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Abstract. We show that every automorphism of the Hilbert scheme of
n points on a weak Fano or general type surface is natural, i.e. induced
by an automorphism of the surface, unless the surface is a product of
curves and n = 2. In the exceptional case there exists a unique non-
natural automorphism. More generally, we prove that any isomorphism
between Hilbert schemes of points on smooth projective surfaces, where
one of the surfaces is weak Fano or of general type and not equal to the
product of curves, is natural. We also show that every automorphism
of the Hilbert scheme of 2 points on Pn is natural.
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1. Introduction

Let X be a non-singular complex projective surface and let X [n] be the
Hilbert scheme of n points on X. Any isomorphism g : X ∼→ Y of smooth
projective surfaces induces an isomorphism

g[n] : X [n] ∼→ Y [n].

By [9, Definition 1] an isomorphism σ : X [n] ∼→ Y [n] is called natural if
σ = g[n] for some g. In this paper we investigate which Hilbert schemes of
points on surfaces have non-natural automorphisms and isomorphisms.

Consider the case of K3 surfaces. By a result of Beauville, the Hilbert
scheme of points of a K3 surface is a hyperkähler variety [2, Théorème 3].
Isomorphisms of hyperkähler varieties can be controlled using the global
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Torelli theorem. In particular, lattice arguments [21] show that there exist
non-isomorphic K3 surfaces X1 and X2 such that X [2]

1
∼= X

[2]
2 , see also [20,

Example 7.2]. By construction these isomorphisms are not natural. Simi-
larly, the involution of the Hilbert schemes of 2 points on a general quartic
K3 that sends a subscheme to the residual subscheme of the line passing
through it, does not preserve the diagonal and is hence not natural, see
Beauville [3, §6]. The geometric construction and classification of auto- and
isomorphisms of hyperkähler varieties of K3[n]-type is a rich and beautiful
subject in its own right.

From now on we drop the condition on X to be Calabi–Yau. We first focus
on the existence of non-natural automorphisms of X [n]. By a computation
of Boissière [9, Corollaire 1], the automorphism groups of X [n] and X have
the same dimension and hence the same identity component. The question
of whether non-natural automorphisms exist is therefore discrete in nature.

Our first result is the following. Recall that a surface X is called weak
Fano if ω−1

X is nef and big.

Theorem 1. Let X be a smooth projective surface which is weak Fano or
of general type, and let n be any integer. Except for the case (C1 × C2)[2],
where C1 and C2 are smooth curves, every automorphism of X [n] is natural.

The second result deals with the case left open in the first theorem:

Theorem 2. Let C1, C2 be smooth projective curves, either both rational or
both of genus g ≥ 2. Up to composing with natural automorphisms, there
exists a unique non-natural automorphism of (C1 × C2)[2].

The non-natural automorphism on (C1×C2)[2] can be described as follows.
On the complement of the diagonal it sends the cycle (x1, y1) + (x2, y2) on
C1 ×C2 to the cycle (x1, y2) + (x2, y1). Formally, it is defined by lifting the
covering involution of the natural map of symmetric products

(C1 × C2)(2) → C
(2)
1 × C(2)

2

to the Hilbert scheme.
Boissière and Sarti proved that if X is a K3 surface then an automorphism

f ∈ Aut(X [n]) is natural if and only if it preserves the diagonal [10]. By a
result of Hayashi the same holds if X is an Enriques surface [12, Theorem
1.2]. This gives some evidence in favour of a positive answer to the following
question.

Question 3. Suppose X is a smooth projective surface and σ : X [n] ∼→ X [n]

is an automorphism preserving the diagonal. Excluding the case X = C1×C2
and n = 2, does it follow that σ is natural?
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For a smooth projective curve C of genus g the Hilbert scheme C [n] is
isomorphic to the symmetric product C(n). In [7] Biswas and Gómez show
that if g > 2 and n > 2g−2 then every automorphism of the nth symmetric
product of C is natural. On the other hand non-natural automorphisms on
(P1)[n] ∼= Pn for n ≥ 2 are abundant.

If X is smooth of dimension ≥ 3 then the Hilbert scheme X [n] is smooth
if and only if n ≤ 3 [11, Theorem 3.0.1]. As a first step in understanding
the situation in these cases we prove the following result.

Theorem 4. Every automorphism of (Pn)[2] is natural.

The construction of the non-natural automorphism of (C1×C2)[2] gener-
alizes to products of higher dimensionsional varieties, but we make no claims
regarding the analogue of the uniqueness result of Theorem 2.

Bondal and Orlov [8, Theorem 2.5] proved that any derived equivalence
between smooth projective varieties with one of them having ample or anti-
ample canonical bundle is induced by an isomorphism of the underlying
varieties. We obtain the following Hilbert scheme analog.

Corollary 5. Let X,Y be smooth projective surfaces and assume that Y
is weak Fano or of general type. Moreover if Y is a product of curves as-
sume n ≥ 3. Then for every isomorphism σ : X [n] ∼→ Y [n] there exist an
isomorphism g : X ∼→ Y such that σ = g[n].

After a first version of this paper appeared online, Hayashi made us aware
of the preprint [13] in which he proves Theorems 1 and 2 and Corollary 5
for rational surfaces such that the Iitaka dimension of ω−1

X is at least 1.
Hayashi’s arguments do not apply to surfaces with non-trivial fundamental
group or in general type, while our arguments do not apply in Iitaka dimen-
sion 1. For simply connected surfaces with ω±1

X ample the arguments are
parallel, see Section 3 for an outline of that case.

