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Abstract. We study the enumerative geometry of algebraic curves
on abelian surfaces and threefolds. In the abelian surface case,
the theory is parallel to the well-developed study of the reduced
Gromov-Witten theory of K3 surfaces. We prove complete results
in all genera for primitive classes. The generating series are quasi-
modular forms of pure weight. Conjectures for imprimitive classes
are presented. In genus 2, the counts in all classes are proven. Spe-
cial counts match the Euler characteristic calculations of the mod-
uli spaces of stable pairs on abelian surfaces by Göttsche-Shende.
A formula for hyperelliptic curve counting in terms of Jacobi forms
is proven (modulo a transversality statement).

For abelian threefolds, complete conjectures in terms of Jacobi
forms for the generating series of curve counts in primitive classes
are presented. The base cases make connections to classical lattice
counts of Debarre, Göttsche, and Lange-Sernesi. Further evidence
is provided by Donaldson-Thomas partition function computations
for abelian threefolds. A multiple cover structure is presented. The
abelian threefold conjectures open a new direction in the subject.
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0. Introduction

0.1. Vanishings. Let A be a complex abelian variety of dimension d.

The Gromov-Witten invariants of A in genus g and class β ∈ H2(A,Z)

are defined by integration against the virtual class of the moduli space

of stable maps M g,n(A, β),〈
τa1(γ1) · · · τan(γn)

〉A
g,β

=

∫
[Mg,n(A,β)]vir

ψa11 ev∗1(γ1) · · ·ψann ev∗n(γn) ,

see [52] for an introduction.1 However, for abelian varieties of dimen-

sion d ≥ 2, the Gromov-Witten invariants often vanish for two inde-

pendent reasons. Fortunately, both can be controlled. The result is a

meaningful and non-trivial enumerative geometry of curves in A.

The first source of vanishing is the obstruction theory of stable maps.

For dimensions d ≥ 2, the cohomology

H2,0(A,C) = H0(A,Ω2
A)

does not vanish and yields a trivial quotient of the obstruction sheaf.

As a consequence, the virtual class vanishes [29] for non-zero classes β.

An alternative view of the first vanishing can be obtained by defor-

mation invariance. A homology class β ∈ H2(A,Z) is a curve class

if β is represented by an algebraic curve on A. The Gromov-Witten

invariants vanish if β is not a curve class since then the moduli space

M g,n(A, β) is empty. After generic deformation of A, every non-zero

curve class β acquires a part of H2,0(A,C)∨ and is no longer the class

of an algebraic curve. By deformation invariance, the Gromov-Witten

invariants of A then necessarily vanish for all non-zero β.

Second, an independent source of vanishing arises from the action of

the abelian variety A on the moduli space M g,n(A, β) by translation:

most stable maps

f : C → A

appear in d-dimensional families. Integrands which are translation in-

variant almost always lead to vanishing Gromov-Witten invariants. We

must therefore impose a d-dimensional condition on the moduli space

which picks out a single or finite number of curves in each translation

class.

1The domain of a stable map is always taken here to be connected.



CURVE COUNTING ON ABELIAN SURFACES AND THREEFOLDS 3

Curve classes on A are equivalent to divisor classes on the dual

abelian variety Â. Every curve class β ∈ H2(A,Z) has a type2

(d1, . . . , ddimA) , di ≥ 0

obtained from the standard divisor theory of Â. A curve class β is

non-degenerate if di > 0 for all i. Otherwise, β is a degenerate curve

class. The degenerate3 case is studied by reducing the dimension of A.

Various techniques have been developed in recent years to address

the first vanishing. The result in the non-degenerate case is a reduced

virtual class [M g,n(A, β)]red with dimension increased by h2,0(A). Inte-

grals against the reduced class are invariant under deformations of A

for which β stays algebraic. Up to translation, we expect the family of

genus g curves in class β to be of dimension

(1)

vdimM g(A, β) + h2,0(A)− d

= (d− 3)(1− g) +
d(d− 1)

2
− d

= (d− 3)

(
d

2
+ 1− g

)
.

Hence, for abelian varieties of dimension 1, 2, and 3, we expect families

(modulo translation) of dimensions 2g − 3, g − 2, and 0 respectively.

For abelian varieties of dimension d ≥ 4, the reduced virtual dimen-

sion (1) is non-negative only if

g ≤ d

2
+ 1 ≤ d− 1 .

In the non-degenerate case, a generic abelian variety A admits no

proper abelian subvariety and thus admits no map from a curve of

genus less than d. Hence, all invariants vanish.

The Gromov-Witten theory of elliptic curves has been completely

solved by Okounkov and Pandharipande in [47, 48]. Some special re-

sults are known about abelian surfaces [9, 14, 22, 57]. We put forth

here several results and conjectures concerning the complete Gromov-

Witten theory of abelian surfaces and threefolds.

2If A = E1 × · · · ×Ed, the product of elliptic curves Ei, the class β =
∑

i di[Ei]
has type (d1, . . . , ddimA). See Section 1.2 for a full discussion.

3A detailed discussion of the degenerate case is given in Section 1.5. We focus
in the Introduction on the non-degenerate case.
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0.2. Abelian surfaces.

0.2.1. Basic curve counting. Let A be an abelian surface and let

β ∈ H2(A,Z)

be a curve class of type (d1, d2) with d1, d2 > 0. The moduli space

M g,n(A, β)FLS ⊂M g,n(A, β)

is the closed substack of M g,n(A, β) parameterizing maps with image in

a fixed linear system (FLS) on A. Given a curve C in class β, the FLS

condition naturally picks out (d1d2)2 elements in the translation class

of C. The FLS moduli space carries a reduced virtual fundamental

class [32, 41, 59], [
M g(A, β)FLS

]red
,

of virtual dimension g − 2.

Define λk to be the Chern class

λk = ck(E)

of the Hodge bundle E → M g,n(A, β) with fiber H0(C, ωC) over the

moduli point

[f : C → A] ∈M g,n(A, β) .

There are no genus 0 or 1 curves on a general abelian surface A. The

most basic genus g ≥ 2 Gromov-Witten invariants of A are

(2) NFLS
g,β =

∫
[Mg(A,β)FLS]red

(−1)g−2λg−2 .

The integrand (−1)g−2λg−2 corresponds to the natural deformation the-

ory of curves in A when considered inside a Calabi-Yau threefold. The

invariants (2) are therefore precisely the analogs of the genus g − 2

Gromov-Witten invariants of K3 surface which appear in the Katz-

Klemm-Vafa formula, see [41, 42, 51].

By deformation invariance, NFLS
g,β depends only on the type (d1, d2)

of β. We write

NFLS
g,β = NFLS

g,(d1,d2) .

We have the following fully explicit conjecture for these counts.

Conjecture A. For all g ≥ 2 and d1, d2 > 0,

NFLS
g,(d1,d2) = (d1d2)2 2(−1)g−2

(2g − 2)!

∑
k| gcd(d1,d2)

∑
m| d1d2

k2

k2g−1m2g−3 .
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The right hand side incorporates a multiple cover rule which ex-

presses the invariants in imprimitive classes in terms of primitive in-

variants.4 The multiple cover structure is discussed in Section 2.3.

Theorem 1. Conjecture A is true in the following cases:

(i) for all g in case β is primitive,

(ii) for all β in case g = 2.

For part (i) concerning primitive β, our method relies on a degen-

eration formula for Gromov-Witten invariants of abelian surfaces and

calculations in [42]. Via a version of the Gromov-Witten/Pairs cor-

respondence [50], the primitive case also yields an independent proof

of the Euler characteristic calculations of relative Hilbert schemes of

points by Göttsche and Shende [23].

For part (ii) concerning genus 2, the proof is reduced by a method of

Debarre [14], Göttsche [22], and Lange-Sernesi [34] to a lattice count in

abelian groups. Our results reveal a new and surprising multiple cover

structure in these counts.

Conjecture A is parallel to the full Katz-Klemm-Vafa conjecture for

K3 surfaces. Part (i) of Theorem 1 is parallel to the primitive KKV

conjecture proven in [42]. Part (ii) is parallel to the full Yau-Zaslow

conjecture for rational curves on K3 surfaces proven in [30]. While

our proof of part (i) involves methods parallel to those appearing in

the proof of the primitive KKV conjecture, our proof of part (ii) is

completely unrelated to the (much more complicated) geometry used

in the proof of the full Yau-Zaslow conjecture.

The full Katz-Klemm-Vafa conjecture is proven in [51]. However,

most cases of Conjecture A remain open.

0.2.2. Point insertions for primitive classes. Let p ∈ H4(A,Z) be the

class of a point. Define the λ-twisted Gromov-Witten invariants with

k point insertions by:

NFLS
g,k,(d1,d2) =

∫
[Mg,k(A,β)FLS]red

(−1)g−2−kλg−2−k

k∏
i=1

ev∗i (p) ,

4The class is primitive if and only if gcd(d1, d2) = 1 (or, equivalently, the class
can be deformed to type (1, d)), see Section 1.2.
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where β is a curve class of type (d1, d2). Define the function

S(z, τ) = −
∑
d≥1

∑
m|d

d

m

(
pm − 2 + p−m

)
qd ,

considered as a formal power series in the variables

p = e2πiz and q = e2πiτ .

Theorem 2. After setting u = 2πz, we have∑
g≥2

∑
d≥1

NFLS
g,k,(1,d)u

2g−2qd = q
d

dq

(
S(z, τ)k+1

k + 1

)
.

For k = 0, by definition

NFLS
g,0,(1,d) = NFLS

g,(1,d) .

Hence, by Theorem 2,∑
g≥2

∑
d≥1

NFLS
g,(1,d)u

2g−2qd = q
d

dq
S(z, τ) ,

which is a restatement of the formula of Conjecture A for the classes

(1, d). Theorem 2 specializes in the k = 0 case to the primitive part of

Theorem 1.

0.2.3. Quasi-modular forms. Let γ1, . . . , γn ∈ H∗(A,Q) be cohomol-

ogy classes. The primitive descendent potential of A with insertions

τa1(γ1) . . . τan(γn) is defined5 by

FAg (τa1(γ1) . . . τan(γn)) =
∑
d≥0

〈
τa1(γ1) . . . τan(γn)

〉A,red

g,(1,d)
qd ,

where the coefficients on the right hand side denote the reduced invari-

ants of A,〈
τa1(γ1) . . . τan(γn)

〉A,red

g,β
=

∫
[Mg,n(A,β)]red

n∏
i=1

ev∗i (γi)ψ
ai
i .

The ring QMod of holomorphic quasi-modular forms (of level 1) is

the free polynomial algebra in the Eisenstein6 series E2(τ), E4(τ) and

E6(τ),

QMod = Q[E2, E4, E6] .

5Unlike in the FLS setting, the degenerate type (1, 0) is included here.
6The Eisenstein series are defined by

E2k(τ) = 1− 4k

B2k

∑
m|d

m2k−1qd

where B2k is the Bernoulli number.
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The ring QMod carries a grading by weight,

QMod =
⊕
k≥0

QMod2k ,

where E2k has weight 2k. Let

QMod≤2k ⊂ QMod

be the linear subspace of quasi-modular forms of weight ≤ 2k.

The series vanish in g = 0. For g ≥ 1 and arbitrary insertions, we

have the following result.

Theorem 3. The series FAg (τa1(γ1) . . . τan(γn)) is the Fourier expan-

sion in q = e2πiτ of a quasi-modular form of weight ≤ 2(g − 2) + 2n,

FAg (τa1(γ1) . . . τan(γn)) ∈ QMod≤2(g−2)+2n .

A sharper formulation of Theorem 3 specifying the weight appears

in Theorem 8 of Section 4.

0.2.4. Hyperelliptic curves. A nonsingular curve C of genus g ≥ 2 is

hyperelliptic if C admits a degree 2 map to P1,

C → P1 .

A stable curve C is hyperelliptic if [C] ∈ M g is in the closure of the

locus of nonsingular hyperelliptic curves.7 An irreducible hyperelliptic

curve of genus g on an abelian surface A,

C ⊂ A ,

is the image of a stable map

f : Ĉ → C ⊂ A

satisfying the following two conditions:

• Ĉ is an irreducible stable hyperelliptic curve of genus g,

• f : Ĉ → C is birational.

By [53], for any abelian surface A and curve class β, the number

of irreducible hyperelliptic curves of genus g in a fixed linear system

of class β is finite.8 We write hA,FLS
g,β for this finite count. Unlike all

other invariants considered in the paper, hA,FLS
g,β is defined by classical

counting.

7The closure can be described precisely via the theory of admissible covers [27].
8On the other hand, generic abelian varieties of dimension ≥ 3 contain no hy-

perelliptic curve at all, see [53].
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Since every genus 2 curve is hyperelliptic, for generic A and β of type

(1, d) we have

hA,FLS
2,β = d2

∑
m|d

m

by the genus 2 part of Theorem 1. The following result calculates the

genus 3 hyperelliptic counts in generic primitive classes.

Proposition 1. For a generic abelian surface A with a curve class β

of type (1, d),

hA,FLS
3,β = d2

∑
m|d

m(3m2 + 1− 4d)

4
.

Let Hg be the stack fundamental class of the closure of nonsingular

hyperelliptic curves inside M g. By [18], Hg is a tautological9 class

of codimension g − 2. While the restriction of Hg to Mg is a known

multiple of λg−2, a closed formula forHg on M g in terms of the standard

generators of the tautological ring is not known.

For β of type (d1, d2), we define a virtual count of hyperelliptic curves

in class β by

(3) HFLS
g,(d1,d2) =

∫
[Mg(A,β)FLS]red

π∗(Hg) ,

where π is the forgetful map

π : M g(A, β)→M g .

Because the integral (3) is deformation invariant, the left side depends

only upon g and (d1, d2).

For irreducible curve classes β of type (1, d) on an abelian surface A,

consider the following property:

(†) Every irreducible curve in P1 × A of class

(2, β) = 2[P1] + β ∈ H2(P1 × A,Z)

is nonsingular.

We will prove property (†) for curves of genus 2 in case A and β are

generic. Together with the explicit expression [27] for

H3 ∈ H2(M3,Q) ,

9See [19] for an introduction to tautological classes on the moduli spaces of
curves.
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we can deduce Proposition 1. The existence of classes β of type (1, d)

satisfying (†) is not known for most d, but is expected generically for

dimension reasons.

Define the Jacobi theta function [12]

(4) K(z, τ) =
i ϑ1(z, τ)

η(τ)3
= iu exp

(∑
k≥1

(−1)kB2k

2k(2k)!
E2k(τ)u2k

)
,

where u = 2πz.

Theorem 4. Let β be an irreducible class of type (1, d) on an abelian

surface A satisfying (†). Then we have:

(i)
∑
g≥2

hA,FLS
g,β (2 sin(u/2))2g+2 =

∑
g≥2

HFLS
g,(1,d) u

2g+2 .

(ii) After the change of variables u = 2πz and q = e2πiτ ,∑
g≥2

HFLS
g,(1,d) u

2g+2 = Coeffqd

[(
q
d

dq

)2
K(z, τ)4

4

]
,

where Coeffqd denotes the coefficient of qd.

Enumerative results on hyperelliptic curves via Gromov-Witten the-

ory were first obtained for P2 by T. Graber [24] using the Hilbert scheme

of points Hilb2(P2). The hyperelliptic curve counts on abelian surfaces

were first studied by S. Rose [57] using the orbifold Gromov-Witten

theory of Sym2(A) and the geometry of the Kummer. Rose derives his

results from the crepant resolution conjecture (CRC) [7, 58] and certain

geometric genericity assumptions. While our approach is similar, the

closed formula (ii) for HFLS
g,(1,d) via the theta function K(z, τ) is new.

Proposition 1 for hA,FLS
3,β and the formula of Theorem 4 for hA,FLS

g,β in

higher genus (obtained by combining parts (i) and (ii)) do not match

Rose’s results. The errors in Rose’s genus 3 counts can be repaired to

agree with Proposition 1. We hope the CRC approach will be able to

arrive exactly at the formula of Theorem 4 for hA,FLS
g,β .

The values of hA,FLS
g,β in low genus and degree are presented in Table 1

below. The distribution of the non-zero values in Table 1 matches

precisely the results of Knutsen, Lelli-Chiesa, and Mongardi in [31,

Theorem 1.6]: hA,FLS
g,β is non-zero if and only if

(5) (g − 1) +

⌊
g − 1

4

⌋(
(g − 1)− 2

⌊
g − 1

4

⌋
− 2

)
≤ d .

The entry for g = 4 and d = 3 has recently been confirmed in [5].
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g d 1 2 3 4 5 6 7 8 9 10

2 1 12 36 112 150 432 392 960 1053 1800
3 0 6 90 456 1650 4320 9996 20640 36774 67500
4 0 0 9 192 1425 6732 23814 68352 173907 387900
5 0 0 0 4 150 1656 10486 48240 174474 539200
6 0 0 0 0 0 36 735 6720 41310 191400
7 0 0 0 0 0 0 0 96 1620 14700
8 0 0 0 0 0 0 0 0 0 100

Table 1. The first values for the counts hA,FLS
g,β of hy-

perelliptic curves of genus g and type (1, d) in a FLS of
a generic abelian surface A as predicted by Theorem 4.

0.3. Abelian threefolds.

0.3.1. Donaldson-Thomas theory. Let X be an abelian threefold and

let β ∈ H2(X,Z) be a curve class. The Hilbert scheme of curves

Hilbn(X, β) = {Z ⊂ X | [Z] = β, χ(OZ) = n}

parameterizes 1 dimensional subschemes of class β with holomorphic

Euler characteristic n. The group X acts on Hilbn(X, β) by translation.

If n 6= 0, no assumption on β is made. If n = 0, we assume that β

is not of type (d, 0, 0) up to permutation. Then, the action of X has

finite stabilizers and the stack quotient

Hilbn(X, β)/X

is a Deligne-Mumford stack.

We consider here two numerical invariants of Hilbn(X, β)/X, the

topological Euler characteristic

D̂T
X

n,β = e
(

Hilbn(X, β)/X
)
,

and the reduced Donaldson-Thomas invariant of X defined as the

Behrend function weighted Euler characteristic

DTXn,β = e
(

Hilbn(X, β)/X, ν
)

=
∑
k∈Z

k · e
(
ν−1(k)

)
.

While the Behrend function

ν : Hilbn(X, β)/X → Z
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is integer valued, the topological Euler characteristic e is taken in the

orbifold sense and so may be a rational number. Hence,

DTXn,β ∈ Q , D̂T
X

n,β ∈ Q .

By results of M. Gulbrandsen [26] DTXn,β is invariant under deforma-

tions of the pair (X, β) if n 6= 0. For n = 0 Gulbrandsen’s method

breaks down, but deformation invariance is still expected. The num-

bers D̂T
X

n,β are not expected to be deformation invariant.

By deformation equivalence, we may compute DTXn,β after special-

ization to the product geometry X = A × E. We compute D̂T
X

n,β for

the product geometry, and we conjecture a simple relationship there

between DTXn,β and D̂T
X

n,β. We then obtain a formula for DTXn,β.

Let A be a generic abelian surface with a curve class βd′ of type

(1, d′ > 0), and let E be a generic elliptic curve. Consider the abelian

threefold

X = A× E .

The curve class

(βd′ , d) = βd′ + d[E] ∈ H2(X,Z)

is of type (1, d′, d).

The following result determines the invariants D̂T
X

n,(βd′ ,d) in the first

two nontrivial cases d′ = 1 and d′ = 2.

Let K be the theta function which already appeared in Section 0.2.4,

K(p, q) = (p1/2 − p−1/2)
∏
m≥1

(1− pqm)(1− p−1qm)

(1− qm)2
.

Theorem 5. For the topological Euler characteristic theory, we have

(i)
∑
d≥0

∑
n∈Z

D̂T
X

n,(β1,d) p
nqd = K(p, q)2 ,

(ii)
∑
d≥0

∑
n∈Z

D̂T
X

n,(β2,d) p
nqd = K(p, q)4 ·

(
1

2
+

3p

(1− p)2

+
∑
d≥1

∑
k|d

k ·
(
3(pk + p−k)qd + 12q2d

))
.

Assuming Conjecture D in Section 6.6 below, we obtain the following

result for the invariants DTXn,(βd′ ,d) in the cases d′ = 1 and d′ = 2.
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Consider the Weierstrass elliptic function

℘(p, q) =
1

12
+

p

(1− p)2
+
∑
d≥1

∑
m|d

m(pm − 2 + p−m)qd

expanded in the region |p| < 1.

Corollary* 5. Assume Conjecture D holds. Then we have

(i)
∑
d≥0

∑
n∈Z

DTXn,(β1,d) (−p)nqd = −K(p, q)2 ,

(ii)
∑
d≥0

∑
n∈Z

DTXn,(β2,d) (−p)nqd = −3

2
K(p, q)4℘(p, q)− 3

8
K(p2, q2)2 .

Part (i) of Corollary* 5 verifies an earlier prediction of BPS counts

on abelian threefolds by Maldacena, Moore, and Strominger [38].

