particular, calcula-

tions for primitive curve classes (which are easier) yield informations for

imprimitive curve classes. For example, for (β, n) = (1, 1) and (c, d) = (1, 2)

we obtain the non-trivial relation

DT7,37 = DT1,1 = 8

where the last equality follows by a direct computation.

If ∆ is negative, then DTβ,n and DTβ′,n′ differ by the wall-crossing contri-

butions of Theorem 1.3. We have checked in many cases (using a computer

program) that the right hand side of Conjecture 1.4 satisfies the same wall-

crossing behaviour. This yields non-trivial evidence for Conjecture 1.4 also

in the critical range where the discriminant is negative. We refer to Sec-

tion 5.6 for further discussions and a proof of Corollary 1.5.

The constraints obtained from Theorem 1.1 are strongest for abelian

threefolds with higher Picard number, since these have a large group of

derived autoequivalences. The conjecture in [BOPY18, Section 7.6] applies

to curve counting invariants of arbitrary abelian threefolds. It would be

interesting to show the compatibility of the [BOPY18] conjecture with The-

orem 1.1 in general. Another interesting direction is to use Theorem 1.1 to

extend the [BOPY18] conjecture to arbitrary primitive vectors v ∈ Γ.

1.6. Idea of the proof of Theorem 1.1. Reduced Donaldson–Thomas

invariants are defined by making the motivic Hall algebra and the integration

map equivariant with respect to the action of A := A× Â.4 The equivariant

integration map (defined in Section 2.9) takes values in the ring

Q[A] =
⊕

B⊂A connected
abelian subvarieties

QεB,

where the ring structure is defined in terms of the intersection of the sub-

varieties B. For example, if Z is a variety with A-action and ZB ⊂ Z is

the stratum of points whose stabilizers contain B with finite index, then its

equivariant integral is the polynomial

e(Z) =
∑
B⊂A

e([ZB/(A/B)])εB.

Applying the integration map to moduli spaces of semistable sheaves (or

certain linear combinations thereof) yields the Donaldson–Thomas polyno-

mial DTH(v) ∈ Q[A]. Its coefficient of ε0 is the reduced invariant DTH(v).

Similarly for every Bridgeland stability condition σ ∈ Stab(A) there is an in-

variant DTσ(v) ∈ Q[A] counting σ-semistable objects of Chern character v.

4See also [OS] for equivariant Hall algebras and a definition in a simpler case.
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For every autoequivalence g we have formally

(8) DTσ(v) = DTg∗σ(g∗v).

In this paper we prove the following steps:

(i) Stability conditions on A constructed by Maciocia–Piyaratne [MP15,

MP16] and Bayer–Macŕı–Stellari [BMS16] satisfy the full support

property. Hence they define a family in the stability manifold Stab(A).

In particular Stab(A) 6= ∅. The connected component Stab◦(A) ⊂
Stab(A) which contains this family is called the main component.

(ii) Stab◦(A) is preserved by all autoequivalences.

(iii) (Gieseker chamber) For every H and v, there exist a σ ∈ Stab◦(A)

such that DTσ(v) = DTH(v).

(iv) If v can not be written as a sum of two semihomogeneous classes,

then all wall-crossing contributions vanish. In particular, DTσ(v) is

independent of σ ∈ Stab◦(A).

We conclude

DTH(v)
(iii)
= DTσ(v)

(8)
= DTg∗σ(g∗v)

(ii)+(iv)+(iii)
= DTH(g∗v) �

1.7. Plan of the paper. In Section 2 we define the integration map for

equivariant motivic hall algebras and reduced Donaldson–Thomas invari-

ants. In Section 3 we prove the full support property for certain Bridge-

land stability conditions on abelian threefolds and show the existence of a

Gieseker chamber. In Section 4 we define reduced Donaldson–Thomas in-

variants for Bridgeland semistable objects, and discuss their wall-crossing

behaviour. This leads to a proof of Theorem 1.1. In Section 5 we special-

ize to principally polarized abelian threefolds and prove Theorem 1.3. In

Appendix A we discuss the discriminant function and spin representations.

1.8. Conventions. We always work over C and all schemes are assumed to

be of finite type. Given an algebraic group G we let G◦ denote the connected

component of G which contains the origin. For a derived auto-equivence

g ∈ AutDb(X) we let g∗ denote its induced action on cohomology.
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2. Reduced Donaldson–Thomas invariants

2.1. Overview. LetX be a smooth projective Calabi–Yau threefold equipped

with an action of an abelian variety A. The product

A = A× Pic0(X)

acts on the moduli spaces of Gieseker semistable sheaves on X by translation

by elements in A and tensor product with elements in Pic0(X). The goal of

Section 2 is to define reduced (generalized) Donaldson–Thomas invariants

of X which count A-orbits of Gieseker semistable sheaves. For abelian

threefolds our definition generalizes work of Gulbrandsen [Gul13] and [OS].

However the definition is not special to abelian threefolds. A list of examples

to keep in mind is the following:

• X = A is an abelian threefold and A = A× Â.

• X = S×E with S a K3 surface, E an elliptic curve, and A = E×Ê.

• X = (S×E)/G where S is a symplectic surface, E is an elliptic curve,

and G is a finite group acting on S by symplectic automorphisms,

on E by translation by torsion points, and such that the induced

diagonal action on S × E is free. The E-action on S × E descends

to an action on the quotient, and we can take A = E × Ê/G.

• X is a Calabi–Yau threefold with h1,0(X) > 0, and A = Pic0(X).

In Section 2.2 and Section 2.4 we discuss equivariant Grothendieck groups

of varieties and stacks respectively. This leads to the definition of the equi-

variant Hall algebra in Section 2.6. In Section 2.9 we begin the construction

of the equivariant integration map.

2.2. Equivariant Grothendieck group of varieties. Let A be an abelian

variety. Following [OS, Section 3] the A-equivariant Grothendieck group of

varieties KA
0 (Var) is the free abelian group generated by the classes

[X, aX ]

of a variety X with an A-action aX : A ×X → X, modulo the equivariant

scissor relations

[X, aX ] = [Z, aX |Z ] + [U, aX |U ]

for every A-invariant closed subvariety Z ⊂ X with U = X \ Z. Taking

products of varieties with the induced diagonal A-action endows KA
0 (Var)

with the structure of a commutative ring with unit.
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Consider the Q-vector space

Q[A] =
⊕
B⊂A

QεB

where B runs over all connected abelian subvarieties of A. We define a Q-

linear ring structure on Q[A] as follows. If connected abelian subvarieties

B1, B2 ⊂ A intersect transversely, i.e.

codim(B1 ∩B2) = codimB1 + codimB2,

we set

εB1 · εB2 =

∣∣∣∣ B1 ∩B2

(B1 ∩B2)◦

∣∣∣∣ ε(B1∩B2)◦ .

If B1, B2 are not transverse we set

εB1 · εB2 = 0.

Lemma 2.1. (Q[A], ·) is an associative commutative algebra with unit εA.

Proof. The key step is to prove associativity: Let B1, B2, B3 ⊂ A be con-

nected. Then (εB1 · εB2) · εB3 is non-zero if and only if

codim(B1 ∩B2 ∩B3) = codim(B1) + codim(B2) + codim(B3)

in which case we get

(εB1 · εB2) · εB3 =

∣∣∣∣ B1 ∩B2 ∩B3

(B1 ∩B2 ∩B3)◦

∣∣∣∣ ε(B1∩B2∩B3)◦ .

In particular, the right hand side is invariant under permutation. �

Let X be a variety with A-action aX . For any abelian subvariety B ⊂ A
let XB ⊂ X denote the (reduced) locally closed subscheme of points whose

stabilizer contain B with finite index,

XB = {x ∈ X : Stab(x) ⊃ B, |Stab(x)/B| <∞}.
The subscheme XB ⊂ X is A-invariant and the induced A-action on XB

descends to an A/B-action with finite stabilizers. The quotient stack

[XB/(A/B)]

is hence Deligne–Mumford and its (topological) Euler characteristic is well-

defined as a rational number.

We define the A-reduced Euler characteristic of the class [X, aX ] by

e([X, aX ]) :=
∑
B⊂A

e
(
[XB/(A/B)]

)
εB ∈ Q[A]

where the sum runs over all connected abelian subvarieties of A.

Lemma 2.2. The Q-linear map

e : KA
0 (Var)→ Q[A], [X, aX ] 7→ e([X, aX ])
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is a ring homomorphism.

Proof. Since the A-reduced Euler characteristic respects the A-equivariant

scissor relation, the map e is well-defined. We need to show it is a ring

homomorphism. Let X1, X2 be varieties with A-actions. By a stratification

argument we may assume Xi = (Xi)Bi for some connected abelian subvari-

eties Bi ⊂ A. With respect to the diagonal A-action we have

Stab
(
(x1, x2)

)
= Stab(x1) ∩ Stab(x2)

for all (x1, x2) ∈ X1 ×X2, and hence

e([X1 ×X2, aX1×X2 ]) = c ε(B1∩B2)◦

for some c ∈ Q. We need to show

c =

∣∣∣∣ B1 ∩B2

(B1 ∩B2)◦

∣∣∣∣ e([X1/(A/B1)]
)
e
(
[X2/(A/B2)]

)
if B1 and B2 are transverse, and c = 0 otherwise.

Consider the commutative diagram of rows of exact sequences of abelian

groups,

0 B1 ∩B2 A A/(B1 ∩B2) 0

0 B1 ×B2 A×A A/B1 ×A/B2 0.

∆

Since the left hand square is fibered the induced morphism

α : (B1 ×B2)/(B1 ∩B2)→ A

is injective, and we obtain the exact sequence

0→ A/(B1 ∩B2)→ A/B1 ×A/B2 → Coker(α)→ 0.

The subvarieties B1 and B2 are transverse if and only if the addition map

B1 ×B2 → A, (b1, b2) 7→ b1 + b2

is surjective, hence if and only if Coker(α) = 0. If B1 and B2 are not

transverse the quotient[
(X1 ×X2)

/
(A/(B1 ∩B2)◦)

]
hence carries an action by the positive-dimensional abelian variety Coker(α)

and therefore its Euler characteristic is zero; this implies c = 0. If B1 and
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B2 are transverse, we get A/(B1 ∩B2) = A/B1 ×A/B2 and so

c = e
([

(X1 ×X2)
/

(A/(B1 ∩B2)◦)
])

=

∣∣∣∣ B1 ∩B2

(B1 ∩B2)◦

∣∣∣∣ e([(X1 ×X2)
/

(A/(B1 ∩B2))
])

=

∣∣∣∣ B1 ∩B2

(B1 ∩B2)◦

∣∣∣∣ e([X1/(A/B1)])e([X2/(A/B2)]). �

2.3. Preliminaries on stacks. We will follow Bridgeland [Bri11] for con-

ventions on stacks. In particular, all stacks are assumed to be algebraic and

locally of finite type with affine geometric stabilizers. Geometric bijections

and Zariski fibrations of stacks are defined in [Bri11, Definition 3.1] and

[Bri11, Definition 3.3]. Group actions on stacks are discussed in [Rom05].

2.4. Equivariant Grothendieck group of stacks. Let A be an abelian

variety, and let S be an algebraic stack equipped with an A-action aS .

Definition 2.3. The A-equivariant relative Grothendieck group of stacks

KA
0 (St/S) is defined to be the Q-vector space generated by the classes

[X f−→ S, aX ],

where X is an algebraic stack of finite type, aX is an A-action on X , and f

is an A-equivariant morphism, modulo the following relations:

(a) For every pair of stacks X1 and X2 with A-actions a1 and a2 respec-

tively a relation

[X1 t X2
f1tf2−−−→ S, a1 t a2] = [X1

f1−→ S, a1] + [X2
f2−→ S, a2]

where fi (i = 1, 2) are A-equivariant.

(b) For every commutative diagram

X1 X2

S

g

f1 f2

with all morphisms A-equivariant and g a geometric bijection a re-

lation

[X1
f1−→ S, a1] = [X2

f2−→ S, a2].

(c) Let X1,X2,Y be stacks equipped with A-actions a1, a2, aY respectively

such that the stabilizer groups of a1, a2, aY at all C points have the

same connected component, i.e.

Staba1(x1)◦ = Staba2(x2)◦ = StabaY (y)◦

for all x1 ∈ X1(C), x2 ∈ X2(C), y ∈ Y(C).
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Then for every pair of A-equivariant Zariski fibrations

h1 : X1 → Y, h2 : X2 → Y

with the same fibers and for every A-equivariant morphism Y g−→ S,

a relation

[X1
g◦h1−−−→ S, a1] = [X2

g◦h2−−−→ S, a2]. �

Remark 2.4. If A is the the trivial group Definition 2.3 specializes to the

relative Grothendieck group of stacks defined by Bridgeland [Bri11, Defini-

tion 3.10]. In this case we will usually omit A from the notation, and will

write K0(St/S). We will follow the same convention throughout the section:

the trivial abelian variety is omitted from the notation.

Remark 2.5. For any connected abelian subvariety B ⊂ A the restriction of

A-actions to B-actions induces a morphism

KA
0 (St/S)→ KB

0 (St/S).

In particular, if B is the trivial abelian variety,

Forg : KA
0 (St/S)→ K0(St/S),

is the map that forgets the equivariant structure.

2.5. Non-equivariant Hall algebras. Let X be a Calabi–Yau threefold,

i.e. a non-singular projective threefold with KX = 0. Let M be the stack

of coherent sheaves on X. By [Bri11, 4.2] the Hall algebra of X is the group

H(X) := K0(St/M)

together with the associative product ∗ defined by extension of sheaves.

Consider the polynomial ring

Λ = K0(Var)[L−1, (1 + L + · · ·+ Ln)−1, n ≥ 1]

where L = [A1] ∈ K0(Var) is the class of the affine line. The subalgebra of

regular classes is the Λ-submodule

Hreg(X) ⊂ H(X)

generated by all classes [Z →M] where Z is a variety. In particular, Hreg(X)

is closed under ∗-product. The quotient

Hsc(X) = Hreg(X)/(L− 1)Hreg(X)

is called the semi-classical limit and is commutative with respect to ∗. The

Poisson bracket defined by

(9) {f, g} :=
f ∗ g − g ∗ f

L− 1
, f, g ∈ Hsc(X)

makes Hsc(X) a Poisson algebra with respect to (∗, {−,−}).
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2.6. Equivariant Hall algebras. LetX be a Calabi–Yau threefold equipped

with the action of an abelian variety A. The group

A := A× Pic0(X)

acts on the stack of coherent sheaves M on X by

(a,L) · E = T ∗aE ⊗ L for all a ∈ A,L ∈ Pic0(X), E ∈ Coh(X).