An interesting question beyond the scope of this paper is to describe
the group of derived auto-equivalences of the Hilbert scheme of points of
a smooth projective surface. In the weak Fano or general type case our
results determine the group of standard auto-equivalences, that is the group
generated by automorphisms of the variety, tensoring with line bundles, and
shifts. But by a result of Krug [14, Theorem 1.1(ii)] there always exist non-
standard auto-equivalences on the Hilbert scheme. For Hilbert squares and
Hilbert cubes of surfaces with ample or anti-ample canonical bundle a proof
of [14, Conjecture 7.5] combined with Theorems 1 and 2 would give a full
description of the derived auto-equivalence group.

Hilbert schemes of points of Fano surfaces admit deformations which may
be understood as Hilbert schemes of non-commutative deformations of Fano
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surfaces [15]. It would be interesting to compare the automorphism groups
of these deformations with the automorphism groups of the underlying non-
commutative surfaces which were computed in [6], and see whether they are
all natural in the appropriate sense.

1.1. Acknowledgements. Chiara Camere was part of the collaboration at
an earlier stage and we are very grateful for her insights and input. We would
also like to thank Arnaud Beauville, Alberto Cattaneo, Daniel Huybrechts,
Gebhard Martin and John Christian Ottem for their interest and useful
discussions. We thank Taro Hayashi for useful comments and for sending
us the preprint [13]. The project originated at the Max Planck Institute for
Mathematics in Bonn and we thank the institute for support.

2. Preliminaries

Let X be a smooth complex projective surface. Let X(n) be the nth
symmetric product of X obtained as the quotient of the cartesian product
Xn under the permutation action by the symmetric group Sn. Let ρ : Xn →
X(n) be the quotient map and let pi : Xn → X be the projection onto the
ith factor. Recall also the Hilbert–Chow morphism

ε : X [n] → X(n)

which sends a subscheme Z ⊂ X to its support. The notation is summarized
in the following diagram:

X [n] Xn X

X(n)

ε

pi

ρ

For any line bundle L on X the tensor product
⊗n
i=1 p

∗
iL has a natural

Sn-invariant structure, and taking Sn-invariants defines a line bundle L(n)
on X(n). If L is (very) ample, then L(n) is (very) ample as well. We also
define the pullback to the Hilbert scheme:

L[n] := ε∗L(n)

By arguments parallel to [2, §6], the canonical bundle of X [n] is

ωX[n] = (ωX)[n].

The symmetric product X(n) is singular precisely at the diagonal ∆ of
cycles supported at less than n points. By [16, Theorem 18.18] the tangent
space at nx ∈ X(n) for any x ∈ X satisfies

dim TX(n),nx = n(n+ 3)
2 .
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This shows that the small diagonal ∆small = {nx | x ∈ X} is distinguished
in the symmetric product as the locus of points in X(n) where the Zariski
tangent space is of maximal dimension.

For future use, we record the following lemma.

Lemma 6. Let f : X → Y be a morphism of projective varieties, where Y
is normal and f has connected fibres. Let L be an ample line bundle on Y .
For any automorphism σ : X → X such that σ∗f∗L ∼= f∗L there exists an
isomorphism τ : Y ∼→ Y such that τ ◦ f = f ◦ σ.

Proof. By Stein factorization and our assumptions we have f∗(OX) = OY ,
and so H0(X, f∗L⊗m) = H0(Y,L⊗m) for all m ≥ 0. Applying the Proj
construction to the corresponding graded algebra gives the isomorphism τ ,
and by construction τ ◦ f = f ◦ σ. �

3. The basic strategy

We first explain the proof of Theorem 1 under the assumption that
• ωX or ω−1

X is ample,
• X is simply connected,
• X is not a product of curves.

Let σ : X [n] ∼→ X [n] be an automorphism. Since the differential of σ is
everywhere invertible we have

σ∗ωX[n] ∼= ωX[n] .

Step 1. (Reduction to the symmetric product) Because ωX[n] is the pullback
of an ample or anti-ample line bundle from the symmetric product X(n), by
Lemma 6 there exists an automorphism τ : X(n) → X(n) which makes the
following diagram commute:

X [n] X [n]

X(n) X(n).

ε

σ

ε

τ

Since ε is birational, τ is the identity if and only if σ is the identity. We are
hence reduced to studying automorphisms of the symmetric product.

Step 2. (Lifting) Since τ preserves the singular points, the diagonal on the
symmetric product is preserved:

τ(∆) = ∆.

Let D ⊂ Xn denote the big diagonal in Xn and consider the restriction of
the quotient map

ρD : Xn \D → X(n) \∆.
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Since X is assumed to be simply connected and D ⊂ Xn is of codimension 2
in a smooth ambient space, Xn\D is also simply connected. Hence ρD is the
universal covering space of X(n) \∆. Applying the universal lifting property
to the morphism τ ◦ρD we obtain an automorphism f ∈ Aut(Xn \D) which
makes the following diagram commute:

Xn \D Xn \D

X(n) \∆ X(n) \∆.

ρD

f

ρD

τ

Step 3. (Extension to Xn) Since D is of codimension 2 in Xn and since Xn

is smooth hence normal, every section of a line bundle on the complement
of D extends. Applying this to ωXn and its powers, the automorphism f

induces a graded ring automorphism of⊕
m

H0(Xn, ω⊗mXn ).