Theorem 5 concerns the Hilbert schemes of curves on X. The Euler

characteristics associated to the Hilbert scheme of points of X (via

the generalized Kummer construction) have been calculated recently

by J. Shen [60] – proving a conjecture of Gulbrandsen [26].

0.3.2. Gromov-Witten theory. Let X be an abelian threefold, and let β

be a curve class of type (d1, d2, d3) with d1, d2 > 0. We consider curves

of genus g ≥ 2.

The translation action of X on M g(X, β) has finite stabilizer. Hence,

M g(X, β)/X

is a Deligne-Mumford stack. In Section 7, we use methods of Kiem and

Li [29] to construct a reduced virtual class[
M g(X, β)/X

]red

onM g(X, β)/X of dimension 0. We define the reduced quotient Gromov-

Witten invariants of X by

Ng,β =

∫
[Mg(X,β)/X]red

1 .

By construction, Ng,β is deformation invariant and hence only depends

on g and the type (d1, d2, d3) of β. We write

Ng,β = Ng,(d1,d2,d3) .

The number Ng,β is a virtual count of translation classes of genus g

curves in X of class β in X. In Section 7, we show that Ng,β determines

the full reduced descendent Gromov-Witten theory of X in genus g and

class β.
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The following conjecture relates the Gromov-Witten invariants Ng,β
to the Donaldson-Thomas invariants DTXn,β defined above. Define the

generating series

ZGW
β (u) =

∑
g≥2

Ng,βu
2g−2 and ZDT

β (y) =
∑
n∈Z

DTXn,β y
n .

Conjecture B. The series ZDT
β (y) is the Laurent expansion of a ra-

tional function in y and

ZDT
β (y) = ZGW

β (u) .

after the variable change y = −eiu.

Conjecture B is a Gromov-Witten/Donaldson-Thomas correspon-

dence for reduced theories [39, 44]. In conjunction with part (i) of

Corollary* 5 and the expansion (4), Conjecture B determines the in-

variants Ng,(1,1,d) for all d ≥ 0 by the formula∑
d≥0

∑
g≥2

Ng,(1,1,d)u
2g−2qd = −K2(z, τ)|y=−e2πiz ,q=e2πiτ

= (y + 2 + y−1)
∏
m≥1

(1 + yqm)2(1 + y−1qm)2

(1− qm)4
.

To capture the invariants Ng,(1,d′,d) for higher d′, we conjecture an

additional structure governing the counting. Let

f(d1,d2,d3)(u) =
∑
g≥2

Ng,(d1,d2,d3)u
2g−2 .

The following multiple cover rule expresses the invariants of type (1, d′, d)

in terms of those of type (1, 1, d).

Conjecture C. For all d′, d > 0,

f(1,d′,d)(u) =
∑

k| gcd(d′,d)

1

k
f(1,1, d

′d
k2

)(ku) .

Conjecture C matches the counts of genus 3 curves by the lattice

method of [14, 22, 34]. The deepest support for Conjecture C is a

highly non-trivial match with part (ii) of Corollary* 5.10

Taken together, Corollary* 5 and Conjectures B and C determine the

invariants Ng,β for all primitive11 classes β. The discussion is parallel

to [44, Conjecture A] concerning the virtual enumeration of curves on

10 Recently, further evidence has been obtained in [45].
11The class is primitive if and only if it can be deformed to type (1, d′, d), see

Section 1.2.
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K3× E in classes (β, d) where β ∈ H2(K3,Z) is primitive. The latter

has been computed for 〈β, β〉 ∈ {−2, 0} in Donaldson-Thomas theory

in [6]. The proof of Theorem 5 in Section 6 closely follows the strategy

of [6].

For Theorem 5 and Conjecture B, the Hilbert scheme of curves can be

replaced by the moduli space of stable pairs [50]. For technical aspects

of the proof of Theorem 5, ideal sheaves are simpler – but there is no

fundamental difference in the arguments required here.

A multiple cover formula for BPS counts in classes (1, d, d′) was pro-

posed in [38]. However, the formula in [38] is different from ours and

does not match the genus 3 counts or Corollary* 5.

An extension of Conjecture C to all curve classes is discussed in

Section 7.6.

0.4. Plan of the paper. In Section 1, we recall several classical facts

concerning divisors and curves on abelian varieties. Polarized isogenies,

which play a central role in the enumeration of low genus curves, are

reviewed. Reduced virtual classes are discussed in Section 1.4. Degen-

erate curves classes are analyzed in Section 1.5.

Part I of the paper (Sections 2 - 5) concerns the enumeration of curves

on abelian surfaces A. In Section 2, the genus 2 part of Theorem 1 is

proven. In Section 3, the proofs of Theorem 1 and Theorem 2 for prim-

itive classes are completed. A connection with the Euler characteristic

calculations of stable pairs moduli spaces on A by Göttsche and Shende

[23] is discussed in Section 3.7. The quasi-modularity of the primitive

descendent potentials of A is studied in Section 4 where a refinement

of Theorem 3 is proven. A parallel refined quasi-modularity result for

the reduced Gromov-Witten theory of K3 surfaces is presented in Sec-

tion 4.6. The enumeration of hyperelliptic curves on A and the proof

of Theorem 4 is given in Section 5.

Part II of the paper (Sections 6 - 7) concerns the enumeration of

curves on abelian threefolds X. In Section 6, the topological and

Behrend weighted Euler characteristics of the Hilbert scheme of curves

in A× E are studied. For d′ ∈ {1, 2}, the topological Euler character-

istic theory is calculated and Theorem 5 is proven (except for genus 3

lattice counts which appear in Section 7.4). Conjecture D relating the

two theories is presented in Section 6.6. In Section 7, the foundations
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of the quotient Gromov-Witten theory are discussed and the full de-

scendent theory is expressed in terms of the invariants Ng,(d1,d2,d3). The

relationship between Theorem 5 and Conjectures B and C is studied in

Section 7.5. Finally, a multiple cover formula for imprimitive classes is

proposed in Section 7.6.
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1. Abelian varieties

1.1. Overview. We review here some basic facts about divisor and

curve classes on abelian varieties. A standard reference for complex

abelian varieties is [3]. A treatment of polarized isogenies is required

for the lattice counting in Sections 2 and 7.4. Using results of Kiem-Li

[29], we define reduced virtual classes on the moduli spaces of stable

maps to abelian varieties. Finally, we show that the (reduced) Gromov-

Witten theory of abelian varieties of arbitrary dimensions is determined

by the (reduced) theories in dimensions up to 3.

1.2. Curve classes. Let V = Cn. Let Λ ⊂ V be a rank 2n lattice for

which

A = V/Λ

is an n-dimensional compact complex torus. Let L be a holomorphic

line bundle on A. The first Chern class

c1(L) ∈ H2(A,Z)
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induces a Hermitian form

H : V × V → C

and an alternating form

E = ImH : Λ× Λ → Z .

By the elementary divisor theorem, there exists a symplectic basis of Λ

in which E is given by the matrix(
0 D
−D 0

)
,

where D = Diag(d1, . . . , dn) with integers di ≥ 0 satisfying

d1 | d2 | · · · | dn .

The tuple (d1, . . . , dn) is uniquely determined by L (in fact by c1(L))

and is called the type of L.

A polarization on A is a first Chern class c1(L) with positive definite

Hermitian form H (in particular di > 0). The polarization is principal

if di = 1 for all i. The moduli space of polarized n-dimensional abelian

varieties of a fixed type is irreducible of dimension n(n+ 1)/2.

Let β ∈ H2(A,Z) be a curve class on A. The class corresponds to

β̂ = c1(L̂) ∈ H2(Â,Z) ,

where Â = Pic0(A) is the dual complex torus of A and L̂ is a line

bundle on Â. We define the type (d1, . . . , dn) of β to be the type of

L̂. The class β is primitive if and only if d1 = 1. For abelian surfaces,

we may view β as either a curve class or a divisor class: the resulting

types are the same.

If β is of type (d1, . . . , dn) with di > 0 for all i, then β̂ is a polarization

on Â. Hence, all curve classes of a fixed type (d1, . . . , dn) with di > 0

for all i are deformation equivalent.

If di = 0 for some i, then we say that β is of degenerate type. Write

k = max{i | di 6= 0}. By [3, Theorem 3.3.3], there exists a subtorus

B ⊂ Â of dimension n− k with quotient map

p : Â → Ā = Â/B ,

and a polarization

β̄ = c1(L̄) ∈ H2(Ā,Z)

of type (d1, . . . , dk), such that β̂ = p∗(β̄). The deformation of β is then

governed by the deformation of β̄. As a result, curve classes of a fixed

type (d1, . . . , dk, 0, . . . , 0) are also deformation equivalent.
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Let A be the product of n elliptic curves E1× · · · ×En. For integers

a1, . . . , an ≥ 0, consider the curve class

β = a1[E1] + · · ·+ an[En] ∈ H2(A,Z) .

The type (d1, . . . , dn) of β is given by the rank and the invariant factors

of the abelian group associated to (a1, . . . , an):

n⊕
i=1

Z/ai ∼= Zm ⊕
k⊕
j=1

Z/d′j .

Here, k,m ≤ n and

(d1, . . . , dn) = (1, . . . , 1︸ ︷︷ ︸
n−k−m

, d′1, . . . , d
′
k, 0, . . . , 0︸ ︷︷ ︸

m

) .

Later we shall also say that β is of type (a1, . . . , an) without requiring

a1|a2| · · · |an.

Two tuples (a1, . . . , an) and (b1, . . . , bn) are deformation equivalent

if and only if
n⊕
i=1

Z/ai ∼=
n⊕
i=1

Z/bi .

The primitivity of β is determined by gcd(a1, . . . , an).

1.3. Polarized isogenies. The following discussion is based on [14,

22, 34]. Let

f : C → A

be a map from a nonsingular curve of genus g. Suppose the curve class

β = f∗[C]

is of type (d1, . . . , dn) with di > 0 for all i. The map f factors as

C
aj−→ J

π−→ A ,

where J is the Jacobian of C and aj is the Abel-Jacobi map, defined

up to translation by J . By duality, π corresponds to

π̂ : Â → J such that β̂ = π̂∗θ ,

where θ is the theta divisor class on J (here we identify J with Ĵ).

When g = n, the map π̂ is a polarized isogeny.

More generally, consider the isogeny

φβ̂ : Â → ̂̂
A ∼= A , x 7→ t∗xL̂⊗ L̂−1 ,
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where β̂ = c1(L̂) for some line bundle L̂ and tx : Â→ Â is the transla-

tion by x. The finite kernel of φβ̂ admits a non-degenerate multiplica-

tive alternating form

〈 , 〉 : Ker(φβ̂)×Ker(φβ̂) → C∗ ,

called the commutator pairing. By [3, Corollary 6.3.5], there is a bijec-

tive correspondence between the following two sets:

• polarized isogenies from (Â, β̂) to principally polarized abelian

varieties (B, θ),

• maximal totally isotropic subgroups of Ker(φβ̂).

The cardinality of both sets depends only on the type (d1, . . . , dn) of

β, and is denoted by

ν(d1, . . . , dn) .

In fact, under a suitable basis of Λ̂ we have

(6) Ker(φβ̂) ∼= (Z/d1 × · · · × Z/dn)2 ,

and in terms of standard generators e1, . . . , en, f1, . . . , fn of (6),

〈ek, f`〉 = e
δk`

2πi
dk .

The number ν(d1, . . . , dn) can be computed as follows.

Lemma 1 (Debarre [14]). We have

(7) ν(d1, . . . , dn) =
∑

K<Z/d1×···×Z/dn

# Homsym(K, K̂) ,

where K̂ = Hom(K,C∗) and Homsym stands for symmetric homomor-

phisms.

A straightforward analysis yields

(8) ν(1, . . . , 1, d) = σ(d) =
∑
k|d

k .

A list of values of ν(d1, . . . , dn) can be found in [34], but some of the

entries are incorrect. For example, the number ν(2, 4) should be 39

and not 51.

The counts of polarized isogenies are closely related to the counts of

the lowest genus curves on abelian surfaces and threefolds. Moreover,

this lattice method is also important in counting higher genus curves

in class of type (1, 2, d), see Sections 2 and 7.4.
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1.4. Reduced virtual classes. Let A be an abelian variety of dimen-

sion n ≥ 2, and let β ∈ H2(A,Z) be a curve class of type

(d1, . . . , dk, 0, . . . , 0︸ ︷︷ ︸
m

)

with di > 0 for all i. Here, k > 0, m ≥ 0, and k +m = n.

By the discussion in Section 1.2, there exists a subtorus A′ ⊂ A of

dimension k and a curve class β′ ∈ H2(A′,Z) of type (d1, . . . , dk) such

that β is the push-forward of β′. Write

π : A→ A′′ = A/A′

for the quotient map.

Consider the moduli space of stable maps M g(A, β). Using the co-

section localization method of Kiem-Li [29], we define a (maximally)

reduced virtual class [
M g(A, β)

]red

on M g(A, β). The case with marked points is done similarly. The

result provides a foundation for the reduced Gromov-Witten theory of

abelian varieties.

By [29, Section 6], every holomorphic 2-form θ ∈ H0(A,Ω2
A) induces

a map

σθ : ObMg(A,β) → OMg(A,β) ,

where ObMg(A,β) is the obstruction sheaf of M g(A, β).

Lemma 2. The map σθ is trivial if

θ ∈ π∗H0(A′′,Ω2
A′′)

and surjective otherwise.

Proof. Let [f : C → A] ∈ M g(A, β) be a stable map in class β. After

translation, we may assume Im(C) ⊂ A′.

By [29, Proposition 6.4], the map σθ is trivial at [f ] if and only if the

composition

(9) TCreg

df−→ f ∗TA|Creg

f∗θ̂−−→ f ∗ΩA|Creg

is trivial. Here Creg is the regular locus of C and θ̂ : TA → ΩA is the

map induced by θ. Since Im(C) ⊂ A′, it is clear that (9) is trivial if

θ ∈ π∗H0(A′′,Ω2
A′′).

For the surjectivity statement, we identify the tangent space TA,x at

x ∈ A with TA,0A by translation. Since β′ is of type (d1, . . . , dk) with
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di > 0, the curve Im(C) generates A′ as a group. By [15, Lemma 8.2],

there exists an open dense subset U ⊂ Im(C)reg, such that TA′,0A′ is

spanned by

TIm(C)reg,x for x ∈ U .

It follows that for any θ ∈ H0(A,Ω2
A) \ π∗H0(A′′,Ω2

A′′), there exists a

point x ∈ U with (9) non-trivial at x. �

Hence, by taking a basis of the quotient H0(A,Ω2
A)/π∗H0(A′′,Ω2

A′′),

we obtain a surjective map

σ : ObMg(A,β) → O
⊕r(k,m)

Mg(A,β)

with

r(k,m) =

(
k +m

2

)
−
(
m

2

)
=
k(k − 1)

2
+ km .

Then, by the construction of [29], the map σ yields a reduced virtual

class [M g(A, β)]red of dimension

vdimM g(A, β) + r(k,m) = (k +m− 3)(1− g) +
k(k − 1)

2
+ km .

1.5. Gromov-Witten theory in degenerate curve classes. We

now explore the possibilities of obtaining non-trivial reduced Gromov-

Witten invariants for A and β. By deformation invariance, the invari-

ants depend only on the type

(d1, . . . , dk, 0, . . . , 0︸ ︷︷ ︸
m

) .

We may then assume

A = A′ × A′′

with A′ generic among abelian varieties carrying a curve class of type

(d1, . . . , dk), and A′′ a product of m elliptic curves,

A′′ = E1 × · · · × Em .

By the genericity of A′, there are no stable maps of genus less than

k = dim A′ in class β. Hence, all invariants in genus < k vanish.

We list the following four cases according to the number k of non-zero

entries in the type of β.

Case k = 1. For g ≥ 1, stable maps [f : C → A] ∈ M g(A, β) come in

m-dimensional families via the translation action of A′′. On the other
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hand, the translation by the elliptic curve A′ fixes Im(f). The expected

dimension modulo the translation by A′′ is

vdimM g(A, β) + r(1,m)−m = (m− 2)(1− g) .

Integrals over the reduced class [M g(A, β)]red can be evaluated by

eliminating the E-factors. In each step from

A′ × E1 × · · · × Ei+1 to A′ × E1 × · · · × Ei ,

we find a surjective map E∨ → O where E is the Hodge bundle. We

then obtain a copy of the top Chern class of

Ker(E∨ → O)

which is (−1)g−1λg−1. This follows from a close analysis of the obstruc-

tion sheaf and the definition of the reduced class. In the end, we arrive

at integrals over [M g(A
′, β′)]vir with(

(−1)g−1λg−1

)m
in the integrand.

For m = 1 (dim A = 2), the theory becomes the study of λg−1-

integrals on the elliptic curve A′. Such Hodge integrals may be ex-

pressed [17] in terms of the descendent theory of an elliptic curve

[47, 48].

For m ≥ 2 (dim A ≥ 3), all invariants in genus g ≥ 2 vanish. By

Mumford’s relation for g ≥ 2,

λ2
g−1 = 2λgλg−2 ,

and λg annihilates the virtual fundamental class of non-constant maps

to the elliptic curve A′. In genus 1, all invariants are multiples of

(10)

∫
[M1(A′,β′)]vir

1 =
σ(d1)

d1

for β′ of type (d1).

Case k = 2. For g ≥ 2, stable maps in M g(A, β) come in (2 + m)-

dimensional families via the translation action of A. The expected

dimension modulo translation is

vdimM g(A, β) + r(2,m)− (2 +m) = (m− 1)(2− g) .

Similar to the k = 1 case, by eliminating each E-factor we find a

surjective map E∨ → O⊕2, and obtain a copy of the top Chern class of

Ker(E∨ → O⊕2)
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which is (−1)g−2λg−2.

The reduced Gromov-Witten theory of the abelian surface A′ is the

subject of Part I of the paper. For m = 1 (dim A = 3), we find integrals

of the form ∫
[Mg(A′,β′)]red

(−1)g−2λg−2 . . . ,

where the dots stand for further terms in the integrand. Our interest in

λg−2-integrals on an abelian surface (see (2) and Theorem 1) is directly

motivated by Gromov-Witten theory in degenerate curve classes on

abelian threefolds.

For m ≥ 2 (dim A ≥ 4), all invariants in genus g ≥ 3 vanish for

dimension reasons. We are then reduced to the genus 2 invariants of

A′ and β′.

Case k = 3. Similar to the k = 2 case, for g ≥ 3, the expected

dimension modulo translation is

vdimM g(A, β) + r(3,m)− (3 +m) = m(3− g) .

Here by eliminating each E-factor we find a surjective map E∨ → O⊕3,

and obtain a copy of the top Chern class of

Ker(E∨ → O⊕3)

which is (−1)g−3λg−3.

The reduced Gromov-Witten theory of the abelian threefold A′ is

studied in Part II of the paper. For m ≥ 1 (dim A ≥ 4), all invariants

in genus g ≥ 4 vanish for dimension reasons. We are reduced to the

genus 3 invariants of A′ and β′.

Case k ≥ 4. For g ≥ k, the expected dimension modulo translation is

(11) vdimM g(A, β) + r(k,m)− (k +m)

= (k − 3)

(
k

2
+ 1− g

)
+m(k − g) .

The right hand side of (11) is always negative for g ≥ k ≥ 4. Hence,

all invariants vanish.

In conclusion, the (reduced) Gromov-Witten theory of abelian vari-

eties of arbitrary dimensions is completely determined by the (reduced)

Gromov-Witten theories of abelian varieties of dimensions 1 ≤ d ≤ 3.

The analysis here justifies our focus on these low dimensions.
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Furthermore, for abelian varieties of dimension at least 4, only genus

1 ≤ g ≤ 3 invariants can possibly survive. Exact formulas12 are avail-

able for the genus 1 ≤ g ≤ 3 invariants which arise for abelian varieties

of dimension at least 4.

12For genus 1, the formula is (10). For genus 2, the formula is given by Theorem
1. For genus 3, the formula appears in Lemma 20.
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Part I. Abelian surfaces

2. The genus 2 case

2.1. Quotient Gromov-Witten invariants. Let A be an abelian

surface, and let β ∈ H2(A,Z) be a curve class of type (d1, d2) with

d1, d2 > 0. In Section 0.2.1, we defined invariants

NFLS
g,β = NFLS

g,(d1,d2)

counting genus g curves in a fixed linear system. It is sometimes more

natural to count curves up to translation. A reasonable path13 to the

definition of such invariants is by integrating over the quotient stack

(12) M g(A, β)/A .

Classically, people have taken a simpler course. Let

p : M g(A, β) → Picβ(A) ∼= Â ,

be the morphism which sends a curve [f : C → A] to the divisor

class associated with its image curve.14 The map p is equivariant with

respect to the actions of A on M g(A, β) by translation and on Â by

the isogeny

φβ : A→ Â .