The A-equivariant motivic Hall algebra is the group

HA(X) := KA
0 (St/M).

The product ∗ lifts canonically to an associative product on HA(X) via

the diagonal action, see [OS, Section 4.6]. The forgetful morphism of Re-

mark 2.5,

Forg : HA(X)→ H(X),

is a ring homomorphism with respect to this product.

Define the subalgebra of regular classes by

(10) HA
reg(X) := Forg−1(Hreg(X)).

The semi-classical limit is the quotient

HA
sc (X) = HA

reg(X)/(L− 1)HA
reg(X).

By an argument parallel to [OS, Proposition 2] the algebra HA
sc (X) is com-

mutative and the bracket {−,−} defined in (9) lifts to a Poisson bracket on

HA
sc (X).5 Therefore HA

sc (X) is a Poisson algebra with respect to (∗, {−,−}).

2.7. Gieseker stability. Let H be a fixed polarization on X. For a sheaf

E ∈ Coh(X), its Hilbert polynomial is

χ(E ⊗OX(mH)) = adm
d + ad−1m

d−1 + · · ·

where ai ∈ Q, d = dim Supp(E) and ad is a positive rational number. The

reduced Hilbert polynomial is defined by

χH(E) :=
χ(E ⊗OX(mH))

ad
∈ Q[m].

Let Γ be the image of the Chern character map

Γ := Im
(
ch: K(X)→ H2∗(X,Q)

)
.

Since χH(E) only depends on the Chern character of E, there is a map

χH : Γ→ Q[m] such that χH(E) = χH(ch(E)).

The reduced Hilbert polynomial is used in the definition of Gieseker sta-

bility as follows.

5The condition (c) in Definition 2.3 is used crucially here.
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Definition 2.6. An object E ∈ Coh(X) is H-Gieseker (semi)stable if it is

pure and for any non-zero subsheaf F ( E, we have

χH(F )(m) < (≤) χH(E)(m)

for m� 0.

Let Γ+ ⊂ Γ be the set of Chern characters of coherent sheaves,

Γ+ := Im(ch |Coh(X) : Coh(X)→ Γ).

For any v ∈ Γ+ let

MH(v) ⊂M(11)

be the open substack of finite type parametrizing H-Gieseker semistable

sheaves with Chern charecter v. For any fixed χ ∈ Q[m] consider the union

MH(χ) =
∐

χH(v)=χ

MH(v).

The Hall algebra of semistable sheaves with reduced Hilbert polynomial χ

is defined by

H(X,χ) := K0(St/MH(χ)).(12)

Since the category of H-Gieseker semistable sheaves with fixed reduced

Hilbert polynomial is closed under extension, the natural inclusion map

(13) H(X,χ) ↪→ H(X)

is a ring homomorphism. As before the Hall algebra H(X,χ) has a subalge-

bra of regular classes (the Λ-module generated by all [Z →MH(χ)] where

Z is a variety) and a semi-classical limit. We have the natural inclusions6

Hreg(X,χ) ⊂ Hreg(X), Hsc(X,χ) ⊂ Hsc(X).(14)

Since (11) is A-equivariant, there exists an A-equivariant version of (12),

HA(X,χ) ⊂ HA(X).

Similarly one has A-equivariant versions of (14),

HA
reg(X,χ) ⊂ HA

reg(X), HA
sc (X,χ) ⊂ HA

sc (X).

2.8. Poisson torus. By the Riemann-Roch theorem, the Euler paring

χ(E,F ) :=
∑
i∈Z

(−1)i dim Exti(E,F ), E, F ∈ Db(X)

descends to a unique bilinear form

χ : Γ× Γ→ Γ

6The subalgebra of regular classes could also be defined as the preimage of Hreg(X) under
the inclusion (13), and similarly for the semi-classical limit.
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which satisfies χ(E,F ) = χ(ch(E), ch(F )). Consider the group

CA(X) :=
⊕
v∈Γ

Q[A] · cv.

An associative product ∗ and a Poisson bracket on CA(X) are defined by

cv1 ∗ cv2 := (−1)χ(v1,v2)cv1+v2

{cv1 , cv2} := (−1)χ(v1,v2)χ(v1, v2)cv1+v2 .

Then CA(X) is a Poisson algebra with respect to the above (∗, {−,−}).

2.9. Equivariant integration map: Overview. Recall from [Bri11] the

integration map

I : Hsc(X)→ C(X).

The map I is a Poisson algebra homomorphism with respect to (∗, {−,−})
such that for every Z →M(v) with Z a variety we have

I([Z
f→M(v)]) = e(Z, f∗ν)cv =

(∫
Z
f∗ν de

)
cv.

Here ν : M → Z is the Behrend function [Beh09] and M(v) ⊂ M is the

substack of sheaves with Chern character v.

For each χ ∈ Q[m], let Hsc(X,χ), HA
sc (X,χ) be the semi-classical limits

of Hall algebras of semistable sheaves with reduced Hilbert polynomial χ

as defined in Section 2.7. The integration map I restricts to the Poisson

algebra homomorphism

I : Hsc(X,χ)→ C(X).

The goal of the next section is to define an equivariant integration map

IA : HA
sc (X,χ)→ CA(X)

which is a Poisson algebra homomorphism with respect to (∗, {−,−}) such

that

(15) IA([Z
f−→MH(v), a]) =

(∑
B⊂A

(−1)dimA/BεB

∫
[ZB/(A/B)]

f∗ν de

)
cv,

for every A-equivariant map Z
f−→MH(v), where Z is a variety.

If an equivariant regular class α can be written (A-equivariantly) as a

Λ-linear combination of classes [Zi → M, ai] with Zi varieties, then we

may define IA(α) directly using (15). However, by our definition of regular

classes this only holds after forgetting the equivariant structure. Hence we

need to proceed with more caution. We take the following four steps:

1. Integrate regular elements non-equivariantly over the fibers of the

map p : MH(χ) → MH(χ), where MH(χ) is the good moduli space

of MH(χ).
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2. Show the constructible function obtained from (1.) is A-equivariant.

3. Integrate the constructible function of (1.) A-equivariantly over

MH(χ) to get an element of CA(X).

4. Check the integration maps of (1.) and (3.) preserve the Poisson

structures. It follows that IA is a Poisson algebra homomorphism.

2.10. Equivariant integration map: Construction.

Step 1. Let

p : MH(v)→MH(v)

be the good moduli space of MH(v), i.e. MH(v) is an algebraic space

satisfying that p∗ on coherent sheaves is exact and the induced morphism

OMH(v) → p∗OMH(v) is an isomorphism. The good moduli space MH(v)

parametrizes S-equivalence classes of H-Gieseker semistable sheaves with

Chern character v. The existence of MH(v) as a projective scheme is well-

known from the GIT construction ofMH(v), see [Alp13, Example 8.7]. We

set

p : MH(χ)→MH(χ) =
∐

χH(v)=χ

MH(v).(16)

Until the end of this section, we fix χ and only consider classes v ∈ Γ

satisfying χH(v) = χ.

Let Constr(MH(χ)) be the space of Q-valued constructible7 functions on

MH(χ). Consider the map

p∗ : Hreg(X,χ)→ Constr(MH(χ))

defined by integration over fibers as follows: If

α =
∑
i

ai[Zi
f→MH(v)] ∈ Hreg(X,χ)

for varieties Zi and ai ∈ Q, then for every x ∈MH(χ) we let

p∗(α)(x) := Coeffcv

(
I(ιx∗ι

∗
xα)
)

=
∑
i

ai

∫
Zi|Mx

f∗ν de,

where Coeffcv(−) denotes the coefficient of cv, the map ιx :Mx →MH(χ)

is the inclusion of the fiber of the map (16) over x ∈ MH(χ), and we used

the induced maps8

ι∗x : Hreg(X,χ)→ K0(St/Mx), ιx∗ : K0(St/Mx)→ H(X,χ).

7A function f : X → Q is constructible, if f(X ) is finite and for every c ∈ f(X ) the
preimage f−1(c) is the union of a finite collection of finite type stacks. In particular,
f : M → Q constructible implies that f |Mv is non-zero only for finitely many v ∈ Γ, where
Mv ⊂M is the component of sheaves with Chern character v.
8Since ιx is representable, the composition ιx∗ι

∗
x preserves the subalgebra of regular classes.
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Step 2. The A-action on the stack MH(χ) descends to an A-action on its

good moduli space MH(χ). Consider the subgroup of A-invariant functions

ConstrA(MH(χ)) ⊂ Constr(MH(χ)).

Lemma 2.7. The image of the composition

HA
reg(X,χ)

Forg→ Hreg(X,χ)
p∗−→ Constr(MH(χ))

lies in ConstrA(MH(χ)). Hence we have the commatative diagram

HA
reg(X,χ) Hreg(X,χ)

ConstrA(MH(χ)) Constr(MH(χ)).

pA∗

Forg

p∗

with pA∗ = p∗ ◦ Forg.

Proof. Consider a regular equivariant class

[X f−→MH(v), a] ∈ HA
reg(X,χ)

where X is a stack, and let

φ = p∗Forg([X f−→MH(v), a]).

We need to show φ(a · x) = φ(x) for every x ∈MH(χ) and a ∈ A.

Since the Behrend function is invariant under the A action, by stratifying

X we may assume f∗ν is constant on X . We let Xx denote be the fiber of

p ◦ f : X → MH(χ) over the point x ∈ MH(χ). We need to compare the

value of the integration map I applied to

[Xx →MH(v)], [Xa·x →MH(v)] ∈ Hreg(X,χ).

Since X carries an A-action and p ◦ f is equivariant, translation by a ∈ A
yields an isomorphism of stacks

ta : Xx
∼=−→ Xa·x.

The claim now follows directly from the following Lemma. �

Lemma 2.8. Let [Y f−→ MH(v)] ∈ Hreg(X,χ) such that f∗ν is equal to a

constant k ∈ Z. Then the integral

I([Y f−→MH(v)])

only depends on k, the class v and the isomorphism class of the stack Y.

Proof of Lemma 2.8. For a variety Y , let P (Y )(u) be its virtual Poincaré

polynomial. The stack Y admits a stratification whose strata is of the form
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[Yi/GLni(C)]. Then

P (Y)(u) =
∑
i

P (Yi)(u)

P (GLni(C))(u)
∈ Q(u)

is independent of a stratification (see [Joy07b, Theorem 4.10]), and we have

I([Y f−→MH(v)]) = k lim
u→−1

P (Y)(u)cv

where the limit on the right hand side exist since Y → MH(v) is regular.

The right hand side only depends on Y and k and v, and not on f . �

Step 3. Let φ : MH(v)→ Q be a constructible A-invariant function. Then

there exists a stratification

MH(v) =
∐
i

Zi

into A-invariant subspaces Zi such that

• Zi is a variety,

• the restriction φ|Zi is constant of value ai ∈ Q,

• there exists a connected subgroup Bi ⊂ A such that (Zi)Bi = Zi.

Such a stratification can be constructed along the lines of [Bri11, 2.4] and

[OS, 3.3]. We define an integration map

J : ConstrA(MH(χ))→ CA(X)

by sending the constructible function φ to

J(φ) =

(∑
i

(−1)dim(A/Bi)aie([Zi/(A/Bi)]εBi)

)
cv.(17)

Since any two such stratifications have a common refinement, the map J is

well-defined.

Step 4. The direct sum map ⊕ : MH(χ)×MH(χ)→MH(χ) descends to

a map

⊕ : MH(χ)×MH(χ)→MH(χ).

Define an associative product and a Poisson bracket on Constr(MH(χ)) by

f ∗ g :=
∑
v1,v2

(−1)χ(v1,v2) ⊕∗ (fv1 × gv2),

{f, g} :=
∑
v1,v2

χ(v1, v2)(−1)χ(v1,v2) ⊕∗ (fv1 × gv2),

for all f, g ∈ Constr(MH(χ)), where fv = f |MH(v) and similar for g, and we

let

(fv1 × gv2)(x1, x2) = fv1(x1)gv2(x2)
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for all x1 ∈ MH(v1), x2 ∈ MH(v2). By a direct check Constr(MH(χ)) is a

Poisson algebra with respect to (∗, {−,−}).
Since taking direct sums is A-equivariant, the operations ∗ and {−,−}

preserve the space of A-invariant functions and define a Poisson algebra

structure on ConstrA(MH(χ)).

Lemma 2.9. The map of integration along fibers

p∗ : Hsc(X,χ)→ Constr(MH(χ))

is a Poisson algebra homomorphism with respect to (∗, {−,−}). The same

holds for the equivariant map

pA∗ : HA
sc (X,χ)→ ConstrA(MH(χ)).

Proof. We first consider the non-equivariant case. We need to show that for

all α1, α2 ∈ Hsc(X,χ) we have

p∗(α1 ∗ α2) = p∗(α1) ∗ p∗(α2),(18)

p∗({α1, α2}) = {p∗(α1), p∗(α2)},(19)

Assume first that each αi is supported over a point xi ∈ MH(vi), so in

particular

p∗(αi) = aiδxi , i = 1, 2,

where ai ∈ Q and we let δx is the characteristic function at the point x.

Then α1 ∗ α2 is supported over the point x = x1 ⊕ x2 and hence

p∗(α1 ∗ α2) = Coeffcv (I(α1 ∗ α2)) δx

= Coeffcv (I(α1) ∗ I(α2)) δx

=
(
a1a2(−1)χ(v1,v2)

)
δx

= p∗(α1) ∗ p∗(α2),

where we have set v = v1 + v2. Similarly,

p∗({α1, α2}) = Coeffcv (I({α1, α2})) δx
= Coeffcv ({I(α1), I(α2)}) δx

=
(
a1a2(−1)χ(v1,v2)χ(v1, v2)

)
δx

= {p∗(α1), p∗(α2)}.

For the general case let αi = [Xi →MH(vi)] where Xi is a variety. Let

x ∈MH(v1 + v2) be a fixed point, and consider all possible decompositions

x = x1j ⊕ x2j , j = 1, . . . , `
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with xij ∈ MH(vi) for i = 1, 2. Then, to compute the value of p∗(α1 ∗ α2)

at x we may replace Xi by ⊔̀
j=1

Xi|Mxij

By bilinearity of both sides of (18) we may further assume that ` = 1, or

equivalently, that there is only a unique decomposition x = x1⊕x2. But then

we are in the case considered before and the claim follows. The argument

for {−,−} is parallel. This completes the non-equivariant case.

The equivariance case follows immediately: we have pA∗ = p∗ ◦ Forg, and

Forg and p∗ are both ring and Poisson algebra homomorphisms. �

Lemma 2.10. The map

J : ConstrA(MH(χ))→ CA(X)

is a Poisson algebra homomorphism.

