Practice problem for the exam

Lecturer: Georg Oberdieck, Course: K3 surfaces, Winter 2022

1. Give an example of a K3 surface (with proof). Does your example S have an elliptic fibration? Does your example admit a non-trivial automorphism? If not, can you modify your example so it has one?
2. Let D be a divisor on a K3 surface S. Compute $\chi(\mathcal{O}(D))$.
3. Let $C \subset S$ be a smooth connected curve on S. Compute $C \cdot C$ and the dimension of $H^{0}\left(C, N_{C / S}\right)$ in terms of the genus of g.
4. Let H be an ample divisor on S (so that $H^{1}(S, \mathcal{O}(H))=H^{2}(S, \mathcal{O}(H))=$ 0 by Kodaira vanishing). Determine the dimension of the linear system $|H|$ in terms of h where $H^{2}=2 h-2$. Determine the arithmetic genus of a curve $C \in|H|$.

Remark: This exercise reduces to Problem 3 if we know that there always exists a smooth curve $C \in|H|$ in a given linear system. Does this always hold? Hint: Consider a generic elliptic K3 surface with a section, let $H=$ $B+d F$ where B is the class of the section and F is a class of a fiber, and determine the linear system $|H|$.
5. Let $S \rightarrow \mathbb{P}^{2}$ be a degree two cover branched along a smooth conic curve $C \subset \mathbb{P}^{2}$. Give a more explicit description of S. To which well-known surface is S isomorphic to?
6. Let $U \subset \mathbb{P}\left(H^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(4)\right)\right)$ be the locus of all smooth quartics in \mathbb{P}^{3}. Show that there exists a point $f \in U$ such that the Picard group of $S=V(f)$ is generated by the hyperplane class (and hence is rank 1).
(You may use that the Kodaira spence map $T_{[S]} U \rightarrow H^{1}\left(S, T_{S}\right)$ can be identified with the map ($*$) in the following sequence obtained from $0 \rightarrow$ $\left.T_{S} \rightarrow T_{\mathbb{P}^{3}}\right|_{S} \rightarrow N_{S / \mathbb{P}^{3}} \rightarrow 0$ by taking cohomology:
$\left.0 \rightarrow H^{0}\left(T_{\mathbb{P}^{3}} \mid S\right) \rightarrow H^{0}\left(S, N_{S / X}\right) \xrightarrow{(*)} H^{1}\left(S, T_{S}\right) \rightarrow H^{1}\left(\left.T_{\mathbb{P}^{3}}\right|_{S}\right)=\mathbb{C} \rightarrow 0.\right)$
Conclude that $\operatorname{Aut}(S)=\{\mathrm{id}\}$ for any such K3 surface S, and that it does not admit an elliptic fibration.
7. (Automorphisms)
(i) Does there exist a K3 surface S with a non-symplectic involution g such that Fix (g) contains an isolated point? Same question but with g of order 3 .
(ii) Find a quartic K3 surface $S \subset \mathbb{P}^{3}$ that admits an automorphism of order i for each $2 \leq i \leq 8$.
(iii) Does there exists a K3 surface S with an automorphism of order 691?
8. What is the maximal Picard rank that a complex K3 surface can have? Construct an example in two different ways: (i) Using the global Torelli theorem. (ii) By an explicit construction (e.g. using Kummer surfaces).
9.(More a homework problem) Let S be a K3 surface with $\operatorname{Pic}(S)=\mathbb{Z} L$ where $L^{2}=4$. Show that S is a quartic K3 surface as follows.
(i) Compute $\chi(L)$. Show that (after replacing L by L^{\vee} if necessary) we have $H^{2}(L)=0$ and $H^{0}(L) \neq 0$.
(ii) Let $C \in|L|$ be a curve, which is necessarily reduced and irreducible. Show $\omega_{C}=\left.L\right|_{C}$ and $H^{0}(S, L) \rightarrow H^{0}(C, L \mid C)$.
(iii) Assume for now that there exists $C \subset|L|$ which is smooth. Since ω_{C} is generated by its sections, conclude that L on S is generated by its sections.
(iv) With assumption as in (iii), show $H^{1}(L)=0$ and show that the induced morphism $f: S \rightarrow \mathbb{P}^{3}$ defined by L is finite and $4=\operatorname{deg}(f)$. $\operatorname{deg}(f(S))$.
(v) [more difficult] With assumptions as in (iii), show that $\operatorname{deg}(f)=1$ and hence f is an isomorphism onto a quartic. (Hint: If $\operatorname{deg}(f)=2$ we have that $Q:=f(S)$ is a quadric in \mathbb{P}^{3}. If Q is smooth, then $Q=\mathbb{P}^{1} \times \mathbb{P}^{1}$ and $\operatorname{Pic}(Q)=\mathbb{Z}^{2}$ which yields a contradiction; if Q is a cone over \mathbb{P}^{1} with vertex s use that $\mathcal{O}(1)$ restricted to $Q \backslash\{s\}$ is divisible by 2 in the Picard group).
(v) [hard] Remove the assumption made in (iii).