An element x ∈ A fixes a linear system of type (d1, d2) if and only if x

is an element of

(13) Ker(φβ : A→ Â) ∼= (Z/d1 × Z/d2)2 .

The quotient space (12) equals the quotient of M g(A, β)FLS by the finite

group (13) with (d1d2)2 elements. Therefore, we define the invariants

counting curves up to translation by

(14) NQ
g,(d1,d2) =

1

(d1d2)2
NFLS
g,(d1,d2) .

In genus 2, the invariants are related to the lattice counts considered

in Section 1.3.

Lemma 3. For all d1, d2 > 0,

NQ
2,(d1,d2) = ν(d1, d2) .

13See Section 7.2 for such a treatment for abelian threefolds.
14The construction of p relies upon the Hilbert-Chow morphism.
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Proof. Let β be of type (d1, d2) and assume EndQ(A) = Q. In partic-

ular, A is simple (contains no elliptic curves) and Aut(A) = {±1}. It

follows that every genus 2 stable map

f : C → A

in class β has a nonsingular domain C. As discussed in Section 1.3, to

such a map f , we can associate a polarized isogeny

(Â, β̂)→ (J, θ) ,

where J is the Jacobian of C.

Conversely, every simple principally polarized abelian surface (B, θ)

is the Jacobian of a unique nonsingular genus 2 curve C. Hence, each

polarized isogeny (Â, β̂)→ (B, θ) induces a map

f : C
aj−→ B → A .

The map f is unique up to translation and automorphism of A. More-

over, the automorphism −1 of A corresponds to the hyperelliptic invo-

lution of C.

The abelian surface A acts freely15 on M2(A, β) by translation. To

prove this, we decompose a genus 2 map f : C → A as

f : C
aj−→ J

π−→ A .

First, since
[
aj(C)

]
is a divisor class of type (1, 1), the only element in

J fixing aj(C) is 0J . Second, the preimage π−1
(
f(C)

)
is the union

(15)
⋃

x∈Ker(π)

tx
(
aj(C)

)
,

where tx : J → J is the translation by x. Suppose a point a ∈ A fixes

f(C), and let b ∈ π−1{a}. By (15), we have

tb
(
aj(C)

)
= tx

(
aj(C)

)
for some x ∈ Ker(π). In other words, the element b−x ∈ J fixes aj(C).

Hence, b− x = 0J and a = π(b) = π(b− x) = 0A.

It follows that M2(A, β)/A is precisely a set of ν(d1, d2) isolated

reduced points (or equivalently, M2(A, β)FLS is a set of (d1d2)2ν(d1, d2)

isolated reduced points). �

15The action is in general not free in genus > 2. For example, maps from
nonsingular genus 3 hyperelliptic curves in class of type (1, 2) have Z/2-stabilizers,
see Sections 5.3 and 7.4.
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2.2. Genus 2 counts. For genus 2, the following result determines

the counts in all classes.

Theorem 6. For all d1, d2 > 0,

(16) NQ
2,(d1,d2) =

∑
k| gcd(d1,d2)

∑
`| d1d2

k2

k3` .

The primitive case (where gcd(d1, d2) = 1) was proven in [14, 22,

34] via the lattice method discussed in Section 1.3 and in [9, 57] via

geometric arguments. A closer look at the lattice method actually

yields a proof of Theorem 6 in the general case.

Proof of Theorem 6. To prove (16) for ν(d1, d2), we are immediately

reduced to the case ν(pm, pn) where p is a prime number and m ≤ n.

For m = 0, we have, by (8),

ν(1, pn) = σ(pn) =
n∑
k=0

pk .

It suffices then to prove the following recursion:

(17) ν(pm, pn) = ν(1, pm+n) + p3ν(pm−1, pn−1)

for 1 ≤ m ≤ n.

The proof uses (7). Consider the quotient map

π : Z/pm × Z/pn → Z/pm−1 × Z/pn−1 .

For 1 ≤ r ≤ s, the map π induces a bijective correspondence between

the following two sets:

• subgroups of Z/pm × Z/pn isomorphic to Z/pr × Z/ps,
• subgroups of Z/pm−1×Z/pn−1 isomorphic to Z/pr−1×Z/ps−1.

We also have

# Homsym(Z/pr × Z/ps, ̂Z/pr × Z/ps)

= p3# Homsym(Z/pr−1 × Z/ps−1, ̂Z/pr−1 × Z/ps−1) .

The remaining subgroups of Z/pm×Z/pn are cyclic and isomorphic to

Z/pk for some 0 ≤ k ≤ n. Moreover,

# Homsym(Z/pk, Ẑ/pk) = # Hom(Z/pk, Ẑ/pk) = pk .

Applying (7), we find

ν(pm, pn) =
n∑
k=0

pk#{Z/pk < Z/pm × Z/pn}+ p3ν(pm−1, pn−1) .
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The numbers of cyclic subgroups can be deduced from classical group

theory (see [11, Lemma 1.4.1]):

#{Z/pk < Z/pm × Z/pn} =
∑

0≤i≤m,0≤j≤n
max(i,j)=k

ϕ(pmin(i,j)) ,

where ϕ is Euler’s phi function.16 We have
n∑
k=0

pk#{Z/pk < Z/pm × Z/pn}

=
n∑
k=0

pk
∑

0≤i≤m,0≤j≤n
max(i,j)=k

ϕ(pmin(i,j))

=
m∑
k=0

pk
k∑
i=0

ϕ(pi) +
n∑

k=m+1

pk
m∑
i=0

ϕ(pi) +
m∑
k=1

pk
k−1∑
j=0

ϕ(pj)

=
m∑
k=0

p2k +
n∑

k=m+1

pm+k +
m∑
k=1

p2k−1

=
m+n∑
k=0

pk = ν(1, pm+n) ,

proving the recursion (17). Theorem 6 then follows from Lemma 3. �

Since g = 2 is the minimal genus for curve counting on abelian sur-

faces, Theorem 6 may be viewed as the analogue of the Yau-Zaslow

conjecture [64] for g = 0 counting on K3 surfaces. In the K3 case,

primitive classes were handled first in [1, 10]. To treat the imprimi-

tive classes, a completely new approach [30] was required (and came a

decade later). For abelian surfaces, the lattice counting for the prim-

itive case is much easier than the complete result of Theorem 6. The

perfect matching of the lattice counts in all cases with formula of The-

orem 6 appears miraculous.

2.3. Multiple cover rule. A multiple cover formula in g = 2 can

be extracted from Theorem 6. The result follows the structure of the

complete multiple cover formula for K3 surfaces [51]. We state here

the multiple cover conjecture for the invariants NQ
g,(d1,d2) for all g.

For d1, d2 > 0, define the generating series of the quotient invariants:

f(d1,d2)(u) =
∑
g≥2

NQ
g,(d1,d2)u

2g−2 .

16ϕ(1) = 1 and ϕ(pk) = pk − pk−1 for k ≥ 1.
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The quotient invariants are defined in terms of the FLS invariants in

(14).

Conjecture A′. For all d1, d2 > 0,

f(d1,d2)(u) =
∑

k| gcd(d1,d2)

kf(1,
d1d2
k2

)(ku) .

Theorem 6 implies the g = 2 case of Conjecture A′. By an elementary

check, Conjecture A is equivalent to Conjecture A′ plus the k = 0 case

of Theorem 2. Since Theorem 2 is proven in Section 3, Conjectures A

and A′ are equivalent.

3. Primitive classes

3.1. Overview. Let A be an abelian surface, let g ≥ 2 be the genus,

and let β ∈ H2(A,Z) be a curve class of type (d1, d2) with d1, d2 > 0.

The class β is primitive if gcd(d1, d2) = 1.

The proof of Theorem 2 is presented here. We proceed in two steps.

First, we relate the FLS invariants to the reduced Gromov-Witten in-

variants of A with pure point insertions and λ classes in Sections 3.2

and 3.3. Next, we degenerate an elliptically fibered abelian surface A.

Using the degeneration formula in Sections 3.4 and 3.5, we reduce the

calculation to an evaluation on P1 × E. The proof of Theorem 2 is

completed in Section 3.6.

We conclude with an application in Section 3.7: a new proof is pre-

sented of a result by Göttsche and Shende [23] concerning the Euler

characteristics of the moduli spaces of stable pairs on abelian surfaces

in irreducible classes.

3.2. Notation. Let α ∈ H∗(M g.n,Q) be a cohomology class on the

moduli space of stable curves M g,n, and let

γ1, . . . , γn ∈ H∗(A,Q)

be cohomology classes on A. The classes α and γi can be pulled back

to the moduli spaces

M g,n(A, β)FLS and M g,n(A, β)

via the forgetful map π and the evaluation maps ev1, . . . , evn.
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For each marking i ∈ {1, . . . , n}, let Li be the associated cotangent

line bundle on M g,n(A, β). Let

ψi = c1(Li) ∈ H2(M g,n(A, β),Q)

be the first Chern class. Since

M g,n(A, β)FLS ⊂M g,n(A, β) ,

the classes ψi restrict to M g,n(A, β)FLS.

The reduced Gromov-Witten invariants of A are defined by:〈
α ; τa1(γ1) . . . τan(γn)

〉A,red

g,β
=

∫
[Mg,n(A,β)]red

π∗(α)
n∏
i=1

ev∗i (γi)ψ
ai
i .

The FLS invariants of A are defined by:〈
α ; τa1(γ1) . . . τan(γn)

〉A,FLS

g,β
=

∫
[Mg,n(A,β)FLS]red

π∗(α)
n∏
i=1

ev∗i (γi)ψ
ai
i .

The FLS invariants can be expressed in terms of the usual invariants

by a result17 of Bryan and Leung [9] as follows. Let

ξ1, ξ2, ξ3, ξ4 ∈ H1(A,Z)

be a basis for which the corresponding dual classes

ξ̂1, ξ̂2, ξ̂3, ξ̂4 ∈ H1(Â,Z) ∼= H1(A,Z)

satisfy the normalization∫
Â

ξ̂1 ∪ ξ̂2 ∪ ξ̂3 ∪ ξ̂4 = 1 .

By first trading the higher descendents τk(γi) for classes pulled back

from M g,n up to boundary terms, we may reduce to non-gravitational

insertions τ0(γi). Then

(18)
〈
α ;

n∏
i=1

τ0(γi)
〉A,FLS

g,β
=
〈
α ;

4∏
i=1

τ0(ξi) ·
n∏
i=1

τ0(γi)
〉A,red

g,β
,

where α on the right side of (18) is viewed to be a cohomology class on

M g,n+4 via pull-back along the map which forgets the four new points.

17See [32, Section 4] for an algebraic proof.
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3.3. Odd and even classes.

3.3.1. Trading FLS for insertions. We prove here the following sim-

ple rule which trades the FLS condition for insertions in the reduced

Gromov-Witten theory of A.

As in Section 0.2.2, let p ∈ H4(A,Z) be the class of a point.

Proposition 2. For g ≥ 2 and d1, d2 > 0, we have〈
α ; τ0(p)k

〉A,FLS

g,(d1,d2)
=

d1d2

(k + 1)(k + 2)

〈
α ; τ0(p)k+2

〉A,red

g,(d1,d2)

for all α ∈ H∗(M g,Q) and k ≥ 0.

The proof uses the action of A on the moduli space M g,n(A, β) to

produce relation among various Gromov-Witten invariants. The argu-

ment is a modification of an elliptic vanishing argument introduced in

[48].

3.3.2. Abelian vanishing. Let β ∈ H2(A,Z) be any curve class. For

n ≥ 1, let

ev1 : M g,n(A, β) → A

be the first evaluation map. Denote the fiber of the identity element

0A ∈ A by

M
0

g,n(A, β) = ev−1
1 (0A) .

We have the product decomposition

(19) M g,n(A, β) = M
0

g,n(A, β)× A .

The reduced virtual class on M g,n(A, β) is pulled back from a class on

M
0

g,n(A, β). Consider the commutative diagram

M g,n(A, β)

pr
��

ev // An

p

��
M

0

g,n(A, β) // An−1

where pr is projection onto the first factor of (19) and

p(x1, . . . , xn) = (x2 − x1, . . . , xn − x1) .

Lemma 4. Let α ∈ H∗(M g,n,Q) and γ ∈ H∗(An−1,Q) be arbitrary

classes. For any γ1 ∈ H∗(A,Q) of degree deg(γ1) ≤ 3,∫
[Mg,n(A,β)]red

π∗(α) ∪ ev∗1(γ1) ∪ ev∗ p∗(γ) = 0 .
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Proof. The class(
π∗(α) ∪ ev∗ p∗(γ)

)
∩ [M g,n(A, β)]red

is the pull-back via pr of a class θ on M
0

g,n(A, β). Using the push-pull

formula, we have

pr∗

(
ev∗1(γ1) ∩ pr∗(θ)

)
= pr∗ ev∗1(γ1) ∩ θ = 0 .

The last equality holds for dimension reasons since γ1 ∈ H≤3(A,Q)

and the fibers of pr are A. �

3.3.3. Proof of Proposition 2. We study the split abelian surface

A = E1 × E2,

where E1 and E2 are two generic elliptic curves. Consider the curve

class

(d1, d2) = d1[E1] + d2[E2] ∈ H2(A,Z) .

For i ∈ {1, 2}, let ωi ∈ H2(Ei,Z) be the class of a point on Ei, and

let

ai, bi ∈ H1(Ei,Z)

be a symplectic basis. We use freely the identification induced by the

Künneth decomposition

H∗(E1 × E2,Z) = H∗(E1,Z)⊗H∗(E2,Z) .

The proof of Proposition 2 follows directly from (18) and the follow-

ing two Lemmas.

Lemma 5. For α ∈ H∗(M g,Q), we have

d2

〈
α ; τ0(p)k+2

〉A,red

g,(d1,d2)

= (k + 2) ·
〈
α ; τ0(a1ω2)τ0(b1ω2)τ0(p)k+1

〉A,red

g,(d1,d2)
.

Proof. Consider the class

γ = b1ω2 ⊗ p⊗k+1 ∈ H∗(Ak+2,Q) .

In the notation of Section 3.3.2 for n = k + 3, we have

(20) p∗
(
1⊗i−1 ⊗ v ⊗ 1⊗k+2−i) = −v ⊗ 1⊗k+2 + 1⊗i ⊗ v ⊗ 1⊗k+2−i

for all i = 1, . . . , k + 2 and all v ∈ {a1, b1, a2, b2}.

Denote the projection onto the first factor of Ak+3 by

π1 : Ak+3 → A .
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Let u = a1ω2. Via several applications of (20), we find

π∗1(u) ∪ p∗(γ) = a1ω2 ⊗ b1ω2 ⊗ p⊗k+1 − p⊗ ω2 ⊗ p⊗k+1

−
k+1∑
i=1

p⊗ b1ω2 ⊗ p⊗i−1 ⊗ a1ω2 ⊗ p⊗k+1−i .

After applying the abelian vanishing of Lemma 4, we obtain〈
α ; τ0(ω2)τ0(p)k+2

〉A,red

g,(d1,d2)

= (k + 2)
〈
α ; τ0(a1ω2)τ0(b1ω2)τ0(p)k+1

〉A,red

g,(d1,d2)
.

The Lemma then follows from the divisor equation. �

Lemma 6. For α ∈ H∗(M g,Q), we have

d1

〈
α ; τ0(a1ω2)τ0(b1ω2)τ0(p)k+1

〉A,red

g,(d1,d2)

= (k + 1)
〈
α ; τ0(a1ω2)τ0(b1ω2)τ0(ω1a2)τ0(ω1b2)τ0(p)k

〉A,red

g,(d1,d2)
.

Proof. Consider the class

γ = ω1b2 ⊗ a1ω2 ⊗ b1ω2 ⊗ p⊗k

and let u = ω1a2. We apply the abelian vanishing just as in the proof

of Lemma 5. Every term with an insertion of the form τ0(vw) for

v ∈ {a1, b1} and w ∈ {a2, b2} contributes zero by the divisor equation.

We obtain〈
α ; τ0(ω1)τ0(a1ω2)τ0(b1ω2)τ0(p)k+1

〉A,red

g,(d1,d2)

= (k + 1)
〈
α ; τ0(a1ω2)τ0(b1ω2)τ0(ω1a2)τ0(ω1b2)τ0(p)k

〉A,red

g,(d1,d2)
,

which yields the result by an application of the divisor equation. �

3.4. Degeneration formula. Let the abelian surface A

A = E1 × E2

be the product of two generic elliptic curves E1 and E2, and let

E = 0E1 × E2

be a fixed fiber of the projection to E1. The degeneration of A to the

normal cone of E ⊂ A is the family

(21) ε : X = BlE×0(A× P1) → P1 .
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For ξ ∈ P1 \ {0}, the fiber Xξ = ε−1(ξ) is isomorphic to A. For ξ = 0,

we have

X0 = A ∪E (P1 × E) .

We will apply the degeneration formula of Gromov-Witten theory [35,

36] to the family (21).

For our use, the degeneration formula must be modified for the re-

duced virtual class. More precisely, the degeneration formula expresses

the reduced Gromov-Witten theory of A in terms of the reduced relative

Gromov-Witten theory of A/E and standard relative Gromov-Witten

theory of (P1 × E)/E. The technical point in the modification of the

degeneration formula is to define a reduced virtual class on the moduli

space

M g,n(ε, β)

of stable maps to the fibers of ε. Note that every fiber Xξ and ev-

ery expanded degeneration X̂ξ maps to the abelian surface A. The

pull-back of the symplectic form of A to X̂ξ then yields a 2-form on

X̂ξ which vanishes on all components except A. With the usual ar-

guments [41, 42], we obtain a quotient of the obstruction sheaf which

only changes the obstruction sheaf on the A side. The outcome is the

desired degeneration formula. A parallel argument can be found in [42,

Section 6].

3.5. The surface P1 × E. For the trivial elliptic fibrations

p : A → E1 and p̂ : P1 × E → P1 ,

we denote the section class by B and the fiber class by E. We also

write

(d1, d2) = d1B + d2E

for the corresponding classes in H2(A,Z) and H2(P1 × E,Z).

We will use the standard bracket notation〈
µ
∣∣∣ α∏

i

τai(γi)
∣∣∣ ν 〉P1×E

g,(1,d)

=

∫
[Mg,n((P1×E)/{0,∞},(1,d))µ,ν ]vir

α ∪
∏
i

ψaii ev∗i (γi)

for the Gromov-Witten invariants of P1 × E relative to the fibers over

0,∞ ∈ P1. The integral is over the moduli space of stable maps

M g,n((P1 × E)/{0,∞}, (1, d))
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relative to the fibers over 0,∞ ∈ P1 in class (1, d). Here,

µ ∈ H∗(0× E) and ν ∈ H∗(∞× E)

are cohomology classes on the relative divisors. The integrand contains

α ∈ H∗(M g,n,Q) and the descendents.

We form the generating series of relative invariants〈
µ
∣∣∣ α∏

i

τai(γi)
∣∣∣ ν 〉P1×E

=
∑
g≥0

∑
d≥0

u2g−2qd
〈
µ
∣∣∣ α∏

i

τai(γi)
∣∣∣ ν 〉P1×E

g,(1,d)
.

Similar definitions apply also to the case of a single relative divisor

and/or the case of the abelian surface A (with respect to the reduced

virtual class).

We will require several exact evaluations. Let

E∨(1) = c(E∨)

denote the total Chern class of the dual of the Hodge bundle, and let

ω be the class of a point on the relative divisors of A and E × P1.

Lemma 7. We have〈
1
∣∣∣ E∨(1) τ0(p)

∣∣∣ 1 〉P1×E
=

1

u2
,〈

1
∣∣∣ E∨(1) τ0(p)

∣∣∣ ω 〉P1×E
=

1

u2

∑
d≥1

∑
m|d

d

m

(
2 sin(mu/2)

)2

qd ,

〈
ω
∣∣∣ E∨(1) τ0(p)

∣∣∣ ω 〉P1×E
= 0 .

Proof. The first equation is obtained by exactly following the proof of

[42, Lemma 24]. The second equation follows from [42, Lemmas 25 and

26]. For the third equality, the point conditions on the relative divisors

can be chosen to be different. Then, since the degree over P1 is 1 (and

there are no nonconstant maps from P1 to E), the moduli space with

the relative conditions imposed is empty. �

Lemma 8. For g ≥ 0 and d ≥ 0,〈
E∨(1)

∣∣∣ ω 〉A,red

g,(1,d)
= δg,1δd,0 .

Proof. By dimension reasons only the term

(−1)g−1λg−1 = cg−1(E∨)
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contributes in the evaluation of Lemma 8.

Case d > 0. We will prove the vanishing of λg−1 on M g(A/E, β) by

giving two linearly independent sections of E.

