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V Convex Regions 88 

a) Only one zero for ĉ  88 

b) A fixed point lemma 95 
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I. INTRODUCTION 

The present report is the result of some questions posed by Prof. Bengt 
Joel Andersson (BJA) (Dept of Hydromechanics, KTH, Stockholm) and conveyed 
to me by Prof. Harold S. Shapiro (Mathematics, KTH) concerning the motion 
of vortices in two-dimensional incompressible potential flow. In a short 
note from 1958 ([.BJA J*) BJA shows that a freely moving vortex in a simply 
connected region (in the complex plane) always moves along the level lines 
of a certain function. He has then posed questions about equilibrium points 
for a vortex, that is points where a free vortex is at rest, and it was 
from the attempts t.o answer these questions that this report came into being. 

The first question was if there always is such an equilibrium point. 
It turns out that there always is, provided the domain is bounded (not 
necessarily otherwise), and this is in fact more or less a consequence of 
the fact that the motion of a vortex in that case always is along closed 
curves. BJA then asked if there were some conditions on the domain that 
would guarantee that there was not more one than one such equilibrium point. 
BJA proposed convexity, and he turned out to be right: in a bounded convex 
region there always is precisely one point of rest for a free vortex. The 
proof of this fact consists of some rather nice applications of complex 
function theory, along the lines of Schwarz* s lemma. 

This was originally thought to be the main result of this report, 
However, it later came to my knowledge, thanks to S.Richardson (Applied 
Mathematics, University of Edinbourgh), that, in its purely function theo
retic form, this result was known, proven already 1950 by Hans H. Haegi 
(in [h] ). Therefore the emphasis of this report has now shifted towards 
the general study of the motion of a vortex in a finitely connected region 
in the complex plane, with the "uniqueness theorem" for convex domains 
just as a nice application (with my proof included since it differs a lot 
from that of Haegi). 

•* See References (p . 107) 
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Here is a summary of the contents of the report. 

We are thus mainly concerned with a hydrodynamical system consisting 
of a two-dimensional incompressible fluid in a finitely connected, possibly 
unbounded, region in the complex plane. The flow there is to be locally 
irrotational except at a certain movable point z^, where we have a vortex 
of constant strength. It is the force on and the motion of that vortex point 
that we are interested in. 

In section Ila) we derive the fundamental equation which relates the 
force on the vortex with its velocity (2. 4l )• If, for example,the vortex 
is kept fixed in some way, then the surrounding fluid will exert a certain 
force on it. This force, denoted P or F , depends on the position z» 
of the vortex and may be regarded as a vector field in the domain, Q. It 
turns out that this vector field is a potential field, that is 

F
p = Srad u p (1) 

for some (real) function u in Q. 
P 

If on the other hand there are no outer constraints on the vortex so that 
it can move freely (this is perhaps the most natural situation), then its 
velocity will be 

d z o 
= i • (real constant) • Fp(zQ) (2) 

(i = J-l)- Thus its velocity is always perpendicular to F̂  , and it 
follows that it moves along a level line of u^ . 

Thus we have two domain functions F„ and u_ to study. These are P 3 expressible in terms of the Green* s function, or more correctly, in terms 
of a certain "modified" Green's function, g_(z,C), for the domain. This 
differs from the ordinary Green's function, g(z, £), in that instead of 
being constantly equal to zero on the boundary it is free to take arbitrary 
constant values on the individual boundary components, and is determined 
by having its conjugate periods prescribed (together with a normalization 
condition). The subscript |3 in g^(z, £) is just a short-hand notation 
for the list of prescribed periods (8 = 6 , , . . . , 8 ) ). The presence of this 

1 m 



variable parameter in the problem reflects the fact that for a flow in a 
multiply connected region one can prescribe the circulations around the 
"holes" of the domain When the domain is simply connected the two kinds 
of Green's functions coincide. 

Expanding the analytic completion (with respect to z) G^(z,Q) of 

gp(z, C) in a power series about z = £ , 

G (z,C) = - log(z - C) + c p Q (0 + c (0 • (z-C) + cg2(C) • (z-0 2 + 

it is shown that F_ and u„ can be expressed as 
8 0 

Fp(C) = ~ (positive constant) • "c^ (Q , 

u (£' = - (positive constant) ' c (£) 8 80 

( C^Q( C) is chosen to be real in ( (3) ) . 

Most of these things are done in Ila). In section lib) we treat 
briefly a problem in two-dimensional electrodynamics in which a charged 
particle obeys the same (or a similar) law as the vortex in the hydro-
dynamical problem. 

In chapter III the functions c 0 0(£), c .(£),.. as well as the 
pO 81 

corresponding functions °q(0> c^(Q)t--- defined in terms of the ordinary 
Green* s function, are studied from a purely mathematical point of view 
(boundary behaviour, transformation properties under conformal mappings etc. 
In chapter IV we specialize to simply connected regions and express 
cQ(£), c 1 (£)»•• ( = CpQ(C)j epi ( C)J in that case) in terms of Riemann 
mapping functions from the unit disc. 

Among the results in chapter III is that c^q(Q (and ^ l s 

of the order of magnitude 

C p 0(C) = log d(0 + 0(1) 

near the boundary, d( Q) denoting the distance from Q to the boundary 
(Proposition 3-3). This shows in particular that 

U
D ( 0 "* + 0 0 as Q -» oQ 
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(although not necessarily as Q ~> 0 0 if is unbounded). It is also found 
that ^ is always subharmonic. More precisely 

A u (C) = (positive constant) • K (£,£), (8) 
6 s 

i 
where K (z, Q) is a certain Bergman kernel (thus K (Q, Q) > 0). (Section Illh). ) s s 

When the domain, Q, is simply connected u n satisfies a remarkable 
P 

differential equation, namely 

A ^ = A e , (9) 

where A and B are positive constants. This equation has no obvious 
physical interpretation and is not valid (for any choice of A and B) 
when the domain is multiply connected (at least not in general). (9) 

comes from the fact that the Riemannian metric in defined by 

" C S 0 ( z ) 

ds = e P |dz| (10) 

has constant Gaussian curvature if [} is simply connected (in which case 
it coincides with the Poincare metric). (Sections IVc) and d). ) 

Prom (y) it is obvious that if Q is bounded Up must have at least 
one stationary point ( a point of minimum). Such a point is a point where 
Fp vanishes, that is a point where a free vortex is at rest (equilibrium 
point). In general there is more than one such point, but in section Va) 
we show that if the domain is convex (but not an infinite strip) then the 
number of such points never exceeds one. A specific example in section IVe) 
shows that the condition of convexity for the above property to hold cannot 
be relaxed to starlikeness. 

The treatment in Va) makes repeated use of Schwarz*s lemma. It is well-
known that Schwarz* s lemma can be formulated in an invariant way, expressing 
then that, analytic mappings are distance decreasing with respect to the 
Poincare metric. In section Vb) we reformulate part of the treatment in 
Va) to make a more direct use of the Poincare metric or, what is the same 
for simply connected regions, the metric 

-c0(z) 
ds = e Idz o x-.,-. (11) 
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We also make a little digression and show that also for multiply connected 
regions analytic mappings are distance decreasing with respect to (11) 
and this even in a slightly stronger sense than for the Poincare' metric 
(for example, a universal covering map is not strictly distance decreasing 
for the Poincare metric, but for the metric (ll) it is). Part of 
these things are done in section Illg), where we also show the relations 

~ C R 0 ( Z ) _ C 0 ( Z ) 

e P ° < e ° <p(z) , (12) 

p(z) referring to the Poincare metric (ds = p(z) |dz| ). 

Some historical remarks (postscript): 

Physically: The literature on two dimensional vortex motion mostly deals 
with the motion of one or several vortices in the entire complex plane or 
in certain explicit simply connected subregions thereof. Whenever arbitrary 
regions are considered the methods are based on transferring the flow to, 
say, a half plane by means of a Riemann mapping function, and the motion 
of the vortices are then expressed in terms of this mapping function. 

This applies for example to the textbooks [M-T] and [v] (and also to 
[BJA]). Here [v] seems to go a bit farther that [M-T] in that it establishes 
the existence of a "stream function", essentially our function u^ (or °^Q^' 
for the motion of a single vortex in an arbitrary simply connected region, 
(thus [v] contains, more or less, the result in [BJA].) The differential 
equation (9) for this stream function is however never mentioned (nor have 
I met it anywhere else in this hydrodynamical context). 

As far as I know there is no literature on vortex motion in multiply 
connected regions. 

Mathematically, the present study essentially comes down to investigating 
certain domain functions for simply and multiply connected regions in the 
complex plane, especially g(z, Q), cQ(C)* a^Q), s^(z,Q)y e^iO, cpi(C)« 

Of these the ordinary Green's function g(z,£). does not require any particular 
mentioning. The function cQ(C) (defined by g(z, Q = - log|z-£|+c (£)+0(| z-£| ) 
as z -» Q ) is also well-known. Thus, in simply connected regions 
GQ(C) = 1°S r(C)* where r(£) is the so called mapping radius with respect 
to the point Q. (Among all holomorphic functions f defined on the domain 
in question and satisfying f(Q = 0 and f'(£) = 1, the one of minimal 
maximum modulus maps the domain univalently onto the disc with center 0 and 
radius r(£). ) 
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This mapping radius is extensively studied in [H]. [ H ] investigates 
stationary points for r(£) and among other things proves a theorem (Satz 4) which 
is the same as my Theorem 5 .1 (p«89). (This is what was indicated on p.j5« ) 

Also, my Proposition 3«3 (p«37) is inspired by, and in fact is just a slight 
extension of, inequalities for R(Q in [H]. Moreover, [H] obtains 
estimates for R = sup r(£) in terms of other domain parameters (the Bloch-

C 
Landau constant e.g.). 

For regions in general cQ(C) occurs in the context of potential theory, 
where it sometimes is called the "Robin constant". It is also related to the 
transfinite diameter of the complement of the region (after a variable trans
formation). See Illi) for more details. 

-o 0(0 
The function e is an example of a "capacity" (namely the capacity 

of the entire boundary), and the function p(z, Q - C Q ( 0 - g(z, Q) is a 
"capacity function" in the terminology of [s-o]. In [s-o] functions such 
as p(z,Q) and °Q(0 a r e defined and studied on arbitrary open Riemann 
surfaces, and one is for example interested in characterizing surfaces for 
which CQ(C) - + °°« Compare also Appendix 1 (p.99). 

The function go(z, £), in this text named a "modified Green's function", 
p m 

depends on a list of periods 8 = (8,,»».»>B ) with S B . = - 2 TT, where 
1 m 1 J 

m is the connectivity of the domain (the defining properties of g (z, £) 
are listed on p. 29). In mathematical literature this function mostly occurs 
with the choice 8 = (- 2 TT, 0, . . . , 0 ) (modulo a permutation), and is then 
used for example in the construction of univalent mappings onto circular 

-G (z, C) 
slit discs (the function f(z) = e " performs such a mapping). See for 
example [SCH]. 

Also for the choice 6 = (-2rr ,0, . . . ,0) , the functions p(z, Q = 

= c|3Q(C) - gg(z»C) (capacity function) and e $® (capacity) are 
studied in [&-0] (on Riemann surfaces). See Appendix 1 (p.99)» 

-o (z) 
As to regarding ds = e |dz| as a. conformally invariant metric 

I have recently found that the fact that this metric is distance decreasing 
for analytic mappings (my Lemma 3*7 P* 63) is stated and proved as a part of 
a "Lindelofs theorem" in [j] (Ch IV, § 46). Also, the fact that this 
metric is smaller than the Poincare metric may be put into a more 
general perspective. Namely, as is proved in [K] , whenever a 
metric (given on some suitable class of domains to which the unit disc 
belongs ) is distance decreasing for all analytic mappings and coincides 
with the Poincare metric on the unit disc it falls between two 
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extremal metrics, the largest being the Poincare' metric and the smallest a 
metric named the Caratheodory distance. This is not a deep theorem, but 
follows almost immediately from the definitions of the respective metrics. 
(My reasoning on p. 67-69 is essentially just a rather untransparent proof 
of the upper half of this theorem.) 
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and finally to Iren Patzay for her typing of the manuscript. 
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Some notations used 

3D(a;r) = { z € C : |z-a| < r }. 