Since ωX is ample or anti-ample, this in turn induces an automorphism of
Xn that extends f . We will denote this extension by f as well. We have
constructed an automorphism

f : Xn ∼→ Xn

such that ρ ◦ f = τ ◦ ρ.

Step 4. (Splitting the automorphism) IfN is a globally generated line bundle
on a variety Z, its global sections induce a map from Z to projective space.
The resulting morphism from Z to its image in projective space is called the
morphism associated with N .

Let L be a very ample line bundle on X, and let

Li := p∗iL

be its pullback to Xn along the projection to the ith factor. The projection
pi is then naturally identified with the morphism associated with Li. We
follow the arguments of [17, Theorem 4.1] and consider f∗Li.

Since X is simply connected, we have H1(X,Z) = 0. On the one hand,
this implies that Pic0(Xn) = Pic0(X)n = 0. On the other hand, we have
H2(Xn,Z) = H2(X,Z)⊕n and hence

Pic(Xn) ∼= H1,1(Xn,Z) ∼= H1,1(X,Z)⊕n ∼= Pic(X)⊕n.

We conclude that there exist line bundles Mj on X such that

(1) f∗Li ∼= p∗1M1 ⊗ · · · ⊗ p∗nMn.
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We have a natural Künneth identification

H0(Xn, p∗1M1 ⊗ · · · ⊗ p∗nMn) ∼= H0(X,M1)⊗ · · · ⊗H0(X,Mn).

Using this identification, we see that if Bj ⊂ X is the base locus ofMj , then
the base locus of p∗1M1 ⊗ · · · ⊗ p∗nMn is p−1

1 (B1)× · · · × p−1
n (Bn) ⊂ Xn. As

f∗Li is globally generated, it follows from (1) that this set is empty, hence
all the Bj are empty and so all the Mj are globally generated.

Let now gj : X → Yj be the morphism associated with Mj . Then the
morphism associated with p∗1M1 ⊗ · · · ⊗ p∗nMn is

g1 × · · · × gn : Xn → Y1 × · · · × Yn.

The morphism associated with f∗Li is pi ◦ f , and so the isomorphism of
line bundles in (1) implies that we have an isomorphism h :

∏
i Yi → X such

that pi ◦ f = h ◦ (g1 × · · · × gn).
Since X is not a product of curves, one of the gj is an isomorphism and

the others are projections to a point. Let j(i) be the number such that gj(i)
is an isomorphism.

Then pi◦f only depends on the corresponding j(i)th coordinate of a point
x = (x1, . . . , xn) ∈ Xn. After composing f with the automorphism of Xn

induced by the permutation that sends i to j(i), we may assume that pi ◦ f
only depends on the ith coordinate. We can then write

f = f1 × · · · × fn

for some fi : X → X, and the fi must be automorphisms since f is an
isomorphism.

The automorphism τ ∈ Aut(X(n)) preserves the small diagonal as the
locus where the tangent space has maximal dimension. It follows that f
preserves the small diagonal in Xn, so all the fi are the same, and hence
that σ is natural.

4. The general case

We present the proof of the main theorem. We proceed as in Section 3
but at every step we need to find an argument that works for weak Fano
surfaces and for surfaces of general type. Our assumption throughout is that
X is a smooth complex projective surface.

For a weak Fano surface X we will use that ω−1
X is semiample, that is a

power of it is basepoint free. Moreover, the morphism defined by the linear
system of ω−⊗mX is birational for appropriate m� 0, see [18, Theorem 4.3].
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4.1. Reduction to symmetric product. We begin by giving a criterion
for when an automorphism of the Hilbert scheme descends to the symmetric
product. Let α ∈ H2(X [n],Z) be the class of a P1-fiber of the map ε : X [n] →
X(n). In particular, α is the unique primitive curve class such that

ε∗α = 0.

Proposition 7. Let σ ∈ Aut(X [n]). If σ∗α = α then there exists an auto-
morphism τ ∈ Aut(X(n)) such that the following diagram commutes:

X [n] X [n]

X(n) X(n).

ε

σ

ε

τ

Proof. We first show that the morphism ε : X [n] → X(n) is the initial object
in the category of morphisms f : X [n] → Z, where Z is a projective scheme
and f contracts the P1-fibers of ε (or equivalently, f∗α = 0).

Indeed, let f : X [n] → Z be such a morphism and consider the scheme

Y = (ε× f)(X [n]) ⊂ X(n) × Z.

We claim the projection to the first factor p : Y → X(n) is an isomorphism.
Since X(n) is normal (as the quotient of the normal space Xn by a finite
group) and p is birational and proper, by Zariski’s main theorem it suffices
to show that p is finite. If p is not finite, it contracts a curve Σ. Then
there exists a curve Σ′ ⊂ X [n] such that its image under ε × f is Σ (for
example, take the preimage of Σ and if that is of dimension > 1 cut it
down by sections of a relatively ample class). Since by assumption we have
(ε × f)∗α = 0, the class of Σ′ is linearly independent (over Q) of α and
contracted by ε = p ◦ (ε× f). But the kernel of

ε∗ : H2(X [n],Q)→ H2(X(n),Q)

is 1-dimensional and spanned by α which gives a contradiction. We conclude
that p is an isomorphism and hence that Y is the graph of a morphism
g : X(n) → Z with g ◦ ε = f . Since ε is birational, g is unique.

Applying the above universal property of ε to ε ◦ σ with Z = X(n), we
obtain a morphism τ : X(n) → X(n) such that ε◦σ = τ◦ε. On the other hand,
the same argument also implies that ε ◦ σ is initial, so τ is an isomorphism.