Let γ, γ′ ∈ H0(A,ΩA) be the pull-backs to A of non-zero global

differential forms on E1 and E2 respectively. Let

π : C → M g(A/E, β)

be the universal curve and f : C → A be the universal map. We have

the induced sequence

O2
C

(γ,γ′)−−−→ f ∗ΩA → Ωπ → ωπ .

By pushforward via π we obtain the sequence

s : O2
Mg(A/E,β)

→ π∗ωπ = E .

If s does not define a 2-dimensional subbundle of E, there exists a

map f0 : C → A in class (1, d) and nonzero elements c, c′ ∈ C such

that

f ∗0 (cγ + c′γ′) = 0 .

Thus f0 must map to a (translate of a) 1-dimensional abelian subvariety

V inside E1×E2. Because f has degree (1, d), the subvariety V induces

an isogeny between E1 and E2. But E1 and E2 were choosen generic,

which is a contradiction. Hence s is injective and λg−1 = 0.

Case d = 0. Then, we have the factor R1π∗(f
∗TE2) inside the obstruc-

tion sheaf, which yields an additional class (−1)g−1λg−1 after reduction.

Therefore, 〈
E∨(1)

∣∣∣ ω 〉A,red

g,(1,0)
=

∫
[Mg(E1/0,1)]vir

λ2
g−1 .

For g ≥ 2, we have λ2
g−1 = 2λgλg−2 by Mumford’s relation. By pulling-

back the global non-zero 1-form from E1, we obtain a 1-dimensional

subbundle of E. Therefore, λg = 0 and the integral vanishes.

Finally, for g = 1 and d = 0 the moduli space M1(E1/0, 1) is a single

point and the invariant is 1. �

3.6. Proof of Theorem 2. We are now able to evaluate the invariants

NFLS
g,k,(1,d) of Section 0.2.2 and prove Theorem 2. By definition,

(22)
∑
g≥2

∑
d≥1

NFLS
g,k,(1,d)u

2g−2qd =
∑
g≥2

∑
d≥1

u2g−2qd
〈
E∨(1) τ0(p)k

〉A,FLS

g,(1,d)
.
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By Proposition 2, the right side of (22) equals

q
d

dq

1

(k + 1)(k + 2)

∑
g≥0

∑
d≥0

u2g−2qd
〈
E∨(1) τ0(p)k+2

〉A,red

g,(1,d)
.

Next, we apply the degeneration formula. Only one term satisfies the

dimension constraints:

q
d

dq

u2

(k + 1)(k + 2)
·
〈
E∨(1)

∣∣∣ ω 〉A,red

·
〈
1
∣∣∣ E∨(1) τ0(p)k+2

〉P1×E
.

An application of Lemma 8 then yields

q
d

dq

u2

(k + 1)(k + 2)
·
〈
1
∣∣∣ E∨(1) τ0(p)k+2

〉P1×E
.

We degenerate the base P1 to obtain a chain of k+3 surfaces isomorphic

to P1×E. The first k+ 2 of these each receive a single insertion τ0(p).

Using the vanishing of Lemma 7 and the evaluation of the last P1 ×E
by [42, Lemma 24], we obtain

q
d

dq

u2(k + 2)

(k + 1)(k + 2)
·
〈
1
∣∣∣ E∨(1) τ0(p)

∣∣∣ 1 〉P1×E

·
(
u2
〈
1
∣∣∣ E∨(1) τ0(p)

∣∣∣ ω 〉P1×E
)k+1

.

A further application of Lemma 7 yields

q
d

dq

1

k + 1

(∑
d≥1

∑
m|d

d

m

(
2 sin(mu/2)

)2

qd
)k+1

.

Rewriting the result in the variables

p = e2πiz , q = e2πiτ

and u = 2πz, we obtain

q
d

dq

1

k + 1

(
−
∑
d≥1

∑
m|d

d

m
(pm − 2 + p−m)qd

)k+1

= q
d

dq

1

k + 1
S(z, τ)k+1 .

The proof of Theorem 2 is thus complete. �

3.7. Relation to stable pairs invariants. Let A be an abelian sur-

face and let β be an irreducible curve class of type (1, d). Let

Pn(A, β)

be the moduli space of stable pairs (F, s) on A in class β and with

Euler characteristic χ(F ) = n, see [50]. The moduli spaces Pn(A, β)

are isomorphic to the relative Hilbert scheme over the universal family

of curves in class β. It is nonsingular of dimension 2d+ n+ 1.
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Consider the Hilbert-Chow map

p : Pn(A, β) → Picβ(A) ∼= Â .

with sends a stable pair (F, s) to the divisor class associated to the

support of F . The map is equivariant with respect to the action of A

and is an isotrivial étale fibration. The fiber of p over 0Â is denoted by

Pn(A, β)FLS = p−1(0Â),

We define the FLS stable pairs invariants in class β by the signed Euler

characteristic

(23) PFLS
n,β = (−1)2d+n−1e

(
Pn(A, β)FLS

)
.

The definition agrees with the definition of residue stable pairs invari-

ants of the threefold A× C using torus localization, see [42].

By deformation invariance of the Euler characteristic under defor-

mations with smooth fibers, PFLS
n,β only depends on the type (1, d) of

the irreducible class β. We write

PFLS
n,β = PFLS

n,(1,d) .

The Euler characteristics (23) (in fact the χy-genus) have been com-

puted by Göttsche and Shende in [23]:

Theorem 7 (Göttsche-Shende [23]). We have∑
d≥1

∑
n∈Z

PFLS
n,(1,d)(−p)nqd = −

∑
d≥1

∑
m|d

d2

m
(pm − 2 + p−m)qd .

The k = 0 case of Theorem 2 yields a second proof of this result:

using an analog of the abelian vanishing relation (Lemma 4) for stable

pairs, we may express the FLS condition by point insertions on the

full moduli space Pn(A, β) as in Proposition 2. After degenerating the

abelian surface A to P1 × E, we can apply the Gromov-Witten/Pairs

correspondence [49], which yields the result.

In [42], a parallel study of the reduced invariants of K3 surfaces was

undertaken. The Gromov-Witten/Pairs correspondence and the Euler

characteristic calculations of Kawai-Yoshioka [28] were together used to

evaluate the Gromov-Witten side to prove the primitive Katz-Klemm-

Vafa conjecture. The analogue of the Kawai-Yoshioka calculation for

abelian surfaces is Theorem 7. However, for abelian surfaces we are

able to evaluate the Gromov-Witten side directly without using input

from the stable pairs side.
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4. Quasi-modular forms

4.1. Descendent series. Let A = E1 × E2 be the product of two

generic elliptic curves E1 and E2, and let

(d1, d2) = d1[E1] + d2[E2] ∈ H2(A,Z) .

For i ∈ {1, 2}, let ωi ∈ H2(Ei,Z) be the class of a point on Ei and let

ai, bi ∈ H1(Ei,Z)

be a symplectic basis. As before, we use freely the identification in-

duced by the Künneth decomposition

H∗(E1 × E2,Z) = H∗(E1,Z)⊗H∗(E2,Z) .

A class γ ∈ H∗(A,Q) is monomial if γ is a product

γ = ai1b
j
1a
k
2b

l
2 , i, j, k, l ∈ {0, 1} .

A basis of the cohomology of A is given by monomial classes. For a

monomial class γ, we denote by vs(γ) the exponent of s ∈ {a1, b1, a2, b2}
in γ. Hence,

γ = a
va1 (γ)
1 b

vb1
(γ)

1 a
va2 (γ)
2 b

vb2
(γ)

2 .

Let γ1, . . . , γn ∈ H∗(A,Q) be monomial classes, and let

a1, . . . , an ∈ Z≥0

be non-negative integers. The primitive descendent potential of A with

insertions τa1(γ1) . . . τan(γn) is defined by

FAg (τa1(γ1) . . . τan(γn)) =
∑
d≥0

〈
τa1(γ1) . . . τan(γn)

〉A,red

g,(1,d)
qd .

Theorem 3 states a modularity18 property for FAg (τa1(γ1) . . . τan(γn)).

The following refined result will be proven here.

Theorem 8. The primitive descendent potential satisfies the following

properties for all g ≥ 1:

(i) FAg (τa1(γ1) . . . τan(γn)) vanishes unless

n∑
k=1

vai(γk) =
n∑
k=1

vbi(γk) , i ∈ {1, 2} .

(ii) FAg (τa1(γ1) . . . τan(γn)) ∈ QMod2(g−2)+2` for ` =
∑n

k=1 va2(γk).

18The vector space of quasi-modular forms was defined in Section 0.2.3.
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Part (i) of Theorem 8 is a basic balancing condition. Part (ii) is a

homogeneity property which refines the statement of Theorem 3.

Having the precise weight is useful in applications. For example, by

part (ii) of Theorem 8, the series FA2 (τ1(p)) is a quasi-modular form of

weight 2, and hence a multiple of E2(τ). The constant coefficient is

given by∫
[M2,1(A,(1,0))]red

ev∗1(p)ψ1 =

∫
[M2,1(E1,1)]vir

(−λ1) ev∗1(ω1)ψ1 = − 1

12
.

We conclude

FA2 (τ1(p)) = − 1

12
E2(τ) = − 1

12
+ 2

∑
d≥0

σ(d)qd .

For genus g = 1, both parts of Theorem 8 are easy to see. The

contributions of curve classes (1, d > 0) vanish for g = 1 since the

moduli space of maps is empty: an element of

M1,n(E1 × E2, (1, d > 0))

would yield an isogeny between E1 and E2 contradicting the genericity

of E1 and E2. The series FA1 (τa1(γ1) . . . τan(γn)) therefore has only a

constant term in q. For curve classes of degree (1, 0), the moduli space

factors as

M1,n(E1 × E2, (1, 0)) ∼= M1,n(E1, 1)× E2 .

The balancing condition of part (i) then follows by the separate bal-

ancing on the two factors. For nonvanishing invariants〈
τa1(γ1) . . . τan(γn)

〉A,red

1,(1,0)
,

we must have

` =
n∑
k=1

va2(γk) = 1.

Hence, part (ii) correctly predicts a quasi-modular form of weight

2(g − 2) + 2` = 2(1− 2) + 2 · 1 = 0 .

4.2. Tautological classes. The first step in the proof of Theorem 8 is

to recast the result in terms of tautological classes on the moduli space

of curves. For 2g − 2 + n > 0, let

R∗(M g,n) ⊂ H∗(M g,n,Q)

be the tautological ring. Let

π : M g,n(A, β) → M g,n
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be the forgetful map. For α ∈ R∗(M g,n), we define α-twisted reduced

invariants of A by〈
α ; γ1, . . . , γn

〉A,red

g,β
=

∫
[Mg,n(A,β)]red

π∗(α) ∪
∏
i

ev∗i (γi) .

Here, β is a curve class on A and

γ1, . . . , γn ∈ H∗(A,Q)

are monomial classes. The associated primitive potential is defined by

FAg (α; γ1, . . . , γn) =
∑
d≥0

〈
α ; γ1, . . . , γn

〉A,red

g,(1,d)
qd .

Proposition 3. The primitive α-twisted potential satisfies the follow-

ing properties for all g ≥ 1:

(i) FAg (α; γ1, . . . , γn) vanishes unless

n∑
k=1

vai(γk) =
n∑
k=1

vbi(γk) , i ∈ {1, 2} .

(ii) FAg (α; γ1, . . . , γn) ∈ QMod2(g−2)+2` for ` =
∑n

k=1 va2(γk).

The cotangent line classes

ψ1, . . . , ψn ∈ H2(M g,n(A, β),Q)

can be expressed as pull-backs of the corresponding cotangent line

classes from M g,n up to boundary corrections.19 Integration over the

boundary corrections is governed by the splitting formula for reduced

invariants. The boundary corrections yield integrals of lower genus

or fewer marked points. Arguing inductively, the descendent series

FAg (τa1(γ1) . . . τan(γn)) can therefore be expressed in terms of the series{
FAg′(α

′; γ′1, . . . , γ
′
n′)
}

for various α′, g′, γ′1, . . . , γ
′
n′ . By a simple verification, the splitting for-

mula preserves the vanishing and modularity statements of Theorem

8. Hence, Proposition 3 implies Theorem 8.

The balancing condition of part (i) of Proposition 3 follows easily

from a Hodge theoretic argument. Alternatively, the balancing condi-

tion can be obtained inductively via the proof of part (ii) of Proposition

3.

19The unstable g = 0 cases do not play a role. For abelian varieties, genus 0
invariants (standard or reduced) are non-vanishing only in the constant map case
where stability requires 3 special points.
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4.3. Proof of Proposition 3 (i). By [61], or by a direct Mumford-

Tate group calculation in case E1 and E2 are generic, the subring of

Hodge classes on An = (E1 × E2)n,

Hdg∗(An) ⊂ H∗(An,Q) ,

is generated by divisor classes.20

Hence, under the Künneth decomposition, the ring Hdg∗(An) is gen-

erated by pull-backs of divisors classes in

H2(Ei,Q) , H1(Ei,Q)⊗H1(Ei,Q) , H1(E1,Q)⊗H1(E2,Q) ,

for i = 1, 2. We have H2(Ei,Q) = 〈ωi〉 = 〈aibi〉. By the genericity of

E1 and E2, all divisor classes in H1(Ei,Q)⊗H1(Ei,Q) are multiples of

ai ⊗ bi − bi ⊗ ai ,

and there are no non-zero divisor classes in H1(E1,Q)⊗H1(E2,Q).

It follows that all classes in Hdg∗(An) are linear combinations of

δ1 ⊗ · · · ⊗ δn

where δk ∈ H∗(A,Q) are monomial classes as defined in Section 4.1,

such that
n∑
k=1

vai(δk) =
n∑
k=1

vbi(δk) , i ∈ {1, 2} .

Consider the evaluation map

ev : M g,n(A, β) → An .

By the push-pull formula, we have

(24)
〈
α ; γ1, . . . , γn

〉A,red

g,(1,d)
=

∫
ev∗(π∗(α)∩[Mg,n(A,β)]red)

γ1 ⊗ · · · ⊗ γn .

By the algebraicity of α and [M g,n(A, β)]red, the integral (24) is zero

unless
n∑
k=1

vai(γk) =
n∑
k=1

vbi(γk) , i ∈ {1, 2} . �

20In particular, all Hodge classes on An are algebraic.
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4.4. Proof of Proposition 3 (ii): Base cases. We argue by induc-

tion on the pair (g, n), where g ≥ 1 is the genus of the source curve

and n ≥ 0 is the number of marked points. We order the pairs (g, n)

lexicographically: we define (g′, n′) < (g, n) if and only if

• g′ < g or

• g′ = g, n′ < n.

Base cases: g = 1 and n ≥ 0.

We have already observed that Theorem 8 holds in all g = 1 cases.

Proposition 3 holds in g = 1 by the same argument. We discuss the

n = 0 and n = 1 cases as examples.

In case (g, n) = (1, 0), the only series is

FA1 ( ; ) = 0 ,

since the reduced virtual dimension is 1 and there are no insertions.

In case (g, n) = (1, 1), the moduli space M1,1(A, (1, d)) has reduced

virtual dimension 2. We must have either α ∈ R1(M1,1) or τ(p) as

integrands. Such an α is a multiple of the class of a point on M1,1.

Because a generic elliptic curve does not admit a non-vanishing map

to E1 × E2, the integral vanishes. In the second case, we evaluate

FA1 (1; p) =
〈
τ0(p)

〉A,red

1,(1,0)
= 1 ,

which is a quasi-modular form of weight 0.

4.5. Proof of Proposition 3 (ii): Induction. Consider a pair (g, n)

satisfying g ≥ 2 and assume Proposition 3 is proven in all cases (g′, n′)

where

(g′, n′) < (g, n) .

Let γ1, . . . , γn ∈ H∗(A,Q) be monomial classes, and let α ∈ R∗(M g,n)

be a tautological class of pure degree. We must prove Proposition 3

holds for the series

(25) FAg (α; γ1, . . . , γn) .

We may assume the dimension constraint

(26) 2g + 2n = deg(α) +
n∑
i=1

deg(γi)
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is satisfied, since the series (25) vanishes otherwise. In the dimension

constraint (26), deg denotes the real cohomological degree of a class

(both on M g,n and A).

Case (i):
∑n

i=1 deg(γi) ≤ 2n.

From dimension constraint (26), we find

deg(α) = 2g + 2n−
∑
i

deg(γi) ≥ 2g ,

or equivalently,

α ∈ R≥g(M g,n) .

Using the strong form of Getzler-Ionel vanishing proven in [18, Propo-

sition 2], we can find a class

α̃ ∈ R∗(∂M g,n)

such that ι∗α̃ = α, where ι : ∂M g,n → M g,n is the inclusion of the

boundary. By the splitting formula, the series

FAg (α; γ1, . . . , γn) = FAg (ι∗α̃; γ1, . . . , γn)

is expressed in terms of a linear combination of series

FAg′(α̃; γ̃1, . . . , γ̃n′) for which (g′, n′) < (g, n) .

The induction hypothesis for the latter implies Proposition 3 holds for

FAg (α; γ1, . . . , γn).

Case (ii):
∑n

i=1 deg(γi) > 2n.

Consider the moduli space

Mg,n ⊂M g,n

of nonsingular genus g ≥ 2 curves with n marked points. The tauto-

logical ring R∗(Mg,n) is generated by classes pulled-back from Mg via

the forgetful map

p : Mg,n →Mg

and the cotangent line classes

ψ1, . . . , ψn ∈ H2(Mg,n,Q) .

A class α ∈ R∗(M g,n) can therefore be written as a sum of classes of

the form:

• ι∗(α̃) for α̃ ∈ R∗(∂M g,n),

• ψk11 ∪ . . . ∪ ψknn ∪ p∗(ζ) for k1, . . . , kn ≥ 0 and ζ ∈ R∗(M g).
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Here, we let ψ1, . . . , ψn denote also the cotangent line classes on M g,n.

A summand of the form ι∗(α̃) is expressed by the splitting formula

in lower order terms, see Case (i). Hence, we may assume

(27) α = ψk11 ∪ . . . ∪ ψknn ∪ p∗(ζ) .

Case (ii-a): There exists an i for which ki > 0.

We assume k1 > 0. If deg(γ1) ≤ 3, we first apply the vanishing of

Lemma 4 for γ1 and

γ = γ2 ⊗ · · · ⊗ γn .

Using the abelian vanishing relation (see also (20)), we find, that

FAg (α; γ1, γ2, . . . , γn) can be expressed as a sum of series

±FAg (α; γ1 ∪ δ, γ′2, . . . , γ′n)

for various monomial classes δ, γ′2, . . . , γ
′
n ∈ H∗(A,Q) with deg(δ) ≥ 1.

The above relation increases the degree of γ1. By induction on

deg(γ1), we may assume deg(γ1) = 4, or equivalently, γ1 = p.

We use next the degeneration of

A = E1 × E2

to the normal cone of an elliptic fiber E = E2 of the projection to E1,

A A ∪E (P1 × E) .

We choose the point class γ1 to lie (after degeneration) on the compo-

nent P1 × E. The distribution of the remaining classes γ2, . . . , γn can

be chosen freely.

For classes α̃ ∈ R∗(M g,r), ξ ∈ H∗(E,Q), and γ̃i on A and P1 × E
respectively, we define

FA/Eg (α̃; γ̃1, . . . , γ̃r; ξ) =
∑
d≥0

〈
α̃ ;

r∏
i=1

τ0(γ̃i)
∣∣∣ ξ 〉A/E,red

g,(1,d)
qd ,

F(P1×E)/E
g (α̃; γ̃1, . . . , γ̃r; ξ) =

∑
d≥0

〈
α̃ ;

r∏
i=1

τ0(γ̃i)
∣∣∣ ξ 〉(P1×E)/E

g,(1,d)
qd .

where we use the bracket notation defined in Section 3.5.

For γ1 = p, the degeneration formula then yields:
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(28) FAg (α; γ1, . . . , γn) =∑
(g′,n′)≤(g,n−1)

F
A/E
g′,n′(α

′; ( . . . ); ξ) · F(P1×E)/E
g′′,n′′ (α′′; γ1, ( . . . ); ξ

∨) .

The summation here is over splittings

g = g′ + g′′ , n = n′ + n′′ ,

and distributions ( . . . ) of the insertions γ2, . . . , γn. The marking num-

bers n′ and n′′ are placed in the subscripts of the generating series inside

the sum for clarity.21 The class α determines α′ and α′′ by restriction.

Finally, there is also a sum over all relative conditions

ξ ∈ {1, a2, b2, ω2}

where ξ∨ denotes the class dual to ξ.

Lemma 9. The primitive potential for (P1×E)/E satisfies the follow-

ing properties for all g′′ ≥ 0:

(i) F
(P1×E)/E
g′′ (α′′; γ̃1, . . . , γ̃n′′ ; ξ

∨) vanishes unless

va2(ξ
∨) +

n′′∑
k=1

va2(γ̃k) = vb2(ξ
∨) +

n′′∑
k=1

vb2(γ̃k) .