ID = ID (0;l) = the open unit disc. 

I P = C U { 0 0 } = the Riemann sphere. 

u = any harmonic conjugate of u, if u is a harmonic function. 

du = d( u) ( u harmonic). 

Thus, along a curve 

*du = ̂  ds , where - 7 — denotes derivation in the direction of the 5n * dn 

right-ward normal, and ds is the arc-length differential. 

The numbering of formulae and equations starts from 1 at the beginning 
of each chapter (I - VI). When, say, formula (11) in Ch II is referred 
to we write just (11) if we are in Ch II, (2. 11) otherwise. 
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II Physical Background 

a) The hydrodynamloal problem 

•*) 
1) Notations 

Let Q (= C be a finitely connected, possibly unbounded, plane region 
with a sufficiently nice boundary . We shall consider in fi an in
compressible time-dependent flow which shall be (locally) irrotational 
except for a vortex of constant strength at a moving point = z^(t) 

(t = time). We are primarily interested in two cases: firstly, that the vortex 
moves freely (is not influenced in any way by outer constraints) and, secondly, 
that the vortex is kept fixed in some way (i.e. zQ("^) = constant). It is how
ever advantageous to at once deal with a more general situation. Namely, we assume 
(somewhat unphysically perhaps) that we are able to force the vortex to move in 
an arbitrary prescribed manner in Q. For example, one could think of having a 
rod stuck down at the vortex point by which one "drags" the vortex. Thus  ZQ(^) 

will be assumed to be an arbitrarily prescribed (smooth) function of t, and the 
major effort of this section (lla) ) will be to compute the drag force F

e x^. 
needed on the vortex to accomplish that motion. 

Let (with z = x + iy) 
V = v(x,y,t) be the velocity field of the flow (vector notation), 

w = w(z,t) the same in complex notation (bar denotes complex conjugation) 

cp = 9(x, y,t) the velocity potential for the flow, that is 

v = - grad cp (vector notation), or 

w = - 2 ~— (complex notation), where 

dz 
Let 
tp = cp' be the stream-function and at the same time the harmonic 

conjugate of cp, and finally 
§ = cp + ii/) the complex potential of the flow. 

As a general reference for the kind of hydrodynamics we are dealing 
with we can recommend [m-t] , which (among other things) treats two-
dimensional hydrodynamics with complex variable methods very thoroughly. 
[l-L 6] is also useful. 
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The existence (locally) of a potential cp for the flow is a consequence 
of the assumption that v shall be irrotational. The incompressibility 
assumption then gives that cp is harmonic, although additively multiple-
valued. The harmonic conjugate ij) of cp is found to also be the stream 
function for the flow, and since there are no sources or sinks in the flow 

• # ) 

it is single-valued harmonic. $(z) and w(z) are analytic functions 
( $ multiple-valued) and 

w(z) = - 2 ̂  = - *'(z) . (1) 

cp, $ and $ are determined only up to additive constants. 

2. The potential and the velocity field 

The flow shall have a vortex of constant strength a (say) at the point 
Z Q = z^(t), where  Z Q ( ^ ) i-s a prescribed (smooth) function of t. This 
means that $ for each fixed t shall have the singularity 

$(z) = i a'log(z-z^) + regular terms at z = z^. (2) 

For then w(z) = - • l a + regular terms, and using polar coordinates 
Z - Z Q 

icp 
Z - Z Q = re the velocity vector becomes 

i(<f*-§) 
w'('z) = _ _ + regular terms = — e + regular terms z-z0 

which is seen to describe the velocity field of a vortex at z^ . 

The boundary condition for the flow is that w shall be tangent to Sfl , 
i. e. that c>Cl shall consist of streamlines: 

ij) = constant along each component of oft (3) 

(the constants depend on time in general). 

; All functions actually depend on t, but this dependence will often 
be suppressed in the notation. Thus $ = $(z) = $(z,t) for example. 
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If Q is simply connected (2) and (3) determine cp up to an 
additive constant and therefore determine the flow (for all t). If 
however Q is multiply connected cp is determined only up to a harmonic 
measure (i.e. a harmonic function which is constant on each component of 
oQ ) which means that the flow is determined only up to a (singularity-
free) circulating flow in Q. In order to specify the flow completely one 
therefore has to give some additional parameters, for example all but one 
of the "circulations" about the boundary components. 

If r^, ...JT̂  denote the components of dfi (positively oriented with 

respect to Q) these are the numbers 

°j =ff v • dr = - P dcp= J *d;H I ^ ds (j = l,...,m). (4) 

j j j 

The law of "conservation of circulation" (or "Kelvins theorem" ; [ M - T ] , 

§ 3'51 or [L-L6] , § 8) asserts that the C . are constants (in time). 
J 

Moreover, they must satisfy the consistency relation 

C + ... + C = 2 TT a , * ) (5) 
1 m 

but otherwise they may be arbitrarily prescribed. Thus, specifying ,m - 1 of 
the constants C t the flow will be completely determined for all time. 

Let B. = B.(t) denote the constant in (3) so that J J 

0(z,t) = B.(t) on T. (j = l,...,m) . (6) 
J j 

The significance of these constants is that B - B. is proportional to 

the amount of fluid which per unit time passes through any curve in fi 
connecting T and P.. Since the circulations C determine the flow 

* J j 
they also determine the B.(t) up to a common additive constant. Conversely 

J 
specifying the Bj(t) a"k some fixed t = t^ clearly determine $(z,t^) 
and thereby the C.. Thus the flow is determined for all time by giving 

J 
the B. at any fixed instance. 

J 
The necessity of this relation follows by 0 = Jkip = J*di/} = G +...+G -2m, *) 

D dD 
where D = Q \ (a small disc about z ) (so that 0 is regular harmonic in D). 
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Prom ( 2 ) , . (6) and (4) we have that 

0(z,t) = Im $(z,t) = - a gB(z,zQ(t)), (7) 

where g (z, z^) is a function which for each fixed z^ £ Q satisfies 

gp(zjzq) = - loglz-z^l + regular harmonic function in Q (8) 

gp(z,zQ) = constant = bj( z
0) (say) on I\ (j = 1,...,m) (9) 

(bj(z0(t) ) = - £ Bj(t) ), and . 

J * dgp(z,z0) = Bj j=l,...,m, ^ 1 Q^ 
^ 1 where the constants R. = - — • C are independent of z„ and satisfy J ct j 0 

B + . . . + B = - 2 TT . (11) 1 m ^ ' 
The conditions (8) - (10) determine S^(z»zq) U P "to a n additive function 

of Zq. Because of (H)this function can be chosen so that 

m 
S bj(zQ) • 3 = 0 for all zQ € 0 . ( 1 2 ) 
J — 1 
Thus for each B = (p^'*,,*0m) satisfying (11) we have a unique 

function B^(ztzQ) satisfying (8), (9), (10) and (12). 
gp(z,Zq) is moreover found to have the symmetry property 

S B ( Z , Z 0 } = ^ ( V z ) * (13) 

gp(z,zQ) is closely related to the Green's function g(z,zQ) (which 

satisfies (8) and (9) with all constants = 0) for Q and we shall 
later (p 29 W ) construct g^(z,z^) from g(z,z^). 

Let us write 

S B ( Z , Z 0 ) = " l 0 S' Z " Z
0I + h B ( z , Z 0 ) ' ( l 4 ) 

where thus the function h («,z ) is harmonic in Q. By (13) 

h B ( z ' Z 0 } = h R ( V z ) ' (15) 
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For each z we can form the analytic completion EL(z,z ) of h (z,z ) 
0 p 0 |3 0 

with respect to z. Although H„(z,z.) will be multiple-valued (in 
B 0 

general."), its power series expansion about ẑ , 

H 3 ( Z ' Z 0 } = C B 0 ( Z 0 } + %l(zo)'(*-zO> + C B 2 ( Z o ) ( Z " Z 0 ) 2 + ( l 6 ) 

makes perfectly good sense and is uniquely determined by the normalization 

im cpo(Z()) = 0 . (17) 

Thus 
W = R e = y v 2 ^ • ( l 8 ) 

The analytic completion of g (z,zQ) (with respect to z) is 
P 

Gp(z,zQ) = Sp(z*zQ) + i Sp(z'z
0) = " l os( z- z

0) + Hp( z' z
0) > (19) 

and is always multiple-valued. 
By (7)» (l)» (19) and (16) we get the following expressions 

for the complex potential and the conjugate of the velocity vector of the flow: 

§(z,t) = - i a Gp(z,zQ(t) ) = - la [- log(z-zQ) + Cp0(zQ) + 0^ Z
Q)( Z' Z

0) + •• " 
(20) 

w(z,t) = ia C|(z,20(t) ) = i a [- ̂ ~ + cpl(zQ) +2cp2(z0)(z-z0) + .. ] . (21) 

3. The force on the vortex 

As we have said earlier the vortex point zQ("^) shall be allowed to 
move in an arbitrary prescribed manner through the fluid. Such a motion 
cannot exist by itself, but there must be a certain (variable) force F 

C A W 

acting on the vortex to keep it moving- (or even to keep it still). We are 
going to compute this force (or rather the negative of it) as a function 
of the motion of the vortex. 
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We start from Bernoulli's equation in the form ([M-T], § 3*60 or 
[L-L6], § 2) 

1 ov lV!2 

- - grad p = — + grad — , ( 2 2 ) 

valid for an irrotational flow in the absence of outer forces. Here p 
denotes the hydrostatic pressure and p the density of the fluid. 

(22) 
is nothing else than Newton* s law of motion in infinitesimal form, the, 
factor - grad p at the left-hand-side being the force on, and the right-
hand-side the acceleration of an infinitesimal element of the fluid. 

In our case (22) applies outside the vortex point. Since 

V = - grad cp and (23) 

n = constant 
(24) 

(22) can be written 

grad ( £ - & + £ I V L 2 ) = 0 in z } . (25) 
P Ot d 1 1 U 

Here we must carefully notice that cp = cp(x, y, t) is only locally well-
defined (being additively multiple-valued). It however follows from (25) 

that for each fixed t 

+ i | V | 2 = globally constant in Cl = A(t) , say . (2$) 
P Ot d 1 

Therefore, since p, p and V are all well-defined (single-valued) functions 
in Q N ( Z Q ) t it is a consequence of (25) T H A T 

^ is well-defined (single-valued) in fi X { Z Q } * (27) 

This also implies that 

|| is single-valued in Q\{zJ- (28) ot U 
since U = |? + 1 |$ , and lb , hence ^ > is single-valued in 

S T A T A T ' R ' A T 

fix{zQ} due to the absence of sources and sinks in the flow. 
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Let us remark in passing that (27) actually proves that form of the 
law of "conservation of circulation" we used, earlier (p.11) , namely that 
the circulations 0 v • dr are constant in time. For since T. are 
closed time-independent^curves and |^ is a single-valued function we have 

dt r. 
j 

dr = - dt J grad cp • dr = - J grad ' dr = 0 . 
r. r, 0 t 

J J 
By (26) we get the following expression for the pressure: 

(29) 

P = p( 3j2 * + A(t) ) . (30) 

Now, to compute the force F exerted on the vortex (by the surrounding 
fluid) it is natural to consider small regions D = D̂. about  Z Q ( ^ ) which 
"move with the fluid", i.e. consist of the same fluid elements all the time. 
The total force exerted on such a D by the surrounding fluid is easily 
seen to be (cf. fig. 2.1) 

F = J p. i dz , 
U 3D 
and the force in question is obtained by 
letting D shrink to zero: 

(3D 

F = lim 
|D|-»0 

(D3z0) 
D (32) 

Fig. 2.1 

Now there turns out to arise a slight complication in the computation of 
the integral in (31) , caused by the fact that the flow is time-dependent. 
To avoid this complication we shall deviate a little from the above indicated 
way, and by a little trick convert the integral in (31) to an integral 
along the time-independent boundary 30 . 

Namely, since the region Q is fixed in time and the fluid has constant 
density the center of mass of the fluid must be at rest during the motion 
of the fluid. Therefore, by Newton's law of motion, the sum of all external 
forces acting on the fluid must be zero. This means that the force F that 
the fluid exerts on the vortex point must be equal, but opposite in direction, 
to the force the fluid exerts on the "walls This gives that 
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F = - J p.(- i dz) = J p- i dz , (33) 
ao ao 

where now the integral is fairly easy to compute. 