�

We apply our criterion to the case at hand:

Proposition 8. Let X be a smooth projective surface which is weak Fano
or of general type. Then for every automorphism σ ∈ Aut(X [n]) we have
σ∗α = α.
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Proof. We assume that X is of general type. The weak Fano case is parallel.
Let Y be the canonical model of X, which is a surface with isolated singular
points. The canonical line bundle on X [n] induces a morphism

ϕ : X [n] → Y (n)

and since σ preserves this line bundle, by Lemma 6, there exists τ ∈
Aut(Y (n)) such that

X [n] X [n]

Y (n) Y (n).

ϕ

σ

ϕ

τ

commutes.
Let y1, . . . , yr be the singular points of Y . The singular locus of Y (n) is

(2) Sing Y (n) = ∆ ∪Dy1 ∪ . . . ∪Dyr

where for a point y ∈ Y the subscheme Dy ⊂ Y (n) is defined by

(3) Dy = {y + z | z ∈ Y (n−1)}.

Claim. The automorphism τ preserves the diagonal ∆ ⊂ Y (n).
Proof of the claim: The automorphism τ preserves the singular locus of
Y (n). Since (2) is the decomposition of the singular locus into irreducible
components we need to exclude the case that τ(∆) = Dyi for some i. If
n ≥ 3 then the normalizations of Dy and ∆ are

(4) D̃y = Dy
∼= Y (n−1), ∆̃ = Y × Y (n−2).

To see this for the diagonal, we have a natural finite birational map Y ×
Y (n−2) → ∆. Since the source is normal it factors through a map to the
normalization, which is an isomorphism by Zariski’s main theorem. Since
Y (n−1) and Y ×Y (n−2) are not isomorphic for n ≥ 3 this completes the claim.
In case n = 2 both ∆ and Dyi are isomorphic to Y . The corresponding
inclusion maps factor as

ι∆ : Y ∆−→ D ⊂ Y × Y → Y (2)

ιDyj : Y ∼= yj × Y ⊂ Y 2 → Y (2).

From this we get

ι∗∆ωY (2) = ω⊗2
Y , ι∗Dyj

ωY (2) = ωY .

Since ωY (2) is preserved under pullback by τ , this excludes τ(∆) = Dxj . �

We return to the proof of the proposition. Let E ⊂ X [n] denote the
exceptional divisor. Let Cyi ⊂ X be the curve contracted to yi under the
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canonical map X → Y and let Vi ⊂ X [n] be the preimage under ε of the
subscheme

{w1 + w2 | w1 ∈ (Cyi)(2), w2 ∈ X(n−2)} ⊂ X(n).

Then
ϕ−1(∆) = E ∪

r⋃
i=1

Vi.

By the claim σ preserves ϕ−1(∆). Since every Vi is of codimension ≥ 2 while
E is a divisor, we conclude σ(E) = E. So we get a commutative diagram

E E

∆ ∆.

ϕ

σ

ϕ

τ

In particular, σ sends fibers of ϕ to fibers. Since the generic fiber of E → ∆
is precisely the P1 contracted by ε we are done. �

4.2. Lifting. Let X be a smooth projective surface. We show that every
automorphism of X(n) lifts to an automorphism of Xn \D.

Proposition 9. For every τ ∈ Aut(X(n)) there exists f ∈ Aut(Xn \ D)
such that the following diagram commutes:

Xn \D Xn \D

X(n) \∆ X(n) \∆.

ρ

f

ρ

τ

Proof. The main idea is that since ρ is a normal covering space, by the
standard lifting criterion we only have to show

(τ ◦ ρ)∗(π1(Xn \D)) ⊂ ρ∗(π1(Xn \D)).

We first make a simplification: Since the small diagonal is preserved by
τ and isomorphic to X the restriction τ |∆small defines an automorphism
g ∈ Aut(X). Replacing τ by (g−1)(n) ◦ τ we may assume that

τ |∆small = id∆small .

Choose a point x ∈ X, a small open ball U ⊂ X with x ∈ U , and n

distinct points x1, . . . , xn ∈ U \ {x}. Let G = π1(X,x), and note that we
have canonical identifications G ∼= π1(X,xi) for every i, given by connecting
x to xi via a path in U . Then

π1(Xn \D, (xi)) = π1(Xn, (xi)) = Gn.

The map
ρ : Xn \D → X(n) \∆
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is obtained by taking the quotient by the free action of Sn, hence it is a
normal covering space, and we have the exact sequence of groups

(5) 1→ π1(Xn \D, (xi))→ π1(X(n) \∆,
∑
xi)→ Sn → 1.

We define a splitting of this short exact sequence as follows. The inclusion
of U in X induces an inclusion

U (n) \∆ ↪→ X(n) \∆.

By simply-connectedness of U we get Sn ∼= π1(U (n) \ ∆,
∑
xi), and the

inclusion
Sn ∼= π1(U (n) \∆,

∑
xi)→ π1(X(n) \∆,

∑
xi)

splits (5). Thus we have

π1(X(n) \∆,
∑
xi) ∼= Gn o Sn,

and one can check that the conjugation action of Sn on Gn is the standard
permutation of factors.