(ii) F
(P1×E)/E
g′′ (α′′; γ̃1, . . . , γ̃n′′ ; ξ

∨) ∈ QMod2g′′+2`′′−2 for

`′′ = va2(ξ
∨) +

n′′∑
k=1

va2(γ̃k) .

Proof. Because there is only algebraic cohomology on P1, the vanishing

statement (i) follows from the fact that the virtual class is algebraic.

In [40], the relative invariants of (P1×E)/E were effectively expressed

in terms of the absolute descendent invariants of P1 ×E through rela-

tions obtained by the following operations:

• degeneration of P1 × E to P1 × E ∪E P1 × E,

• localization on the P1 factor,

• rubber calculus.

A simple verification shows the resulting relations respect modularity

of the weight specified by (ii) for each of these operations. Hence, we

are reduced to the case of absolute descendent invariants of P1 × E.

21The relative points are not included in the counts n′ and n′′.
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Then, virtual localization on the P1-factor expresses the descendents

invariants of P1×E in terms of the descendent invariants of E. Finally,

[42, Proposition 28] yields the required modularity property (ii).

For the last step, instead of localization, the product formula [2] may

be used to reduce P1×E to the case of the descendent invariants of the

elliptic curve E since the the Gromov-Witten classes of P1 are known

to be tautological [25]. �

Lemma 9 controls the factor on the right inside the sum of (28).

Part (ii) of Lemma 9 is a refinement of [42, Lemma 30]. However, the

proof is the same as given in [42].

The factor on the left inside the sum of (28) is more difficult to

control. We will consider the terms of the sum corresponding to

(g′, n′) < (g, n− 1) and (g′, n′) = (g, n− 1)

separately. Lemma 10 below shows how to apply the inductive hypoth-

esis to the terms in the sum (28) with (g′, n′) < (g, n − 1). The case

(g′, n′) = (g, n− 1) will be considered afterwards.

Lemma 10. Let (g′, n′) < (g, n− 1). The primitive potential for A/E

satisfies the following properties:

(i) F
A/E
g′ (α′; γ̃1, . . . , γ̃n′ ; ξ) vanishes unless

vai(ξ) +
n′∑
k=1

vai(γ̃k) = vbi(ξ) +
n′∑
k=1

vbi(γ̃k) , i ∈ {1, 2} .

(ii) F
A/E
g′ (α′; γ̃1, . . . , γ̃n′ ; ξ) ∈ QMod2(g′−2)+2`′ for

`′ = va2(ξ) +
n′∑
k=1

va2(γ̃k) .

Proof. We apply the degeneration formula to

(29) FAg′(α
′; γ̃1, . . . , γ̃n′ , ω1ξ)

with the last point degenerating to P1 × E and the specialization by

pull-back for the other insertions. Since (g′, n′) < (g, n− 1), we have

(g′, n′ + 1) < (g, n)

so the induction hypothesis applies to the series (29).

The degeneration formula yields a relation involving the relative ge-

ometries A/E and (P1 × E)/E,
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(30) FAg′(α
′; γ̃1, . . . , γ̃n′ , ω1ξ) =∑

(g′◦,n
′
◦)≤(g′,n′)

F
A/E

g′◦,n
′
◦
(α′◦; ( . . . ); ξ̃) · F(P1×E)/E

g′•,n
′
•

(α′•; ( . . . ), ω1ξ; ξ̃
∨) .

The summation here is over splittings

g′ = g′◦ + g′• , n′ + 1 = n′◦ + n′• ,

and distributions ( . . . ) of the insertions γ̃1, . . . , γ̃n′ . The class α′ de-

termines α′◦ and α′• by restriction. There is also a sum over all relative

conditions ξ̃ ∈ {1, a2, b2, ω2}.

We now analyse the (g′◦, n
′
◦) = (g′, n′) term of the sum in (30),

(31) F
A/E
g′ (α′; γ̃1, . . . , γ̃n′ ; ξ̃) · F(P1×E)/E

0,1 (ω1ξ; ξ̃
∨) .

Since genus 0 stable maps do not represent classes of type (1, d > 0)

on P1 × E,

F
(P1×E)/E
0,1 (ω1ξ; ξ̃

∨) = 〈 ξ̃∨ | τ0(ω1ξ) 〉(P
1×E)/E

0,(1,0) = δξ,ξ̃ .

The second equality is obtained by the identification of the moduli

space of maps by the location of the relative point,

(32) M0,0((P1 × E)/E, (1, 0)) ∼= E .

Taken together, we can rewrite (31) as simply

F
A/E
g′ (α′; γ̃1, . . . , γ̃n′ ; ξ) .

We find the series FA for the absolute geometry can be expressed

in terms of the series FA/E for the relative geometry by a transfor-

mation matrix M which is upper triangular with 1’s on the diagonal.

By Lemma 9, the off-diagonal terms of M are given by quasi-modular

forms. By inverting the unipotent matrix M and applying the induc-

tion hypothesis to FA, we find that the relative invariants FA/E are

quasi-modular forms.

The weight and vanishing statement can now be deduced from a

careful consideration of the entries of M−1. Alternatively, we may argue

via a (second) induction on (g′, n′). In case (g′, n′) = (1, 1), there are

no lower order terms in (30), and we are done. If the statement is true

for all (g′◦, n
′
◦) < (g′, n′), then the statement follows directly from (30)

and the induction hypothesis. �

We now turn to the (g′, n′) = (g, n− 1) term in the sum (28):

F
A/E
g,n−1(α; γ2, . . . , γn;ω) · F(P1×E)/E

0,1 (γ1; 1)



48 J. BRYAN, G. OBERDIECK, R. PANDHARIPANDE, AND Q. YIN

As we have seen above, only curves in class (1, 0) contribute to the

series F
(P1×E)/E
0,1 (γ1; 1). By the identification of the moduli space (32),

F
(P1×E)/E
0,1 (γ1; 1) = 〈 1 | τ0(p) 〉(P

1×E)/E
0,(1,0) = 1 .

Hence, the (g′, n′) = (g, n− 1) term is

(33) F
A/E
g,n−1(α; γ2, . . . , γn;ω) ,

where the class α ∈ R∗(M g,n) is pulled-back to M g,n−1(A/E, (1, d)) via

the map

π : M g,n−1(A/E, (1, d))→M g,n

which takes the relative point on the left to the marking 1 on the right.

We must prove the induction hypothesis implies

(i) F
A/E
g,n−1(α; γ2, . . . , γn;ω) vanishes unless

vai(ξ) +
n∑
k=2

vai(γk) = vbi(ξ) +
n∑
k=2

vbi(γk) , i ∈ {1, 2} .

(ii) F
A/E
g,n−1(α; γ2, . . . , γn;ω) ∈ QMod2(g−2)+2` for

` = va2(ξ) +
n∑
k=2

va2(γk) .

We proceed by studying the cotangent lines. Let

Lrel → M g,n−1(A/E, (1, d)) , L1 → M g,n

denote the respective cotangent lines at the relative point and the first

marking.

Lemma 11. After pull-back via π, we have an isomorphism

Lrel
∼= π∗L1

on M g,n−1(A/E, (1, d)).

Proof. Let C be the n-pointed domain of a map

f : C → Ã

parameterized by the moduli space M g,n−1(A/E, (1, d)). The n points

consist of the relative point together with the n−1 standard markings.

The target Ã is a possible accordian destabilization of A along E. The

Lemma is a consequence of the following claim: the n-pointed curve C

is Deligne-Mumford stable.

Since g ≥ 1 and n ≥ 1, to prove the stability of the n-pointed curve

C, we need only consider the nonsingular rational components P ⊂ C:
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• If f(P ) ⊂ A, then f is constant on P ,

f(P ) ∈ A \ E ,

and P must carry at least 3 special points by the definition of

map stability.

• If f(P ) is contained in a rubber bubble over E, P is mapped to

a point of E and therefore must map to a fiber of the bubble.

Stability of the bubble then requires the existence of at least 3

special points of P .

Since the n-pointed curve C is stable, there is no contraction of

components associated to the map π. Hence, the cotangent lines are

isomorphic. �

The relative divisor E ⊂ A is the fiber over a point 0E1 ∈ E1. Let

f : C → Ã

be a stable map parameterized by the moduli spaceM g,n−1(A/E, (1, d)),

and let prel ∈ C be the relative point. Composition of the canonical

projections

ε : Ã→ A→ E1

yields a map

εf : C → E1 with εf(prel) = 0E1 .

The cotangent line Lrel carries a canonical section via the differential

of εf ,

s : C = T ∗0E1
(E1)→ Lrel .

The vanishing locus22 of the section s is the boundary of moduli space

M g,n−1(A/E, (1, d)) corresponding to the first bubble over E.

Since α is of the form (27) with k1 > 0, a factor ψ1 = c1(L1) can be

extracted from α,

α = ψ1 · α̃ .

After pull-back via π, we have

π∗(ψ1) = c1(Lrel)

by Lemma 11. Via the vanishing locus of the section s, we obtain the

following equation for the series (33):

22The geometry is pulled-back from the Artin stack of degenerations of A/E.
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(34) F
A/E
g,n−1(α; γ2, . . . , γn;ω) =∑

(g′,n′)<(g,n−1)

F
A/E
g′,n′(α̃

′; ( . . . ) ; ξ) · FRub(P1×E)
g′′,n′′ (α̃′′; ( . . . ) ; ξ∨, ω) .

The summation here is over splittings

g = g′ + g′′ , n− 1 = n′ + n′′ ,

and distributions ( . . . ) of the insertions γ2, . . . , γn. Only insertions γi
satisfying

va1(γi) = vb1(γi) = 0

can be distributed to the rubber series

F
Rub(P1×E)
g′′,n′′ (α̃′′; ( . . . ) ; ξ∨, ω) =

∑
d≥0

〈
ξ∨
∣∣∣ α̃′′ ; ( . . . )

∣∣∣ ω 〉Rub(P1×E)

g′′,(1,d)
qd .

By stability of the rubber, either g′′ > 0 or n′′ > 0. The class α̃

determines α̃′ and α̃′′ by restriction. Finally, there is also a sum on the

right side of (34) over relative conditions ξ.

In the sum on the right side of (34), the balancing and modularity

of the first factor

F
A/E
g′,n′(α̃

′; ( . . . ) ; ξ)

is obtained from Lemma 10. The balancing and modularity of the

rubber factor

F
Rub(P1×E)
g′′,n′′ (α̃′′; ( . . . ) ; ξ∨, ω)

follows from the rubber calculus and an argument parallel to the proof

of Lemma 9.23 The results together imply the required balancing and

modularity for the series (33).

We now control the balancing and modularity of all terms in the sum

on the right of (28). As a consequence, Proposition 3 holds for

FAg (α; γ1, . . . , γn) .

The proof of the induction step for Case (ii-a) is complete.

Case (ii-b): α = p∗(ζ) for some ζ ∈ R∗(M g).

We may assume γ1 is of minimal degree:

deg(γ1) ≤ deg(γi) for all i ∈ {2, . . . , n} .

Below, we will distinguish several subcases depending upon deg(γ1).

23We leave the details here to the reader.
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Consider the map M g,n(A, (1, d))→M g,n−1(A, (1, d)) forgetting the

first marking. The coefficients of the series

(35) FAg (p∗(ζ); γ1, . . . , γn)

are integrals where all classes in the integrand, except for ev∗1(γ1), are

pull-backs via the map forgetting the first marking.

Case deg(γ1) ≤ 1. The series (35) vanishes by the push-pull formula

since the fiber of the forgetful map has (complex) dimension 1.

Case deg(γ1) = 2. We use the divisor equation for γ1 and find

FAg (p∗(ζ); γ1, . . . , γn) =


FAg (p∗(ζ); γ2, . . . , γn) if γ1 = a1b1

q d
dq
FAg (p∗(ζ); γ2, . . . , γn) if γ1 = a2b2

0 otherwise .

Because the differential operator

q
d

dq
=

1

2πi

∂

∂τ

preserves QMod∗ and is homogeneous of degree 2, Proposition 3 holds

for (35) by the induction hypothesis.

Case deg(γ1) = 3. Since
∑

i deg(γi) is even, we must have n ≥ 2. We

order the classes

γ2, . . . , γn

so that γ2, . . . , γk are point classes and γk+1, . . . , γn are classes of degree

3, for some 1 ≤ k < n.

We will use the abelian vanishing of Lemma 4 for γ1 and

γ = γ2 ⊗ · · · ⊗ γn .

Let s ∈ {a1, b1, a2, b2} be the factor with vs(γ1) = 0. Using the abelian

vanishing relation, we find

k∑
i=1

FAg (p∗(ζ); p, . . . , p︸ ︷︷ ︸
i−1

, γ1, p, . . . , p︸ ︷︷ ︸
k−i

, γk+1, . . . , γn)

=
n∑

i=k+1
vs(γi)=1

±FAg (p∗(ζ); p, γ2, . . . , γ̃i, . . . , γn) ,

where γ̃i = γi/s denotes the class γi with the factor s removed. The

plus signs in the terms on the left hand side require a careful account-

ing of the signs. Since the class p∗(ζ) is symmetric with respect to
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interchanging markings, the above equation simplifies to

k · FAg (p∗(ζ); γ1, . . . , γn) =
n∑

i=k+1
vs(γi)=1

±FAg (p∗(ζ); p, γ2, . . . , γ̃i, . . . , γn) ,

Since γ̃i is of degree 2, we may apply the divisor equation to each sum-

mand on the right side. As result, the right side is reduce to terms of

lower order, see Case deg(γ1) = 2 above. By the induction hypothesis,

Proposition 3 holds for (35).

Case deg(γ1) = 4. All the insertions γ1, . . . , γn must be point classes.

If n = 1, the dimension constraint (26) implies deg(α) = 2g − 2 and

hence

ζ ∈ Rg−1(M g)

Using the strong form of Looijenga’s vanishing

R≥g−1(Mg) = 0

proven in [18, Proposition 2], there exists a class

ζ̃ ∈ R∗(∂M g)

such that ι∗ζ̃ = ζ. After pulling back via

p : M g,n →M g ,

p∗(ζ) can be written as the push forward of a tautological class on the

boundary ∂M g,n. Proposition 3 holds for (35) by the splitting formula

and the induction hypothesis, see Case (i).

If n ≥ 2, we use the degeneration

A A ∪E (P1 × E) ,

which already appeared in Case (ii-a) above. We choose the point

classes γ1 and γ2 to lie after degeneration on the component P1 × E.

The degeneration formula then yields:

(36) FAg (α; γ1, . . . , γn) =∑
(g′,n′)≤(g,n)

F
A/E
g′,n′(α

′; ( . . . ); ξ) · F(P1×E)/E
g′′,n′′ (α′′; γ1, γ2, ( . . . ); ξ

∨) ,

where the sum is as in (28).

If g′ = g in the sum (36), then the second factor is

(37) F
(P1×E)/E
0,n′′ (α′′; γ1, γ2, ( . . . ); ξ

∨) .
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Genus 0 stable maps do not represent classes of type (1, d > 0) on

P1 × E, hence only the curve class (1, 0) need be considered. Since

there are no curves of type (1, 0) through two general points of P1×E,

(37) vanishes. As a result, only g′ < g terms appear in the sum (36).

Proposition 3 holds for (35) by Lemmas 9 and 10.

The proof of the induction step has now been established in all cases.

The proof of Proposition 3 is complete. �

4.6. K3 surfaces. Theorem 3 of Section 0.2.3 for abelian surfaces is

exactly parallel to the modularity results [42, Theorem 4 and Proposi-

tion 29] for the primitive descendent potential for K3 surfaces. Though

the argument for abelian surfaces is more difficult because of the pres-

ence of odd cohomology, several aspects are similar.

The refined modularity of Theorem 8 for abelian surfaces is strictly

stronger than the statements of [42] for K3 surfaces. In fact, the proof

of [42] also yields the parallel refined statement for K3 surfaces. The

crucial point is to use the refined modularity of Lemma 9 part (ii)

instead of the weaker modularity of [42, Lemma 30]. We state the

refined modularity for K3 surfaces below following the notation of [42].

Let S be a nonsingular, projective, elliptically fibered K3 surface,

S → P1,

with a section. Let s, f ∈ H2(S,Z) be the section and fiber class. The

primitive descendent potential for the reduced Gromov-Witten theory

of S is defined by

FSg
(
τa1(γ1) · · · τan(γn)

)
=
∑
d≥0

〈
τa1(γ1) · · · τan(γn)

〉S,red

g,s+df
qd−1

for g ≥ 0.

We define a new degree function deg(γ) for classes γ ∈ H∗(S,Q) by

the following rules:

• γ ∈ H0(S,Q) 7→ deg(γ) = 0,

• γ ∈ H4(S,Q) 7→ deg(γ) = 2.

For classes γ ∈ H2(S,Q), the degree is more subtle.

Viewing the section and fiber classes also as elements of cohomology,

we define

V = Qs⊕Qf ⊂ H2(S,Q) .
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We have a direct sum decomposition

(38) Qf ⊕ V ⊥ ⊕ Q(s + f) ∼= H2(S,Q)

where V ⊥ is defined with respect to the intersection form. We con-

sider only classes γ ∈ H2(S,Q) which are pure with respect to the

decomposition (38). Then,

• γ ∈ Qf 7→ deg(γ) = 0,

• γ ∈ V ⊥ 7→ deg(γ) = 1,

• γ ∈ Q(s + f) 7→ deg(γ) = 2.

The modularity of [42, Theorem 4 and Proposition 29] is refined by

the following result.

Theorem 9. For deg-homogeneous classes γi ∈ H∗(S,Q),

FSg
(
τa1(γ1) · · · τan(γn)

)
∈ 1

∆(q)
QMod`

for ` = 2g +
∑n

i=1 deg(γi).

The discriminant modular form entering in Theorem 9 is

∆(q) = q
∞∏
n=1

(1− qn)24 .

5. Hyperelliptic curves

5.1. Overview. The correspondence between hyperelliptic curves on

a surface S and rational curves in Hilb2(S) has been used often to

enumerative hyperelliptic curves on S, see [24] for S = P2 and [54] for

S = P1×P1. The main difficulty in applying the correspondence is the

need of a non-degeneracy result concerning curves in P1×S. For abelian

surfaces, the required non-degeneracy, stated as (†) in Section 0.2.4, is

expected to hold generically, but is not known in most cases. The

above correspondence then yields only conditional or virtual results on

the number of hyperelliptic curves on an abelian surface, as pursued,

for example, by S. Rose in [57].

We proceed with our study of hyperelliptic curves in three steps.

In Section 5.2, we provide several equivalent descriptions of (†) and

a proof in genus 2 for a generic abelian surface. In Section 5.3, we

prove an unconditional formula for the first non-trivial case of genus 3

hyperelliptic curves via explicit Gromov-Witten integrals, a boundary

analysis, and the genus 2 result proven in Section 5.2.
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In Section 5.4, we assume the existence of abelian surfaces A and ir-

reducible curve classes β satisfying property (†) in all genera. Employ-

ing the correspondence above, we find a closed formula for the hA,FLS
g,β .

While a similar strategy has been used in [57] assuming the crepant

resolution conjecture, our closed formula is new. Together with the

strong modularity result of Theorem 8, we obtain a formula for the

Gromov-Witten numbers HFLS
g,(1,d) which agrees with the genus 3 counts.

5.2. Non-degeneracy for abelian surfaces. We briefly recall the

correspondences between hyperelliptic curves in S, curves in P1 × S,

and rational curves in Hilb2(S). For simplicity, we restrict to the case

of abelian surfaces S = A, see [20, 24, 43] for the general case.

Let A be an abelian surface, and let

f : C → A

be a map from a nonsingular hyperelliptic curve. Let

p : C → P1

be the double cover. Since A contains no rational curves, f does not

factor through p. Consider the map

(p, f) : C → P1 × A .

The image C̄ = Im(C) ⊂ P1×A is an irreducible curve, (flat) of degree

2 over P1, and has normalization C → C̄.

Let Hilb2(A) be the Hilbert scheme of 2 points of A, and let

∆ ⊂ Hilb2(A)

denote the subvariety parameterizing non-reduced length 2 subschemes

of A. By the universal property of the Hilbert scheme, the curve C̄

induces a map

φ : P1 → Hilb2(A)

such that the image is not contained in ∆.

Conversely, let φ : P1 → Hilb2(A) be a map whose image is not

contained in ∆. Since A contains no rational curves, by pulling back

the universal family

Z ⊂ Hilb2(A)× A ,
we obtain an irreducible curve C̄ ⊂ P1 × A of degree 2 over P1. The

normalization C → C̄ is hyperelliptic and induces a map f : C → A.

Hence, there are bijective correspondences between
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• maps f : C → A from nonsingular hyperelliptic curves,

• irreducible curves C̄ ⊂ P1 × A of degree 2 over P1,

• maps φ : P1 → Hilb2(A) with image not contained in ∆.