By (30), (33) becomes 

F=iprl?dz-42- / w«w dz + i p J A dz . C^) 
3q d X d an 30 

To compute the first term we first note that since the stream-function 0 
is constant on each component of 30 ((3)) we have 

I 0 dz = 0 , (35) 
30 

and therefore also 

Hence 
r ^ d z - r r ^ + i ^ ) d z - r ^ d z ^ .J at ̂  - J { at + 1 at ; 6 2 - J at d z • (37) 30 30 30 

By (19), (20) we get 

. dz ft) , 
f f . - i a f ^ (Z(Zo(t) , . . _ ^ J . - i _ . i a | . s ( V ( ( t ) ) . ( 3 B, 

Here the last term i H (z,z^(t) ) is a single-valued analytic function 

of z in 0 ; it is analytic because H (z,z (t) ) is, and it is single-Is o 
valued (despite that H_(z,z (t) ) is not, in general) because the remaining 

two terms in (38) are ( -~ is single-valued by (28) ). Therefore 
at 

oO 30 0 

As to the second term in (3^) we observe that along 30 the velocity 
vector w is parallel to dz, hence w dz is real and therefore equal 
to w dz . Thus 



J w • wdz = J w ' w d z = 2Tri Res w(z) = (by (21) ) = 
an an zmz 
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2 " 

= 2 TT l-(- cc2)'[-2epl(z0)] = - 4 TT ia 2-e p l(z o) . (40) 

Since the last term in (34) clearly is zero (37), (39) and (40) 
give the final result 

dz 2 _ 

P = 2 TT p>[i a- ̂ - - a -c p l(z 0)] • (41) 

This is thus the force exerted by the fluid on the vortex point when 
d z o 

this moves with the velocity TJ^— . We see that it is composed of two terms, 

F v e l = 2 T T P . i a ^ and ^ 
2.~ u \ . m 

Frest = P B = - 2 T T P * a '"pi* 2^ ' 

The first of these, ^ v e ] _ * i-s Jus"t a linear function of the velocity of 
the vortex and is quite uncomplicated. It is however interesting to notice 
that its direction is not opposite to that of the motion, but perpendicular 
to it. 

The other term, F . = F„, is the total force on the vortex when it * rest R 
is at rest. It involves the non-trivial domain function °^I^ ZQ^' Since 
it is a function of position only it can be regarded as a vector field in CI. 
The study of this vector field is the main object of the present report. 
It turns out that it is a potential field, that is, there is a real 
function u in Q such that 

P 

F = grad u . (44) p P 

In fact, we will find that (Lemma 3«l) 

2 

Up(zQ) = - TT p a -Cp0(z0) + constant . (45) 

We shall also see that(Proposition 3*3) 

Ug(z) -» + 0 0 as z -» ofi (46) 

(although not necessarily as z -> °° if Q is unbounded). 

1{Z) 
0 
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4. Discussion 

Let us discuss and explain the results (4 l ) , (44), (45) and (46) 
a little already at this point. 

We shall mostly be concerned with the case that the vortex is free to 
move. This means that there are no external forces on it, that is that 

F = - P . = 0 ext (47) 

in (4 l ) . Thus 
dz (48) 

dz 
Comparing with (43) we see that is proportional to, but directed 
90° to the left of, F . On the other hand by (44) 

P 

P̂  is also perpendicular the level 

lines 

u (z) = constant. 
P 

(49) 

Up A C O N S T . 

Thus it follows that dt is always tangent to the level lines 
of Up, that is that these level lines actually are the orbits along which 
the free vortex moves. This can be rephrased by saying that u_(z) is a 
complete first integral for the system of a freely moving vortex, the motion 
of it being given by 

u (z (t) ) = constant . p o (50) 

Thus, in particular, a free vortex only moves along fixed paths ( the 
level lines of u^) in Q, a fact which is not at all obvious from the 
beginning. Moreover, since ^ + 0 0 as z •» S Q ( (46) ) 
these paths never lead to the boundary of fi and therefore, if Q is 
bounded, in general consist of closed loops (exceptional level lines of u 
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may contain selfintersections or other types of "singular points"). This 
makes one expect that the motion of a free vortex in a bounded region in 
general is periodic (the vortex returns to each point on its orbit regularly 
with a certain time interval). These matters will be discussed more fully 
in section Ille). 

The above indicated periodicity of motion (under suitable circumstances) 
is a rather remarkable property for the system of a freely moving vortex, 
not shared by most other similar physical systems. Consider for example the 
mechanical system consisting of a single mass particle moving in a central 
field about a fixed point. In that case the particle in general moves 
along a non-closed curve which is 
dense in an open subset of the plane 
and which moreover contains infinitely 
many selfintersections. In particular 
the motion is non-periodic (fig. 2.3) 

Pig. 2.3 

Theie is another important difference between the vortex motion and,for 
example, the above described mechanical system. Namely, the velocity of a 
free vortex is determined by its position, whereas for a mass particle at 
a given point the velocity can be prescribed arbitrarily. This difference 
is in principle quite independent of the difference "closed vs. non-closed 
orbits" and the mathematical aspect of it is of course just that the-
equations of motion for the vortex are first order differential equations 
( (48) ) while those for the mass particle are second order ones (here are 
meant the equations for the position variables as functions of time). 

In order to see what lies behind these special properties of the vortex 
motion we consider the energy E associated with it. From a general 
mechanical standpoint we are dealing with a two-dimensional system with t 

•*) 
By this it is meant that there is a potential V which is a function 

of the distance r between the particle and the fixed point only, so that 
the force acting on the particle is F = - grad V. 
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for example the position of the vortex representing its coordinates 
in "configuration space". In general the energy of such a system is a 
function of both the position ooordinates and some momentum coordinates, 

dz. so that in our case E would be a function of z Q and (say) 

Now the only kind of energy which we need to take account of is the 
kinetic energy. The total kinetic energy for the flow is however found 
to be infinite, for it would be obtained by integrating p|v| over 0, 

2 2 1 *)0 and | v| is not integrable over the vortex point (| v| ^ there ) 
r 

Therefore the "infinite part" of the kinetic energy has first to be sub
tracted off in a correct way to get a finite energy E to play with. We 
do not go into the details of this subtraction but just write the result 
symbolically as 

E = JJp |v|2dxdy - (its "infinite part") . (51) 
n 

The important thing for us is just that E only depends on the instantaneous 
velocity field v. 

Now this velocity field is the same whether or not the vortex moves, 
dz 0 

that is the energy E is independent of the velocity of the vortex 

and depends only on its position z^ . This is the critical fact. For since 
the system is closed the energy is conserved (is an integral of motion), 
giving the equation 

E = E(zQ(t) ) = constant , (52) 

and E now being a function only of the two position coordinates this 
equation alone determines the motion of the system (i.e. it determines 
its path in configuration space). 

' This situation is completely analogous to the one in electricity of 
having infinite internal energy of point charges. 
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Thus the circumstance that E depends only on the position variables 
is responsible for the fact that one single integral, E or u , deter-

P 

mines the motion of a free vortex. As indicated earlier, this in turn 
explains why the motion in certain cases (namely more or less when each orbit is 
part of a compact subset of Q) is periodic. More generally, whenever 
there exists a complete set (i.e. sufficiently many to determine the motion) 
of globally well defined integrals of motion for a physical system (whose 
evolution in time is governed by differential equations) one expects that 
the motion in such orbits that are compactly contained in the space in 
question is periodic in general. 

The fact that one single integral determines the motion of a vortex 
also explains, to some extent, why the differential equation, for, a free 
vortex is of the first order in the position coordinates. For if it were 
of higher order one would be able to prescribe the velocity of a vortex 
at any given point, that is through each point in Q there would pass 
orbits in all directions, in obvious conflict with (52) (unless E is 
identically constant, which it is not). 

The fact that no momentum variables enter E should perhaps also be 
compared with the fact, already employed in the derivation of the force 
F (p» 15), that the total momentum for the flow is identically zero, due 
to the circumstance that the center of gravity of the fluid necessarily 
is at rest. 

As to the relation between the two integrals of motion considered, u^ 

and E, it is obvious that they must be "functionally related" (that is, 
say, E = ^(up) ) since they have the same level lines. In fact it is a 
consequence of (44) that 

E = - u_ + constant . (53) 
0 

Thus - Up represents the energy of the system. 

In contrast to the above discussions, suppose we attach a mass m to 
the vortex point (the core of the vortex consisting of a rod or something 
with mass m > 0) . Then the motion of the vortex is associated with 

1 ^ 0 2 
an extra kinetic energy — m | TJJ- | , so that E depends effectively 

d z o 
on both z and , that is on four real variables. Therefore three 

0 dt 
integrals of motion are needed to guarantee a periodic motion, which one 
in general does not have. 
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' This is meant "in general" for a system confined to a certain region 
fi <= C. If however Q has special symmetry properties (for example is a 
disc),there are more integrals, corresponding to conservation laws related 
to the symmetry (conservation of angular momentum about the center , for a 
disc, for example). In particular if Cl is the entire plane there are 
three more integrals of motion, namely those given by the laws of conser
vation of (linear) momentum (two components) and of angular momentum. 
Together with energy conservation this gives four integrals of motion which 
is enough to determine the motion of a system of two vortices but not of 
three or more. Thus a two-vortex system in the entire plane should exhibit 
a periodic kind of motion which is also actually the case (except if the 
strength of the vortices are equal but of opposite signs, in which esse they 
move to infinity. See [M-T], 1> 2 3 ) . 

As another example consider a system of two (or more) freely moving 
vortices. Just as for one vortex the energy E is a function only of the 
positions z^,z^,... of the vortices, but in this case the single equation 

E(z1,z2,... ) = constant ( 5 4 ) 

is not enough to ensure periodicity of the motion, and there is no obvious 
#) 

reason to expect the existence of any integrals of motion besides E . 
( As to the example on p.19 with a particle in a central field there 
are in general two integrals of motion (besides the energy, also the angular 
momentum with respect to the fixed point), whereas three are needed to have 
a periodic motion, just as in the case of a vortex with mass. For the special 
case of Newtonian gravitational forces, that is with the central field 
V = - — (a > 0 ) , there actually is a third integral of motion, accounting 
for example for the (approximately) periodic motion of the planets in 
ellipses around the sun. See [L-Ll], § 1 4 - 1 5 . ) 
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As a final point of this section we wish to mention a much shorter 
way of proving the differential equation (48) for a freely moving vortex, 
a way which however gives less information (e.g. it gives no information 
about the force on a non-free vortex, i.e. equation (4l) ). 
Consider the expression 

w(z) = z^" " 1 a y ( z
0 ) - 2 1 ^ ^ V ' ^ " V " (55) 

Z - Z Q 

for the velocity field of the flow near the vortex point z . We see that 
the first term describes a completely rotationally symmetric flow around z , 
while the terms after the second one describe a flow which vanishes at z . 
Thus all these terms (i.e. all but the second one) contribute nothing to 
the flow at the point z^, and so the flow there is given by the second 
term, - i a " C O 1 ( Z _ ) . If the vortex is free this should therefore be the pi 0 

velocity by which it moves, in other words 

dz Q 

— ia7T p l(z 0) , ( 5 6) 

which is (48). (With a little effort this "proof" can be made more con
vincing. ) This is the standard way of arguing when deriving the equations 
of motion for free vortices (used for example in [M-T]). 

b) The electrodynamical problem 

We shall consider a situation in two-dimensional electrodynamics which 
is governed by equations similar to those in the hydrodynamical problem. 
[L-L2] and [L-L8] may serve as general references here. 

Let Q c C be a finitely connected region as before. The complement 
K = C N Q, of Q is to be a perfect conductor and Q itself shall just 
be empty space. At a point z^ € Q we place a particle with electrical 
charge a. 

This charge gives rise to a certain electrical field E in Q, the 
potential cp of which is a harmonic function with the singularity 

cp(z) = - log|z - Z Q | + regular harmonic at zq> (57) 

and which is constant 
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on each component of oQ. At this point one has to decide between two 
cases. Either the components K^,...,Km of K shall be electrically 
isolated from each other or they shall be put to a common ground. 