The set τ(U (n)) is an open neighbourhood of nx ∈ X(n). Picking some
sufficiently small open ball V with x ∈ V ⊂ U , we have V (n) ⊂ U (n) ∩
τ(U (n)). We may assume that xi ∈ V for all i, hence

∑
xi ∈ V (n) \∆. We

have the commutative diagram

π1(V (n) \∆,
∑
xi) π1(U (n) \∆,

∑
xi)

π1(τ(U (n)) \∆,
∑
xi) π1(X(n) \∆,

∑
xi),

a

b c

d

where the three upper-left groups are isomorphic to Sn and where c◦a = d◦b
is injective. It follows that a and b are isomorphisms and that the three
upper-left groups are equal as subgroups of π1(X(n) \∆,

∑
xi).

Picking a path in τ(U (n)) \∆ from τ(
∑
xi) to

∑
xi gives isomorphisms

s : π1(X(n) \∆, τ(
∑
xi))

∼→ π1(X(n) \∆,
∑
xi)

s : π1(τ(U (n)) \∆, τ(
∑
xi))

∼→ π1(τ(U (n)) \∆,
∑
xi)

We have the equality of subgroups of π1(X(n) \∆,
∑
xi)

(s ◦ τ∗)(π1(U (n) \∆),
∑
xi) = s(π1(τ(U (n)) \∆, τ(

∑
xi)))

= π1(τ(U (n)) \∆,
∑
xi)

= π1(U (n) \∆,
∑
xi).

Therefore, in the presentation π1(X(n)\∆,
∑
xi) = GnoSn and the notation

of §4.3, we have
(s ◦ τ∗)(eGn o Sn) = eGn o Sn,
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and so by Lemma 11, we have

(s ◦ τ∗)(Gn o eSn) = Gn o eSn .

Since Gn o eSn = ρ∗(π1(Xn \D), (xi)), this implies

τ∗(ρ∗(π1(Xn \D), (xi))) = s−1(ρ∗(π1(Xn \D), (xi))) = ρ∗(π1(Xn \D, y)),

where y ∈ Xn satisfies ρ(y) = τ(
∑
xi), and is the parallel transport of (xi)

along the path defining s. By the lifting criterion for covering spaces, it
follows that τ ◦ ρ lifts to an automorphism f as required. �

4.3. Some group theory.

Lemma 10. Let n ≥ 3, and let σ ∈ Sn be such that σ commutes with
all its conjugates, and such that the centraliser C(σ) contains a subgroup
isomorphic to Sn−1. Then σ = eSn.

Proof. By the first assumption on σ, the elements gσg−1, g ∈ Sn generate a
normal, abelian subgroup H of Sn. If n ≥ 5, then An is the only non-trivial
normal subgroup of Sn ([19, §10.8.8]). As H is abelian, it must therefore
be trivial, and so σ = eSn . The remaining cases n = 3, 4 are checked
directly. �

Let G be a group, and define GnoSn by the permutation action of Sn on
the factors ofGn. We write eoSn = eGnoSn andGnoe = GnoeSn ⊂ GnoSn
for the groups Sn, Gn thought of as subgroups of Gn o Sn.

Lemma 11. Let τ : GnoSn
∼−→ GnoSn be an automorphism. If τ(eoSn) =

eo Sn, then τ(Gn o e) = Gn o e.

Proof. We need only show that τ(Gn o e) ⊆ Gn o e, since applying this to
τ−1 gives

τ−1(Gn o e) ⊆ Gn o e⇒ Go e ⊆ τ(Gn o e).
Let g ∈ G be any element, and let g(i) ∈ Gn be the inclusion of g in the ith
factor. The group Gn o e is generated by elements of the form (g(i), eSn),
hence it suffices to show that τ(g(i), eSn) ∈ Gn o e.

Note first that (g(i), eSn) commutes with all its e o Sn-conjugates, hence
so does τ(g(i), eSn). Note further that (g(i), eSn) commutes with every ele-
ment (eGn , δ) where δ fixes i. Hence the centraliser of (g(i), eSn) contains a
subgroup isomorphic to Sn−1 inside e o Sn, and so likewise the centraliser
of τ(g(i), eSn) contains such a subgroup in eo Sn. If now

τ(g(i), eSn) = (x, σ), x ∈ Gn, σ ∈ Sn,

we have that σ commutes with all its conjugates, and |CSn(σ)| ≥ (n − 1)!,
whence by Lemma 10 we have σ = eSn if n ≥ 3.
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Assume that n = 2. Let δ ∈ S2 be the non-trivial element. By our assump-
tion, τ(eG2 , δ) = (eG2 , δ), and so the centraliser C = CG2oS2(eG2 , δ) is pre-
served by τ . By a direct check we have C = {((g, g), eS2), ((g, g), δ) | g ∈ G}.
Next observe that elements ((g, g), eS2) can all be written as a product of
an element x and its (eG2 , δ)-conjugate, e.g. take x = ((g, eG), eS2). On the
other hand, elements of the form ((g, g), δ) cannot be written in such a way,
since the product of an element with its (eG2 , δ)-conjugate must have eS2

in the S2-factor. Therefore the set of elements of the form ((g, g), eS2) is
preserved by τ .

Since these elements form a subgroup of G2 o S2, the automorphism τ

defines by restriction an automorphism ψ of G. After post-composing τ with
the automorphism ((g, h), x) 7→ ((ψ−1(g), ψ−1(h)), x), we may assume that
τ in fact fixes each element ((g, g), eS2).

Now consider the element ((g, eG), eS2). It satisfies the following equation
in x:

(6) x(eG2 , δ)x(eG2 , δ) = ((g, g), eS2).