The correspondences allow us to reformulate the non-degeneracy prop-

erty (†).

Lemma 12 (Graber [24]). Under the correspondences above, the fol-

lowings are equivalent.

(i) The differential of f is injective at the Weierstrass points of C,

and no conjugate non-Weierstrass points are mapped to the

same point on A.

(ii) The curve C̄ is nonsingular.

(iii) The map φ meets ∆ transversally.

Using a recent result of Poonen and Stoll [55], we verify that property

(†) holds generically in genus 2:

Lemma 13. Let A be a generic abelian surface with a curve class β

of type (1, d), and let f : C → A be a map from a nonsingular genus 2

curve in class β. Then f : C → A satisfies condition (i) of Lemma 12.

Proof. The condition on the differential of f is automatically satisfied

by [33, Proposition 2.2] for genus 2 curves on abelian surfaces.

Now suppose there exists a nonsingular genus 2 curve C, two conju-

gate non-Weierstrass points x, y ∈ C, and a map f : C → A in class β

such that f(x) = f(y). Up to translation we may assume that f maps

a Weierstrass point q ∈ C to 0A ∈ A. Then f factors as

C
aj−→ J

π−→ A ,

where J is the Jacobian of C and aj is the Abel-Jacobi map with

respect to q. The hyperelliptic involution of C corresponds to the

automorphisms −1 of J and A. For x, y conjugate, this implies that

f(x) = f(y) is a 2-torsion point on A.

Since C is of genus 2 and β is of type (1, d), the map π is an isogeny

of degree d. It follows that both aj(x) and aj(y) are 2d-torsions on J .

In genus 2, the assumption that A is generic implies C is generic.

However, by [55, Theorem 7.1], a generic (Weierstrass-pointed) hyper-

elliptic curve C meets the torsions of J only at the Weierstrass points.

Hence the points x, y do not exist. �
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The proof of Lemma 13 works for any type (d1, d2) with d1, d2 > 0.

However, since multiple covered curves may arise, statement (†) is false

for imprimitive classes in higher genus. The most basic counterexample

is constructed by taking an étale double cover

C3 → C2

of a nonsingular genus 2 curve C2 ⊂ A. Then, C3 is nonsingular and

hyperelliptic of genus 3, but C2 contains a Weierstrass point whose

preimage in C3 is a pair of conjugate non-Weierstrass points.

Furthermore, by the proof of [31, Theorem 1.6], for generic A and β of

type (1, d), property (†) also holds in the maximal geometric genus gd.

The value of gd is determined by the inequality (5). It is also shown

that for every g ∈ {2, . . . , gd}, there exists at least one nonsingular

genus g curve in P1 × A of class (2, β).

5.3. Genus 3 hyperelliptic counts. We prove here Proposition 1.

We proceed in two steps. First, we evaluate HFLS
3,(1,d). Then we identify

the contributions from the boundary of the moduli space.

Lemma 14. For all d ≥ 1,

HFLS
3,(1,d) = d2

∑
m|d

3m2 − 4dm

4
.

Proof. On M3, let λ1 be the first Chern class of the Hodge bundle, δ0

the class of the curves with a nonseparating node, and δ1 the class of

curves with a separating node. By [27],

H3 = 9λ1 − δ0 − 3δ1 .

The Lemma will be proven by the following three evaluations〈
λ1

〉A,FLS

3,(1,d)
=
d2

12

∑
m|d

m3 ,
〈
δ0

〉A,FLS

3,(1,d)
= d3

∑
m|d

m,
〈
δ1

〉A,FLS

3,(1,d)
= 0 .

The first equation follows directly from Theorem 1. For the second, we

have〈
δ0

〉A,FLS

3,(1,d)
=

1

2

〈
τ0(∆)

〉A,FLS

2,(1,d)
=

1

2
· 2d ·

〈
1
〉A,FLS

2,(1,d)
= d · d2

∑
m|d

m,

where ∆ denotes the class of the diagonal in A× A. The divisor δ1 is

associated to the locus of curves which split into genus 1 and genus 2

components. Since generically A contains no genus 1 curves, the class

on the genus 1 component must be 0. Since [M1,1(A, 0)]vir = 0, we

obtain the third evaluation. �
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Proof of Proposition 1. Let A and β be generic. By Lemma 13 the only

contribution to HFLS
g,(1,d) from maps f : C → A with C nodal arises from

the locus in M3 with a separating node. The maps are of the form

f : B ∪ C ′ → A

where B is a genus 2 curve and C ′ is an elliptic tail glued to B along

one of the 6 Weierstrass points of B. Under f , the curve B maps to a

genus 2 curve in A, while C ′ gets contracted. By a direct calculation

(or examining the case d = 1), we find that each genus 2 curve in the

FLS contributes

6 · 1

2

∫
M1,1

c1(Ob) = −1

4
,

where Ob denotes the obstruction sheaf. Therefore,

hA,FLS
3,β = HFLS

3,(1,d) + d2σ(d) · 1

4
= d2

∑
m|d

m(3m2 + 1− 4d)

4
. �

5.4. A formula for all genera. Consider the composition

(39) Hilb2(A)→ Sym2(A)→ A ,

of the Hilbert-Chow morphism and the addition map. The fiber of

0A ∈ A is the Kummer K3 surface of A, denoted Km(A). Alternatively,

Km(A) can be defined as the blowup of A/±1 at the 16 singular points.

In the notation of Section 5.2, a map

φ : P1 → Hilb2(A)

not contained in ∆ maps to Km(A) if and only if the corresponding

hyperelliptic curve f : C → A maps a Weierstrass point of C to a

2-torsion point of A.

By Nakajima’s theorem on the cohomology of Hilbert schemes, we

have a natural decomposition

H2(Hilb2(A);Z) = H2(A,Z)⊕ ∧2H1(A,Z)⊕ Z ·X ,

where X is the class of an exceptional curve.

A hyperelliptic curve f : C → A in class β corresponds to a map

φ : P1 → Hilb2(A) not contained in ∆, which has class

β + γ + kX ∈ H2(Hilb2(A),Z)

for some γ ∈ ∧2H1(A,Z) and with

k = χ(OC̄)− 2 = −1− ga(C̄) ,

where ga(C̄) is the arithmetic genus of C̄, see [43, Section 1.3].



CURVE COUNTING ON ABELIAN SURFACES AND THREEFOLDS 59

Proposition 4. Let β be an irreducible curve class of type (1, d) on

an abelian surface A satisfying (†). Then, after the change of variables

y = −e2πiz and q = e2πiτ ,∑
g≥2

hA,FLS
g,β (y1/2 + y−1/2)2g+2 =

d2

16
Coeffqd

[
4K(z, τ)4

]
,

where Coeffqd denotes the coefficient of qd.

Proof. For every hyperelliptic curve f : C → A in class β, the map

(p, f) : C → C̄

is an isomorphism by (†). In particular, the arithmetic genus of C̄ is

equal to the genus of C.

Hence, there is a bijective correspondence between

(i) maps f : C → A from nonsingular hyperelliptic curves of

genus g and class β for which a Weierstrass point of C is

mapped to a 2-torsion point of A,

(ii) maps φ : P1 → Hilb2(A) with image not contained in ∆ of

class

β + γ − (g + 1)X

for some γ ∈ ∧2H1(A,Z) and with image in Km(A).

Let hA,Hilb
g,β be the finite number of such curves.

In every translation class of a hyperelliptic curve f : C → A in class

β, there are d2 members (up to automorphisms) in a given fixed linear

system, and 16 members (up to automorphisms) with a Weierstrass

point of C mapping to a 2-torsion point. Hence

hA,FLS
g,β =

d2

16
hA,Hilb
g,β .

By assumption (†) and Lemma 12, every map φ : P1 → Hilb2(A) as

in (ii) meets ∆ transversely and is isolated. In this situation, Graber

in [24, Sections 2 and 3] has explicitly determined the relationship

between the genus 0 Gromov-Witten invariants of Hilb2(A) and the

number of these rational curves.

Let p : M0(Hilb2(A))→ A be the map induced by (39). Then,∑
g≥0

hA,Hilb
g,β (y1/2 + y−1/2)2g+2 =
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k∈Z

∑
γ∈∧2H1(A,Z)

yk
∫

[M0(Hilb2(A),β+γ+kA)]red
p∗(0A) .

The integral on the right hand side reduces to the genus 0 invari-

ants of the Kummer K3 surfaces and is determined by the Yau-Zaslow

formula. Direct calculations and theta function identities, see [43] for

details, then provide the closed evaluation∑
k∈Z

γ∈∧2H1(A,Z)

yk
∫

[M0(Hilb2(A),β+γ+kA)]red
p∗(0A) = Coeffqd

[
4K(z, τ)4

]
. �

We are now ready to prove Theorem 4.

Proof of Theorem 4. Let β be an irreducible class of type (1, d) on an

abelian surface A satisfying (†). The only contribution to HFLS
g,(1,d) from

maps f : C → A with C nodal are of the form

(40) f : B ∪ C1 ∪ · · · ∪ C2h+2 → A

where:

• f : B → A is a map in class β from a nonsingular hyperelliptic

curve B of some genus h < g,

• the Ci are pairwise disjoint curves, that are glued to the i-th

Weierstrass point xi of B, and are contracted under f ,

• the genera gi of Ci satisfy h+ g1 + · · ·+ g2h+2 = g,

• if gi ≥ 2, then Ci is a hyperelliptic curve and xi is a Weierstrass

point of Ci.

By stability, the case gi = 0 does not appear.

For g ≥ 2, let

Hg,1 ∈ Ag−1(M g,1)

be the stack fundamental class of the closure of nonsingular hyperel-

liptic curves with marked point at a Weierstrass point. By convention,

we set

H1,1 =
1

2
[M1,1] .

Then, the contribution of a nonsingular hyperelliptic curve f : B → A

of genus h in class β to HFLS
g,(1,d) is

(41)
∑

g1,...,g2h+2≥0
g1+···+g2h+2=g−h

2h+2∏
i=1
gi>0

∫
Mgi,1

Hgi,1 ∪ c(Ob)
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where Ob denotes the obstruction sheaf. Analyzing the tangent ob-

struction sequence, we obtain

c(Ob) =
c(E∨)2

1− ψ1

.

Define the generating series

F (u) = u+
∑
g≥1

u2g+1

∫
Mg,1

Hg,1 ∪ c(E∨)2

1− ψ1

,

Then from relation (41) and the definition of hA,FLS
g,β , we obtain∑

h≥2

hA,FLS
h,β F (u)2h+2 =

∑
g≥2

HFLS
g,(1,d) u

2g+2 .

The series F (u) has been computed by J. Wise using orbifold Gromov-

Witten theory [62]. The result is

F (u) = 2 sin(u/2) = u− 1

24
u3 +

1

1920
u5 ± . . . .

Together with Proposition 4, the claim follows. �

The calculation of the invariants HFLS
g,(1,d) is similar to the calculations

of the orbifold genus 0 Gromov-Witten theory of the second symmetric

product of a nonsingular surface as pursued in [57, 63]. We expect a

connection can be made to their work.

The main step in the proof of Theorem 4 is the evaluation of the

generating series F (u). Below we will give a second proof of Theorem 4

under slightly stronger assumptions. The main new input here is the

refined modularity statement of Theorem 8. Using the modularity

property, the evaluation of F (u) will follow automatically from the

theory of modular forms.

For the second proof, we will assume the following holds:

(∃†) For every d ≥ 1, there exists an abelian surface A and an

irreducible curve class β of type (1, d) satisfying property (†).

Second proof of Theorem 4 under assumption (∃†). For all d ≥ 1, let

βd be an irreducible class of type (1, d) on an abelian surface Ad satis-

fying (†).

Step 1. Define the generating series

ϕg(q) =
∑
d≥1

hAd,FLS
g,βd

qd .
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By Proposition 4, we have, after the change of variables u = 2πz and

y = −eiu,

(42)
∑
g≥2

(y1/2 +y−1/2)2g+2ϕg(q) =

(
q
d

dq

)2
K(z, τ)4

4
=
∑
m≥2

u2mfm(q) ,

where fm(q) are quasi-modular forms of weight 2m,

fm(q) ∈ QMod2m .

Let r = −(y1/2 + y−1/2) = 2 sin(u/2), and let

u = 2 arcsin(r/2) = r +
1

24
r3 +

3

640
r5 + . . .

be the inverse transform. After inserting into (42), we obtain∑
g≥2

ϕg(q)r
2g+2 =

∑
m≥2

(
r +

1

24
r3 + . . .

)2m

fm(q) .

Hence, ϕg(q) is a quasi-modular form with highest weight term fg+1(q):

(43) ϕg(q) = fg+1(q) +R(q)

for R(q) ∈ QMod≤2g.

Step 2. By trading of the FLS for insertions as in (18), the vanishing

of the d = 0 term and deformation invariance,

(44) FE1×E2
g (Hg; a1ω2, b1ω2, ω1a2, ω1b2) =

∑
d≥1

HFLS
g,(1,d)q

d,

where we use the notation of Section 4. Applying Theorem 8, the series

(44) is hence a quasi-modular form of pure weight 2g + 2.

Step 3. By assumption (†) and the discussion after (40), the Gromov-

Witten invariant HFLS
g,(1,d) equals the sum

(45) HFLS
g,(1,d) =

∑
2≤g′≤g

cg′,gh
Ad,FLS
g′,βd

for coefficients cg′,g ∈ Q. Summing up (45) over all d, we obtain∑
d≥1

HFLS
g,(1,d)q

d =
∑

2≤g′≤g

cg′,gϕg′(q) .

The left hand side is homogeneous of weight 2g + 2, hence must equal

the weight 2g + 2 part of the right hand side. Therefore, by (43),∑
d≥1

HFLS
g,(1,d)q

d = fg+1(q) .
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By the definition of the fg+1(q) this shows part (ii) of the Theorem:

(46)
∑
g≥2

u2g+2
∑
d≥1

HFLS
g,(1,d)q

d =
∑
g≥2

u2gfg(q) =

(
q
d

dq

)2
1

4
K(z, τ)4 .

Comparing (46) with (42), also part (i) follows. �
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Part II. Abelian threefolds

6. Donaldson-Thomas theory

6.1. Overview. Let A be a generic abelian surface with a curve class

βd′ of type (1, d′ > 0), and let E be a generic elliptic curve. Throughout

Section 6, we will work with the abelian threefold

X = A× E .

Here we compute the topological Euler characteristic of the stack

Hilbn(X, (βd′ , d))/X in the cases d′ ∈ {1, 2} proving Theorem 5. Next,

we present a conjectural relationship between the Behrend function

weighted Euler characteristic and the topological Euler characteristic

via a simple sign change, and show how it implies Corollary* 5. We

discuss the motivation and plausibility for the conjecture.

Our computation here is parallel to the computation of the reduced

Donaldson-Thomas invariants for K3 × E in [6]. We will frequently

refer to results of [6]. The technique used was developed by Bryan and

Kool in [8].

6.2. Notation. Since the translation action of X on Hilbn(X, (βd′ , d))

has finite stabilizer, the reduced Donaldson-Thomas invariants

DTn,(βd′ ,d) = e
(

Hilbn(X, (βd′ , d))/X, ν
)

=
∑
k∈Z

k · e
(
ν−1(k)

)
and the topological (unweighted) Euler characteristics

D̂Tn,(βd′ ,d) = e
(

Hilbn(X, (βd′ , d))/X
)
.

are well-defined. We have dropped the superscript X in the notation

for the Donaldson-Thomas invariants of Section 0.3.1.

We also use the short hand notation

Hilbn,d
′,d(X) = Hilbn(X, (βd′ , d))

and the following bullet convention:

Convention. When an index in a space is replaced by a bullet (•), we

sum over the index, multiplying by the appropriate variable. The result

is a formal series with coefficients in the Grothendieck ring.
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For example, we let

Hilb•,d
′,•(X)/X =

∑
d≥0

∑
n∈Z

[Hilbn,d
′,d(X)/X] pnqd ,

which we regard as an element in K0(DMC)((p))[[q]], the ring of formal

power series in q, Laurent in p, with coefficients in the Grothendieck

ring of Deligne-Mumford stacks over C.

Define the Donaldson-Thomas partition functions of X,

DTd′ =
∑
d≥0

∑
n∈Z

DTn,(βd′ ,d) (−p)nqd ,

D̂Td′ =
∑
d≥0

∑
n∈Z

D̂Tn,(βd′ ,d) p
nqd .

By the bullet convention,

D̂Td′ = e
(

Hilb•,d
′,•(X)/X

)
,

where we extend the Euler characteristic

e : K0(DMC)→ Q

termwise to the ring of formal power series in p and q over K0(DMC).

6.3. Vertical and diagonal loci. Let pA and pE be the projections

of X = A × E onto the factors A and E respectively. We say an

irreducible curve C ⊂ X is

• vertical, if pE : C → E has degree 0,

• horizontal, if pA : C → A has degree 0,

• diagonal, if pA, pE have both non-zero degree.

The various definitions are illustrated in Figure 1.

Consider a subscheme C ⊂ X which defines a point in Hilbn,d
′,d(X).

Since the class pA∗[C] = βd′ is irreducible, there is a unique irreducible

component of C of dimension 1, which is either vertical or diagonal.

All other irreducible components of C of dimension 1 are horizontal.

Consider the sublocus

(47) Hilbn,d
′,d

vert (X) ⊂ Hilbn,d
′,d(X) ,

parametrizing subschemes C ⊂ X with

C0 × {z0} ⊂ C

for some z0 ∈ E and for some curve C0 ⊂ A of class βd′ . We en-

dow Hilbn,d
′,d

vert (X) with the natural scheme structure. It is a closed

subscheme of Hilbn,d
′,d(X).
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A

E
z0

Figure 1. A vertical curve (orange) contained in the
slice A× {z0} (light grey), a diagonal curve (pink), and
two horizontal curves (green).

Let Hilbn,d
′,d

diag (X) be the complement of the inclusion (47),

Hilbn,d
′,d

diag (X) = Hilbn,d
′,d(X) \ Hilbn,d

′,d
vert (X) .

Hence, every point in Hilbn,d
′,d

diag (X) corresponds to a subscheme C ⊂ X,

which contains a diagonal component.

Since the condition defining the subscheme (47) is invariant under the

translation action of X, we have an induced action of X on Hilbn,d
′,d

vert (X)

and its complement. We exhibit the stack Hilbn,d
′,d

vert (X)/X as a global

quotient stack of a scheme by a finite group of order d′2 as follows.

Let L → A be a fixed line bundle on A with c1(L) = βd′ , and let

z0 ∈ E be a fixed point. Consider the subscheme

Hilbn,d
′,d

vert,fixed(X) ⊂ Hilbn,d
′,d

vert (X)

parametrizing subschemes C ⊂ X with C0 × {z0} ⊂ C for some

(48) C0 ∈ |L| .

The stabilizer of Hilbn,d
′,d

vert,fixed(X) under the translation action of X is

the subgroup

(49) Ker(φ : A→ Â) ⊂ A ,

where φ : a 7→ L ⊗ t∗aL−1 and ta : A → A denotes the translation by

a ∈ A. By (6), the subgroup (49) is isomorphic to Zd′ × Zd′ . Hence,

we have the stack equivalence

(50) Hilbn,d
′,d

vert (X)/X ∼= Hilbn,d
′,d

vert,fixed(X)/(Zd′ × Zd′) .
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6.4. Proof of Theorem 5 (i). Let L be a line bundle on A with

c1(L) = β1, and let

C0 ∈ |L|

be the unique nonsingular genus 2 curve in |L|. Since L has type (1, 1),

the class c1(L) is a principal polarization of A. In particular, A is

isomorphic to the Jacobian J of C0.

Step 1. Every irreducible diagonal curve C ⊂ X in class (β1, d) maps

isomorphically to C0 and, therefore, induces a non-constant map

C0 → E .

Dualizing, we obtain a non-constant map E → J(C0) ∼= A, whose

image is an abelian subvariety of A of dimension 1. Hence, by the

genericity of A, no diagonal curve exists and Hilbn,d
′,d

diag (X) is empty.

Since there are no diagonal curves, we write

Hilbn,d
′,d

fixed (X) = Hilbn,d
′,d

vert,fixed(X) .

Then, by the equivalence (50) with d′ = 1,

e(Hilbn,d
′,d(X)/X) = e(Hilbn,d

′,d
fixed (X)) .

Using the bullet convention, we find

D̂T1 = e
(

Hilb•,1,•fixed (X)
)
.

Step 2. Let X̂C0×E be the formal completion of X along the closed

subvariety C0 × E, and let

U = X \ C0 × E

be the open complement. The subschemes {X̂C0×E, U} forms a fpqc

cover of X. By fpqc descent, subschemes in X are determined by

their restrictions to X̂C0×E and U . Since subschemes parameterized

by Hilbn,1,dfixed (X) are disjoint unions of components contained entirely in

X̂C0×E or U , see Figure 2, there is no overlap condition for descent.