In the first case each of the K. has a certain total charge a. which 
J J 

is not changed if the point z^ is moved. Since the total charge of K 
must be - a the a. must satisfy 

J 

+ ... + a m = - a . (58) 

a. is obtained from cp by 
J 

I S * - - J > • ( 5 9 ) 

j j 
where T. is the component of aQ belonging to K.. It follows from 

J J 

(57) and (59) that cp must be (up to an additive constant) 

«P(z) = fff Sp(z,zQ) with (60) 

6 , ' a, , j = l,...,m , (61) 

where g^(z, z^) is the "modified Green's function", described on p. 12. 

Similarly, the second case, with all K. grounded, gives 
J 

cp(z) =f^S(z,z 0) . (62) 

We shall limit ourselves to this case in the following, the first case 
being obtained from it by obvious modifications. 

In writing 

g(z,zQ) = - log|z -z Q| + h(z,zQ) , (63) 

h(z,ZQ) being regular harmonic, we get cp(z) decomposed into the self-
potential of the charge at z^, - log|z - z^[, and the part of the 

potential coming from the induced charge distribution on K (actually 
on 30), h(z,z,J . The electrical field of this latter part at z. 
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is { _ erad — h(z. z )} and it therefore gives rise to the Coulomb force L & z 2TT 0 J z=z Q 

p = a . { - g p a d z JL h(z,zQ) } z = ^ (64) 

acting on the charge at z Q . Since the rotationally symmetric self--field 

grad ~- loglz - zj = 77- • • 1 of the charge obviously does not 0 z 2rr 1 01 2TT 

produce any net force on the charge itself, (64) gives the total electrical 
force exerted on the charge. 

In analogy with page 13 we introduce the (multiple-valued) analytic 
completions (with respect to z) G(z,zQ), H(z,zQ) of g(z,zQ) and 

h(z,zQ), and develop H(z,zQ) in its power series about z = zQ* 

H(z,zQ) = c 0(z Q) + C]L(z0)(z-z0) + c 2(z 0)(z-z 0) 2 + ... . (65) 

With the normalization 

Im c Q(z 0) = 0 (66) 

we have 

c 0(z Q) = Re H(z 0,z Q) = h(z o, Z ( )) . (67) 

Since 
gradzh(z,z0) = 2 ̂  h(z,zQ) = ̂ = [H(z,zQ) + H(z,zQ) ] = H'(z,zQ) , 

(64) becomes 

Thus we see that the charge at z^ is subject to a force of a similar kind 
as was a vortex at rest at z Q in the hydrodynamical problem (F

rest* (43) )< 

If we had worked with the case of K,,...,K being isolated from each 
1 m 

other instead, we would have obtained (68) with c^(z^) replaced by 

c (z ), that is exactly as in the hydrodynamical case. 
P 
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One can carry the analogy with the hydrodynamical problem one step 
further by trying to imitate also the force F

v e l_ * (42) . Since that 

force is proportional to a and to 
dz 
dt 

d z 0 
, and perpendicular to , this 

is achieved just by introducing a constant magnetic field perpendicular 
to the z-plane. If the strength of this field is B (taken positive 
when the field is directed downwards) the expression 

dz A 2 

" ' • » • d T ' I? • V z o > • ( 6 9 ) 

analogous to ( 4l ), for the total electromagnetic force on the moving 
charge results. 

It should however be remarked that formula ( 69 ) is only approximate dz 0 the approximation being good only if the velocity - T T — is small. This is 

because we have not taken into account second order effects, such as the 
fact that when the charge at z A moves also the induced charges on oQ 
move, thereby producing an extra magnetic field which has to be added to 
B in ( 69 ). This additional field must however be proportional to 

^ 0 ^ 0 —r— , so assuming that -r— is small (or B large) it can be neglected. 
CL v CLG 

There are other higher order effects as well, due to the interaction between 
time-dependent electrical and magnetic fields, which we have disregarded, 

dz Q 

but assuming — is small enough they can be neglected. 

Supposing that we are within the ranges of the above approximations and 
moreover supposing that the charged particle has zero (or very small) mass, 
the charge will move according to the same rules as a free vortex (but 
leaving out the B:s in the formulas), that is in closed orbits (if the 
region is bounded) 

u(z) = constant, (70) 

where 2 

u(z) = - ̂  * cQ(z) + constant (71) 

is a potential function for the force F in ( 68 ) , 

F = grad u (72) 
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III. The Green* s Function 

a) Preliminaries 

Having expressed the physical quantities we are interested in (viz. 
the vector fields F̂  ( 2.43) a n d P ( 2.68 ) in terms of certain 
mathematical domain functions in section II. we shall now begin a more 
detailed study of these latter from a purely mathematical point of view. 
Let us therefore begin by gathering some definitions from section II, 
making more precise assumptions about the domains involved. 

Although we are primarily interested in finite domains Q (i.e. 
Q c C) it will sometimes be convenient to allow fj to contain °° as 
an interior point. Thus letting 

P = C U H 

denote the Riemann sphere we shall consider domains c P . As to 
boundary regularity we shall always assume that Q is bounded by finitely 
( > 1) many continua, that is that 

P\Q = K,U..U K , m > 1 1 m — 

where K^,...,Km , the components of PvQ, are closed connected sets, 
each consisting of more than one point. These assumptions will be in force 
throughout this report (except when otherwise explicitly stated), even 
when words such as "arbitrary domain" or "any domain" are used. The com
ponents of the boundary 30 of Q will usually be denoted ... ,T m , 

so that r . c K. . It is well known that a region of the above kind is J J 
always conformally equivalent to a region bounded by analytic curves. 

Now, for such regions Q the Green's function g(z,Q) exists, and 
it is characterized by the properties 

i) g(z,C) = - iog|z - C| + n(z,C) , z, c e n s H , (1) 

On a few occasions (Illg)) and Appendix 2) we shall also allow Q to 
be non-schlicht, that is to be a Riemann surface lying over P. 
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where h(z,Q) is a harmonic function of z (and of Q), 

ii) g(z, £) ^ 0 as z -» z Q for each z Q € oQ . (2) 

When z or £ equals 0 0 i) has to be modified but we do not bother 
about this. 

The function h(z, Q is defined for z, Q € Cl \ {°°} by i). Since 
g(z,Q) is symmetric, 

iii) g(z,£) = g(Cz) , (3) 

so is h(z, Q, 

h(z,£) = h(£,z) . '(4) 

Besides the Green* s function we will need the m harmonic measures 
uu^(z),.. .,io (z) of Q, characterized by being harmonic in Cl and taking 
the boundary values 

< \ ( z ) = 
1 on r 

k (5) 

0 on P. , j ̂  k . 
J 

The uû .(z) obviously satisfy 

uu x(z) + . . . + uum(z) = 1 (6) 

and this is the only linear relation between them (that is, if 
M-,uu, ( z ) + + u. uu (z) 3 u. for constants L L . , U then u,=. ..=u =u). 1 1 "m m "l "m ̂  ^1 m ^ 

m (z) can be obtained from the Green's function by means of the 
following well-known formula ([NEH], Ch I, Sec 10 e.g.) 

xk ik fc 

(if the boundary curves r, are not smooth enough the paths of integration 
k 

in (7) have to be moved a little into Q. ) 
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In the hydrodynamical problem we encountered ( p, 12 ) a family of 
functions g (z,Q), closely related to the Green's function. These "modi-
fied Green's functions" will now be constructed from the ordinary Green's 
function and the harmonic measures. 

Thus, let a list 

s = O ^ . — p J O j e m ) (8) 

of conjugate periods for g^(z,£) be given, satisfying the consistency 
requirement 

Pj_ + ••• + P m = " 2 TT • (9) 

Then g (z,£) shall have the properties 
3 

i) fip(z,0 = - log|z - C| + h (z,C) (10) 

where h (*,£) is harmonic in Q {°°} 
P 

li) S B ( ' * C ) = constant - b ( Q ) on T\ , (11) 
p J J 

iii) J \ ( ' , 0 = 6 . , (12) 
r . ^ 

J 

m 
iv) L b (£).B. = 0 , (13) 

j=l J J 

v ) g p(z,C) = S p ( G z ) • d ^ ) 

Here (i) - (iii) are the essential properties, determining g (z, £) 
P 

up to an arbitrary additive function of Q. That function is fixed by 
condition (iv), which is a kind of normalization and (v) is a consequence 
of (i) - (iv). 

Of course, g (z, Q will differ from g(z, Q) only if Q is multiply 
P 

connected (m = 1, $ = - 2 tt, b (Q = 0 if fi is simply connected.). 

The functions g (z, £), with the particular choice g = ( -2rr ,0, . . . ,0) , 
are often considered"and constructed in the context of finding univalent 
mapping functions onto canonical domains such as circular slit discs. See 
for example [SCH]. Compare also Appendix 1 (p.99) in the present report. 
The construction here is given mostly as a matter of convenience. Actually, 
the existence and uniqueness of a function g_(z, £) having the properties 
i) - iv) below follow from general existence and uniqueness principles for 
harmonic functions. 



One e a s i l y finds that Sg( z*G) must be of the form 

m 
S (z,C) = g(z,C) + S a u, (z)cu.(C) (15) 

P k , j = i J J 

for some matrix (a, .)™ . . Having set t h i s up, one need only check 
kj k , j —1 

that (a .) can be chosen so that ( i ) - (v) are sa t i s f ied . 
kj 

Now, ( i ) and ( i i ) are automatically s a t i s f i e d , with 

hp(z,C) = h(z,C) + S a k J uuk(z) (UjCC) and (l6) 

m 
b k (C) = S a k J UUJ(C) (17) 

respect ive ly . 

Putting 

du>. 

*V-l*d"3=l^ i s  ( l 8 )  

L k x k 

and using (7)* the left-hand-side of ( i i i ) becomes 

J * d g p ( . , C ) - - S n ^ C C ) + 2 ^ a k i V . ( C ) = 

J 
m m 

= L ( S pa.. - 2n 6 > (£) • (19) 
1=1 k=l Jk k i j i l 

In view of (6) (and the statement following i t ) ( i i i ) therefore reduces 

to the l inear system of equations 

m 

£ P ^ ^ S M " 2TT 6 = 8 , i , j = l , . . . , m . (20) 

Similarly, using (17) and (7) , ( iv) becomes 

m 
E B,a, = 0 , j = l , . . . , m . (21) 

k=l K k J 

Now I claim: 

The system of equations (20) - (21) has a unique solution (a ) . This 
kj 

solution moreover has the properties 

© A K J = A J K 
(22) 
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^2) ( a
kj) is positive semi-definite; more precisely, for any X. € K , 

m ^ 
(j = l,...,m, ), £ a v ^ v ^ - ^ 0 » w i t h equality only if 

k,j=l k J k J 

X. = (constant). , j = l,...,m . (23) 
J J 

It is clear that the required properties (i) - (v) of g0(z, Q follows 
P 

from this claim, since (v) follows from ( 7 ) . 

To prove the claim we first note that p . equals the Dirichlet inner 
k j 

produkt between uu, and tu. : 
k j 

Pn • = r *d ai. = P uu *d ou. = P d (JU, *dw . 
J T ah k J Q k J . (24) 

k 

Prom this it follows that 

PkJ = Pjk ^ 

and, since any m-1 of dm ,...,du)ffl are linearly independent, that the 
submatrix obtained from (p .) by, for any r, deleting the r:th row 
and the r:th column is positive definite , in particular nonsingular. 
Thus the relation 

m 
£ p. , = 0 , j = l,...,m , (26) 
k=l k J 

obtained immediately from the definition of (p .) , is the only linear 
k j 

relation between the rows of (p .) . Since the right member in 
KJ 

m 
S Pjk aki = P j + 2 t t 6ji ' i»J = l»....m, (27) k=l 
by (9) satisfies the same linear relation, it follows that (27), i.e. (20)* 

for each i = l,...,m has a one-dimensional solution space, and in that so
lution space there is exactly one solution w n i ° n also satisfies 
(21) . This proves the unique solvability of (20) - (21) . 