The same equation must therefore be satisfied by τ((g, eG), eS2).
Assume now for a contradiction that τ((g, eG), eS2) = ((h, i), δ). Since

equation (6) is satisfied by ((h, i), δ), we must have (h2, i2) = (g, g). There-
fore g is a square, hence so is ((g, eG), eS2). But clearly ((h, i), δ) is not a
square, and so we have a contradiction. �

4.4. Extension. Let τ : X(n) → X(n) be an automorphism and assume that
there exists a commutative diagram

Xn \D Xn \D

X(n) \∆ X(n) \∆.

ρ

f

ρ

τ

for some automorphism f ∈ Aut(Xn \D).

Proposition 12. In the situation above the automorphism f extends to an
automorphism f̃ : Xn → Xn such that τ ◦ ρ = ρ ◦ f̃ .

Proof. Let U = Xn \D and V = X(n) \∆ and consider the diagram

U Xn

V X(n)

ρU

ι

ρ

j

where the horizontal maps ι and j are the inclusions and ρU is the restriction
of ρ to U . Because U is of codimension 2 and Xn normal we have ι∗OU =
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OXn . Both ρ and ρU are finite, therefore affine, so in particular we have

Xn = Spec ρ∗OXn , U = Spec ρU∗OU .

The category of affine schemes over a base S is equivalent to the opposite
of the category of quasi-coherent OS-algebras. Hence the V -morphism

U U

V

f

ρU τ−1◦ρU

corresponds to an isomorphism of quasi-coherent OV -algebras

ψf : (τ−1)∗ρ∗OU → ρ∗OU

By pushforward along j we obtain an isomorphism of OX(n)-algebras

j∗ψf : j∗τ−1
∗ ρ∗OU → j∗ρ∗OU .

We have j∗ρ∗OU = ρ∗ι∗OU = ρ∗OXn . Moreover, because the automorphism
τ of U is the restriction of the automorphism τ of Xn we also have

j∗(τ−1)∗ρ∗OU = (τ−1)∗j∗ρ∗OU = (τ−1)∗ρ∗OXn .

The pushforward j∗ψf thus corresponds to an isomorphism f̃ from ρ : Xn →
X(n) to τ−1 ◦ ρ : Xn → X(n), hence to an isomorphism f̃ ∈ Aut(Xn) with
the desired properties. �

4.5. Splitting the automorphism.

Proposition 13. Assume the surface X is weak Fano or of general type,
and let f ∈ Aut(Xn) be an automorphism. Then at least one of the following
holds:

(a) f = α ◦ (f1 × · · · × fn) for some fi ∈ Aut(X) and α ∈ Sn, or
(b) X ∼= C1 × C2 for smooth curves C1, C2. Moreover, if C1 ∼= C2 then

f = α ◦ (g1 × · · · × g2n)

for some gi ∈ Aut(C1) and some α ∈ S2n. If C1 � C2 then under
the isomorphism Xn ∼= Cn1 × Cn2 we have

f ∼= (α1 × α2) ◦ (g1 × · · · × gn × h1 × · · · × hn)

for some gi ∈ Aut(C1), hi ∈ Aut(C2) and α1, α2 ∈ Sn.

For the proof we recall the general fact that the category of coherent
sheaves on a smooth proper variety over an algebraically closed field is Krull–
Schmidt, that is every object in it can be uniquely decomposed in irreducible
components [1, Theorem 3].
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Moreover, for a vector bundle E on X we will write

Ei := p∗i E

for the pullback of E to Xn along the projection to the ith factor.

Proof. Let X be a surface of general type. We assume first that the cotan-
gent bundle ΩX is indecomposable. In this case the bundle ΩXn has the
Krull–Schmidt decomposition

ΩXn = ΩX,1 ⊕ . . .⊕ ΩX,n.

Since this decomposition is unique and ΩXn is preserved under pullback by
f , for every i we find f∗ΩX,i = ΩX,j(i) for some j(i). After composing f

with a permutation we may assume f∗ΩX,i
∼= ΩX,i and thus

(7) f∗ωX,i ∼= ωX,i.

Let ϕ : X → Y be the map to the canonical model of X induced by a power
of ωX . From (7) and Lemma 6 we get an element gi ∈ Aut(Y ) such that
the diagram

Xn Xn

Y Y

ϕ◦pi

f

ϕ◦pi
gi

commutes. Let U ⊂ X be the open subset where ϕ is an isomorphism. Since
i was arbitrary we conclude

ϕn ◦ f ◦ (ϕ−1)n|ϕ(U)n = g1 × · · · × gn|ϕ(U)n

For any fixed (x2, . . . , xn) ∈ Un−1 the composition

f1 : X ↪→ Xn f−→ Xn p1−→ X,

where the first map is x 7→ (x, x2, . . . , xn), defines a lift of g1 ∈ Aut(Y ) to
f1 ∈ Aut(X). Since the lift is unique if it exists, it is independent of the
choice of the xi. Using a parallel argument we find lifts fi ∈ Aut(X) of gi
for any i. The equality

f = f1 × · · · × fn
then holds on an non-empty open subset of Xn and hence holds everywhere.

Assume now that the cotangent bundle of X decomposes into line bundles:

ΩX
∼= L ⊕M.

By a result of Beauville [4, §5.1, Proposition 4.3] the canonical bundle ωX
is ample and hence W = Xn is canonically polarized. By [5, Theorem 1.3
and §4] it follows that the variety W can be decomposed into a product
of irreducible factors and the decomposition is unique up to reordering the
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factors. Here a variety Z is called irreducible it does not admit a non-trivial
product decomposition Z ∼= Z1 × Z2.