Proof. For every i ∈ {1, 2}, let

Xi ⊂MH(vi)

be an A-invariant subspace such that (Xi)Bi = Xi for some connected sub-

group Bi ⊂ A. We prove the claim for the A-invariant functions

δXi ∈ ConstrA(MH(χ)).

The general case follows by a stratification argument.

By definition we have

δX1 ∗ δX2 = (−1)χ(v1,v2) ⊕∗ (δX1×X2)

Applying J yields

(20)
J(δX1 ∗ δX2) = (−1)χ(v1,v2)+dim(A/B)e

(
[X1 ×X2/(A/B)]

)
εBcv1+v2

= (−1)χ(v1,v2)+dim(A/B)e([X1 ×X2])cv1+v2 ,

where B = (B1 ∩B2)◦ and e denotes the equivariant Euler characteristic.

On the other hand,

J(δXi) = (−1)dim(A/Bi)e([Xi/(A/Bi)])εBicvi

= (−1)dim(A/Bi)e(Xi)cvi .

By Section 2.2 we have

e([X1 ×X2]) = e(X1)e(X2).

Hence if B1 and B2 are not transverse, then (20) and J(δX1) ∗ J(δX2) both

vanish. If B1 and B2 are transverse, then

dim(A/B) = codim(B) = codim(B1)+codim(B2) = dim(A/B1)+dim(A/B2)
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which gives the desired equality:

J(δX1 ∗ δX2) = J(δX1) ∗ J(δX2).

The check that J preserves the Poisson bracket is parallel. �

Definition 2.11. The equivariant integration map is defined by

IA := J ◦ pA∗ : HA
sc (X,χ)→ ConstrA(MH(χ))→ CA(X).

We have the following result.

Theorem 2.12. The equivariant integration map IA is a Poisson algebra

homomorphism. Moreover, for every A-equivariant map f : Z → MH(v),

where Z is a variety, we have

IA([Z
f−→MH(v), a]) =

(∑
B⊂A

(−1)dim(A/B)εB

∫
[ZB/(A/B)]

f∗ν de

)
cv,

Proof. The first claim follows from Lemma 2.9 and 2.10. For the second

we may assume Z is a A-invariant subvariety of MH(v), that ZB = Z for

some connected abelian subvariety B ⊂ A and that the Behrend function is

constant of value k on Z. Let pZ : Z → Z ′ ⊂ MH(v) be the restriction of

p :MH(v)→MH(v) to Z. Then

IA([Z →MH(v), a]) = k(−1)dim(A/B)εBcv

∫
[Z′/(A/B)]

pZ∗(1) de

= k(−1)dim(A/B)εBcv

∫
[Z/(A/B)]

1 de. �

2.11. Definition of Donaldson-Thomas invariants. As above let A be

an abelian variety acting on a Calabi–Yau threefold X, and set A = A ×
Pic0(X). The stack of semistable sheaves (11) defines an element

δH(v) := [MH(v) ⊂MH(χ)] ∈ HA(X,χ).

Applying a formal logarithm defines the element

(21) εH(v) :=
∑

l≥1,v1+···+vl=v
χH(vi)=χ

(−1)l−1

l
δH(v1) ∗ · · · ∗ δH(vl).

The following is the equivariant analog of a result of Joyce.

Proposition 2.13. (L− 1)εH(v) ∈ HA
reg(X,χ).

Proof. By Joyce [Joy07a, Theorem 8.7] the element is regular after forgetting

the equivariant structure. Hence it is regular by definition (10). �

Define the class

εH(v) := [(L− 1)εH(v)] ∈ HA
sc (X,χ).
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Definition 2.14. The A-reduced Donaldson–Thomas invariant of X in

class v ∈ Γ+ is the unique element DTH(v) ∈ Q[A] such that

IA(εH(v)) = DTH(v) · cv.

Remark 2.15. We expect DTH(v) ∈ Q[A] to be invariant under deforma-

tions of X under which v ∈ H∗(X,Q) remains algebraic. If v is primitive

the deformation invariance property can be proven by constructing a slice

of the A-action, see [Gul13] for abelian threefolds and [Obe18] for K3× E.

It is convenient to define Donaldson-Thomas invariants for every v ∈ Γ

by the following convention:

• If v ∈ −Γ+ define DTH(v) := DTH(−v).

• If v /∈ ±Γ+ define DTH(v) := 0.

For any v ∈ Γ and connected abelian subvariety B ⊂ A, we further define

DTH(v)B ∈ Q by the expansion

DTH(v) =
∑
B⊂A

DTH(v)B · εB.

Moreover we write DTH(v) := DTH(v)B=(0,0).

Remark 2.16. Let v ∈ Γ. We expect that the stabilizer of an element E ∈
MH(v) only depends on its Chern character and not on its moduli. In

particular, for every v ∈ Γ we expect to have DTH(v) = DTH(v)BεB for

a B determined by v. Partial results in this direction were obtained by

Gulbrandsen, see [Gul13, Proposition 3.5].

3. Bridgeland stability conditions on abelian threefolds

3.1. Review of stability conditions. Let X be a smooth projective vari-

ety, and Db(X) its bounded derived category of coherent sheaves. Here we

review Bridgeland stability conditions on Db(X). We fix a finitely generated

free abelian group Λ, and a group homomorphism cl : K(X)→ Λ.

Definition 3.1. ([Bri07]) A stability condition on Db(X) with respect to

(Λ, cl) is a pair

σ = (Z,A), A ⊂ Db(X)

where Z : Λ→ C is a group homomorphism and A is the heart of a bounded

t-structure such that the following conditions hold:

(i) For any non-zero E ∈ A, we have

Z(E) := Z(cl(E)) ∈ {reπiφ : r > 0, φ ∈ (0, 1]}.

(ii) (Harder-Narasimhan property) For any E ∈ A, there is a filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ EN
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in A such that each subquotient Fi = Ei/Ei−1 is Z-semistable with

argZ(Fi) > argZ(Fi+1).

(iii) (Support property) There is a quadractic form Q on Λ such that

Q(cl(E)) ≥ 0 for any Z-semistable object E and Q is negative defi-

nite on Ker(Z).

Here an object E ∈ A is Z-(semi)stable if we have

argZ(F ) < (≤) argZ(E)

in (0, π] for any subobject 0 6= F ( E.

For group homomorphisms Z,Z ′ : Λ→ C, we write Z ∼ Z ′ if we have

ReZ ′ = λ1 ReZ + λ2 ImZ, ImZ ′ = λ3 ImZ

for some λi ∈ R with λ1, λ3 positive. Then (Z,A) is a stability condition

if and only if (Z ′,A) is a stability condition, and Z-(semi)stable objects

coincide with Z ′-(semi)stable objects. In this case, we say that (Z,A),

(Z ′,A) are equivalent and write (Z,A) ∼ (Z ′,A).

Given a Bridgeland stability condition σ = (Z,A) the category of σ-

semistable objects with phase φ ∈ R is defined in case φ ∈ (0, 1] by

P(φ) := {E ∈ A : E is Z-semistable with Z(E) ∈ R>0e
πiφ} ∪ {0}.

and for general φ ∈ R by the condition

P(φ+ 1) = P(φ)[1].

The data of a stability condition σ is equivalent to the data

(Z, {P(φ)}φ∈R), Z : Λ→ C, P(φ) ⊂ Db(X)(22)

satisfying some properties, see [Bri07, Section 5] for details.

Let StabΛ(X) be the set of stability conditions on Db(X) with respect to

(Λ, cl). By [Bri07] there is a natural topology on StabΛ(X) such that the

forgetful map

Π: StabΛ(X)→ Λ∨C, (Z,A) 7→ Z

is a local homeomorphism.

Let Γ ⊂ H2∗(X,Q) be the image of the Chern character map. We call

the support property with respect to (Γ, ch) the full support property.9 The

space of stability conditions with respect to (Γ, ch) is denoted by

Stab(X) := StabΓ(X).

9This will be used in the following way. Suppose that σ = (Z,A) is a stability condition
with respect to (Λ, cl) and that cl : K(X)→ Λ factors through the Chern character map,
i.e. cl = cl′ ◦ ch for some cl′ : Γ→ Λ. Then the pair σ′ = (Z ◦cl′,A) automatically satisfies
conditions (i,ii) of Definition 3.1, but not necessarily the full support property (iii). Hence
the stability condition σ induces a stability condition with respect to (Γ, ch) if and only
if σ (or more precisely σ′) satisfies the full support property.
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Every (co-variant) autoequivalence g ∈ Aut(Db(X)) induces an action

g∗ ∈ Aut(Γ) which commutes with Chern character maps, see also Section

3.5 for further details. Therefore g also acts on Stab(X) by

(23) g∗(Z,A) :=
(
g∗Z, g(A)

)
,

where g∗Z(−) := Z ◦ g−1
∗ (−). The induced action on the manifold Stab(X)

is a homeomorphism, and the assignment g 7→ g∗ defines a left Aut(Db(X))-

action on Stab(X).

3.2. Double tilting constructions. Let X be a smooth projective 3-fold,

and let B + iω ∈ NS(X)C with ω ample. The B-twisted Chern character of

an object E ∈ Db(X) is defined by

chB(E) := e−B ch(E) ∈ H2∗(X,R).

For any E ∈ K(X) let

Zω,B(E) := −
∫
X
e−iω chB(E)

=

(
− chB3 (E) +

1

2
chB1 (E)ω2

)
+ i

(
chB2 (E)ω − 1

6
chB0 (E)ω3

)
.

If X is an abelian 3-fold, we have

Zω,B(E) = −χ(eB+iω, ch(E)).(24)

The homomorphism Zω,B : K(X)→ C descends to a homomorphism

Zω,B : Γ→ C.

In [BMT14] a heart of a t-structure Aω,B was constructed as a candidate

for a Bridgeland stability condition (Zω,B,Aω,B). We review the construc-

tion. Consider the B-twisted ω-slope function on Coh(X),

µω,B(E) =
chB1 (E) · ω2

rank(E)
∈ R ∪ {∞}.

It defines the usual slope stability on Coh(X). Define a torsion pair (Tω,B,Fω,B)

on Coh(X) by

Tω,B = 〈E ∈ Coh(X) : E is µω,B-semistable with µω,B(E) > 0〉,
Fω,B = 〈E ∈ Coh(X) : E is µω,B-semistable with µω,B(E) ≤ 0〉,

where we let 〈∗〉 denote the extension closure. Its tilt is the heart

Bω,B = 〈Fω,B[1], Tω,B〉 ⊂ Db(X).

The slope function νω,B on Bω,B is defined by

νω,B(E) =
ImZω,B(E)

chB1 (E) · ω2
∈ R ∪ {∞}.
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It also defines the νω,B-stability on Bω,B. Similarly to above, the torsion

pair (T ′ω,B,F ′ω,B) of Bω,B is defined by

T ′ω,B = 〈E ∈ Bω,B : E is νω,B-semistable with νω,B(E) > 0〉,
F ′ω,B = 〈E ∈ Bω,B : E is νω,B-semistable with νω,B(E) ≤ 0〉.

By tilting a second time we obtain the heart

Aω,B = 〈F ′ω,B[1], T ′ω,B〉 ⊂ Db(X).

In [BMT14] it was conjectured that the pairs

σω,B := (Zω,B,Aω,B)

are Bridgeland stability conditions.

3.3. Bogomolov-Gieseker inequalities. In order to show that pairs σω,B
are stability conditions, and in particular satisfy the support property, we

need to investigate quadractic inequalities for semistable objects. First we

recall quadractic inequalities for νω,B-semistable objects in Bω,B.

Let H be a fixed ample divisor on X and consider the case ω = αH for

some α ∈ R>0. By [BMT14], there is a constant CH ≥ 0 such that for every

effective divisor D on X, we have

CH(H2D)2 + (H3)(HD2) ≥ 0.

If X is an abelian 3-fold, we can take CH = 0. Let us also take B ∈ NS(X)R

and for any E ∈ Db(X) define

∆(E) := (ch1(E))2 − 2 ch0(E) ch2(E),

∆H,B(E) := (H2 chB1 (E))2 − 2(H3 chB0 (E))(H chB2 (E)).

By the Hodge index theorem we have ∆H,B(E) ≥ H3 ·H∆(E) which is an

equality when the Picard rank of X is one.

Proposition 3.2. ([BMT14]) For any νω,B-semistable object E ∈ Bω,B,

where ω = αH for an ample divisor H and α ∈ R>0, we have the inequlaities

∆H,B(E) ≥ 0, and H3 ·H∆(E) + CH(H2 chB1 (E))2 ≥ 0.

For any E ∈ Db(X) define

∇H,B(E) = 12(H2 chB1 (E))2 − 18(H3 chB0 (E))(H chB2 (E)).

The following conjecture is proposed in [BMT14, BMS16]:

Conjecture 3.3. ([BMT14, BMS16], [PT, Theorem 1.4]) For any νω,B-

semistable object E ∈ Bω,B, where ω = αH for an ample divisor H and

α ∈ R>0, we have

α2∆H,B(E) +∇H,B(E) ≥ 0.



26 GEORG OBERDIECK, DULIP PIYARATNE, AND YUKINOBU TODA

For fixed (H,B), let ΛH,B ⊂ R4 be the free abelian group of rank 4 given

by the image of the map

cl : K(X)→ R4, E 7→ (H3 chB0 (E), H2 chB1 (E), H chB2 (E), chB3 (E)).

The following result is proven in [BMS16, Theorem 8.6] when B is propor-

tional to H, and the general case follows by a parallel argument.

Proposition 3.4. ([BMS16, Theorem 8.6]) If Conjecture 3.3 holds for X

and some α ∈ R>0, then we have

(Za,bαH,B,AαH,B) ∈ StabΛH,B (X),(25)

where Za,bαH,B is defined by

Za,bαH,B =
(
− chB3 +bH chB2 +aH2 chB1

)
+ i

(
αH chB2 −

α3

6
H3 chB0

)
(26)

with a, b ∈ R satisfying

a >
α2

18
+

√
3

6
|b|α.(27)

Moreover, there is an interval Ia,bα ⊂ (α2, 18a) such that for all K ∈ Ia,bα ,

the quadratic form defined by

QK(−) = K∆H,B(−) +∇H,B(−)

establishes the support property for the stability condition (25).

Conjecture 3.3 is known to hold for abelian threefolds A by [MP15, MP16,

BMS16, PT]. Hence by Proposition 3.4 the pairs

σω,B = (Z
a=α2/2,b=0
αH,B ,AαH,B), ω = αH

define Bridgeland stability conditions on A with respect to (ΛH,B, cl) and

define points in StabΛH,B (A). In the following subsections we show that the

pairs (25) are stability conditions also with respect to (Γ, ch). In particular,

they form a family in Stab(A).