*^ a slightly stronger result follows, namely, using (6) and the state 
ment following it, for any \a . € IR. (j = l,...,m) 

with strict inequality unless all \i are equal. 
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The symmetry of (an .) follows for example by multiplying (27) by 
a j r and summing over j: 

m m 
£ A . P „ A . = E 8. a. + 2rTa. = 2RR a. . (28) 
j,k=l j r j k k l j=l J j r i r i r 

Since the left-hand-side of (28) is symmetric in i and r (using 
(25)), so is the right-hand-side, that is (a^r) is symmetric. 

If we multiply equation (28) by X • X (X . £ 3R , j = 1, ...,m) 

and sum we get 

m 
2TT £ a X X̂  = £ p. • S a. X •£ A. . X. = i,r=l 3 J ? i ^ j k j k r j r r i k i i 

j,k Jk j k 

m 
where LL = £ a, . X. . Here, as we know, we have equality only if K KI I 
all N̂. are equal. But in that case (26) and (27) give 

m m 

° '£1 P J K ^ " U PJ* X I = E J - £ 1 X L + ^ XJ ' ( 3 0 > 

from which statement (2) in the claim follows. 

This finishes the construction of G~(Z*C)' 

There are two further observations concerning the function 

m w(z,0=£ a v. 0), (Z) a) (0 = g (Z,C) - g(z,C) • (31) 
P k,j=l P 

which we will need later on. 

The first is that if the period list 8 = ( ̂ 1,..•>Pm) is changed, 
then the matrix (a^j) changes by a matrix of the form (â . + a^) . 
This is rather easily seen from equations (20) - (21) . It follows that 
m (Z,Q changes by a function of the form 
P 

m m 
L (a + A ) U) (Z) CU (C) = £ AJU (Z) + £ a w (C) = UU(Z) + U J ( £ ) , (32) 
k, j k J k J k=l k k j=l J J 
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where u)(z) = £ a UU (z) is a harmonic function which is constant on each 
k k 

boundary component. 
The other is the inequality 

W F I ( C G ) > 0 , (33) 6 

which is an immediate consequence of the positive semi-definiteness of the 
matrix (a^). In fact, (33) is just (23) with \ K = % ( G ) - ( 2 3) 

also shows that equality holds in (33) if and only if w F C ( C ) = (constant)*Bk 

that is if and only if 

B = - 2 T T ( U ) 1 ( G ) , . . . , U ) M ( G ) ) • (34) 

Thus equality in (33) can occur for some £ € Q, only if -2rr < 6. < 0 
J 

for all j = 1, ...,m. If 6 . = - 2 T T 6 (j = l,...,m) for some k, 
J K J 

we have equality on T\ and nowhere else. In general, for m > 3* the 
right hand side of (34) generates some 2-dimensional variety in the cube 
- 2n < X J < 0, j = l,...,m , of 3Rm as £ varies over fi, and we have 
equality in (33) at some point only if 6 happens to lie on that variety. 
(34) combined with (21) also shows that U ) P ( G » G ) = 0 is equivalent to 
the vanishing of U U p(z, £) identically in z . 

Having now the functions g(z,£), h(z, £), g(z,£) and h (z, £) in 
P B 

our hands we form their analytic completions, G(z, £), H(z,£), Gp(z, £) 

and Hp(z, £) respectively, with respect to the z variable (they are 
multiple-valued in general). Thus 

G(z, 0 = - log(z - £) + H ( z , 0 (35) 

GQ(z,£) = - log(z - £) + H Q ( z , G ) • (36) P P 

In the power series expansions 

H(z,£) = C 0 ( C ) + o^Q (z - £) + c2(£)(z - £ ) 2 + ... (37) 

Hp(z,C) = C P Q ( G ) + cPL(C)(z - G ) + C
P 2 ( G ) ( Z - G ) 2 + . . . (38) 

everything except Im c „(£) and Im c (£) is well determined. We shall 
(J BO 

always choose 
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c) F is a potential field 

In section II we found that the physical quantities of main interest 
were the vector fields 

F (z) = - (positive constant)'"c(z) and (44) B Bl 

F(z) = - (positive constant)*c^(z) (45) 

rest ( (2.43) resp. (2.68) ; in (44) we have changed the notation from F 

to F ). We shall show that these vector fields are potential fields, 
that is that 

F = grad u (46) 

FQ = grad u (47) 8 8 

for some real functions u and u_. 

Im c Q ( C ) = 0 (39) 

l m c p 0 ( 0 = 0 . (40) 

Thus e Q(C), cp 0(C) are real, and 

c 0 ( 0 - H ( C C ) = h ( C C ) ( ^ ) 

Also, by (16) 

m 

e p 0 ( C ) - c 0 ( C ) + u , p ( C C ) = o Q ( C ) + S a k . % ( c > . ( £ ) • (43) 

If 0 0 € Q the above definitions of °n(0> ° 8 n ^ m a k e s e n s e o n l y 

for Q ̂  oo , The correct definitions at Q = °° will be given later 
(Corollary 3 .6, p.45) 
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Indeed we have 

Lemma 3.1: Q(Z) = ̂  CO (z) , (48) 

V ( Z )-FEV Z ) • (49) 

showing that (46), (47) hold with 

u(z) = - (pos.const.)*eQ(z) + const. (50) 

Up(z) = - (pos. const. )• cpC)(z) + const. (51) 

Proof of the lemma: We prove the first equality, the proof of the second 
one being identical. 

Put 

h 1 Q(z, 0 = h(z, C) , h Q 1 (z, 0 = ̂  h(z, C) • (52) 

Then (4l) and (37) together with 
h(z,£) = Re H(z,C) =-| (H(z,0 + H(z,C) ) (53) 

give 

= HIO^° + V ^ } =kh iQ>0  = k Q o i Q ' 

as was to be proved. 

As to analogues of Lemma 3»1 for the higher order coefficients c
n ( C ) 

one has for example that 

1 d 0 n - l ( C ) 

c
n ( C ) = ̂  — + h o l o m o r P t l ^ c function (54) 

for all n > 1. Also, it turns out, c
n ( 0 is a linear combination, with 

rational coefficients, of 

d n d n ~ 2 o 
^ c 0 ( 0 * ^ 2 G 2 ( ^ Gn-1 (^ 
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if n is odd, and of 

^ • ^ 2 ^0 4 > V 2 ( c ) , h j G G ) 

if n is even. Here h is the function 
mm 

2m 
h (z, C) = — h(z,£) , (55) 

and m = ̂  . The proofs of these facts are simple but somewhat lengthy, 
and since we do not need the results we omit the proofs. 

d) Boundary behaviour and inequalities for c
n ( C ) , Q p n ^ • 

In this section we shall study the behaviour of c (£) and c (£) 
n pn 

as £ -» oQ. We first derive upper and lower bounds for c Q ( £ ) 
showing that c (£) - oo as £-» oQs{oo}, and asymptotically 

cQ(£) ~ log d(£) , (56) 

where d(£) denotes the distance to the boundary. Prom these estimates 
for c Q ( C ) (i11 Proposition 3«3) corresponding estimates for c p o ^ a r e 

obtained by 

c 0 ( C ) < c (£) < c 0 ( C ) + M > M < oo . (57) 

(57) follows from (43) and ( 3 3 ) , with 

M = £ | a k J | . (58) 

Put (K'T_,*"'K
m being the components of IP̂ fi) 

d (z) = inf {|z-£| : £ € K } , (59) 
KJ O 

D.(z) = sup {|z-C| : £ £ K. } , (60) 

d(z) = inf {|z-C| : £ € I P N Q } = min { d ( z ) ,.. ..djz) } , ( 6 l ) 
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Remark: If °° € F 2 the upper bound in ( 6 6 ) does not hold in a neigh
bourhood of z = °° (for any A). For it is easy to see from the trans
formation properties of c Q ( z ) under conformal mapping given in section 
III f) that necessarily 

cQ(z) = log|z|2 + 0 ( 1 ) = 2 1 O G | z | + 0 ( 1 ) ( 6 7 ) 

as z -» 0 0 if °° £ fi. Thus we only have (for some A) 

a (z) < 2 log d(z) + A ( 6 8 ) 

diara K. = sup {|z-£| : z,Q £ K. } . ( 6 2 ) 

Then we have 

Proposition 3 . 3 ' The following inequalities for c Q ( z ) hold in fis{T»}: 
4d.(z) 

log d(z) < eA(z) < rain log ^ - ^ y . ( 6 3 ) 
j=l,..,m y 

1 " D (z) 
J 

In particular, if Q is simply connected and 0 0 £ Q (so that D^(z) = °°) 

log d(z) < c0(z) < log 4d(z) . (64) 

If moreover CL is convex, then 

log d(z) < cQ(z) < log 2 D(z) . (65) 

Specialized to a boundary neighbourhood ( 6 3 ) gives (for arbitrary Q): 
For any A > log 4 there is a 6 > 0 such that 

log d(z) < cQ(z) < log d(z) + A (66) 

whenever d(z) < 6 . 
Finally, if 0 0 £ CL (but CL is otherwise arbitrary) then (66) holds 
throughout CL for some A < 0 0 . (A = log 4 of Q is simply connected, 
by (64).) 
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in a neighbourhood of z = oo in that case. ( ( 6 8 ) also follows directly 
from ( 6 3 ) , since 

4d.(z) 
log '"I f s = log 4D.(z)D.(z) - log(D (z) - d (z) ) ( 6 9 ) 

1 D (z) 
J 

and ID.(z) - d.(z)| < diam K. < °° when 0 0 £ Q .) 

The following little lemma will be needed in the proof of Proposition 3 . 3 . 
~ ~ -*) 

Lemma 3 . 2 : Suppose Cl c Cl . Then c Q ( G ) < c Q ( C ) f o r ^ € H . 

Proof: Put u(z) = g(z, Q) - g(z, Q) for z € Cl . Then u is harmonic 

in Q and > 0 on bCl (more precisely, lim u(z) > 0 for each z € bCl). 

Thus u(z) > 0 throughout Q. But, by (l), u(z) = h(z, Q) - h(z, Q . 

Thus h(z, C) < h(z, Q) for z £ Cl f and in particular cA(£) < c 0 ( C ) j as 

was to be proved. 

Proof df Proposition 3 « 3 : To prove the lower bounds, log d(z) < cA(z), 

we just apply Lemma 3 « 2 to the situation 3D(z;d(z)) a Cl . If g ( C , C Q ) 

denotes the Green's function for TD(z;d(z)), then 

g(C,z) = - log|C-z| + log d(z) . 

Thus cQ( Z) = 1°S d(z), and log d(z) < c,(z) follows. 

The proof of the upper bounds in Proposition 3 « 3 rests on another lemma, 
in the spirit of Lemma 3 « 2 . Lemma 3 « 2 says roughly speaking that gQ( Z) 
increases with the domain. Therefore, to get upper bounds for cQ( Z) E X ~ 
pressed in d.(z), D.(z), one naturally looks for some largest domain J J 
Cl which (with respect to the point z) has the same values of d.(z),D.(z) 

J J 
as Cl has, and compares °Q(z) with cQ( z) for Cl. Now there is a rather 

natural candidate (or family of candidates) for such a domain, namely the 

domain Cl obtained from Q by replacing the complement K of it by its 
circular projection (with center z) onto some radius emanating from z. 
Here the functions c A(£), SQ(z, £),••• of course refer to the domain Cl. 
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In other words 

= D P - I U , [ z + e < i . ( z ) , z + e * V ( z ) ] , ( 7 0 ) 

where -& £ 3R is arbitrary and [a,b] denotes the linear segment with 
endpoints a and b .*) 

Unfortunately, Q is not a subdomain of Cl, so Lemma 3 * 2 cannot 
be applied to show c Q ( z ) < e o ^ z ^ ' Nevertheless, we have 

Lemma 3 « 4 : If z £ Cl , •& € IR, and fi = ^ is as described above, 
then cQ(z) < cQ(z). ( 7 1 ) 

The proof of this lemma will be given in a later section (ill i) ) because 
it fits better into the context there. So we assume Lemma 3 « 4 for the moment 
and continue the proof of Proposition 3 « 3 « 

According to Lemma 3 ' 4 an upper bound for c Q ( Z ) is obtained by just 
computing c Q ( z ) f° r "the domain ( 7 0 ) with, say, # = 0 . This computation 
however becomes complicated if m > 1 , so we have contented ourselves with 
the cruder upper bounds obtained by letting an application of Lemma 3 ' 2 

follow, yielding the estimate 

cQ(z) < min c£ j )(z) , ( 7 2 ) 
j=l,..,m 

where c, (z) refers to the domain 

ft = IP\[z+d (z), z+D (z)] ( 7 3 ) 
J J J 

(thus S c f i . ) . 
J 

Now the upper bound in ( 6 3 ) is just ( 7 2 ) . To see this amounts to 
checking that for 

Cl = IP\[a,b] , 0 < a < b < 0 0 , ( 7 4 ) 

we have 

c Q ( 0 ) = l o g - ^ • ( 7 5 ) 

1 " b 

*̂  See fig. 3 . 1 3 ( p . 7 5 ) , where m = 1 and # = 0 . 
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This is a matter of computation. Using that Q H- W = J m a p s Q onto 

the half-plane Re w > 0 (for one branch of J~~ ) with Q = 0 mapped on 

w = J TT , one finds that b 

- - 1 * i i + 2 i o e 

a /a 
C-b + v b 

= - iog|ci + iog| - ^ 5 ^ | + 2 io g| y ¥ j . 