If X is not the product of curves then W has the following two factoriza-
tions. The standard one, induced by the projection maps pi,

p = (p1, . . . , pn) : W ∼−→ Xn

and the one obtained by mapping the first under the automorphism f ,

p ◦ f : W ∼−→ Xn.

Since both must coincide up to reordering (and factorwise isomorphism) we
conclude there exist automorphisms fi ∈ Aut(X) and a permutation α ∈ Sn
such that pi ◦ f = fi ◦ pα(i) for all i. This yields the claim.

We therefore can assume that X is the product of curves

X = C1 × C2

and hence that
L = q∗1ΩC1 , M = q∗2ΩC2

where we let qj denote the projection from X to the jth factor.
If C1 � C2 then the pullback by f preserves the set of Li and the set

of Mi separately (since the image of the complete linear system defined
by a power of L is precisely C1, and likewise for M). Hence there exists
gi ∈ Aut(C1) and a permutation α1 ∈ Sn such that the following diagram
commutes:

Xn Xn

C1 C1.

q1◦pi

f

q1◦pα1(i)

gi

Since the parallel statement holds for the factor C2, this yields the claim.
If C1 ∼= C2 then we may determine Aut(C2n

1 ) as we determined Aut(Xn)
when ΩX is indecomposable, or again apply the result [5, Theorem 1.3].

Finally, we consider the case where X is weak Fano. If ΩX is indecompos-
able, then we can argue as for general type. If ΩX decomposes, then by the
classification of weak Fano surfaces, or using Beauville [4, Theorem C(a)]
and that X is rational so simply-connected, we have that X is isomorphic
to P1 × P1. The claim then follows as in case C1 = C2 above. �

Corollary 14. Assume the surface X is weak Fano or of general type. Let
f ∈ Aut(Xn) and τ ∈ Aut(X(n)) be automorphisms such that the diagram

Xn Xn

X(n) X(n)

ρ

f

ρ

τ
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commutes. Then one of the following holds:
(a) f = α ◦ (g × · · · × g) for some g ∈ Aut(X) and α ∈ Sn, or
(b) n = 2, X = C1 × C2 for smooth curves C1, C2, and we can write

f = f1 ◦ f2, where f1 = α ◦ (g × g) for some α, g as in (a) and f2 is
the automorphism of X2 given by

((x1, x2), (y1, y2)) 7→ ((x1, y2), (y1, x2)), xi, yi ∈ Ci.

Proof. Since the automorphism τ preserves the small diagonal in X(n) the
map f preserves the small diagonal

Dsmall = {(x, . . . , x) | x ∈ X} ⊂ Xn.

If f is as in Proposition 13(a), this immediately implies that alternative (a)
of our statement holds.

If f is as in Proposition 13(b), we consider the two cases more closely. In
case C1 ∼= C2 then, since f preserves the small diagonal, for all (c1, c2) ∈ X
there exists (d1, d2) ∈ X such that

(8) α ◦ (g1(c1), g2(c2), . . . , g2n−1(c1), g2n(c2)) = (d1, d2, . . . , d1, d2).

For a fixed c2 ∈ C2, there is a non-empty open subset of points c1 ∈ C1 such
that, for any odd i, the point gi(c1) is distinct from all the points

g2(c2), g4(c2), . . . , g2n(c2).

By (8), the set {g1(c1), . . . , g2n(c2)} contains at most two points, and it
follows that g1(c1) = g3(c1) = . . . = g2n−1(c1). Since c1 was arbitrary in the
open subset of C1, we find that

g1 = g3 = . . . = g2n−1.

Similarly we have g2 = g4 = . . . = g2n. Moreover, α must preserve or invert
parity.

Setting g = g1, h = g2, we thus find that f has the form

f = α ◦ (g, h)×n,

with α ∈ S2n either preserving or inverting parity. If α preserves parity,
then we define α1 ∈ Sn by α1(i) = α(2i−1)+1

2 , and set f1 = α1 ◦ (g, h)×n ∈
Aut(Xn). If α inverts parity, then we define α1 ∈ Sn by α1(i) = α(2i−1)

2 .
We then let ψ ∈ Aut(X) be given by ψ(c1, c2) = (c2, c1), ci ∈ Ci, and take
f1 = α1 ◦ (ψ ◦ (g, h))×n.

In either case, if we write f = f1 ◦ f2, then under the identification
Xn = Cn1 × Cn2 we have

(9) f2 = idCn1 × α2,
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where α2 ∈ Sn acts on the factor Cn2 . It remains to show that either α2 is
trivial, in which case alternative (a) of our corollary holds, or that n = 2, in
which case alternative (b) holds.

Since the automorphisms f and f1 descend to the symmetric product,
the same holds for f2 = f−1

1 ◦ f . In particular, for a point z ∈ Xn the
class of f2(z) in X(n) depends only on the class of z ∈ X(n). Hence for all
permutations σ ∈ Sn there exists σ̃ ∈ Sn such that

f2(σz) = σ̃f2(z).

Using (9) and remembering that under the identification Xn ∼= Cn1 ×Cn2 the
symmetric group Sn acts diagonally we find

(σ̃ × σ̃)−1(idCn1 × α2)(σ × σ) = (idCn1 , α2).

This gives σ = σ̃ and thus

σ−1ασ = α

Since σ was arbitrary, α is in the center of Sn. Since the center of the
symmetric group is non-trivial only for n = 2, we find as required that α2
can be non-trivial only if n = 2.