3.4. Projection maps in cohomologies. Let X be an n-dimensional

smooth projective variety, and H ∈ NSQ(X) an ample class. Let

H2∗
alg(X,Q) ⊂ H2∗(X,Q)

be the subspace spanned by algebraic classes. We fix some notation on the

projection maps on H2∗
alg(X,Q). For any i, we define

pH,i : H2i
alg(X,Q)→ H2i

alg(X,Q), γi 7→
γi ·Hn−i

Hn
H i.

This gives us the map

pH : H2∗
alg(X,Q)→ H2∗

alg(X,Q), (γ0, . . . , γn) 7→ (pH,0(γ0), . . . , pH,n(γn)) .
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Also we define

p⊥H,i : H2i
alg(X,Q)→ H2i

alg(X,Q), γi 7→ γi − pH,i(γi),

and

p⊥H : H2∗
alg(X,Q)→ H2∗

alg(X,Q), (γ0, . . . , γn) 7→
(
p⊥H,0(γ0), . . . , p⊥H,n(γn)

)
.

We define

H2i
alg(X,Q)H,‖ = im (pH,i) , H2i

alg(X,Q)H,⊥ = im
(
p⊥H,i

)
,

H2∗
alg(X,Q)H,‖ = im (pH) , H2∗

alg(X,Q)H,⊥ = im
(
p⊥H

)
.

So we have

H2i
alg(X,Q) = H2i

alg(X,Q)H,‖ ⊕H2i
alg(X,Q)H,⊥,

H2∗
alg(X,Q) = H2∗

alg(X,Q)H,‖ ⊕H2∗
alg(X,Q)H,⊥.

By abuse of notation we will write pH for pH,i, and p⊥H for p⊥H,i. We have

(28) id = pH + p⊥H .

We write

ch
H,‖
i (E) = pH (chi(E)) , chH,⊥i (E) = p⊥H (chi(E)) .

Then we have Hn−i · chH,‖i (E) = Hn−i · chi(E), and Hn−i · chH,⊥i (E) = 0.

From the Hodge Index Theorem, we have

(29) Hn−2 ·
(

chH,⊥1 (E)
)2
≤ 0.

Remark 3.5. Let Λ
‖
H be the image of the composition

K(X)
ch→ H2∗

alg(X,Q)
p
‖
H→ H2∗

alg(X,Q)H,‖.

If B is proportional to H, then the support properties for (ΛH,B, cl) and

(Λ
‖
H , p

‖
H ◦ ch) are equivalent. So in Proposition 3.4, we obtain stability

conditions in Stab
Λ
‖
H

(X).

We define Λ]H , Λ[H to be the images of maps

cl] : K(X)→ H2∗
alg(X,Q), E 7→ (ch0(E), ch1(E), ch

H,‖
2 (E), ch3(E)),

cl[ : K(X)→ H2∗
alg(X,Q), E 7→ (ch0(E), ch

H,‖
1 (E), ch2(E), ch3(E))(30)

respectively. In the next lemma, we observe that stability conditions in

Proposition 3.4 satisfy the support property with respect to the (Λ]H , cl]).

Lemma 3.6. In the situation of Proposition 3.4, suppose that B is pro-

portional to H and CH = 0. Then the stability conditions (25) satisfy the

support property with respect to (Λ]H , cl]). For an interval Ia,bα ⊂ (α2, 18a)
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and K ∈ Ia,bα , the quadractic form is

Q]K = K∆H,B(−) +∇H,B(−) + (K − α2)H3 ·H(chH,⊥1 (−))2.

Proof. The proof of [BMS16, Lemma 8.8] is applied, by replacing the in-

equality ∆H,B(−) ≥ 0 for νω,B-semistable objects with the inequality (see

Proposition 3.2)

H3 ·H∆(−) = ∆H,B(−) +H3 ·H(chH,⊥1 (−))2 ≥ 0.

Then the quadractic form α2∆H,B + ∇H,B + (K − α2)H3 · H∆ gives the

desired support property. �

3.5. Fourier-Mukai transforms and abelian 3-folds. Our strategy for

the proof of the full support property is to use Fourier-Mukai transforms.

Let us quickly recall some of the important notions in Fourier-Mukai theory.

Further details can be found in [Huy06].

Let X,Y be smooth projective varieties and let pi, i = 1, 2 be the projec-

tion maps from X×Y to X and Y , respectively. The Fourier-Mukai functor

ΦX→Y
E : Db(X)→ Db(Y ) with kernel E ∈ Db(X × Y ) is defined by

ΦX→Y
E (−) = Rp2∗(E

L
⊗ p∗1(−)).

When ΦX→Y
E is an equivalence of the derived categories, usually it is called

a Fourier-Mukai transform. Any Fourier-Mukai functor ΦX→Y
E : Db(X) →

Db(Y ) induces a linear map

ΦH
E : H2∗

alg(X,Q)→ H2∗
alg(Y,Q).

Here H2∗
alg(X,Q) ⊂ H2∗(X,Q) is the subspace sppaned by algebraic classes.

The above linear map is a linear isomorphism when ΦX→Y
E is a Fourier-

Mukai transform. The induced transform fits into the following commutative

diagram, due to the Grothendieck-Riemann-Roch theorem.

Db(X) Db(Y )

H2∗
alg(X,Q) H2∗

alg(Y,Q).

ΦX→YE

vX(−) vY (−)

ΦH
E

Here vX(−) = ch(−)
√

tdX is the Mukai vector map. Note that for an abelian

variety X, tdX = 1. Hence the Mukai vector v(E) of E ∈ Db(X) is the same

as its Chern character ch(E).

Let X = A be an abelian variety, and Â = Pic0(A) its dual abelian variety.

The Poincaré line bundle P on the product A×Â is the uniquely determined

line bundle satisfying (i) PA×{x̂} ∈ Pic(A) is represented by x̂ ∈ Â, and (ii)
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P{e}×Â ∼= OÂ. In [Muk81], Mukai proved that the Fourier-Mukai functors

ΦA→Â
P : Db(A)→ Db(Â), ΦÂ→A

P∨ : Db(Â)→ Db(A)

are equivalences of derived categories, i.e. Fourier-Mukai transforms. More-

over, he proved that

ΦÂ→A
P∨ ◦ ΦA→Â

P
∼= id[−n], ΦA→Â

P ◦ ΦÂ→A
P∨

∼= id[−n],

where n is the dimension of A and Â.

Let L be an ample line bundle on A. Its image under ΦA→Â
P is a semiho-

mogeneous vector bundle10 L̂ of rank χ(L) = c1(L)n/n!,

ΦA→Â
P (L) ∼= L̂.

Moreover, −c1(L̂) is an ample divisor class on Â. See [BL99] for further

details. We have the following:

Lemma 3.7 ([BL99]). Let H ∈ NSQ(A) be an ample class on A. Under the

induced cohomological transform ΦH
P : H2∗

alg(A,Q)→ H2∗
alg(Â,Q) of ΦA→Â

P we

have

ΦH
P(eH) = (Hn/n!) e−Ĥ

for some ample class Ĥ ∈ NSQ(Â), satisfying

(Hn/n!)(Ĥn/n!) = 1.

Moreover, for each 0 ≤ i ≤ n, the induced cohomological transform gives

rise to an isomorphism ΦH
P : H2i

alg(A,Q)→ H
2(n−i)
alg (Â,Q), satisfying

ΦH
P

(
H i

i!

)
=

(−1)n−iHn

n!(n− i)!
Ĥn−i.

Let H, Ĥ be as in Lemma 3.7. We write

vi(−) = i!Hn−i · chi(−), v̂i(−) = i!Ĥn−i · chi(−).(31)

For γ = (γ0, . . . , γn) ∈ H2∗(A,Q), we also write vi(γ) = i!Hn−iγi and simi-

larly for v̂i(−). The following is a particular case of [Piy, Theorem 3.6].

Lemma 3.8. We have the following equality for the induced cohomological

transform ΦH
P : H2∗

alg(A,Q)→ H2∗
alg(Â,Q):

v̂i
(
ΦH
P(γ)

)
=

(−1)in!

Hn
vn−i(γ).

We also have the following corollary:

10See Section 3.6 for more details on semihomogeneous bundles.
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Corollary 3.9. The induced cohomological transform ΦH
P : H2∗

alg(A,Q) →
H2∗

alg(Â,Q) of ΦA→Â
P fits into the following diagrams:

H2i
alg(A,Q) H

2(n−i)
alg (Â,Q)

H2i
alg(A,Q) H

2(n−i)
alg (Â,Q),

pH,i

ΦH
P

p
Ĥ,n−i

ΦH
P

H2i
alg(A,Q) H

2(n−i)
alg (Â,Q)

H2i
alg(A,Q) H

2(n−i)
alg (Â,Q).

p⊥H,i

ΦH
P

p⊥
Ĥ,n−i

ΦH
P

Proof. The first diagram is a direct consequence of Lemma 3.7. The second

diagram follows from the relation (28). �

In the case of n = 3, the Fourier-Mukai transform ΦA→Â
P with the Poincaré

bundle as kernel preserves double tilt hearts as follows:

Lemma 3.10. ([Piy, Theorem 5.3]) Suppose that A is an abelian 3-fold.

Then for any t ∈ R>0, we have

ΦA→Â
P [1]

(
A√3tH/2,tH/2

)
= A√

3Ĥ/2t,−Ĥ/2t

where Ĥ ∈ NSQ(Â) is the induced ample class as in Lemma 3.7.

3.6. (Semi)homogeneous sheaves. We recall (semi)homogeneous sheaves

on abelian varieties, and study the effect of tensoring them to the stability.

The arguments here will be also used in the proof of full support property.

A vector bundle E on an abelian variety A is called homogeneous if we

have T ∗xE
∼= E for all x ∈ A.

Proposition 3.11 ([Muk78]). A vector bundle E on A is homogeneous if

and only if E can be filtered by line bundles from Pic0(A).

For a coherent sheaf E on A, we define

Ξ(E) := {(x, L) ∈ A× Â : T ∗xE ⊗ L ∼= E}.(32)

By [Muk, Proposition 4.5], we have dim Ξ(E) ≤ n, where n is the dimension

of A. A coherent sheaf E on A is semihomogeneous if dim Ξ(E) = n. If E

is a vector bundle, this is equivalent to that for every x ∈ A there exists a

flat line bundle PA×{x̂} on A such that T ∗xE
∼= E⊗PA×{x̂}. Also a coherent

sheaf E is called simple if we have EndA(E) ∼= C.

Lemma 3.12 ([Muk78, Theorem 5.8]). Let E be a simple vector bundle

on an n-dimensional abelian variety A. Then the following conditions are

equivalent:

(i) dimH1(A, End(E)) = n,

(ii) E is semihomogeneous,

(iii) End(E) is a homogeneous vector bundle.
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Lemma 3.13 ([Muk78, Orl02]). The following holds.

(i) A rank r simple semihomogeneous bundle E has the Chern character

ch(E) = r · ec1(E)/r.

(ii) For any DA ∈ NSQ(A), there exists a simple semihomogeneous bun-

dle E on A with ch(E) = r · eDA for some r ∈ Z>0.

(iii) Let E be a semihomogeneous bundle on A. Then E is Gieseker

semistable with respect to any ample line bundle L, and if E is simple

then it is slope stable with respect to c1(L).

Below we assume that A is an abelian 3-fold. Let ω,B ∈ NSQ(A) such

that ω is an ample class.

Proposition 3.14. Let V be a simple semihomogeneous bundle on A and

let

D =
c1(V )

rk(V )
.

Then we have the following:

(i) E ∈ Coh(A) is µω,B-semistable if and only if E ⊗ V is µω,B+D

semistable.

(ii) E ∈ Bω,B is νω,B-semistable if and only if E ⊗ V ∈ Bω,B+D is

νω,B+D-semistable.

(iii) E ∈ Aω,B is σω,B-semistable if and only if E ⊗ V ∈ Aω,B+D is

σH,B+D-semistable.

Proof. (i) This follows from the fact that slope semistability is preserved

under tensoring by semistable vector bundles and from Lemma 3.13 the

simple semihomogeneous bundle V is slope stable.

(ii) From part (i), we have Bω,B ⊗ V ⊂ Bω,B+D; so E ⊗ V ∈ Bω,B+D.

From Lemma 3.13,

ch(V ) = rk(V ) · eD,
so chB+D(E ⊗ V ) = rk(V ) chB(E). Hence

(33) νω,B+D(E ⊗ V ) = νω,B(E).

Suppose for a contradiction E ⊗ V ∈ Bω,B+D is not νω,B+D semistable;

so the following destabilizing short exact sequence exists in Bω,B+D:

0→ P → E ⊗ V → Q→ 0.

By tensoring with the dual V ∨ we get the following short exact sequence

exists in Bω,B:

(34) 0→ P ⊗ V ∨ → E ⊗ End(V )→ Q⊗ V ∨ → 0.

From Lemma 3.12, the bundle End(V ) = V ⊗ V ∨ is a homogeneous bun-

dle, and from Proposition 3.11 it can be filtered by line bundles {Lj} from
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Pic0(A). Therefore, E⊗End(V ) ∈ Bω,B is filtered by νω,B-semistable objects

{E ⊗ Lj} in Bω,B; hence, E ⊗ End(V ) ∈ Bω,B is νω,B-semistable. However,

according to (33), the short exact sequence (34) destabilizes E ⊗ End(V ).

This is the required contradiction.

(iii) From part (ii), we have Aω,B ⊗ V ⊂ Aω,B+D; so E ⊗ V ∈ Aω,B+D.

Then the rest of the proof is similar to part (ii). �

3.7. Full support property via FM transforms on abelian 3-folds.

Let A be an abelian 3-fold and H ∈ NSQ(A) be an ample class. Let vi
be the vectors as in (31), and consider the following form of central charge

functions

W p,q
H,t = (−v3 + qv2 + pv0) + i (v2 − tv1)

for t, p, q ∈ R.

Proposition 3.15. Let t 6= 0, and a, b ∈ R. Then we have the following:

Za,b√
3|t|H/2,tH/2 ∼W p,q

H,t

for some p, q ∈ R. Here α =
√

3|t|/2, a, b satisfy (27), that is a > (t2/24) +

(|tb|/4), if and only if t, p, q satisfy t(t− q) < p
t < 0.

Proof. From the definition of vi and chtH/2(−) = e−tH/2 ch(−), we have

H3 ch
tH/2
0 = v0, H

2 ch
tH/2
1 = v1 − tv0/2, 2H ch

tH/2
2 = v2 − tv1 + t2v0/4,

6 ch
tH/2
3 = v3 − 3tv2/2 + 3t2v1/4− t3v0/8.