Thus 

o0(0) l o s l b=a~~ I + 2 log -a / a 
-b + ^ b 

= 2 log b - log(b-a) + 2 log 2 = log ̂  = log 1_^y f e , 

showing (75). 

Thus (63) is proved. (64) is an immediate consequence of (63) 
(m = 1, Dx(z) = 0 0 , d l(z) = d(z) ). 

If Q is convex then, given z £ fi , fi is contained in a halfplane 
Q whose boundary L is at distance d(z) from z (fig. 3.1). If z 
denotes the point obtained from z by reflection in L, the Green's 
function for Q is 

g(C,z) = - log|£-z| + log|C-z 

showing that 

cQ(z) = log|z-z I = log 2D(z). 

By Lemma 3*2 again this 
proves CQ( Z) < 1°6 2D(z), 
the upper bound in (65). Fig. 3.1 

Next, (66) is a simple consequence of (63). For it is clear that 



given e > 0 we can choose 6. > 0 so small (for example 6. = — 'diam K ) 
J J 2 j 

so that 

d.(z) 
D.(z) 
J 

4 whenever d.(z) < 6. • Now if e > 0 is chosen so that log - — < A, J J l-e 
then 6 = min{6,,...,6 } works in (66). 1 m 

As to the final assertion in Proposition 3-3 we first observe that 
oo ̂  Q means that °° € K. for (exactly) one j, say j = 1. This means 

D^(z) s oo t so that (63) gives 

c0(z) < log 4d1(z) . (76) 

Since 0 0 I K. for j 4= 1, KnS ...,K are bounded sets. Therefore, given <~ j ' 2 m 

6 > 0 the quotient d^(z)/d(z) is bounded for d(z) > 6 , say 

d,(z) 

7 ( 7 ) ^ B ( d ( z ) > 6 ) . 

Thus combining with (76) gives 
cQ(z) < log d(z) + log 4B (77) 

for d(z) > 6. Since we already have a bound of the kind (77) when 
d(z) < 6 (if 6 is sufficiently small) this proves the final assertion 
of the proposition. 

We turn next to the functions c (z), c Q (z) for n > 1, for whose 
n " Bnv ' — ' 

moduli we need upper bounds. 

Proposition 3«5 In all Q , 

|en(C)| < ^ - ^ - n > 1 , (78) n d ( c ) n 

and, for some constant A (depending on Cl) , 
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*DG(Z,0 = ^ ^ d s on z z 

Proof: Prom (35), (37) we have 
oo 

G'(z,C) = - ̂ 7+ H'(Z,C) = - -̂7 + Lnc (C)(Z-C)N"1 (80) ^"t ~̂t> n=l 

(the slashes denote derivatives with respect to the first variable). 
Therefore 

n c ( c ) i R G /( z^)dz ( 8 l ) 

the path of integration being some small closed loop about the point Q 
(taken in the counter-clockwise direction). Actually, since the integrand 
in (8L) is seen to be a holomorphic differential with respect to z in 
all fiv{£} (including the point °° if 0 0 € fi ) the path of integration 
may be taken to be any cycle of the kind Y = 5U, where U is any smoothly 
bounded open set such that £ € U c TJ c Q . In particular, we can (and 
shall) choose 

Y = Y r = { Z € : G(Z*C) = R } 
for any r > 0 (corresponding to U = { z £ Q : g(z, Q > r } ). 

Along Y r (i n the z variable) we have 

dg(z,C) = 0 , 
and hence 

G'(z,£)dz = i*dg(z,G) • 

Thus (8L) becomes 

nc(C)=-5=: J ^ ( Z >P (any r > 0 ). (82) 217 Y r (Z-C)N 
(The corresponding formula for c Q ( C ) i s 

cQ(C) = R " jfi S LOG|Z-C|*DG(Z,£) . ) 
Yr 

The orientation of v is such that the domain 
'r 

{ z € Q : g(z,0 > r } lies to the left of it. Therefore 

< 0 



along y * which shows that 

$ !*<*(-, C)| = " S Q) = 2 T T . 
yr yr 
This gives 

|nc (C)| < sup  L — - I R $ l* d s ( ' . C ) | = s u p - i 

The above proof does not work for c p n ( C ) • However, formula ( 8 l ) 

' n zGyr |z-£|n ^ yr' ' z€yr|z-£|' 

and letting r -» 0 

| no ( 0 | < |up — = , 
z€dQ |z-£| d ( 0 

proving (78). 

The above ] 

holds with g:s inserted, and since by (15) 

G^(z,0 = G'(z,C) + £ a k J ^.(z^jCC) , (83) 
where W (z) denotes the (multiple-valued) analytic completion of the 
harmonic measure uu (z) , it is in order to prove ( 7 9 )> enough to 
prove that 

. W'(z)dz „ 
^ r j k

 n < ~ T (k = l,...,m, n > l ) ( 8 4 ) 
^ U Z - Q * ( 0 N 

for some comstant B. Since the integrand in the left member of ( 8 4 ) is 
a holomorphic differential in all Q\{£} we are free to choose the path 
of integration y to be any cycle of the kind y = dTJ with Q 6 TJ <= U c fi. 
We take it to be 

y = y = SU where 

U = { z € Q : e < «> (z) < 1 - e } 

with e > 0 so small so that £ € TJ . Then du (z) = 0 along y, and 
k 

( 8 4 ) reduces to 

* d ID (z) 
- r 

k̂  
2 1 1 ye ( z - o n 

< - ~ (85) 
d ( 0 

(to be proved). 
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d OU < 0 along y 

( y + and y are assumed to be oriented so that U lies to the left), 

S |*d u>k| = J + *d u> - J _*d w k = 2\F +*d UJ , 
ye ye ye ye 

which is independent of e (and in fact equal to 21 dm, = 2p , 
r k k kk 

where (p .) is the matrix defined by (L8). This proves (86) (with kj 
equality and C = 2p ), and we get for the left member of (85) 

*do»v(z) 

YE (Z-C) 

1 n k v ' ^ 1 1 f 1 * r - I < sup . •r-
 1 2TT D._ / — .̂ , „n 2TT d J d«i. I < C- sup 1 

2TT ~ K> - R I 1 ,,n z€ye |Z-C|" YE * z€ YE |Z-C| 

Since sup —-—--> —^—• as e H > 0 this proves (85), and the proof 
z€ YE |z-C| d ( C ) n 

of Proposition 3«5 is complete. 

As a corollary of the lower bounds in Proposition 3 « 3 and of Propo
sition 3.5 we get the correct definitions of c

n ( z ) , c g n ^ f o r 

z = o° when 0 0 £ Q : 

Now it is easy to see that 

J |*du) k| < C (86) 
ye 

for some constant C independent of G. Indeed, putting 

YG = { z € n : w k(z) = 1 - E } 

YG = { z € Q : UUk(z) = e } 

(so that Y = Y + U Y- ) w e nave G S S 

* + d UU > 0 along Y 
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Corollary 3 .6: If 0 0 € fi, c
n ( z ) 3 X 1 ( 1 CBr/ z^ b e c o m e continuously ex

tended to all Cl by putting 

c0(°°) = c P Q ( O O ) = + O O , (87) 

en(°°) = c P N ( ° O ) = 0 for n > 1 . (88) 

Proof: If °° € fi , d(z) -> 0 0 as z -» O O . 

It is interesting also to combine Proposition 3»5 with the upper bounds 
in Proposition 3«3« Thus, assuming that 0 0 £ fi , the last assertion of 
Proposition 3«3 shows that for some B < °° 

i - ° o ( z ) 

1 < B e (89) d(z) -

in all Cl. Similarly 

1 " e
o n ( z ) 

< B: e P° (90) d(z) - 8 

for some B' < O O . Together with (78) and (79) this gives 
P 

n -nc (z) 

|cn(z)| <f - . e 0 and (91) 

Bo -nc (Z) 
|cD (z)| < - E . e P 0 (92) 
1 Bnv y | — n K J ' 
(in the case 0 0 £ Q ) . in particular 

-c (z) 
Ic (z)I < B • e u and (93) 

l c
p l

( z ) l ^ B p * e P • (94) 

These last inequalities will come into use later. 

If Cl is simply connected (64) shows that the constant B in (89) 

and (91) can be chosen equal to 4. In (89) this is the best possible 
constant, but not in (91). In fact, when n = 1 the best possible choice 
for B in (91) (i.e. in (93) ) is B = 2, as we shall see later (p.8o). 
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e) Discussion of the orbits 

We shall now look at some consequences of the results hitherto obtained 
(sections III a) - d) ) in terms of the motion of free vortices. These 
consequences could of course equally well have been formulated for the 
electrodynamical problem, but since the motion of vortices actually is our 
principal interest we have preferred to formulate them for the hydrodyna
mical problem. 

As we have already discussed on p. 18 f f. the differential equation 

L = - I A V 2 ) ( 9 5 ) 

for a freely moving vortex, together with 

shows that a free vortex moves along a level line of c ̂ .(z) , 
BO 

I\ = { z 6 N : e (z) = constant = \ } . (97) A PO 

Prom Proposition J>> 3 we now get estimates for the deviation of these 
level lines from the boundary of Q. For by (66) equalities of the kind 

d(z) < e " U < B-d(z) , (98) 

or 
1 C R 0 ( Z ) °R0 ( Z ) 

| e E° < d ( z ) < e P° , (99) 

hold in Cl, except in a neighbourhood of z = °° if oo ̂  Cl . In the 
perhaps most interesting case that Q is simply connected and °° £ 
B can be chosen equal to 4. (99) shows that 

i eX < d(z) < e X (100) 

whenever z € F, • Thus for example each T. is separated from bCl by 
1 \ a positive distance ( = ~ e A ). (if °° € (100) holds for \ < v , B 

for any v < 0 0 , but with B depending on v. ) 
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Let us next discuss a little more closely the relation between the 
orbits of free vortices and the level sets T of cor,(G)« We shall then 

X pO 
be careful in the use of the word "orbit" and only use it in the precise 
sense of being a complete trajectory of a vortex, that is the set of points 
a vortex occupies during its "life-time". In other words an orbit is the 
image set of a maximal solution of the differential equation 

Since c„..(z) is a very well-behaved function (it is analytic as a 61 
function of the two variables x and y) it follows from general facts 
about differential equations that through each point of Cl \ {°°} there 
passes exactly one orbit. It should be observed that with each orbit there 
is associated a particular direction, namely the direction in which a vortex 
of, say, positive strength moves along it. 