In the case C1 6∼= C2, then Proposition 13 shows that we have g1, . . . , gn ∈
Aut(C1), h1, . . . , hn ∈ Aut(C2) and α1, α2 ∈ Sn such that under the identifi-
cation Xn = Cn1 × Cn2 , we have

f = (α1 × α2) ◦ (g1 × · · · × gn × h1 × · · · × hn).

A similar argument to the case of C1 ∼= C2 shows that all the gi are equal
and that all the hi are equal. Taking f1 = (α1)×n ◦ (g1, h1)×n, we find that
f = f1 ◦ f2 with f2 = idCn1 × α

−1
1 α2. The same argument as in the case of

C1 ∼= C2 then completes the proof. �

4.6. Proof of Theorem 1 and 2. Let X be weak Fano or of general
type and let σ ∈ Aut(X [n]). By Proposition 8 applied to Proposition 7 the
automorphism σ descends to the symmetric product. By Proposition 9 this
automorphism of the symmetric product lifts to an automorphism of the
complement of the big diagonal in Xn and by Proposition 12 it extends
from there to an automorphism of Xn. Theorem 1 and the uniqueness part
of Theorem 2 now follow from the classification in Corollary 14. For the
existence part of Theorem 2 the automorphism in Corollary 14 (b) descends
to X(2) and from there lifts to the Hilbert scheme by the universal property
of the blow-up X [2] → X(2). �
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4.7. Proof of Corollary 5. Theorem 1 together with the following result
immediately implies Corollary 5.

Proposition 15. Let X,Y be smooth projective surfaces and let Y be weak
Fano or of general type. If X [n] ∼= Y [n], then X ∼= Y .

Proof. We assume that Y is of general type, the case where Y is weak Fano
is parallel. Let σ : X [n] ∼→ Y [n] be an isomorphism. Since σ∗ωY [n] ∼= ωX[n]

by Lemma 6 we have a commutative diagram

X [n] Y [n]

X
(n)
can Y

(n)
can

σ

τ

where τ is an isomorphism and we let Xcan and Ycan denote the canonical
models of X and Y respectively. Since Y (n)

can is of dimension 2n we find that
X is also of general type. Let xi and yj be the singular points of Xcan and
Ycan respectively. Then τ induces an isomorphism of the singular loci of
X

(n)
can and Y

(n)
can :

τ :
⋃
i

Dxi ∪∆Xcan
∼−→

⋃
j

Dyj ∪∆Ycan .

where the Dx are defined as in (3). We claim that τ(∆Xcan) = ∆Ycan . Indeed,
if n = 2 then Dxi

∼= ∆Xcan
∼= Xcan, so Xcan ∼= Ycan and the claim follows as

in the proof of Proposition 8. If n ≥ 3, we can either use that Dxi is normal
while the diagonal is not, or argue as follows. Assume that

τ(∆Xcan) = Dyi , τ(∆Ycan) = Dxi .

Then from the description of their normalizations in (4) we have the equality
of Betti numbers

2bi(Xcan) = bi(Ycan) and bi(Xcan) = 2bi(Ycan)

for i = 1 so b1(Xcan) = b1(Ycan) = 0, hence the same equations hold also
for i = 2 which is impossible since b2(Xcan) > 0.

By the claim, τ preserves the diagonal, hence by an argument parallel
to the proof of Proposition 8, we find that σ preserves the class of a P1-
fiber of the Hilbert–Chow morphism X [n] → X(n). Then arguing as in
Proposition 7 we find that σ descends to an isomorphism X(n) ∼→ Y (n).
Since this automorphism sends the small diagonal to the small diagonal and
the small diagonal is isomorphic to the underlying surface we are done. �
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5. The Hilbert scheme of 2 points of Pn

The Hilbert scheme of 2 points of Pn is isomorphic to the quotient of the
blow-up of Pn × Pn along the diagonal,

(Pn)[2] = Bl∆(Pn × Pn)/S2.

Since (Pn)[2] is rational we find

Pic(Pn)[2] = H2((Pn)[2],Z) ∼= Z⊕2.

Proof of Theorem 4. Let σ : (Pn)[2] ∼→ (Pn)[2] be an automorphism. The
Hilbert scheme admits the following two contractions: the Hilbert–Chow
morphism

f1 : (Pn)[2] → (Pn)(2)

and the morphism
f2 : (Pn)[2] → Gr(2, n+ 1)

that sends a subscheme to the line passing through it. By pulling back
polarizations of the targets along f1, f2 we obtain two divisors on the Hilbert
scheme. Both maps contract curves so both divisors lie in the boundary of
the nef cone of (Pn)[2]. Since the Picard group is rank 2 these divisors form
precisely the extremal rays of the nef cone.

Since the automorphism σ preserves the nef cone, σ up to scaling either
preserves these divisors or interchanges them. However, since the contrac-
tions above are non-isomorphic (they have non-isomorphic images), σ cannot
interchange them hence must preserve them up to scaling. Since σ also pre-
serves the divisibility, we find that σ fixes the two divisors, so σ fixed the
Picard group. In particular, from

σ∗f∗1L = f∗1L

where L is an ample divisor on (Pn)(2) we find by Lemma 6 that σ descends to
an automorphism of the symmetric product τ : (Pn)(2) → (Pn)(2). Arguing
as in Section 3 this automorphism lifts to Pn × Pn where it has to be of the
form α ◦ (f, f) for some α ∈ S2 and f ∈ Aut(Pn). Hence σ is natural. �
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