Now, by direct substitution one can check that

Za,b√
3|t|H/2,tH/2

=
(
− ch

tH/2
3 +bH ch

tH/2
2 +aH2 ch

tH/2
1

)
+ i

t

2

(
H ch

tH/2
2 − t

2

8
H3 ch

tH/2
0

)
=

1

6
(−v3 + qv2 + pv0 + r(v2 − tv1)) + i

t

4
(v2 − tv1)

∼W p,q
H,t,

where

q =
3t

4
+

6a

t
, p = −3at+

3bt2

4
+
t3

8
, r =

3t

8
+ 3b− 6a

t
.

By straightforward computation one can check that |t|, a, b satisfy a >

(t2/24) + (|tb|/4), if and only if t, p, q satisfy t(t− q) < p
t < 0. �

Consequently, we get the following particular case of Proposition 3.4 and

Lemma 3.6 in an alternative form.
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Proposition 3.16. Let the numbers t, p, q ∈ R satisfy

t 6= 0, t(t− q) < p

t
< 0.(35)

Then the pair (
W p,q
H,t,A√3|t|H/2,tH/2

)
defines a Bridgeland stability condition on A with respect to (Λ]H , cl]).

Let us write

Ψ := ΦA→Â
P [1] : Db(A)→ Db(Â), Ψ̂ := ΦÂ→A

P∨ [2] : Db(Â)→ Db(A).

Then Ψ̂ is the quasi inverse of Ψ, and Ψ is the quasi inverse of Ψ̂. Recall

that Ψ∗W
p,q
H,t : K(Â)→ C is the function defined by

Ψ∗W
p,q
H,t(−) = W p,q

H,t(Ψ̂(−)).

Let Ĥ be the induced ample divisor on Â as in Lemma 3.7, and v̂i be the

vectors as in (31).

Proposition 3.17. Let t, p, q ∈ R such that t > 0. We have

Ψ∗W
p,q
H,t ∼W p′,q′

Ĥ,t′

for some t′, p′, q′ ∈ R defined by

t′ = −1

t
< 0, p′ = −1

p
, q′ =

tq

p
.(36)

Moreover, if {t > 0, p, q} satisfies (35), then {t′ < 0, p′, q′} also satisfies

(35).

Proof. From Lemma 3.7, we have

vi(Ψ̂(−)) = (−1)i
H3

6
v̂3−i(−).

Hence

Im
(

Ψ∗W
p,q
H,t

)
=
H3

6
(v̂1 + tv̂2) =

H3t

6
ImW p′,q′

Ĥ,t′
,

Re
(

Ψ∗W
p,q
H,t

)
=
H3

6
(v̂0 + qv̂1 + pv̂3) =

H3

6

(
−p · ReW p′,q′

Ĥ,t′
+ tq · ImW p′,q′

Ĥ,t′

)
.

Therefore the first claim holds. By direct computation one can check that

if {t > 0, p, q, r} satisfies (35), then we have

t′(t′ − q′) < p′

t′
< 0.

That is (35) holds for {t′ < 0, p′, q′}. �

For t ∈ R>0, by Lemma 3.10, Proposition 3.17 and Proposition 3.15, we

have the following:
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Lemma 3.18. Let t > 0, p, q ∈ R satisfy (35). Then we have the following

equivalence of Bridgeland stability conditions:

Ψ∗

(
W p,q
H,t,A√3tH/2,tH/2

)
∼
(
W p′,q′

Ĥ,t′
,A−√3t′Ĥ/2,t′H/2

)
for t′ < 0, p′, q′ ∈ R defined as in (36) satisfying (35).

Consequently we prove the following:

Lemma 3.19. If t > 0, p, q ∈ R satisfy (35), then the Bridgeland stability

condition defined by the pair(
W p,q
H,t,A√3tH/2,tH/2

)
(37)

satisfies the full support property, i.e. it is an element of Stab(A).

Proof. From Lemma 3.6, there exists a quadratic form, say Q1, which estab-

lishes the support property for the stability condition (37) with respect to

(Λ]H , cl]). Choose t′ < 0, p′, q′ ∈ R as in Lemma 3.18. Now from Lemma 3.6,

there exists a quadratic form, say Q2, which establishes the support prop-

erty for the stability condition
(
W p′,q′

Ĥ,t′
,A−√3t′Ĥ/2,t′H/2

)
with respect to

(Λ
Ĥ] , cl]). Hence, from Lemma 3.18 and Corollary 3.9, the quadratic form

Q2(Ψ(−)) establishes the support property for the stability condition (37)

with respect to (Λ[H , cl[) defined in (30). Therefore, the quadratic form

(38) Q(−) = Q1(−) + λQ2(Ψ(−)), for any λ ∈ R>0

establishes the support property for the stability condition (37) with respect

to (Γ, ch), that is the full support property. �

Theorem 3.20. Let B ∈ NSQ(A), α =
√

3t/2 for some t ∈ Q>0 and

a, b ∈ R satisfying (27). Then the stability condition (Za,bαH,B,AαH,B) in

Proposition 3.4 satisfies the full support property.

Proof. Let us fix a slope semistable semihomogeneous bundle V on A such

that

(39)
c1(V )

rk(V )
= −B +

t

2
H.

From Lemma 3.13, ch(V ) = rk(V ) · e(−B+tH/2). Let E be a (Za,bαH,B,AαH,B)-

semistable object. By Proposition 3.14, E⊗V is a (Za,b√
3tH/2,tH/2

,A√3tH/2,tH/2)-

semistable object. Let Q be the quadractic form on Γ which establishes

the full support property for (37), which exists by Theorem 3.19. Since

ch(E ⊗ V ) = rk(V ) · chB−tH/2(E), the quadractic form Q(e−B+tH/2(−))

establish the support property for (Za,bαH,B,AαH,B). �
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Consequently, we arrive at the following, which is the main result of Sec-

tion 3. It implies in particular the existence of stability conditions on A

with respect to (Γ, ch), or equivalently that Stab(A) 6= ∅.

Theorem 3.21. There is a continuous family of Bridgeland stability con-

ditions in Stab(A), parameterized by the set

(ω,B, a, b) ∈ AmpR(A)×NSR(A)× R× R, a >
1

18
+

√
3

6
|b|

via

(ω,B, a, b) 7→
(
Za,bω,B,Aω,B

)
.

In particular, there is a continuous embedding AmpC(A) → Stab(A) given

by B + iω 7→ σB,ω. The action of Aut(Db(A)) on Stab(A) preserves the

connected component Stab◦(A) which contains the image of the above map.

Proof. The first statement is similar to the proof of [BMS16, Proposition 8.10],

using Theorem 3.20. Below, we give a proof of the second statement. Let

F be a derived autoequivalence of A. If the Fourier-Mukai kernel of F

is a vector bundle (up to a shift) then the claim is a direct consequence

of [Piy, Theorem 1.1]. Suppose that the Fourier-Mukai kernel of F is not

a vector bundle up to a shift. By a theorem of Orlov [Huy06, Proposi-

tion 9.53], the kernel of an auto-equivlance between two abelian varieties

is represented by a sheaf up to shift. Therefore for a derived equivalence

defined by F ′ = ΦA→Â
P ◦ ⊗OA(nH) ◦ F , where H is ample and n is suf-

ficiently large, the Fourier-Mukai kernel of F ′ is a vector bundle up to a

shift. Again from [Piy, Theorem 1.1], F ′ takes Stab0(A) to Stab0(Â). Since

ΦA→Â
P and ⊗OA(nH) preserve connected components Stab0(A), Stab0(Â),

the equivalence F also preserves Stab0(A). �

3.8. Standard slice. In what follows, we focus on some subspace of Stab(A)

and find stability conditions on it where semistable objects coincide with

Gieseker semistable sheaves.

We fix an ample divisor H and consider B + iω written as

ω = αH, B = βH, α ∈ R>0, β ∈ R.

We write σαH,βH = (ZαH,βH ,AαH,βH) as σα,β = (Zα,β,Aα,β) and so on.

Recall that we considered the surjective map

ΓQ � Q4, chi 7→ vi = i!H3−i chi .(40)

For β ∈ R let (vβ0 , v
β
1 , v

β
2 , v

β
3 ) ∈ R4 be the vector corresponding to v(chβH),

vβ0 = v0, v
β
1 = v1 − βv0, v

β
2 = v2 − 2βv1 + β2v0,

vβ3 = v3 − 3βv2 + 3β2v1 − β3v0.
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Consider the subspace

StabH(A) ⊂ Stab(A)

of stability conditions (Z,A) such that Z factors through the map (40). Let

Stab◦H(A) ⊂ StabH(A)

denote the component which contains the elements σα,β (the component

exists by Theorem 3.21). The space Stab◦H(A) is completely described

in [BMS16] as follows. Let B ⊂ R4 be the open subset given by

B =

{
(α, β, a, b) ∈ R4 : α > 0, a >

α2

18
+

√
3

6
|b|α

}
.

For (α, β, a, b) ∈ B, the central charge Za,bα,β := Za,bαH,βH in (26) is written as

Za,bα,β =
1

6

(
−vβ3 + 3bvβ2 + 6avβ1 + iα

(
3vβ2 − α

2vβ0

))
.

Theorem 3.22. ([BMS16]) We have the continous embedding

B→ Stab◦H(A), (α, β, a, b) 7→ σa,bα,β := (Za,bα,β,Aα,β)(41)

whose image gives a slice of the G̃L
+

2 (R)-action on Stab◦H(A).

The upper-half plane H ⊂ C is embedded into B by

β + iα 7→ (α, β, α2/2, b = 0)

and its image under the embedding (41) is σα,β = σ
a=α2/2,b=0
α,β .

3.9. Gieseker chamber. We keep the notation from the previous subsec-

tion. Let Γ+ ⊂ Γ be the subset of v ∈ Γ such that either

v0 > 0, or v1 > 0 = v0, or v2 > 0 = v1 = v0, or v3 > 0 = v2 = v1 = v0.

The set Γ+ contains Γ+, the set of Chern characters of coherent sheaves.

We first consider να,β-semistable objects in Bα,β. For v ∈ Γ+, by the

same arguments as in [Mac14, Theorem 3.1], we can describe the wall and

chamber structure for να,β-semistable objects on Bα,β with Chern character

v on the (α, β)-plane:

H = {β + iα : α ∈ R>0, β ∈ R}.

The walls are (after rescaling α by
√

3α) finite nested semi-circles: each wall

is a semi-circle contained in β < v1/v0 (where v1/v0 =∞ for v0 = 0), whose

center lies on the β-axis, and for any two walls one of them is contained in

the interior of the other.

When (α, β) lies in the outer of every wall, the να,β-semistable objects

are described in terms of stability conditions on sheaves. For this purpose,

we introduce the following notion, which lies between slope stability and

Gieseker stability:
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Definition 3.23. For a smooth projective 3-fold X and an ample divisor H

on it, a coherent sheaf E ∈ Coh(X) is called νH-semistable if it is pure and

for any subsheaf 0 ( F ⊂ E, we have

χ†H(F )(m) ≤ χ†H(E)(m)

for m� 0. Here for a polynomial p(m) in m we let p†(m) = p(m)− p(0).

In the case of X = A we have the following.

Lemma 3.24. (i) A torsion free sheaf E ∈ Coh(A) is νH-semistable if

and only if for any subsheaf F ⊂ E, we have

v1(F )

v0(F )
≤ v1(E)

v0(E)
, and

v2(F )

v0(F )
≤ v2(E)

v0(E)
if

v1(F )

v0(F )
=
v1(E)

v0(E)
.

In particular, it is slope semistable.

(ii) A νH-semistable torsion free sheaf E ∈ Coh(A) is Gieseker-semistable

if and only if for any νH-semistable subsheaf F ⊂ E with the same

(v1/v0, v2/v0), we have

v3(F )

v0(F )
≤ v3(E)

v0(E)
.

(iii) The same statements of (i), (ii) hold after replacing vi with vβi for

any β ∈ R.

Lemma 3.25. For v ∈ Γ+, let (α, β) ∈ H lies in the outer of every wall with

respect to the να,β-stability with Chern character v. Then for E ∈ Db(A)

with ch(E) = v, it is a να,β-semistable object in Bα,β if and only if it is

νH-semistable coherent sheaf.

Proof. The proof is similar to the surface case, for example see [LQ14, The-

orem 1,2, Lemma 2.6]. �

For any v ∈ Γ+ with (v0, v1) 6= (0, 0) the curve να,β(v) = 0, i.e.

v0β
2 − v0

3
α2 − 2v1β + v2 = 0

intersects each wall at the top of the semi-circle. We define

Sv ⊂ H

to be the intersection of the outer of every wall and the region να,β(v) > 0.

If (v0, v1) = 0, then there is no wall with respect to the να,β-stability, and

να,β(v) = ∞, so we set Sv = H. In any case for fixed α > 0, we have

(α, β) ∈ Sv for β � 0.

The following proposition proves the existence of a Gieseker chamber on

Stab◦(A).
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Proposition 3.26. For any (α, β) ∈ Sv, there exists s(α, β) > 0 such that

for any s > s(α, β) the following holds: an object E ∈ Db(A) with ch(E) = v

is a Za=s,b=0
α,β -semistable object in Aα,β if and only if it is a H-Gieseker

semistable sheaf.

Proof. For t ≥ 0, consider the central charge

Wt = (1 + t)α2vβ1 − 3tvβ3 + iα
(

3vβ2 − α
2vβ0

)
.

For all t > 0 we have

Wt ∼ Za=s,b=0
α,β , s =

1 + t

18t
α2 >

α2

18
.

Hence by Theorem 3.22 the pair (Wt,Aα,β) is a Bridgeland stability condi-

tion for any t > 0. These stability conditions degenerate to the very weak

stability condition (W0,Aα,β) at t = 0, see [PT, Section 3.4].

Let Dv ⊂ Db(A) be the set of objects with Chern character v. By the

definition of Sv, we have ImW0(E) > 0 for any E ∈ Dv. Therefore by [PT,

Lemma 2.19], we have

{E ∈ Dv : E is W0-semistable in Aα,β}
= {E ∈ Dv : E is να,β-semistable in Bα,β}.(42)

By Lemma 3.25 and the definition of Sv, (42) coincides with

{E ∈ Dv : E is νH -semistable in Coh(A)}.(43)

On the other hand by [PT, Proposition 2.27], for 0 < t� 1 we have

{E ∈ Dv : E is Wt-semistable in Aα,β}

=

{
E ∈ Dv :

E is ξ-semistable among W0-semistable
objects in Aα,β with argW0(−) = argW0(v)

}
,

where ξ is the slope function given by

ξ =
3vβ3 − α2vβ1

3vβ2 − α2vβ0
.