It is from a mathematical standpoint not completely obvious that the 
domain of definition of a maximal solution of (101) is always the entire 
real line, that is that a vortex always exists for all time t € JR. This 
is however actually the case. For it follows easily from the good local 
properties of (101) in Q \{°°} that any orbit which is part of a compact 
subset of Q N W must necessarily be defined for all t £ JR (otherwise 
it could be extended a little). Now we know that each orbit is at a positive 
distance (measured in Euclidean plane metric) from dQ. Therefore the 
only orbits which are not within a compact subset of Q \ { 0 0 } are those 
which in some direction approach 0 0 t This can occur only if 0 = £ 3Q , since 
C 8 0 ^ -> + oo as z -> °° if o° € n (Corollary 3.6). It therefore only 
remains to check that a vortex on such an orbit cannot reach (or emerge 
from) infinity in a finite time. But this is an immediate consequence of 
the inequality (94), which, in the case 0 0 £ Q , shows that the velocity 
of a vortex is always~bounded on each orbit: 

dz 
dt = - I a c p l(z) . (101) 

dz 
dt < const, e -X for z € r. X (102) 

(it is easy to see that the velocity is bounded on each orbit also in the 
case 0 0 £ Cl •) 

Thus each maximal solution of (101) is indeed defined on all JR » 
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We know that each orbit is a subset of a set T . If this Y is 
A. X 

disconnected (topologically) then the orbit can of course only be part 
of one of the components of r , and the general case is in fact that 

X 
an orbit is precisely a component of a T\ . However, there are exceptions. 

A. 
This is because there may be points where c.„(z) is stationary. Let 

•*-) 60-us call such points singular points . Thus by (96) a singular point is 
just a zero for c ^(z), that is a point where a free vortex is at rest. 
Or: a singular point is an orbit consisting of a single point. 

If Y is a component of a set T and Y contains no singular points, 
X 

then Y constitutes one single orbit. This is immediate from the fact 
that the velocity of a vortex on Y is never zero. "Most" orbits are of 
this kind. Since such an orbit cannot have any (finite) end point there 
are only two possibilities for it: either it is unbounded, tending to 
infinity in both directions, or it is a closed loop. In the latter case 
the motion of the vortex is periodic, it returning to each position re-
gurarly within a certain time interval T. This time of revolution will 
be considered later. 

Consider next a component Y °f some T , such that Y contains a 
X 

singular point. One possibility then is that Y consists of just that 
singular point. Otherwise Y contains orbits which have the singular point 
as an endpoint. These orbits are then open arcs which in the other direction 
lead either to infinity or to some (other, or back to the same) singular point 
of Y • A typical situation is pictured in fig. 3«2 where we have 2 singular 
points, one of which is isolated while the other 

In the context of dynamical autonomous systems the word "critical 
point" is more common. In other parts of this report the word "equilibrium 
point" is also used. 
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one is the end point of three distinct orbits. One of these three orbits 
is bounded, and closed except for the singular point. Since it is a complete 
orbit a vortex on it will need infinite time to make its short cycle along 
it. This is rather remarkable and of course quite general (a vortex on an 
orbit which leads to a singular point will never reach that singular point). 

*) 
Let us take a closer look at a particular singular point. We can assume 

that it is z = 0, and we moreover assume that we have rotated the coordinate 
system so that the principal axes of the quadratic part of the Taylor ex
pansion of c ^ at z = 0 are the x- and y-axes. This means that (say) 

C B 0 ( Z ) = C B 0 ( 0 ) + ^ + ^ + 0(|z|3) * (103) 

at z = 0 ( z = x + iy, a,b £ 3R ). We shall find later (p. 7 0 ) 
that Lcnr. < 0 everywhere ( 0 (z) is superharmonic). At z = 0 this BO BO 
gives 

a + b < 0 . (104) 

2 2 

In particular the quadratic form Q(z) = ax + by does not vanish iden
tically. 

Now we have three cases. 
1) a and b < 0 . 

The form Q(z) is negative definite and c (z) has a strict local 
pO 

maximum at z = 0. The orbits near z = 0 form closed loops, approximately 
ellipses, around z = 0 (fig. 3 « 3 ) . One would think that having a vortex 
at z = 0 its state of rest would be unstable 
since, c_.(z) representing the energy of the BO 
system by (2.45) an-d (2.53), it is in a state 
of maximum energy. However a disturbance (even a 
strong such) of the vortex would only have - the effect 
that it falls into one of the orbits close to 
z = 0 and begins to circulate in it. Thus the vortex Pig. 3'3 
is not unstable at z = 0. 

'The following discussion do not apply to the point 0 0 f which, if it 
belongs to Q, should always be considered singular (by Corollary 3 - 6 ) . 
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It is natural to ask for the time of revolution in an orbit around 
z = 0. This time depends on the orbit, but it is easy to see that it 
approaches a finite limit T as the orbits shrink to z = 0. In fact 
a computation shows that 

T = ^ ' ( 1 0 5 ) 

or, expressed in a form which is invariant under rotations of the coor
dinate system, 

T - O V (106) 

5 V * C 0 ,2 

ay Sxoy 

(the derivatives evaluated at z = 0 ) . 

2 ) a and b are of different signs (both ̂  0 ) . 

z = 0 is then a saddlepoint for C P O ^ Z ^ A N C ^ 

the picture is as in fig. 3«4. Thus four open orbit ends meet at z = 0 and 
the neighbouring orbits are approximately 
branches of hyperbolas (near z = 0 ) . 
In this case the word unstable for the state 
of a vortex at z=0 is more adequate since a 
small disturbance of it would cause it to move 
away along one of the hyperbola-like branches ~ 
and it would be back in a neighbourhood 
of z = 0 if ever only after a long time 
(this time tends to infinity as the orbits approach z = 0 ) . 

3 ) a = 0 and b < 0 or vice versa. 
Q(z) is now negative semidefinite and the behaviour of the orbits 

near z = 0 depends on the higher order terms in the Taylor expansion 
(103) • Let us just mention two types of behaviour. 

The first is the one that occurs when the domain G is an infinite 
strip (bounded by two parallel straight lines) 
or when Q is a {circular) annulus. Then the 
singular points constitute a whole line (the % 

symmetry line for a strip for example).(Pig.3.5) ^ 

Pig. 3.5 

Pig. 3-4 
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A vortex on that line thus does not move spontaneously. On the other hand 
no force is needed to move the vortex along the line. 

The other type is the "cusp" singularity, represented for example by 

'BO (z) = x
5 - y 2 

Then the picture is as in fig. 3.6, with two open orbit ends meeting under 
zero angle at z = 0 . 

Fig. 3.6 
Let us next turn to the question of existence of singular points. If 

00 € Cl, the point oo itself is always a singular point, by Corollary 3-6, 
and this may be the only singular point. If oo £ Q but Q is unbounded 
(in other words, « g 3Q ) then Q need not contain any singular point 
at all. For the upper half plane, for example, we have 

C p Q ( z ) = log 2y , 

C B 1 ( Z ) = 2iy (z = x + iy, y > 0 ), 

so that c -(z) has no zero there, pi 
On the other hand if Cl is bounded it must contain at least one sin

gular point. This is obvious from the fact that then c (z) -> - oo as 
pO 

z -» bCl without exceptions, so that c (z) must have a point of maximum 
80 

in Cl, and such a point is necessarily singular. 
Somewhat more generally, each compact component of a set 

{ z eci c p 0 ( z ) > x } (107) 

must contain a point of maximum of c_„(z) , and so a singular point. 
BO 

Assuming for simplicity that oo ̂  Q we know by Proposition 3«3 that an 
inequality log d(z) < C ^ Q ( Z ) < log d(z) + A holds throughout Cl. Putting 

D = { z 6 Q : d(z) > e X } 
A. 

(108) 
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we therefore have 

1 C\ C VA • ( 1 0 9 ) 

This gives information about the singular points directly from the geometry 
of Cl in certain cases. Namely, whenever a compact (i.e. bounded) component 
of D. . contains a non-empty component of D there must be a non-empty 

A. "A A. 
compact component of in between, and hence there must be a singular 
point in EL . . By this it is for example easy to see that if Q is a 

A.—A 
region built up of two discs connected by a sufficiently narrow channel 
(fig. 3 ' 7 ) , then each disc'must contain a singular point. Moreover, there • -
must be a saddle-point for c n(z) in (or-near) the channel. Thus such a 

pU 
region must have at least three singular points. 

Pig. 3*7 

We shall complete our discussion of the orbits by directing our attention 
to the time variable: can anything general be said about the time needed 
for a vortex to travel between two different points on an orbit? It turns 
out it can. 

To arrive at that we consider a portion of Cl which is free from sin
gular points. We shall introduce a new coordinate system there, with 

t = time and 

X = c p o(z) 
( n o ) 

as new variables. Por this to make sense we have to draw a line Y Q trans
versal to the orbits (that is, such that Y Q i s never tangent to an orbit 
and never intersects an orbit more that once), to be the line of "time 
zero", t = 0. The coordinate transformation is then defined by the map 

(t,X) ̂  z = x + iy , (111) 

where z is the position at time t of a vortex on r. which at time 0 
X 
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(t,X) \r-±1 

Pig. 3*8 

Although the map (ill) depends on the more or less arbitrary choice 
of the line Y Q It turns out that its Jacobi-determinant is always the 
same. We shall compute it. Thus regarding z = x + iy as a function of 
t and X by (ill) the differential equation (95) for the motion of 
a vortex shows that (since it moves along a line \ = constant) 

t f - - l a . p l ( . ) - - i o ^ V ( , ) (113) 

that is, since X = c_„(z) 
pU 

I f - = - i a & , 
5 t oz 
or 
dx _ q d\ 
at 2 0 y 

oy _ a 
at " 2 ax 

(115) 

Therefore 

was on Yn • Y+ denotes the line of positions taken at time t by 
vortices which at time 0 was on Y Q the coordinate transformation (110) 
thus can be summarized by 
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ox ax 
at ax 

bJL 
at *x 

_ a x a £ ^ a x a _ £ _ a ' aj, ay. ax ax N = a 
~ at ax Sx at 2 k ay ax ax ax ; 2 * 

( l l 6 ) is more suggestively written 

(116) 

dxdy = I dtdX (117) 

Thus we have the remarkable result that the coordinate change (ill) is 
(essentially) area-preserving. This is what we aimed at. (117) shows for 
example that the time T needed for a vortex to travel between two points 
z± and z 2 on Ty say {z^} = F^ n Y t ( J = 1 .2) , where T = t

2~ti ' 
is obtained by J 

T - ( X - X ' ) -±- IV^VXA')! ' 

where X' is any number close to X, D 

by Y. > Y, , r and T ,, and |.. 
t n tg X X 

(118) 

, , is the region bounded (.t^t^X.X ) 
denotes area (see fig. 3«9)« 

Pig. 3-9 

To get another example, put 

= { z € Cl : c p Q(z) > X } • (119) 

Suppose that | | < 0 0 and that F^ contains no singular points. Then 
= aQ^ (in general only aQ^ <= is true), and F^ consists of one 
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or more closed loops. If T denotes the sum of the times of revolution 
A 

about these loops, then it is a more or less immediate consquence of 
(117) that 

• ( 1 2 0 ) 

(there must be a minus sign since | CL^ | increases as \ decreases.) 

Or somewhat more generally, if D is a fixed region in Q, and T_ 

denotes the time needed to travel along R fl D (fig. 3 « 1 0 ) , then 
A 

(It is assumed that | fi^ N D | < °° and that I" N D contains no singular 
points.) 

Fig. 3 . 1 0 

(117) has another very interesting corollary. Namely that the flow 
of vortex motions (or: the flow associated with the vector field 

A = - iac'p^(z) ) is area preserving. By this flow is meant the family 

{ : t £ 3R } of mappings 

|JIT : 0 -* Q (122) 

defined by : 

[l (z) = the position at time t of a vortex which at time 0 was at z. 
"b 

If D is a subregion of Q |~i+(D) is defined in an obvious way, and for 
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{ [S } to be area preserving means that 

|Ut(D)| = |D| (123) 

for all Dcfi and all t € 3R. That { M-t } actually is area preserving 
is an immediate consequence of (117), since in the coordinate system (t,\) 
u. is just a translation, T 

|d : (t,\) (t+T,X) , 
T 

evidently measure preserving (fig. 3«ll)' (The singular points do not cause 
any trouble here, as is easily seen.) 

Pig. 3-11 

The property of { \i } of being area-preserving resembles very much 
a theorem in Hamiltonian mechanics, namely "Liouville*s theorem" about 
invariance of the phase density under the group of motions (see for example 
[L - Ll], § 46). Indeed, our vortex problem can be put into the frame
work of Hamiltonian mechanics in such a way that the invariance of dxdy 
under { } appears just as an instance of Liouville* s theorem. To see 
this, write the differential equation (95) in the form (compare (115) ) 

dx a a n i , . \ 
dt = 2 o 7 W X + IY) 

dy _ a o 
dt 2 ox ° ^(x + iy) 

(124) 

These differential equations are then identified with Hamilton's canonical 
equations ([L— Ll], § 4 0 ) 
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dg. _ SH 
dt ~ op 

(125) 

dp. 2H 
dt " oq 

by the choice 

q = x (position variable) 
p = y (momentum variable) (126) 

H(q,p) = | c j 3 0 ( x + i y ) (Hamiltonian) . 