Consequently, we can stratify Hilbn,1,dfixed (X) by locally closed subsets

isomorphic to the product of Hilbert schemes of X̂C0×E and U re-

spectively. The result is succinctly expressed as an equality in the

Grothendieck ring K0(VarC)((p))[[q]]:

(51) Hilb•,1,•fixed (X) = Hilb•,1,•fixed (X̂C0×E) · Hilb•,0,•(U) ,
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A

E
z0

C0

Figure 2. Subschemes in A × E up to translation.
Horizontal curves (pink) can have nilpotent thickenings
(blue), and there can be embedded and floating points
(gray). The unique vertical curve C0 ∈ |L| (green) lies
in A× {z0} and is generically reduced.

where we regard Hilbn,1,dfixed (X̂C0×E) and Hilbn,0,d(U) as subschemes of

Hilbn,1,dfixed (X) and Hilbn,0,d(X) respectively. Taking Euler characteristics

in (51), we obtain

(52) D̂T1 = e
(

Hilb•,1,•fixed (X̂C0×E)
)
· e
(

Hilb•,0,•(U)
)
.

Step 3. We calculate the second factor e
(

Hilb•,0,•(U)
)
.

The E action on U induces an action of E on Hilbn,0,d(U). This

new E action exists because the fixed condition (48) only concerns the

Hilbn,1,dfixed (X̂C0×E) factors and is independent of U and Hilbn,0,d(U).

Since a scheme with a free E action has trivial Euler characteristic,

we have

e
(

Hilbn,0,d(U)
)

= e
(

Hilbn,0,d(U)E
)
,

where Hilbn,0,d(U)E is the fixed locus of the E-action on Hilbn,0,d(U).

Every element of Hilbn,0,d(U)E corresponds to an E-invariant sub-

scheme, or equivalently, is of the form Z × E for a zero-dimensional

subscheme Z ⊂ A \ C0 of length d. Since χ(OZ×E) = 0 for every such
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X̂C0×E C0

xi × E aixi

C0 × {z0}

Figure 3. The map ρd : Hilbn,1,dfixed (X̂C0×E) → Symd(C0)
records the location and multiplicity of the horizontal
curve components.

Z, we find

(53)

e
(

Hilb•,0,•(U)
)

= e
(∑
d≥0

Hilbd(A \ C0) qd
)

=
( ∏
m≥1

(1− qm)−1
)e(A\C0)

=
∏
m≥1

(1− qm)−2 .

We have used Göttsche’s formula for the Euler characteristic of the

Hilbert scheme of points of a surface [21].

Step 4. We calculate the first factor e
(

Hilb•,1,•fixed (X̂C0×E)
)
.

Consider the constructible morphism24

(54) ρd : Hilbn,1,dfixed (X̂C0×E)→ Symd(C0) ,

defined as follows. Let [C] ∈ Hilbn,1,dfixed (X̂C0×E) be a scheme with curve

support C0 × z0 ∪i (xi × E) and multiplicity ai along xi × E. Then

ρd([C]) =
∑
i

aixi ∈ Symd(C0) .

Hence, ρd([C]) records the intersection (with multiplicities) of C0 with

all horizontal components of C, see Figure 3.

24A constructible morphism is a map which is regular on each piece of a de-
composition of its domain into locally closed subsets. Because we work with Euler
characteristics and the Grothendieck group, we only need to work with constructible
morphisms.
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We determine the Euler characteristic of Hilb•,1,•fixed (X̂C0×E) by comput-

ing the Euler characteristic of Symd(C0), weighted by the constructible

function given by the Euler characteristic of the fibers of ρd. Hence,

we write

e
(

Hilbn,1,dfixed (X̂C0×E)
)

=

∫
Hilbn,1,dfixed (X̂C0×E)

1 de

=

∫
Symd C0

(ρd)∗(1) de ,

where de is the measure on constructible subsets induced by the Euler

characteristic and ρd∗(1) denotes integration along the fiber. By writing

Sym•C0 =
∑
d≥0

SymdC0 q
d

and extending the integration to the • notation termwise, we obtain

(55) e
(

Hilb•,1,•fixed (X̂C0×E)
)

=

∫
Sym• C0

ρ∗(1) de

where the measureable function ρ∗(1) is given by

ρ∗(1)
(∑

i

aixi
)

= e
(
ρ−1
(∑

i

aixi
))
∈ Z((p)) .

The following result shows that ρ∗(1) only depends on the underlying

partition of the point in the symmetric product.

Proposition 5. We have

ρ∗(1)
(∑

i

aixi
)

=
(
p1/2(1− p)−1

)e(C0)
∏
i

F (ai)

where ∑
a≥0

F (a) qa =
∏
m≥1

(1− qm)

(1− pqm)(1− p−1qm)
.

The proof of Proposition 5 is identical to the proof of [6, Propo-

sition 4.1 and Lemma 4.3] with e(C0) = −2 here (instead of Euler

characteristic 2 in [6]).

We apply the following result regarding weighted Euler characteris-

tics of symmetric products.

Lemma 15. Let S be a scheme, and let Sym•(S) =
∑

d≥0 Symd(S) qd.

Let G be a constructible function on Sym•(S) such that

G
(∑

i

aixi
)

=
∏
i

g(ai) ,
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for a function g with g(0) = 1. Then∫
Sym• S

G de =
(∑
a≥0

g(a) qa
)e(S)

.

An elementary proof of Lemma 15 is given in [8], but see also [6,

Lemma 4.2].

After applying Proposition 5 and Lemma 15 to (55), we obtain

e
(

Hilb•,1,•fixed (X̂C0×E)
)

= p−1(1− p)2
(∑
a≥0

F (a) qa
)−2

= p−1(1− p)2
∏
m≥1

(1− pqm)2(1− p−1qm)2

(1− qm)2
.

Using (52), (53), and the definition of K(p, q), we obtain the evaluation

of part (i) of Theorem 5. �

6.5. Proof of Theorem 5 (ii). Let A be a generic abelian surface

with curve class β2 of type (1, 2), and let L→ A be a fixed line bundle

with c1(L) = β2. The linear system

|L| = P1

is a pencil of irreducible genus 3 curves. The generic curve in the pencil

is nonsingular, but there are exactly 12 singular curves (each of which

has a single nodal), see [9].

By the disjoint union

Hilbn,d
′,d(X) = Hilbn,d

′,d
diag (X) t Hilbn,d

′,d
vert (X)

and the isomorphism (50), we have

Hilbn,2,d(X)/X = Hilbn,2,dvert,fixed(X)/(Z/2× Z/2) t Hilbn,2,ddiag (X)/X .

Using the bullet convention, it follows

(56) D̂T2 =
1

4
e
(

Hilb•,2,•vert,fixed(X)
)

+ e
(

Hilb•,2,•diag (X)/X
)
.

Step 1. We begin to evaluate e
(

Hilb•,2,•vert,fixed(X)
)
. Consider the map

τ : Hilb•,2,•vert,fixed(X)→ |L| = P1 ,

which maps a subscheme C to the divisor in |L| associated to pA(C).

The fiber of τ over a point C ∈ |L|, denoted

Hilbn,2,dC (X) ⊂ Hilbn,2,dvert,fixed(X) ,
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is the sublocus of Hilbn,2,dvert,fixed(X) which parametrizes curves which con-

tain the curve C × {z0}.

As we have done in (55), we may write

e
(

Hilb•,2,•vert,fixed(X)
)

=

∫
|L|
τ∗(1)de

where τ∗(1) denotes the constructible function obtained by integration

along the fiber:

τ∗(1)([C]) = e
(

Hilb•,2,•C (X)
)
.

Step 2. Let C ⊂ A be a curve in |L|. Following a strategy similar to

the proof of part (i), we will compute explicit expressions for τ∗(1)([C])

depending only upon whether C is nodal or not.

Following Step 2 of the proof of part (i), we have

Hilb•,2,•C (X) = Hilb•,2,•C (X̂C×E) · Hilb•,2,•C (X \ C × E) .

Using the extra E action on the second factors, we obtain

(57) e
(

Hilb•,2,•C (X)
)

= e
(

Hilb•,2,•C (X̂C×E)
)
·
∏
m≥1

(1− qm)−e(A\C) .

For the first factor, we use the map

ρ : Hilb•,2,•C (X̂C×E)→ Sym•(C)

which records the location and multiplicity of the horizontal compo-

nents (and has already appeared in (54)).

Step 3. If C is nonsingular, we apply Proposition 5 with C in place

of C0 for the integration along the fiber of ρ. By Lemma 15, we have

e
(

Hilb•,2,•C (X̂C×E)
)

=

∫
Sym• C

ρ∗(1) de

=
(
p1/2(1− p)−1

)e(C)
(∑
a≥0

F (a)qa
)e(C)

= p−2(1− p)4
∏
m≥1

(1− pqm)4(1− p−1qm)4

(1− qm)4
.

Using (57) with e(A \ C) = 4, we find

(58) τ∗(1)([C]) = e
(

Hilb•,2,•C (X)
)

= K(p, q)4 .
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N

A

E
z0

Figure 4. A subscheme parameterized by Hilb•,2,•N (X)
which includes a thickened horizontal curve (green) at-
tached to the node of a nodal vertical curve (orange). For
the subscheme to have a non-zero contribution to the Eu-
ler characteristic, embedded points (blue) can only occur
on N or on horizontal curves attached to N .

Step 4. Let C = N ∈ |L| be a curve with a nodal point z ∈ C. The

corresponding moduli space Hilbn,2,dN (X) is depicted in Figure 4. We

have the following result.

Proposition 6. Let x1, . . . , xl ∈ N \ {z}, then

(59) ρ∗(1)
(
bz +

l∑
i=1

aixi

)
= p−2(1− p)4N(b)

l∏
i=1

F (ai)

where∑
b≥0

N(b)qb =
∏
m≥1

(1− qm)−1 ·
(

1 +
p

(1− p)2
+
∑
d≥1

∑
k|d

k(pk + p−k)qd
)
.

The proof is identical to the proof of the corresponding statement

for contributions of nodal curves in the K3×E geometry of [6, Section

5]. The only difference is that in our case e(N \ {z}) = −4, whereas in

the K3 case e(N \ {z}) = 0. The different Euler characteristic results

in the different prefactor p−2(1− p)4 in (59). The prefactor in general

is (
p1/2(1− p)−1

)e(N\{z})
.

The geometry of the term N(b) arises as the contribution

N(b) = e
(

Hilb•,2,b(X̂{z}×E)
)
.

In [6], the right hand side is expressed in terms of the topological vertex.

By results of [4], we obtain the closed form of Proposition 6.
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By Proposition 6 and Lemma 15, we obtain

e
(

Hilb•,2,•N (X̂N×E)
)

=

∫
Sym•N

ρ∗(1) de

= p−2(1− p)4

∫
Sym•(N\{z})

∏
i

F (ai) de

∫
Sym•({z})

N(b) de

= p−2(1− p)4
(∑
a≥0

F (a)qa
)e(N\{z})

·
(∑
b≥0

N(b)qb
)

= p−2(1− p)4

(∏
m≥1

(1− pqm)4(1− p−1qm)4

(1− qm)5

)
·
(

1 +
p

(1− p)2
+
∑
d≥1

∑
k|d

k(pk + p−k)qd
)
.

By (57) with e(A \N) = 3, we find

(60)

τ∗(1)([N ]) = e
(

Hilb•,2,•N (X)
)

= K(p, q)4 ·
(

1 +
p

(1− p)2
+
∑
d≥1

∑
k|d

k(pk + p−k)qd
)
.

Step 5. We complete the calculation of e
(

Hilb•,2,•vert,fixed(X)
)
.

By (58) and (60), the function τ∗(1)([C]) only depends upon whether

C ∈ |L| is nodal or not. Therefore,

e
(

Hilb•,2,•vert,fixed(X)
)

=

∫
|L|
τ∗(1)de

= e(P1 \ 12 points) ·K(p, q)4 + e(12 points) · τ∗(1)(N)

= −10K(p, q)4 + 12K(p, q)4 ·
(

1 +
p

(1− p)2
+
∑
d≥1

∑
k|d

k(pk + p−k)qd
)

= K(p, q)4 ·
(

2 + 12
p

(1− p)2
+ 12

∑
d≥1

∑
k|d

k(pk + p−k)qd
)
.

Step 6. We compute the contribution e
(

Hilb•,2,•diag (X)/X
)

arising from

the locus of curves with a diagonal component.

By Lemma 21 of Section 7.4, there are

12σ

(
d

2

)
δd,even

isolated translation classes of diagonal curves of class (β2, d). Moreover,

the translation action of X on each translation class is free.
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Choose one representative from each X-orbit of the diagonal classes.

Let

(61) Hilbn,2,ddiag,fixed(X) ⊂ Hilbn,2,ddiag (X)

be the subscheme parameterizing curves, who contain one of the chosen

representatives. The moduli space (61) defines a slice for the action of

X on Hilbn,2,ddiag (X),

Hilbn,2,ddiag (X)/X ∼= Hilbn,2,ddiag,fixed(X) .

The contribution of such subschemes to the Euler characteristic is

computed precisely as the contribution with a genus 3 vertical com-

ponent in Step 3 above. Taking into account the number of diagonal

curves and their degree in the horizontal direction, we find

e
(

Hilb•,2,•diag,fixed(X)
)

= e
(

Hilb•,2,•C (X)
)
·
(

12
∑
d≥1

∑
k|d

kq2d
)

= K(p, q)4 ·
(

12
∑
d≥1

∑
k|d

kq2d
)
.

Step 7. We have calculated all terms in the sum (56) in Steps 5 and 6.

After summing, the proof of part (ii) of Theorem 5 is complete. �

6.6. The Behrend function. In the cases d′ ∈ {1, 2}, we conjecture

that the Behrend function weighted Euler characteristic of the Hilbert

schemes differs from the ordinary Euler characteristic by a factor of

±(−1)n. Here, n is the holomorphic Euler characteristic, and the over-

all sign depends upon whether the component of the Hilbert scheme

corresponds to subschemes with diagonal curves or vertical curves.

The Behrend function on the quotient

ν : Hilbn,d
′,d(X)/X → Z

induces, by our identification of the various components with different

slices of the X-action, constructible functions on

Hilbn,1,dfixed (X) , Hilbn,2,dvert,fixed(X) , and Hilbn,2,ddiag,fixed(X) .

We will denote these functions by ν as well and write e(·, ν) for the

topological Euler characteristic weighted by ν.

Conjecture D. We have

e
(

Hilbn,1,dfixed (X)
)

= −(−1)ne
(

Hilbn,1,dfixed (X), ν
)
,

e
(

Hilbn,2,dvert,fixed(X)
)

= −(−1)ne
(

Hilbn,2,dvert,fixed(X), ν
)
,
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e
(

Hilbn,2,ddiag,fixed(X)
)

= +(−1)ne
(

Hilbn,2,ddiag,fixed(X), ν
)
.

Assuming Conjecture D, we prove Corollary* 5.

Proof of Corollary 5. In case d′ = 1, we have, by Conjecture D,

DT1 = −D̂T1 .

Part (i) of Corollary* 5 hence follows from part (i) of Theorem 5.

In case d′ = 2, we have, following (56),

DT2 =∑
d≥0

∑
n∈Z

(
1

4
e
(

Hilb•,2,•vert,fixed(X), ν
)

+ e
(

Hilb•,2,•diag,fixed(X), ν
))

(−p)nqd .

By Conjecture D, the right side equals∑
d≥0

∑
n∈Z

(
−1

4
e
(

Hilb•,2,•vert,fixed(X)
)

+ e
(

Hilb•,2,•diag,fixed(X)
))

pnqd .

These terms have been calculated in Steps 5 and 6 of the proof of

Theorem 5 (ii). Summing up, we obtain

K(p, q)4 ·
(
−3℘(p, q)− 1

4
+ 6

∑
d≥1

∑
k|d

k(2q2d − qd)
)
,

where

℘(p, q) =
1

12
+

p

(1− p)2
+
∑
d≥1

∑
k|d

k(pk − 2 + p−k)qd

is the Weierstrass elliptic function expanded in p and q. Rewriting

−1

4
+ 6

∑
d≥1

∑
k|d

k(2q2d − qd)

= −1

4

(
1 + 24

∑
d≥1

∑
k|d

kqd − 24
∑
d≥1

∑
k|d

k even

kqd
)

= −1

4
ϑD4(q)

where

ϑD4(q) = 1 + 24
∑
d≥1

∑
k|d
k odd

kqd

is the theta function of the D4 lattice, we find

DT2 = −K(p, q)4 ·
(

3℘(p, q) +
1

4
ϑD4(q)

)
.

Hence, part (ii) of Corollary* 5 follows from Lemma 16 below. �
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Lemma 16. We have

K(p, q)4 ·
(

3℘(p, q) +
1

4
ϑD4(q)

)
=

3

2
K(p, q)4℘(p, q) +

3

8
K(p2, q2)2 .

Proof. The Lemma is stated as an equality of formal power series. Since

both sides converge for the variables

p = e2πiz and q = e2πiτ

with z ∈ C and τ ∈ H, we may work with the actual functions

K(z, τ), ℘(z, τ), and ϑD4(τ).

The statement of the Lemma is then equivalent to

(62) ϕ(z, τ) =
K(2z, 2τ)2

K(z, τ)4
− 4℘(z, τ) =

2

3
ϑD4(τ) .

From the definition of K(z, τ), we obtain

K(z + λτ + µ, τ) = (−1)λ+µq−λ/2p−λK(z, τ)

for all λ, µ ∈ Z. Combined with the double-periodicity of the Weier-

strass ℘-function, this implies

ϕ(z + λτ + µ, τ) = ϕ(z, τ)

for all λ, µ ∈ Z. Since

K(z, τ) = 2πiz +O(z3) and ℘(z, τ) =
1

(2πiz)2
+O(1) ,

the function ϕ(z, τ) has no pole at z = 0. Because the only zero of

K(z, τ) and ϑ1(z, τ) and the only pole of ℘(z, τ) in the fundamental

region are at z = 0, the function ϕ(z, τ) is entire. By double-periodicity,

ϕ(z, τ) is hence a constant only depending on τ .

We evaluate ϕ(z, τ) at z = 1/2. We have

℘

(
1

2
, τ

)
= −1

6
ϑD4(τ) .

Since K(1/2, τ) 6= 0, but K(1, τ) = 0, this shows

ϕ(z, τ) = ϕ

(
1

2
, τ

)
= −4 ·

(
−1

6
ϑD4(τ)

)
=

2

3
ϑD4(τ) . �
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6.7. Discussion of Conjecture D. The phenomenon proposed by

Conjecture D is parallel to the phenomenon exhibited by the Donaldson-

Thomas invariants of toric Calabi-Yau threefolds. In the case of toric

Calabi-Yau threefolds, the only subschemes which contribute to the

DT invariants are the torus fixed subschemes, namely those which are

locally given by monomial ideals. The value of the Behrend function

at such a subscheme Z is given by ±(−1)n where n = χ(OZ) and the

overall sign depends only on the 1-dimensional component of Z (and

not on the embedded points) [39].

One route to prove Conjecture D would be to show the following two

properties.

(i) The motivic methods of the previous section are compatible

with the Behrend function, specifically that the group actions

defined on the various substrata of Hilb(X)/X respect the

Behrend function.

(ii) The value of the Behrend function at a subscheme Z which is

formally locally given by monomial ideals is given by ±(−1)n

where the overall sign is positive if Z contains a diagonal curve

and negative if Z contains a vertical curve.

7. Gromov-Witten theory

7.1. Overview. Let X be an abelian threefold, let g ≥ 2 be the genus,

and let β ∈ H2(X,Z) be a curve class of type (d1, d2, d3) with d1, d2 > 0.

In Section 7.2, we define a virtual fundamental class on the quotient

stack

M g(X, β)/X .

The degree of the virtual class is the quotient Gromov-Witten invariant

of X.

The reduced Gromov-Witten invariants of X are defined by integra-

tion against the 3-reduced virtual class (defined in Section 1.4) on the

moduli space M g,n(X, β). In Section 7.3, we prove that these invari-

ants are fully determined by the quotient Gromov-Witten invariants

and classical intersections.

In Section 7.4, we relate the quotient invariants in genus 3 to the

lattice counts of Section 1.3. We also prove the crucial Lemma 21

needed in Section 6. In Section 7.5, we use Jacobi form techniques to

show that Conjectures B and C are consistent with Theorem 5.
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Finally, we extend Conjecture C to all curve classes in Section 7.6.

7.2. Quotient invariants. Since g ≥ 2, X acts on M g(X, β) with

finite stabilizers. Let

(63) q : M g(X, β)→M g(X, β)/X .

be the quotient map.

Let 0X ∈ X be the identity element, let

ev : M g,1(X, β)→ X

be the evaluation map, let ψ1 be the first Chern class of the cotangent

line L1 →M g,1(X, β) and let

π : M g,1(X, β)→M g(X, β)

be the forgetful map.