By Lemma 3.24 and (42), (43), for v0 > 0 the last set of objects is the

set of H-Gieseker semistable sheaves E ∈ Coh(A) with ch(E) = v. Since

s = (1 + t)α2/18t goes to ∞ for t → +0, this implies the Lemma in case

v0 > 0. The case v0 = 0 is similar. �

4. Wallcrossing on abelian threefolds

Let A be an abelian threefold and let Â = Pic0(A) be its dual. We set

A = A× Â.

Let also H ∈ Pic(A) be a fixed ample class.
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4.1. Reduced DT invariants for Bridgeland semistable objects. In

Section 2.11, we defined A-reduced Donaldson-Thomas invariants

DTH(v) ∈ Q[A]

counting H-Gieseker semistable sheaves on A. Here we define reduced

Donaldson–Thomas invariants counting Bridgeland semistable objects on

A. The construction is completely parallel to above and we will be brief.

Let σ ∈ Stab◦(A) be a Bridgeland stability condition which satisfies the

full support property, and let v ∈ Γ. We consider the moduli stack

Mσ(v, φ)(44)

of σ-semistable objects E ∈ Db(A) with ch(E) = v and phase φ ∈ R.

By [PT], the stack (44) is an algebraic stack of finite type. Moreover it is

announced in [AHLH] that the stack (44) admits a good moduli space

p : Mσ(v, φ)→Mσ(v, φ)

for a separated algebraic space Mσ(v, φ) of finite type. We set

p : Mσ(φ) :=
∐
v

Mσ(v, φ)→Mσ(φ) :=
∐
v

Mσ(v, φ)

By the argument in [PT, Proof of Theorem 5.6] we may assume that σ

is defined over Q. Let φ ∈ R be fixed, and let P(φ) be the category of

σ-semistable objects with phase φ. Then there exist a noetherian heart

A = P((ψ − 1, ψ]) ⊂ Db(X)

for some ψ ∈ R with φ ∈ (ψ − 1, ψ]. The heart A is closed under the A-

action, since the A action leaves all the Chern characters invariant. Then

by [PT, Corollary 4.21] the stack Obj(A) of objects in A is an algebraic

stack locally of finite type with A-action. As in Section 2.6 consider the

A-equivariant motivic Hall algebra with respect to the heart A,

HA(A) = KA
0 (St/Obj(A)).

Then similarly to Section 2.7, we have the subalgebra

HA(A, φ) := KA
0 (St/Mσ(φ)) ⊂ HA(A).

We define HA
reg(A, φ), HA

sc (A, φ) and the integration map

IA : HA
sc (A, φ)

pA∗→ ConstrA(Mσ(φ))
J→ CA(X)(45)

as in Section 2.9. The stack (44) defines the element

δσ(v, φ) := [Mσ(v, φ) ⊂Mσ(φ)] ∈ HA(A, φ).
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Using the result of Joyce, the logarithm

εσ(v, φ) :=
∑

l≥1,v1+···+vl=v

(−1)l−1

l
δσ(v1, φ) ∗ · · · ∗ δσ(vl, φ)(46)

yields the regular element (L− 1)εσ(v, φ) which in turn defines

εσ(v, φ) := [(L− 1)εσ(v, φ)] ∈ HA
sc (A, φ).

We define the A-reduced Donaldson–Thomas invariant DTσ(v, φ) ∈ Q[A]

by

IA(εσ(v, φ)) = DTσ(v, φ) · cv.

Since DTσ(v, φ) = DTσ(v, φ+ 1) the following convention makes sense.

Definition 4.1. For all σ = (Z,A) ∈ Stab(A) and v ∈ Γ define

DTσ(v) :=

{
DTσ(v, φ), if Z(v) ∈ R>0e

πiφ for some φ ∈ R
0, if Z(v) = 0.

For any connected abelian subvariety B ⊂ A, we define DTσ(v)B ∈ Q by

DTσ(v) =
∑
B⊂A

DTσ(v)B · εB.

As before we usually write DTσ(v) := DTσ(v)B=(0,0).

We have the following comparision result.

Proposition 4.2. For any v ∈ Γ and ample divisor H on A, there exists a

σ ∈ Stab◦(A) such that DTσ(v) = DTH(v).

Proof. By Proposition 3.26 and since DTσ(v) = DTσ(−v) by convention.

�

4.2. Comparison under change of stability conditions. The integra-

tion map IA defined in Section 4.1 depended on a choice of stability con-

dition. We check the definition is well-behaved under change of stability

condition.

Consider a pair of stability conditions

σ = (Z,A), σ′ = (Z ′,A′) ∈ Stab◦(A).

Let v ∈ Γ be fixed and let φ, φ′ ∈ R be phases such that Z(v) ∈ R>0e
πiφ and

Z ′(v) ∈ R>0e
πiφ′ . We assume that there is an open embedding of stacks

(47) ι : Mσ′(v, φ
′) ⊂Mσ(v, φ).

The inclusion ι induces the map

ι∗ : KA
0 (St/Mσ′(v, φ

′))→ KA
0 (St/Mσ(v, φ)).

Recall also from Section 4.1 the integration maps

IA : KA
0,reg(St/Mσ(v, φ))→ Q[A]cv, I ′A : KA

0,reg(St/Mσ′(v, φ
′))→ Q[A]cv.
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obtained from the stability conditions σ and σ′ respectively. Here reg stands

for regular elements.

Proposition 4.3. We have IA = I ′A ◦ ι∗. In particular,

IA
(
(L− 1)ι∗εσ′(v, φ

′)
)

= DTσ′(v, φ
′) · cv.

Proof. By the universal property of good moduli spaces, we have the com-

mutative diagram

Mσ′(v, φ
′) Mσ(v, φ)

Mσ′(v, φ
′) Mσ(v, φ),

ι

p′ p

τ

where the left arrow is the good moduli space for Mσ′(v, φ
′). Then it is

enough to show that the following diagram is commutative

KA
0,reg(St/Mσ′(v, φ

′)) KA
0,reg(St/Mσ(v, φ))

ConstrA(Mσ′(v, φ
′)) ConstrA(Mσ(v, φ))

CA(X) CA(X).

ι∗

p
′A
∗ pA∗

τ∗

J ′ J

id

Here J , J ′ are defined as in (17), and τ∗ is defined as follows: for any

A-invariant subspace Z ⊂ Mσ′(v, φ
′) and x ∈ Mσ(v, φ) let τ∗(1Z)(x) =

e(τ−1(x) ∩ Z).

The upper diagram is commutative since both pA∗ ◦ ι∗ and τ∗ ◦ p
′A
∗ com-

pute the Behrend function weighted Euler numbers of fibers to the map

to Mσ(v, φ), and the Behrend weights agree since (47) is an open embed-

ding. To show that the lower diagram is commutative, by the definition of

equivariant Euler number it is enough to show that the map τ preserves

the connected component of the stabilizer groups of A-actions, i.e. for any

x ∈Mσ′(v, φ
′), the induced map Stab(x)◦ → Stab(τ(x))◦ is an isomorphism.

By the diagram on good moduli spaces and since the open immersion ι pre-

serves the connected component of the stabilizer group, it is enough to show

the following lemma. �

Lemma 4.4. For any x ∈ Mσ(v, φ), the connected component of the sta-

blizer B = Stab(x)◦ acts trivially on the geometric points of p−1(x) ⊂
Mσ(v, φ).

Proof. For a fixed x ∈Mσ(v, φ), there is a finite number of B-fixed σ-stable

objects E1, . . . , En with phase φ such that any point in p−1(x) corresponds

to iterated extensions of E1, . . . , En. By the induction argument, it is enough
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to prove the following: for any σ-semistable objects P , Q fixed by B and

with phase φ, and for any extension

0→ P → R→ Q→ 0

we have g(R) ∼= R for any g ∈ B.

The last claim is proved as follows. For g ∈ B, let

ag : g(P )
∼=→ P, bg : g(Q)

∼=→ Q

be isomorphisms. For u ∈ Ext1(Q,P ), we set

g(u)′ = bg ◦ g(u) ◦ a−1
g ∈ Ext1(Q,P ),

where g(u) ∈ Ext1(g(Q), g(P )) is the extension induced by the B-action.

The assignment g 7→ (u 7→ g(u)′) is well-defined up to choices of ag, bg, so

defines a map

B → GL(Ext1(Q,P ))/Aut(Q)×Aut(P ).

The target is an affine variety and B is an abelian variety, so the image must

be an identity. This gives the proof of the above claim. �

4.3. Reduced DT invariants for semihomogeneous sheaves. Recall

the subset of semihomogeneous sheaves C ⊂ Γ defined in (3). Since the stabi-

lizer B ⊂ A of every non-zero coherent sheaf on A is at most 3-dimensional

[Muk, Proposition 4.5], and the sheaf is semihomogeneous if and only if

dim(B) = 3, we have the following.

Lemma 4.5. Let v ∈ Γ and let B ⊂ A be a connected abelian subvariety.

(a) If dimB > 3, then DTH(v)B = 0.

(b) If dimB = 3 and DTH(v)B 6= 0 then v ∈ C.

We have the following generalization of Lemma 4.5.

Lemma 4.6. Let σ ∈ Stab◦(A). Let v ∈ Γ and let B ⊂ A be connected.

(a) If dimB > 3, then DTσ(v)B = 0.

(b) If dimB = 3 and DTσ(v)B 6= 0, then v ∈ C.

The above lemma follows immediately from the following:

Lemma 4.7. For every E ∈ Db(A), let Ξ(E) ⊂ A be as in (2). Then we

have dim Ξ(E) ≤ 3. If dim Ξ(E) = 3, we have ch(E) ∈ C.

Proof. For every E ∈ Db(A) with Fi = Hi(E), we have

Ξ(E) ⊂
⋂
i∈Z

Ξ(Fi)

and dim Ξ(Fi) ≤ 3 by [Muk, Proposition 4.5]. Suppose that dim Ξ(E) = 3.

Then dim Ξ(E) = dim Ξ(Fi) = 3 for any i ∈ Z such that Fi 6= 0. In
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particular each Fi is a semihomogeneous sheaf. It is enough to show that

ch(Fi) is proportional to ch(Fj) for each pair (i, j).

First suppose that each Fi is a vector bundle. Then ch(Fi) is written

as r(Fi)e
c1(Fi)/r(Fi). Let Ξ◦(−) ⊂ Ξ(−) be the connected component which

contains (0, 0). Then we have Ξ◦(E) = Ξ◦(Fi) for any i ∈ Z with Fi 6= 0.

By [Muk, Theorem 4.9 (3)], the subabelian variety Ξ◦(Fi) ⊂ A determines

c1(Fi)/r(Fi). Therefore for each (i, j), we have c1(Fi)/r(Fi) = c1(Fj)/r(Fj),

and ch(Fi), ch(Fj) are proportional.

When Fi is not a vector bundle, we can apply a Fourier-Mukai transform

ΦA→Â
P ◦ ⊗OA(mH) for m� 0 and use Theorem 4.8 below to reduce to the

case that every Fi is a vector bundle. �

Theorem 4.8. ([Orl02]) There is a map

Aut(Db(A))→ Aut(A× Â), g 7→ g∗(48)

such that g∗Ξ(E) = Ξ(g(E)) for any E ∈ Db(A).

4.4. Independence of stability conditions. We show the absence of

walls in good cases.

Theorem 4.9. Suppose that v ∈ Γ is not written as γ1 +γ2 for some γi ∈ C
with χ(γ1, γ2) 6= 0. Then for any σ, σ′ ∈ Stab◦(A) we have

DTσ(v) = DTσ′(v)

Proof. We prove that for any σ = (Z,A) ∈ Stab◦(A) there is an open

neighborhood σ ∈ U ⊂ Stab◦(A) with DTσ(v) = DTσ′(v) for any σ′ ∈ U .

Suppose that Z(v) = 0. Then there is no σ-semistable object E with

ch(E) = v. By the wall and chamber structure on Stab◦(A), there is an

open neighborhood σ ∈ U ⊂ Stab◦(A) such that for any σ′ ∈ U there is no

σ′-semistable object E with ch(E) = v. It follows DTσ(v) = DTσ′(v) = 0.

Hence we may assume that Z(v) 6= 0. Let φ ∈ R such that Z(v) ∈ R>0e
πiφ.

For an open neighborhood σ ∈ U ⊂ Stab◦(A), we take σ′ = (Z ′,A′) ∈ U .

For ψ ∈ R, let P(ψ), P ′(ψ) be the σ, σ′-semistable objects with phase ψ.

By shrinking U and applying a C-action on Stab◦(A) if necessary, we can

assume that

P(φ) ⊂ P ′((φ− ε, φ+ ε)) ⊂ A
for some 0 < ε � 1, where the right hand side is the extension closure of

objects in P ′(ψ) with ψ ∈ (φ− ε, φ+ ε).

We then have the following identity in HA(A, φ),

δσ(v, φ) =
∑

l≥1,γ1+···+γl=v
Z(γi)∈R>0eπiφ,

Z′(γi)∈R>0eπiφi ,
φ1>···>φl,φi∈(φ−ε,φ+ε).

δσ′(γ1, φ1) ∗ · · · ∗ δσ′(γl, φl).(49)
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Here Mσ′(γi, φi) is an open substack of Mσ(γi, φ), and11

δσ′(γi, φi) = [Mσ′(γi, φi) ⊂Mσ(γi, φ)] ∈ HA
sc (A, φ).

By substituting (46) and multiplying (L − 1), we obtain an identity in

HA
sc (A, φ) of the form

(50) εσ(v, φ) = εσ′(v, φ
′) +

∑
γ1+γ2=v

aγ1,γ2{εσ′(γ1, φ1), εσ′(γ2, φ2)}

+
∑

γ1+γ2+γ3=v

aγ1,γ2,γ3{{εσ′(γ1, φ1), εσ′(γ2, φ2)}, εσ′(γ3, φ3)}+ · · ·

for some aγ1,··· ,γl ∈ Q.

We apply the equivariant integration map IA to (50). If we write

IA(εσ′(γi, φi)) =
∑
k

bkεBkcγi

for some bk ∈ Q and Bk ⊂ A, then by Lemma 4.6 the Bk are of codimension

≥ 3. By the definition of Q[A] it follows that only linear or quadratic terms

in the εσ′(γi, φi) contribute when applying IA to (50). Moreover using

Proposition 4.3, the contribution of the quadratic term is∑
γ1+γ2=v

IA(aγ1,γ2{εσ′(γ1, φ1), εσ′(γ2, φ2)})

=
∑

γ1+γ2=v

aγ1,γ2
∑
Bi⊂A,
i=1,2

(−1)χ(γ1,γ2)χ(γ1, γ2) DTσ′(γ1)B1 DTσ′(γ2)B2 |B1 ∩B2| ε(0,0).

where the sum is over connected abelian subvarieties Bi ⊂ A of dimension

3 such that B1 and B2 are transversal. By Lemma 4.6 and its proof, the

above is non-zero only if v = γ1 +γ2 with γi ∈ C such that χ(γ1, γ2) 6= 0. �

The proof of Theorem 4.9 also shows the following:

Corollary 4.10. For every v ∈ Γ and every positive-dimensional connected

abelian subvariety B ⊂ A we have

DTσ(v)B = DTH(v)B

for all σ ∈ Stab◦(A) and ample divisors H.

Combining Theorem 4.9 and Proposition 4.2 yields the following.

Corollary 4.11. Under the assumptions of Proposition 4.9,

(51) DTσ(v) = DTH(v).

for all σ ∈ Stab◦(A) and ample divisors H. In particular, DTσ(v), DTH(v)

are independent of σ and H.

11More precisely δσ′(γi, φi) is the push-forward under the open embeddingMσ′(γi, φi) ⊂
Mσ(γi, φ) as in Section 4.2, and we have omitted the notation of the push-forward.
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We have now all ingredients for the proof of Theorem 1.1.

Proof of Theorem 1.1. Suppose that v ∈ Γ is not written as γ1 +γ2 for some

γi ∈ C with χ(γ1, γ2) 6= 0. Let g ∈ AutDb(A) be a derived autoequivalence

and let σ ∈ Stab◦(A) be a stability condition which lies in the Gieseker

chamber with respect to v. By Corollary 4.11 and an application of g we

have

DTH(v) = DTσ(v) = DTg∗σ(g∗v)

By Theorem 3.21 the stability condition g∗σ lies in the component Stab◦(A).

Hence again by Corollary 4.11,

DTg∗σ(g∗v) = DTH(g∗v). �

4.5. The discriminant. From Appendix A recall the discriminant

∆ : H2∗(A,Z)→ Z.

By construction ∆ is invariant under all derived autoequivalences of A. The

following lemma directly implies Proposition 1.2.

Lemma 4.12. Let v ∈ Γ.

(1) If ∆(v) > 0, then v is not of the form γ1 + γ2 with γi ∈ C.

(2) If ∆(v) = 0 and v = γ1 + γ2 with γi ∈ C, then χ(γ1, γ2) = 0.

Hence, if ∆(v) ≥ 0 then v satisfies the assumption of Proposition 4.9.

Proof. By Theorem 4.8 the set C is preserved by derived autoequivalences.

Therefore as in the proof of Lemma 4.7 we may assume γi = rie
c1/ri for

some c1 ∈ H2(A) and ri ∈ Z. The claims follow now from Theorem A.2. �

4.6. Reduced DT invariants for semihomogeneous sheaves II. We

calculate the Donaldson-Thommas invariants of semihomogeneous sheaves.

Lemma 4.13. Let v ∈ C. Then

DTσ(v) =

 ∑
k≥1,k|v

1

k2

 εB

for some three-dimensional B ⊂ A determined by v.

Proof. By [Muk, Proposition 4.11], there exists another abelian variety A′

and a equivalence F : Db(A)
∼→ Db(A′) such that

F∗v = (0, 0, 0, r)

for some r ≥ 1. Hence ∆(v) = ∆(F∗v) = 0. Using Lemma 4.12 and

Corollary 4.10 we conclude

DTσ(v) = DTF∗σ(0, 0, 0, r) = DTH(0, 0, 0, r) =

 ∑
k≥1,k|r

1

k2

 ε{0}×Â.
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where the last equality is [OS, Proposition 6]. �

5. Principally polarized abelian threefolds

5.1. Setup. Let (A,H) be a principally polarized abelian 3-fold of Picard

rank ρ(A) = 1. We identify A with its dual Â via the isomorphism

A
∼=→ Â, x 7→ T ∗xOA(H)⊗OA(−H).

We also identify elements in Γ with vectors (v0, v1, v2, v3) ∈ Z4 via the

isomorphism

Z4 ∼=→ Γ, (v0, v1, v2, v3) 7→ (v0, v1[H], v2[H2/2], v3[H3/6]).(52)

Under this identification the Euler pairing χ on Γ is

χ
(
(v0, v1, v2, v3), (v′0, v

′
1, v
′
2, v
′
3)
)

= v0v
′
3 − 3v1v

′
2 + 3v2v

′
1 − v3v

′
0.(53)

The discriminant defined in Appendix A takes the form

∆(v0, v1, v2, v3) = −4(v0v
3
2 + v3

1v3)− v2
0v

2
3 + 3v2

1v
2
2 + 6v0v1v2v3.(54)

5.2. Action of autoequivalences on cohomology. Recall that the group

SL2(Z) is generated by the elements

T =

(
1 1
0 1

)
, S =

(
0 −1
1 0

)
with relations S2 = (TS)3 and S4 = 1. Let S̃L2(Z) be the group generated

by S̃, T̃ with the relation S̃2 = (T̃ S̃)3. There is an exact sequence of groups

1→ Z
i→ S̃L2(Z)

j→ SL2(Z)→ 1(55)

where the map i sends 1 to S̃4 and j sends S̃, T̃ to S, T respectively.

By a result of Mukai [Muk81] there is a group homomorphism

S̃L2(Z)→ Aut(Db(A))(56)

sending S̃, T̃ to ΦP := ΦA→A
P and ⊗OA(H) respectively. Because Φ4

P = [−6]

acts on Γ trivially, (56) descends to a homomorhism

(57) SL2(Z)→ Aut(Γ).

In terms of the generators (S, T ) this representation is given by

T 7→


1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1

 , S 7→


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 .(58)

For g ∈ SL2(Z), we let g∗ ∈ Aut(Γ) denote the induced isomorphism.

We can interpret the action (57) as a SL2(Z)-action on two variable ho-

mogeneous polynomials as follows. Identify elements in Γ with certain cubic
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homogeneous polynomials in two variables via the map

(v0, v1, v2, v3) 7→ v0x
3 + 3v1x

2y + 3v2xy
2 + v3y

3.(59)

The group SL2(Z) acts on the homogeneous cubic polynomials in (x, y) by

the transformation

g∗ : (x, y) 7→ (dx+ by, cx+ ay)(60)

where g =
(
a b
c d

)
∈ SL2(Z). This action coincides with g∗ ∈ Aut(Γ) under

the identification (59).12

5.3. Action of autoequivalences on stability conditions. We next de-

scribe the action of S̃L2(Z) on Stab◦(A). Let H ⊂ C be the upper half plane.

By Theorem 3.22, we have the embedding

H→ Stab◦(A), τ = β + iα 7→ στ := σα,β = σαH,βH .(61)

The group SL2(Z) acts on the upper half plane H by

τ 7→ g · τ =
aτ + b

cτ + d

for all
(
a b
c d

)
∈ SL2(Z) and τ ∈ H. The following Lemma shows that, modulo

the G̃L
+

2 (R) action, these two actions coincide.

Lemma 5.1. For any g ∈ SL2(Z) with lift g̃ ∈ S̃L2(Z) and for any τ ∈ H,

there exists a unique ξ ∈ C ⊂ G̃L
+

2 (R) such that

g̃∗στ = σgτ · ξ.

Proof. By Theorem 3.22 and since AutDb(A) preserves the main component

of the stability manifold, we have

g̃∗στ = σ′ · ξ

for some σ′ ∈ B and ξ ∈ G̃L
+

2 (R). Therefore it is enough to show that the

central charge of g̃∗στ is of the desired form.

By (24) the central charge of στ is written as

Zτ (v) = −χ(eτH , v)

for all v ∈ Γ. Hence the central charge of g̃∗σα,β is

(62) Zτ (g−1
∗ v) = −χ(eτH , g−1

∗ v) = −χ(g∗e
τH , v).

Under the correspondence (59) we have eτH = (x+ τy)3 which implies

g∗e
τH = (cτ + d)3(x+ (gτ)y)3 = (cτ + d)3e(gτ)H .

Inserting back into (62) the Lemma follows. �

12The identification (59) also gives motivation to call ∆(v) the discriminant, since it
coincides with the discriminant of the cubic polynomial on the right hand side of (59).
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5.4. Wall and chamber structure. We consider classes v ∈ Γ which can

be written as γ1 + γ2 for some γi ∈ C such that χ(γ1, γ2) 6= 0. Since (A,H)

is principally polarized we have

C = {r(p3, p2q, pq2, q3) : (p, q, r) ∈ Z3, r 6= 0, gcd(p, q) = 1}.

Hence v can be written as

v = γ1 + γ2, γi = ri(p
3
i , p

2
i qi, piq

2
i , q

3
i ) ∈ C, Θ(γ1) < Θ(γ2),(63)

where Θ(γi) = qi/pi.

Lemma 5.2. If v is written as in (63), then γ1, γ2 are uniquely determined

from v.

Proof. Each γi ∈ C is either written as ui(1, θi, θ
2
i , θ

3
i ) for some ui ∈ Z and

θi ∈ Q, or proportional to (0, 0, 0, 1). If γ2 is proportional to (0, 0, 0, 1),

then the lemma holds. Therefore it is enough to show that, for fixed v =

(v0, v1, v2, v3), the equation

vj = u1θ
j
1 + u2θ

j
2, θ1 < θ2, 0 ≤ j ≤ 3(64)

has at most one solution of (u1, u2, θ1, θ2). The equations (64) for j = 0, 1

give

u1 =
v1 − v0θ2

θ1 − θ2
, u2 =

v0θ1 − v1

θ1 − θ2
.(65)

By substituting this into (64) for j = 3, 4, we obtain

(66)
v1(θ1 + θ2)− v0θ1θ2 = v2,

v1(θ2
1 + θ1θ2 + θ2

2)− v0θ1θ2(θ1 + θ2) = v3

respectively. By substituting v0θ1θ2 = v1(θ1 + θ2) − v2 into the second, we

obtain

v2(θ1 + θ2)− v1θ1θ2 = v3.(67)

On the other hand if (64) has a solution, we have

v2
1 − v0v2 = −u1u2(θ1 − θ2)2 6= 0.

Therefore (66), (67) give

θ1 + θ2 =
v1v2 − v0v3

v2
1 − v0v2

, θ1θ2 =
v2

2 − v1v3

v2
1 − v0v2

.

The number of (θ1, θ2) ∈ Q2 with θ1 < θ2 satisfying the above equation is at

most one, and (u1, u2) is determined by (θ1, θ2). �

If v is written as (63), by Lemma 5.2 and the proof of Proposition 4.9 the

only possible wall in Stab◦(A) where DTσ(v) can jump is

Wv := {(Z,A) ∈ Stab◦(A) : Z(γ2) ∈ R>0Z(γ1)}.
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Lemma 5.3. For a fixed α > 0, there is β0 ∈ R such that if β < β0, then

the image of the map

R≥1/2 → Stab◦(A), s 7→ σa=sα2,b=0
α,β

does not intersect with Wv.

Proof. As in the proof of Lemma 5.2, suppose either γi = ui(1, θi, θ
2
i , θ

3
i ) for

some ui ∈ Z and θi = Θ(γi) ∈ Q, or γ2 is proportional to (0, 0, 0, 1). We

have

Za=sα2,b=0
α,β (ui(1, θi, θ

2
i , θ

3
i ))

= ui
{
−(θi − β)3 + 6sα2(θi − β) +

√
−1
(
3α(θi − β)2 − α3

)}
.

First suppose that γ2 is proportional to (0, 0, 0, 1). If σa=sα2,b=0
α,β lies in

Wv, then we have Za=sα2,b=0
α,β (γ1) ∈ R, hence

3(θ1 − β)2 − α2 = 0.

Hence the lemma holds by setting β0 = θ1 − α/
√

3.

Next suppose that γ2 is not proportional to (0, 0, 0, 1). If σa=sα2,b=0
α,β lies

in Wv, we have

(θ1 − β)3 − 6sα2(θ1 − β)

3α(θ1 − β)2 − α3
=

(θ2 − β)3 − 6sα2(θ2 − β)

3α(θ2 − β)2 − α3
.

By setting θ = θ2 − θ1, β = β − θ1 and simplifying, we obtain

3β
2
(β − θ)2 + 6sα4 + 3(6s− 1)α2β

2
+ 3θ(1− 6s)α2β − θ2α2 = 0.

Since θ > 0, the above equation gives

3(1− 6s)β − θ ≤ 0.

Using s ≥ 1/2, we obtain β ≥ 7θ1/6 − θ2/6. Hence the lemma follows by

setting β0 = 7θ1/6− θ2/6. �

Corollary 5.4. For any fixed α > 0, we have

DTσα,β (v) = DTH(v), β � 0.

Proof. If (α, β) ∈ Sv and s� 0, then by Proposition 3.26 we have

DTσ(v) = DTH(v), σ = σa=sα2,b=0
α,β .

By Lemma 5.3, for β < β0, the wall Wv does not intersect with a path from

σα,β = σ
a=α2/2
α,β to σa=sα2,b=0

α,β , s� 0. Therefore DTσα,β (v) = DTH(v). �

We next describe the wall Wv on the (α, β)-plane, i.e. H ∩ Wv where

H = {β + iα ∈ C : α > 0} is embedded into Stab◦(A) via the map (61).
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Lemma 5.5. Suppose that γi ∈ C is written as γi = ui(1, θi, θ
2
i , θ

3
i ), 0 6=

ui ∈ Z, θi ∈ Q with θ1 < θ2. Then H ∩Wv is

(68)

(
α±
√

3

6
(θ1 − θ2)

)2

+

(
β − θ1 + θ2

2

)2

=
1

3
(θ1− θ2)2, ∓u1/u2 > 0,

If γ1 = u1(1, θ1, θ
2
1, θ

3
1) and γ2 = (0, 0, 0, u2), then H ∩Wv is

β = ±
√

3

3
α+ θ1, ±u1/u2 > 0.

Proof. If γi = ui(1, θi, θ
2
i , θ

3
i ), we have

Zα,β(γi) = ui(β − θi + iα)3.

Then H ∩Wv is

(β − θ1 + iα)3

(β − θ2 + iα)3
∈
{

R>0, u1/u2 > 0
R<0, u1/u2 < 0.

(69)

Since we have

(β − θ1 + iα)

(β − θ2 + iα)
=

1

α2 + (β − θ2)2

{
α2 + (β − θ1)(β − θ2) + iα(θ1 − θ2)

}
and its imaginary part is negative, the condition (69) is equivalent to

α(θ1 − θ2)

α2 + (β − θ1)(β − θ2)
= ±
√

3, ±u1/u2 > 0.