We define the reduced virtual class on M g(X, β)/X by

[M g(X, β)/X]red =
1

2g − 2
(q ◦π)∗

((
ev−1(0X)∪ψ1

)
∩ [M g,1(X, β)]red

)
.

The definition is justified by the following Lemma.

Lemma 17. Let p : M g,n(X, β)→M g(X, β)/X be the composition of

the forgetful with the quotient map. Then,

p∗[M g(X, β)/X]red = [M g,n(X, β)]red .

Proof. The map p factors as

p : M g,n(X, β)
p′−→M g(X, β)

q−→M g(X, β)/X

where p′ is the forgetful and q is the quotient map (63). Since we have

p′∗[M g(X, β)]red = [M g,n(X, β)]red ,

it is enough to prove

q∗[M g(X, β)/X]red = [M g(X, β)]red .

Consider the product decomposition

(64) M g,1(X, β) = M
0

g,1(X, β)×X ,

where

M
0

g,1(X, β) = ev−1(0X) .

Under the decomposition (64), write

q′ : M g,1(X, β)→M
0

g,1(X, β)
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for the projection to the first factor. Since the obstruction theory of

M g,1(X, β) is X-equivariant, we have

ψ1 ∩ [M g,1(X, β)]red = q′∗α

for some class α on M
0

g,1(X, β).

Consider the inclusion

ι : M
0

g,1(X, β)→M g,1(X, β)

defined by M
0

g,1(X, β)× 0X under (64) and the fiber diagram

M g,1(X, β)
q′ //

π

��

M
0

g,1(X, β)
ι

oo

π′

��

M g(X, β)
q // M g(X, β)/X ,

where π′ is the map induced by π. Then

(2g − 2)q∗[M g(X, β)/X]red

= q∗π′∗q
′
∗

((
ev−1(0X) ∪ ψ1

)
∩ [M g,1(X, β)]red

)
= π∗q

′∗q′∗

((
ev−1(0X) ∪ ψ1

)
∩ [M g,1(X, β)]red

)
= π∗q

′∗ι∗
(
ψ1 ∩ [M g,1(X, β)]red

)
= π∗q

′∗α

= π∗
(
ψ1 ∩ [M g,1(X, β)]red

)
.

The Lemma now follows directly from the dilaton equation. �

We define the quotient Gromov-Witten invariants of X by

(65) Ng,β =

∫
[Mg(X,β)/X]red

1 .

7.3. Reduced Gromov-Witten invariants. Let g ≥ 2 and let β be

a curve class of type (d1, d2, d3) with d1, d2 > 0. Let

[M g,n(X, β)]red

be the 3-reduced virtual class on the moduli space M g,n(X, β) con-

structed in Section 1.4. The reduced Gromov-Witten invariants of X

are defined by

(66)
〈
τa1(γ1) . . . τan(γn)

〉X,red

g,β
=

∫
[Mg,n(X,β)]red

n∏
i=1

ev∗i (γi) ∪ ψ
ai
i ,

for γ1, . . . , γn ∈ H∗(X,Q) and a1, . . . , an ≥ 0.
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By the definition of the virtual class [M g(X, β)/X]red and the quo-

tient Gromov-Witten invariants (65), we have

Ng,β =
1

2g − 2
·
〈
τ1(p)

〉X,red

g,β
,

where p ∈ H6(X,Z) is the class of a point. The invariants Ng,β will be

shown to determine all reduced Gromov-Witten invariants (66) of X.

We first determine all primary Gromov-Witten invariants in terms

of Ng,β. Consider the translation action

(67) t : Xn+1 → X, (a, x1, . . . , xn) 7→ (x1 − a, . . . , xn − a) .

Lemma 18. For γ1, . . . , γn ∈ H∗(X,Q),

(68)
〈
τ0(γ1) . . . τ0(γn)

〉X,red

g,β
= Ng,β ·

∫
t∗([X]⊗β⊗n)

γ1 ⊗ . . .⊗ γn .

Proof. Let γ1, . . . , γn ∈ H∗(X,Q) be homogeneous classes. We may

assume the dimension constraint
n∑
i=1

deg(γi) = 2(3 + n)

holds25 – otherwise both sides of (68) vanish.

For every k, let

πk : M g,k(X, β)→M g(X)/X

be the composition of the map that forgets all markings with the quo-

tient map. By Lemma 17,

[M g,n(X, β)]red = π∗n[M g(X, β)/X]red ,

hence by the push-pull formula〈
τ0(γ1) . . . τ0(γn)

〉X,red

g,β
=

∫
[Mg(X,β)/X]red

πn∗

(∏
i

ev∗i (γi)
)
.

Since the map πn is of relative dimension 3 + n, the cohomology class

πn∗

(∏
i

ev∗i (γi)
)

has degree 0. To proceed, we evaluate
∏

i ev∗i (γi) on the fibers of πn.

Let f : C → X be a stable map of genus g and class β, let

[f ] ∈M g(X, β)/X

be the associated point, and let F be the (stack) fiber of πn over [f ].

25Here, deg(·) denotes the real degree of a class in X.
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By the definition of M g(X, β)/X as a quotient stack [56], we may

identify

(69) X = π−1
0 ([f ]),

where the induced map X →M g(X, β) is x 7→ (f − x).

Under (69), let

b0 : F → X

be the map which forgets all markings. For i ∈ {1, . . . , n}, let

bi : F → C

be the map which forgets the map and all except the i-th marking.

The induced map

b = (b0, . . . , bn) : F → X × Cn

is birational on components.

The evaluation map ev : F → Xn factors as

F
b−→ X × Cn (id,f,...,f)−−−−−→ Xn+1 t−→ Xn ,

where t is the translation map (67). We find∫
F

ev∗1(γ1) · · · ev∗n(γn) =

∫
ev∗[F ]

γ1 ⊗ . . .⊗ γn

=

∫
t∗(id,fn)∗([X]⊗[C]⊗n)

γ1 ⊗ . . .⊗ γn

=

∫
t∗([X]⊗β⊗n)

γ1 ⊗ . . .⊗ γn .

Since this only depends on β and the γi, we conclude

πn∗

(∏
i

ev∗i (γi)
)

=
(∫

t∗([X]⊗βn)

γ1 ⊗ . . .⊗ γn
)
· 1 .

The claim of the Lemma follows. �

We state the abelian vanishing relation for abelian threefolds. Let

p : Xn → Xn−1 , (x1, . . . , xn) 7→ (x2 − x1, . . . , xn − x1) .

Lemma 19. Let γ ∈ H∗(Xn−1,Q) and let a1, . . . , an ≥ 0. For any

γ1 ∈ H∗(X,Q) of degree deg(γ1) ≤ 5,∫
[Mg,n(X,β)]red

ev∗1(γ1) ∪ ev∗ p∗(γ) ∪
∏
i

ψaii = 0 .

The proof is identical to the proof of Lemma 4.
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Proposition 7. The full reduced descendent Gromov-Witten theory of

X in genus g and class β is determined from Ng,β by the following

operations:

(i) the string, dilaton, and divisor equations,

(ii) the abelian vanishing relation of Lemma 19,

(iii) the evaluation by Lemma 18 of primary invariants,

(iv) the evaluation
〈
τ1(p)

〉X,red

g,β
= (2g − 2) · Ng,β.

Proof. Let γ1, . . . , γn ∈ H∗(X,Q) be homogeneous classes. We must

determine the Gromov-Witten invariant

(70)
〈
τa1(γ1) . . . τan(γn)

〉X,red

g,β

for a1, . . . , an ≥ 0. We may assume the dimension constraint

(71)
n∑
i=1

deg(γi) + 2ai = 2(3 + n) ,

where deg(·) is the real degree of a class in X. In particular, n ≥ 1.

We proceed by induction on n. In case n = 1, the insertion must be

τ1(p) , τ2(γ) , τ3(γ′) , or τ4(γ′′)

for classes γ, γ′, γ′′ of degrees 4, 2, 0 respectively. The case τ1(p) follows

from (iv). The cases τ2(γ), τ3(γ′), and τ4(γ′′) all vanish by the abelian

vanishing relation (ii).

Suppose n > 1 and assume the Proposition is true for all n′ < n. If

ai = 0 for all i, the statement follows from the evaluation (iii). Hence

we may assume a1 > 0. If deg(γ1) < 6, we first apply the vanishing of

Lemma 19 for γ1 and

γ = γ2 ⊗ · · · ⊗ γn .
We find, that (70) can can be expressed as a sum of series

±
〈
τa1(γ1 ∪ δ)τa2(γ′2) · · · τan(γ′n)

〉X,red

g,β

for homogeneous classes δ, γ′2, . . . , γ
′
n ∈ H∗(X,Q) with deg(δ) ≥ 1. The

above relation increases the degree of γ1. By induction on deg(γ1), we

may assume deg(γ1) = 6.

By the dimension constraint (71), we have
n∑
i=2

deg(γi) + 2ai = 2(n− a1) ,

hence there exists a k ∈ {2, . . . , n}, such that deg(γk) + 2ak ≤ 2.
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If ak = 1, then deg(γk) = 0 and we use the dilaton equation. If

ak = 0 and deg(γi) ∈ {0, 1}, we use the string equation. If ak = 0 and

deg(γi) = 2, we use the divisor equation. In each case, we reduce to

Gromov-Witten invariants with less then n marked points. The proof

of the Proposition now follows from the induction hypothesis. �

In (14), we defined quotient invariants NQ
g,(d1,d2) counting genus g

curves on an abelian surface A in class of type (d1, d2), with g ≥ 2 and

d1, d2 > 0. By trading the FLS condition for insertions, moving the

calculation to the threefold A × E via the k = 2 case of Section 1.5,

and by the evaluation of Lemma 18, one obtains

NQ
g,(d1,d2) = Ng,(d1,d2,0) .

Hence, the quotient invariants of abelian surfaces agree with the de-

generate case of the quotient invariants of abelian threefolds.

7.4. Genus 3 counts. We determine the genus 3 invariants of X using

the lattice method of Section 1.3. The strategy is similar to the proof

of Lemma 3.

Lemma 20. For all d1, d2, d3 > 0,

N3,(d1,d2,d3) = 2ν(d1, d2, d3) .

Proof. Let β be a curve class of type (d1, d2, d3) on a generic abelian

threefold X. Since X is simple, every genus 3 stable map

f : C → X

in class β has a nonsingular domain C, and induces a polarized isogeny

(X̂, β̂)→ (J, θ).

Conversely, every simple principally polarized abelian threefold (B, θ)

is the Jacobian of a unique nonsingular genus 3 curve C. Hence, each

polarized isogeny (X̂, β̂)→ (B, θ) induces a map

f : C
aj−→ B → X .

However, for a generic abelian threefold X we have Aut(C) = {1} and

Aut(X) = {±1}. The composition

f− = (−1) ◦ f : C → X

is not translation equivalent to f and the given polarized isogeny cor-

responds to two genus 3 stable maps up to translation.26

26This fact was overlooked in [34].
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The argument in the proof of Lemma 3 also shows that X acts freely

on M3(X, β). The only point to verify is that given a nonsingular

genus 3 curve C and the Abel-Jacobi map aj : C → J , the only element

in J fixing aj(C) is 0J . For this we consider the map

Sym2(aj) : Sym2(C) → J .

The image of Sym2(C) is a theta divisor, and is only fixed by 0J ∈ J .

Then, if a point a ∈ J fixes aj(C), it must also fix the image of Sym2(C)

under Sym2(aj). Hence a = 0J .

It follows that M3(X, β)/X is a set of 2ν(d1, d2, d3) isolated reduced

points. �

By Lemma 3, Theorem 6, and Lemma 20,

(72) N3,(1,d,d′) = 2NQ
2,(d,d′) = 2

∑
k| gcd(d,d′)

∑
m| dd′

k2

k3m.

The right hand side of (72) matches precisely the genus 3 predictions

of Conjectures B and C.

Further, the lattice method can be adjusted to count diagonal curves

in the X = A × E setting. Let A, E, and (βd′ , d) be as in Section 6.

Recall that an irreducible curve C ⊂ X is diagonal if both projections

pA : C → A and pE : C → E are of non-zero degree.

Lemma 21. For even d, there are

12σ

(
d

2

)
= 12

∑
k| d

2

k

isolated diagonal curves in class (β2, d) up to translation. All diagonal

curves are nonsingular of genus 3. The translation action of A×E on

the diagonal curves is free.

Proof. Let C be a diagonal curve in class (β2, d). Since β2 is irreducible,

the projection pA : C → A is generically injective. The image

C0 = pA(C) ⊂ A

is either a nonsingular genus 3 curve or a nodal genus 2 curve. We

claim that the latter does not happen.

Suppose it does, and let q : C̃ → C be the normalization map. Then

pA◦q : C̃ → A factors through an isogeny J(C̃)→ A, where J(C̃) is the

Jacobian of the genus 2 curve C̃. We also know that pE ◦ q : C̃ → E
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factors through J(C̃) → E, which is surjective since d > 0. This

contradicts the assumption that A is simple.

Hence, C0 is nonsingular of genus 3 and so is C. As before, every

such C induces a polarized isogeny(
Â× E, (̂β2, d)

)
→ (J, θ) .

Conversely, every principally polarized abelian threefold (B, θ) is either

• the Jacobian of a unique nonsingular genus 3 curve, or

• the product of a principally polarized abelian surface and an

elliptic curve, with the product polarization.

Given (β2, d) of type (1, 2, d), we know exactly which maximal to-

tally isotropic subgroups of Ker(φ
(̂β2,d)

) ∼= (Z/2× Z/d)2 correspond to

polarized isogenies

(73)
(
Â× E, (̂β2, d)

)
→ (B, θ)

to Jacobians (B, θ). They are precisely the subgroups not of the form

G1 ×G2 with G1 < (Z/2)2 , G2 < (Z/d)2 .

In particular, d must be even for these subgroups to exist. In terms of

(7), there are the following two possibilities:

(i) K = Z/2k for some k|d
2
, generated by(

1,
d

2k

)
∈ Z/2× Z/d ,

together with an arbitrary element in Homsym(K, K̂),

(ii) K = Z/2× Z/2k for some k|d
2
, generated by

(1, 0),

(
0,

d

2k

)
∈ Z/2× Z/d ,

together with a non-diagonal element in Homsym(K, K̂).

Summing up (i) and (ii), we find∑
k| d

2

2k +
∑
k| d

2

2 · 2k = 6
∑
k| d

2

k

polarized isogenies to Jacobians. We claim that each of the isogenies

corresponds to two diagonal curves up to translation.

We have seen that a diagonal curve C ⊂ A × E is isomorphic to

its image C0 ⊂ A. By [3, Section 10.8 (1)], every nonsingular genus 3
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curve C ′ ⊂ A in class β2 admits a double cover to an elliptic curve E ′.

In particular, the Jacobian J(C ′) is isogenous to A× E ′. Hence,

Z/2 ⊂ Aut(C0) = Aut(C) .

On the other hand, we have generically Aut(A×E) = Z/2×Z/2. Since

the Jacobian J of C is isogenous to A× E, we also have

Aut(J) ⊂ Z/2× Z/2 .

A strong form of the Torelli theorem (see [3, Section 11.12 (19)]) says

Aut(C) =

{
Aut(J, θ) if C is hyperelliptic

Aut(J, θ)/{±1} if C is not hyperelliptic .

In our case this means

Aut(C) =

{
Z/2× Z/2 if C is hyperelliptic

Z/2 if C is not hyperelliptic .

To see that C is generically not hyperelliptic, recall from Section 5.3

that up to translation there are three27 hyperelliptic genus 3 curves

C ′1, C
′
2, C

′
3 ⊂ A

in class β2 with Z/2-stabilizers. For i = 1, 2, 3, the Jacobian J(C ′i) is

isogenous to A×E ′i for some E ′i. Hence, by taking E non-isogenous to

E ′1, E
′
2, E

′
3, we find that the diagonal curve C ⊂ A×E is not isomorphic

to C ′1, C
′
2, C

′
3.

To conclude, we have Aut(C) = Z/2 and Aut(J) = Aut(A × E) =

Z/2 × Z/2. Therefore, each polarized isogeny (73) gives two diagonal

curves up to translation. We find in total

2 · 6
∑
k| d

2

k = 12
∑
k| d

2

k

diagonal curves up to translation. The proof that A× E acts freely is

identical to the one given in the proof of Lemma 20. �

7.5. Consistency check of Conjectures B and C. Conjecture C

expresses the invariants Ng,(1,d′,d) in terms of the invariants Ng,(1,1,d).

By Conjecture B, we obtain a prediction for the Donaldson-Thomas

invariants of type (1, 2, d) in terms of those of (1, 1, d). We show here

that these predictions match the calculations of Theorem 5.

27Each corresponds to a degree 2 polarized isogeny (A, β2) → (B, θ), with B
the Jacobian of a genus 2 curve. The hyperelliptic curve is obtained by taking the
preimage of the genus 2 curve.
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For d ≥ 0, let fd(p), gd(p) ∈ Q((p)) be the unique Laurent series with

(74)

∑
d≥0

fd(p)q
d = K(z, τ)2

∑
d≥0

gd(p)q
d =

3

2
K(z, τ)4℘(z, τ) +

3

8
K(2z, 2τ)2

under the variable change

p = e2πiz and q = e2πiτ .

The functions on the right hand side of (74) are exactly the negative of

the functions appearing in Corollary* 5. The following Lemma shows

that Corollary* 5 is consistent with Conjectures B and C.

Lemma 22. We have

gd(p) =

{
f2d(p) if d is odd

f2d(p) + 1
2
fd/2(p2) if d is even .

Proof. We use basic results from the theory of Jacobi forms [16]. We

will work with the actual variables p = e2πiz and q = e2πiτ , where z ∈ C
and τ ∈ H.

Let ϕ−2,1(z, τ) be the weight−2, index 1 generator of the ring of weak

Jacobi forms defined in [16, Section 9]. We have the basic identity

ϕ−2,1(z, τ) = K(z, τ)2 ,

see, for example, [13, Equation 4.29]. Applying the Hecke operator∣∣
−2,1

V2 defined in [16, Section 4], we obtain the weak weight −2, index

2 Jacobi form

(ϕ−2,1|−2,1V2)(z, τ) =
∑
d≥0

(
f2d(p) +

fd/2(p2)

23

)
qd ,

where fa(p) = 0 whenever a is fractional. Using [16, Theorem 9.3] and

comparing the first coefficients, we find∑
d≥0

(
f2d(p) +

fd/2(p2)

23

)
qd =

3

2
K(z, τ)4℘(z, τ) .

We conclude∑
d≥0

(
f2d(p) +

fd/2(p2)

2

)
qd =

3

2
K(z, τ)4℘(z, τ) +

∑
d≥0

3

8
fd/2(p2)qd

=
3

2
K(z, τ)4℘(z, τ) +

3

8
K(2z, 2τ)2

=
∑
d≥0

gd(p)q
d . �
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7.6. A formula for imprimitive classes. We conjecture a multiple

cover formula in all classes for the quotient invariants Ng,(d1,d2,d3). The

shape of the formula already appeared in the physics approach of [38].

However, [38] does not match the invariants Ng,β and our formula below

is different.

Define the function

n(d1, d2, d3, k) =
∑
δ

δ2

where δ runs over all divisors of

gcd

(
k, d1, d2, d3,

d1d2

k
,
d1d3

k
,
d2d3

k
,
d1d2d3

k2

)
.

Conjecture E. For all g ≥ 2, d1, d2 > 0, and d3 ≥ 0,

Ng,(d1,d2,d3) =
∑
k

n(d1, d2, d3, k)k2g−3N
g,(1,1,

d1d2d3
k2

)

where k runs over all divisors of gcd(d1d2, d1d3, d2d3) such that k2 di-

vides d1d2d3.

Recall the quotient Donaldson-Thomas invariants DTn,β. Assuming

deformation invariance, we write

DTn,β = DTn,(d1,d2,d3)

if β is of type (d1, d2, d3). The invariants DTn,(d1,d2,d3) are defined when-

ever n 6= 0 or if at least two of the di are positive.

Translating the multiple cover rule of Conjecture E via the conjec-

tural GW/DT correspondence yields the following.

Conjecture E′. Assume n > 0 or at least two of the integers d1, d2, d3

are positive. Then

DTn,(d1,d2,d3) =
∑
k

1

k
n(d1, d2, d3, k)(−1)n−

n
k DTn

k
,(1,1,

d1d2d3
k2

)

where k runs over all divisors of gcd(n, d1d2, d1d3, d2d3) such that k2

divides d1d2d3.

While Conjecture E only applies for d1, d2 > 0, we have stated Con-

jecture E′ also for the degenerate cases (0, 0, d). Unraveling the defini-

tion yields

DTn,(0,0,d) =
(−1)n−1

n

∑
k|gcd(n,d)

k2 ,
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which for d = 0 is in perfect agreement with [60], and for d > 0 is

proven in [46].
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