By simplifying, we obtain the desired equation (68). The latter case is

similar. �

The walls (68) are circles which intersects with the β-axis at β = θ1, θ2,

see Figure 1.

5.5. Proof of Theorem 1.3. Suppose v ∈ Γ is written as

v = γ1 + γ2, γi = ri(p
3
i , p

2
i qi, piq

2
i , q

3
i ) ∈ C(70)

with Θ(γ1) < Θ(γ2) and let

g =

(
a b
c d

)
∈ SL2(Z).

Case 1. −d
c /∈ [Θ(γ1),Θ(γ2)) or c = 0.

We take σα,β with β � 0. Then we have

DTH(g∗v) = DTσα,β (g∗v) = DTg−1
∗ σα,β

(v) = DTσα′,β′ (v),

where by Lemma 5.1, we have

β′ + iα′ =
d(β + iα)− b
−c(β + iα) + a

.(71)
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Figure 1. The walls Wv of type (68) for θ1 = 1 and θ2 ∈
{−2,−1, 0, 1/2, 3/2, 2, 3}. The circles are drawn dotted/solid
depending on u1/u2 ≷ 0.

For β → −∞ we get

β′ + iα′ →
{
−d/c+ 0, c 6= 0,
−∞, c = 0.

Therefore there exists a path in H which connects (α, β), β � 0 and (α′, β′),

and does not intersect with H ∩Wv. We conclude

DTσα′,β′ (v) = DTσα,β (v) = DTH(v)

as desired.

Case 2. −d
c ∈ [Θ(γ1),Θ(γ2)).

With the notation and argument of Step 1 it is enough to compute the

right hand side of

DTH(v)−DTH(g∗v) = DTσα,β (v)−DTσα′,β′ (v)

for β � 0. By the asymptotic behavior (71), (α′, β′) lies inside (resp. RHS)

of the wall H∩Wv if Θ(γ2) <∞ (resp. Θ(γ2) =∞). Let (α0, β0) lies on the

wall H∩Wv and take σ0 = σα0,β0 . Let σ± be small deformations of σ0 such

that their central charges Z± satisfy

argZ+(γ1) > argZ+(γ2), argZ−(γ1) < argZ−(γ2).

From the computations in Lemma 5.5, if Θ(γ2) < ∞ (resp. Θ(γ2) = ∞)

then σ+ lies in the outer (resp. LHS) of the wall H ∩Wv and σ− lies inside

(resp. RHS) of it. Therefore we have

DTσα,β (v) = DTσ+(v), DTσα′,β′ (v) = DTσ−(v).
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On the other hand, the equation (49) yields

δσ0(v, φ) = δσ+(v, φ+) + δσ+(γ1, φ1) ∗ δσ+(γ2, φ2) + · · ·
= δσ−(v, φ−) + δσ−(γ2, φ

′
2) ∗ δσ−(γ1, φ

′
1) + · · · .

From this we obtain

εσ+(v, φ+)− εσ−(v, φ−) = −{εσ0(γ1, φ), εσ0(γ2, φ)}+ · · · .

By the proof of Proposition 4.9, after applying IA, only the first term on

the right contributes to the difference DTσ+(v) − DTσ−(v). Since we have

χ(γ1, γ2) = r1r2(p1q2 − p2q1)3 and using Corollary 4.13 we find

DTσ+(v)−DTσ−(v) =(−1)r1r2(p1q2−p2q1)r1r2(p1q2 − p2q1)3

·

 ∑
k1≥1,k1|r1

1

k2
1

 ∑
k2≥1,k2|r2

1

k2
2

 |B1 ∩B2|,

where Bi ⊂ Ξ(Ei) is the connected component which contains (0, 0) for a

semihomogeneous sheaf Ei with Chern character ±γi ∈ Γ+.

By [Muk, Theorem 4.9 (i)], we have Bi = Ξ(Fi) for a Jordan-Holder factor

of Ei, whose Chern character is γi = ±(p3
i , p

2
i qi, piq

2
i , q

3
i ) ∈ Γ+. By [Muk,

Theorem 4.9 (ii)], we hence obtain

|B1 ∩B2| = χ(γ1, γ2)2 = (p1q2 − p2q1)6.

Therefore the result follows. �

5.6. Curve counting invariants. For any (β, n) ∈ Z2 consider the rank

one reduced Donaldson–Thomas invariant

DTβ,n = DTH(1, 0,−β,−n).

We want to study the behaviour of DTβ,n under Fourier-Mukai transforms.

The following Lemma gives a strong constraint when two such rank 1

classes can be related by a Fourier-Mukai transform.

Lemma 5.6. Let (β, n) ∈ Z2 and suppose that

g(1, 0,−β,−n) = (1, 0,−β′,−n′)(72)

for some (β′, n′) ∈ Z2 and g ∈ SL2(Z). Then there is (c, d) ∈ Z2 satisfying

d3 − 3βc2d− nc3 = 1

such that we have

(β′, n′) = (d2β + ncd+ β2c2, 6β2d2c+ 6c2dβn+ n+ 2c3n2 − 2c3β3).(73)

Proof. Let g =
(
a b
c d

)
∈ SL2(Z). The condition (72) gives

(dx+ by)3 − 3β(dx+ by)(cx+ ay)2 − n(cx+ ay)3 = x3 − 3β′xy2 − n′y3.
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We obtain the equations

d3 − 3βc2d− nc3 = 1,(74)

bd2 − β(2acd+ bc2)− nac2 = 0,

β′ = β(a2d+ 2abc)− b2d+ a2cn,

n′ = a3n+ 3βa2d− b3.

Since ad− bc = 1, comparing with the first equation of (74) gives

a = d2 − 3βc2 +mc, b = nc2 +md(75)

for some m ∈ Z. By substituting this into the second equations of (72), we

obtain m = 2βc. By substituting (75) into the third and fourth equation of

(74), and simplifying, we obtain (73). �

Let Cβ,n ∈ Q be the conjectural value of DTβ,n defined by the right hand

side of (7). By Lemma 5.6 and an elementary check we have

Cβ,n = Cβ′,n′

whenever (β, n) and (β′, n′) are related as in (72). We therefore obtain the

following evidence for Conjecture 1.4.

Corollary 5.7. If 4β3 − n2 ≥ 0 and (β′, n′) is as in (72), then

DTβ,n = DTβ′,n′ .

In particular, DTβ,n = Cβ,n if and only if DTβ′,n′ = Cβ′,n′.

Proof. Since ∆(1, 0,−β,−n) = 4β3 − n2 this follows from Theorem 1.1 and

Proposition 1.2. �

Suppose that (β, n) ∈ Z2 satisfies

(1, 0,−β,−n) = γ1 + γ2, γi ∈ C, Θ(γ1) < Θ(γ2).

We address the following question:

Conjecture 5.8. Suppose that β 6= 0 or n > 0. For any integer solution

(c, d) of d3 − 3βc2d− nc3 = 1, we have

−d
c
/∈ (Θ(γ1),Θ(γ2)).

Example 5.9. If β = 0 and n > 0, then we have

(1, 0, 0,−n) = γ1 + γ2, γ1 = (1, 0, 0, 0), γ2 = −n(0, 0, 0, 1)

and Θ(γ1) = 0, Θ(γ2) = ∞. In this case, for any integer solution (c, d) of

d3 − nc3 = 1 we have −d/c /∈ (0,∞). Moreover −d/c = 0 only if n = 1 and

(c, d) = (−1, 0). In this case, (β′, n′) given by (73) is (0,−1).

We have the following lemma:
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Lemma 5.10. Conjecture 5.8 is equivalent to the following: for β 6= 0 or

n > 0 and an integer solution (c, d) of d3 − 3βc2d− nc3 = 1, if we have

−d
c
∈ [Θ(γ1),Θ(γ2))(76)

then β′ = 0 and n′ ≤ 0. Here (β′, n′) is given by (73).

Proof. By Example 5.9, we may assume that β 6= 0. By writing θi = Θ(γi),

the computation in Lemma 5.2 shows

θ1 + θ2 =
n

β
, θ1θ2 = β.(77)

It follows that (
θ1 +

d

c

)(
θ2 +

d

c

)
=

1

c2
· β
′

β
.(78)

Suppose that Conjecture 5.8 is true. Then the condition (76) implies −d/c =

θ1, hence β′ = 0 follows. Suppose by a contradiction that n′ > 0. Note that

g−1(1, 0, 0,−n′) = (1, 0,−β,−n).(79)

We write

g−1 =

(
a′ b′

c′ d′

)
=

(
d −b
−c a

)
.

Then the condition (79) implies (d′)3 − n′(c′)2 = 1, and the condition (76)

implies that −d′/c′ ∈ [0,∞) (see Remark 5.9). By Remark 5.9, this implies

that d′ = a = 0. By (75), we have a = d2 − βc2 = 0, thus β = θ2
1 follows.

By (77), we have θ2
1 = θ1θ2. Since θ1 6= θ2, we have θ1 = 0 and β = 0, a

contradiction.

The converse statement follows from (78). �

Remark 5.11. If Conjecture 5.8 is false, then by Lemma 5.10 we have DTβ,n 6=
DTβ′,n′ for β′ 6= 0 or n′ > 0, while Cβ,n = Cβ′,n′ . So either (β, n) or (β′, n′)

would give a counter-example to Conjecture 1.4.

Theorem 1.3 (i) and Lemma 5.10 immediately implies the following:

Corollary 5.12. For β 6= 0 or n > 0, suppose that Conjecture 5.8 is true.

Then for any integer solution (c, d) of d3−3βc2d−nc3 = 1 with either β′ 6= 0

or n′ > 0, we have DTβ,n = Cβ,n if and only if DTβ′,n′ = Cβ′,n′ holds.

By Example 5.9, we can apply the above corollary for β = 0 and n > 0.

Since DT0,n = C0,n holds by [She15], we obtain the following:

Corollary 5.13. For n > 0 and any integer solution (c, d) of d3 − nc3 = 1,

except n = 1 and (c, d) = (−1, 0), we have

DTcdn,n+2c3n2 = (−1)n−1 1

n

∑
k≥1,k|n

k2.



DT INVARIANTS OF ABELIAN THREEFOLDS 55

Appendix A. Spin representations and the discriminant

Let U be a Q-vector space with basis x1, . . . , xn. The algebra of endo-

morphisms of the exterior algebra
∧• U is the exterior algebra generated by

multiplication by xi and differentiation (i.e. interior product) ∂/∂xi:

EndQ

(∧•
U
)

=
∧•〈

x1∧ , . . . , xn∧ ,
∂

∂x1
, . . . ,

∂

∂xn

〉
.

The Lie subalgebra of EndQ(∧•U) generated by

(80) xi ∧ xj , xi ∧
∂

∂xj
− 1

2
δij ,

∂2

∂xi∂xj
, 1 ≤ i < j ≤ n

is isomorphic to so(2n), and the induced action of so(2n) on
∧• U is called

the spin representation. This Lie algebra action integrates to a representa-

tion of the spin group Spin(2n).

The action by so(2n) preserves the decomposition∧•
U =

∧even
U ⊕

∧odd
U.

where
∧even/odd U is the subspace spanned by all even/odd wedge products.

The induced action of the spin group on
∧even/odd U is irreducible and called

the even/odd half-spin representation.

There exist a unique (up to scalar) invariant bilinear form β on
∧even U .

If n is even, we normalize β by β(1,
∏n
i=1 xi) = 1.

Remark A.1. If A is an abelian variety of dimension g, then H1(A,Q) is of

dimension 2g and

H∗(A,Q) =
∧•

H1(A,Q).

The action of the group of derived autoequivalences on H∗(A,Q) factors

through the spin representation of Spin(4g), see [Muk, Section 3]. Every

function on H∗(A,Q) invariant under Spin(4g) is therefore invariant under

all autoequivalences. For instance the invariant bilinear form β is the Euler

pairing:

∀E,F ∈ Coh(A) : χ(E,F ) = β(ch(E), ch(F )).

Theorem A.2. Assume dim(U) = 6.

a) There exist a unique homogeneous degree 4 polynomial function

∆ :
∧even

U → Q

which is invariant under the action of Spin(12). We normalize ∆ by

∆(1 +
∏6
i=1 xi) = −1.

b) We have ∆(eω) = 0 for all ω ∈
∧2 U .

c) For all r1, r2 ∈ Z and ω1, ω2 ∈
∧2 U we have

∆(r1e
ω1 + r2e

ω2) = −β(r1e
ω1 , r2e

ω2)2.
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Remark A.3. Let A = E1×E2×E3 where E1, E2, E3 are very general elliptic

curves. The subalgebra of algebraic classes Γ ⊂ H∗(A,Q) is generated by

Li = π∗i [pi] ∈ H2(A,Z), i = 1, 2, 3

where pi ∈ H2(Ei) is the point class and πi : A→ Ei is the projection. If

γ = (r, b1L1 + b2L2 + b3L3, d1L2L3 + d2L1L3 + d3L1L2, n) ∈ Γ

is a general element, then the discriminant of γ is

∆(γ) = −n2r2 − 4(rd1d2d3 + b1b2b3n)

− (b21d
2
1 + b22d

2
2 + b23d

2
3)

+ 2b1b2d1d2 + 2b1b3d1d3 + 2b2b3d2d3

+ 2rn(b1d1 + b2d2 + b3d3).

Proof of Theorem A.2. Let V =
∧even U . By a calculation in [SAGE] the

tensor product V ⊗4 contains 4 copies of the trivial representation.13 Three of

them arise from β⊗β by permuting factors, and hence are not S4 invariant.

This shows uniqueness. We prove existence. Consider a general element

γ =
∑

I⊂{1,2,3,4,5,6}
|I| even

aIxI

where aI ∈ Q and xI =
∏
i∈I xi. We make the ansatz

(81) ∆(γ) =
∑

I=(I1,I2,I3,I4)

cIaI1aI2aI3aI4

for some cI ∈ Q, where the Ij run over all even subsets of {1, . . . , 6} such

that every 1 ≤ i ≤ 6 appears in the subsets Ij , j = 1, 2, 3, 4 exactly twice. A

computer calculation14 shows that there exist unique (up to scaling) cI such

that ∆ is invariant under the generators (80). This proves (a).

Multiplication by ω ∈ ∧2U is an element of the Lie algebra so(12), hence

multiplication by eω is an element of Spin(12). It follows

∆(eω) = ∆(1) = 0

where the last equality follows from (81). This shows part (b).

Finally, (c) follows again by a direct computer calculation. �
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