This makes fi appear as phase space ( the "(q,p)-space") and the 
area measure dxdy as phase density dqdp . Thus the Liouville theorem 
just becomes that dxdy is invariant under { u }, that is (123), as 
we wanted. 

It might be noted that the area-preserving property of { } also 
has an infinitesimal aspect. This is that the infinitesimal generator of 
{ ja. }, the vector field A = - i a cQ1(z)» is divergence-free , t pi 

div A = 0 . (127) 

2 _ 
Now A is essentially just our old vector field P n = - 2 TT p a 'C_,(z) 

o , ,P P 1 

rotated 90 . Therefore, as is easily seen, (127) is the same thing as 

curl P = 0 , (128) 

which in turn is a consquence of P̂  = grad u^. Thus we have proved again 
that { \i. } is area-preserving. 

f) Behaviour of c and c under conformal mapping 

We are going to determine the transformation properties of C Q ( Z ) , C (z),.. 
and c D n(z), c (z),... under conformal mappings. Thus we consider two pU pi 
domains, D and Q, together with a conformal isomorphism 

f : D -» Q . 
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The following system for the notations will be used: 

D Q 

Variables: £, QQ,... z, z ,... 

Domain functions: S(£»CO)»»»' G(Z,Z Q),, 

C N(C)*«»« C^Z),.., 

Whenever.; in the formulas to follow, both z and Q (for example) occur 
in the same equation they are assumed to be related by z = f ( 0 . If D 
and Cl are multiply connected it is also assumed that their boundary com
ponents are numbered so that f maps the j :th boundary component of D 
onto the j:th one of Cl (for all j). 

It is well-known that the Green's function transforms according to 

g(z,z0) = I ( C C 0 ) • (129) 

Similarly, we have for the "modified Green* s function" 

gp(z,zQ) = ^ ( G C 0 ) > (130) 

provided that the same period list fi = (6,*^.,B ) i s used on both sides. 
R 1 m 

This is easily seen, for example by noticing that the function (of Q 
(f(C), z ) has the properties which uniquely characterize g (C»C )• 0 8 0 

One may alternatively look at the construction of g„(z, z , J from g(z,z) 
8 0 0 

on p. 29 F F and find that the matrix (p .) occurring there is a conformal 
kj 

invariant, hence so is (a, .) (for fixed 8), so that (130) follows 
from (129) together with the obvious transformation formula UUk(z) = UU k ( C ) (131) 

for the harmonic measures. 

Since g^(z,z ) thus transforms in the same way as g(z,z„), it is 
6 0 v clear that the transformation properties of the functions c0.(z),c (z),.. 

PO PI 

will be identical with those of c^{z), c (z),... . Therefore we need only 
carry out the computations for the latter ones. 
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From (129) we get 

G(z,zQ) = G C C C Q ) + i'Y(Co) , (132) 

where Y(CQ) is some real function.Hence 

Z — z 

H(z,zQ) = H(C,C0) + log TT^ + l Y(CQ) • (133) 

Letting C "> CQ gives 

°oizo) = + l o s f ' ( C 0 ) + 1 Y ( C 0 } ( 1 > 0 

and, by taking the real and imaginary parts: 

c 0(z Q) = c0(C0) + log|f'(£0)| resp. (135) 

Y(C0) = - arg f'(CQ) • (136) 
It is convenient to have (135) written up in several different ways: 

c0(z) = c0(C) + log|f'(C)| , (137) 

cQ(z) - log|dz| = cQ(C) - log|dC| , (138) 

-c (z) -c (C) 
e |dz| = e |d£| . (139) 

The transformation properties for c^,c^.». are obtained by expanding 
both members of (133) in power series in C ~ CQ and identifying coeffi
cients. For ĉ  it is however easier to employ 

So (z) 
c (z) = — ^ together with (137)' Since 
1 o z 

fjlog I f-(C)| . l i j iogf(C) U*» 
applying — to (137) gives . 

0 l(z)f (C) = o^O + > or (141) 
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•cA(z) 

e 
0 'dzl , (144) 

1 

c (z)dz - — d logdz 

are conformal invariants. 

The transformation formulas for the higher order coefficients 
c 2(z), c^(z), ... tend to be very complicated. For example, the one for 

c^(z) also involves c^(z), and turns out to be 

c2(z)f'(£)2 + Cl(z)f'(C)- = 
- o2l&J C ^ Q ; 4 F , ( C ) + 6 I f , ( c ) 2

 1 f'(0 J J ' { 5 ) 

c2(z)dz - ^ d log • c (z)dz = 
= c2(£)d£2 - I d log || • c1(C)dC + \ {z,Q dC2 , (146) 
where 

is the Schwarzian derivate of f. 

In the hydrodynamical context of regarding - i a Cp^(z) as the 

velocity vector of a freely moving vortex ((2.48)) the transformation 
formula (l4l) (or perhaps rather (137) combined with 

c = — - ) is known as "Routh's theorem". See [M-T], 13 - 50. 

Cl(z)dz = c1(C)dC + | d log ^ , or (142) 
Cl(z)dz - | d log dz = ĉ OdC - \ d logdC . (143) 

(138)» (139) and (l43) mean, loosely speaking, that the quantities 
c (z) - log |dz| , 
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-c0(z) 
g) The metric ds = e | dz| 

The transformation properties (137) - (139) of cQ(z), C^ Q( Z) c a n 

be expressed by saying that 

-c (z) 
ds = e 0 |dz| and (148) 

ds R = e p u |dz| (149) 

define conformally invariant Riemannian metrics on Cl. Among all confor-
mally invariant metrics on domains in C the Poincare' metric is perhaps 
the most well-known. The main purpose of this section is to compare the 
metrics (l48), (149) with the Poincare' metric. The result, which will 
find an application in section IV" d), is that our metrics coincide with 
the Poincare metric if Cl is simply connected but are strictly smaller 
otherwise (p. 66 f) 
On the way we derive a result (Lemma 3«7) of some interest in its own 
right, and which will be developed further and applied later (sect. V b) ). 
It is a kind of generalization of what is usually called "the invariant 
form of Schwarz* s lemma" and says that analytic functions are locally 
distance-decreasing with respect to the metric (l48), the decrease being 
everywhere strict except for analytic isomorphisms. 

Let us start however with some remarks concerning the Gaussian curvature 
for (148) and (149). For (148) this is given by the formula 

2 c o 2 c o * % 

H(z) - e • £c 0 = 4 e ° _ | . ( l 5 0 ) 

(see for example [A], sec. 1-5•) 
Similarly for H (z) in terms of c Q (z), A direct computation (using B pO 
(137) ) shows that K and K are invariant under conformal mappings, 
that is, that 

It should perhaps also be emphasized that the presence of the term 
log |f'(£)| in (137) has the effect that the orbits c R Q = constant 
of a freely moving vortex are not conformal invariants, that is the image 
of an orbit under a conformal mapping is not an orbit. 
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H ( Z ) = K ( C ) and (151) 

K(Z) = K Q ( C ) (152) P P 

in the notations of section III f) . 

As a consequence of (151) we have that K (and K r ) takes one and 
the same constant value on all simply connected regions; for any two points 
on any two simply connected regions ean be mapped onto each other by a con
formal isomorphism (the constant turns out to be -4; see ( 4.14) )• 

We shall to some extent be concerned with the question whether K and 
H are constant also for multiply connected domains. Since H (and K D ) p P 
is real it is constant if and only if — = 0. By (150) we have 

u Z 

. Sc. d 2
c 2n d^c 2c. 

2* = 4 • [2 - 2 ^ • e 0 + -=^2 • e 0 ] (153) 
oz oz 

oz dz -N 2 oz 

Introducing the quantity 

S 2c oc oc 
q(z) = — r 2 + ( — 0 = ( b y Lemma 3-D = T ~ + c (154) 

oz 2 3 2 5 z 1 

this becomes 

2* = 4 22 . e
2 C ° . (155) 

O Z 

Thus H is constant if and only if q(z) is a holomorphic function. 
In particular q(z) is holomorphic if Cl is simply connected, by the 
above remark. 

Some manipulations of formula (l4l) give 

r aC"|(Z) 2. 2 „ o 

+ I r ( £ X Q v_ I( r i Q ,2-, ,,,,, 
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Thus the behaviour of q under conformal mapping is given by 

q(z) f'(G)2 = q(C) + \ {tsQ , or (157) 

q(z)dz2 = q(C)dC2 + \ 0 ^ 

( (f,Q} denotes the Schwarzian derivative, (147). ) 

Of course, by putting in an index B everywhere above, wa-ototaln . 
exact parallel definition and formulas for q̂ . 

Next we turn to the announced generalization of the so-called invariant 
form of Schwarz's lemma. Our result, Lemma 3-7* only concerns the metric 
(148) (not (149) ), and says that analytic functions are locally distance-
decreasing with respect to this metric, and that the decrease is every
where strict except for analytic isomorphism. This result is closely related 
to the Lindelof prii 
special case of it. 
to the Lindelof principle . Also, Lemma 3*2 can be thought of as a 

We consider two regions D and Q with variables and"Ttomain functions 
denoted £, CQ,... , g(£, QQ), cQ(Q),... for D an z,z g(z,zQ), 

cQ(z),... for fi. Then 

Lemma 3»7 Suppose f : D -» Q is analytic. Then 

r ° ( z ) |dz| < e " C ° ( C ) K l ' t h a t i s (159) 

-c0(z) ~ ° o ^ 
e |f'(0| < e ° , or (l6o) 

c 0( z) > cQ(C) + log|f'(C)| (161) 

for each £ € D , z = f(C) € fl . 
If equality holds for some Q € D, then equality holds throughout and 
f is a conformal isomorphism. 

;see [N] III § 3 (Prinzip vom hyperbolischen Mass) or [G] VIII § 1-3, 
Postscript: I have recently found that Lemma 3*7 actually occurs as a part 
of a "Lindelof theorem", in [j] (Ch. IV, § 46). 
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Proof: Given QQ <E D , let z Q = f(QQ), 

and put 

U ( C ) = u ( C C 0 ) = S ( F ( C ) , F ( C 0 ) ) - S ( C . C 0 ) • (163) 

Clearly u is harmonic in D NE. If 

f ( C ) - f ( C o ) = A - ( C - C 0 ) n ° + 0 ( ( C - C o ) n ° + 1 ) , a f 0, 

at Q = Qq * U has the singularity 

n o 

u(C) = - log|C ~ CQ| " ( ~ L O S | C - C 0|) + harmonic = 

= - (n Q - l)'log|C - C 0| + harmonic (164) 

a t C = C 0 • Similarly, at Q = , j > 1 , 
u (C) = - n.*log|£ - Q | + harmonic (165) J 0 

for certain integers n. > 1 . Thus u is harmonic except for singula-
J 

rities of the kind - n*log|£ - Q.\ , n > 0 , and therfore it is super-
harmonic in all D. 

As Q -» £' € dD we have g ( C , C Q ) -» 0 . Therefore, since 

g(f ( C ) , f(Co) ) > 0 > 

lim u (C) > 0 for £' € dD (166) 

and so, by the superharmonicity, 

u (C) > 0 in D . (167) 

Moreover, if equality in (167) holds for some C, € D , then (still by 
superharmonicity) 

U ( C ) 3 0 in D . (168) 
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Thus, given £ Q € D we have either 

U C G G Q ) > 0 for all C € D , or (I69) 

U C C C Q ) 3 0 , C € D . (170) 

Using that U ( £ , £ Q ) = u(£Q, £) this gives: 

either U(£, £Q) > 0 for all £, C Q € D 

OR U(CC 0) • 0 >• CC 0 6 D 

NOW HOWEVER 

(171) 

G(F(C),F(C0) ) = - IOG|F(C) - F(£0)| + H(F(0,F(CQ)) = 

= - iog|f (CQ)-(C - C 0 ) + o(C- C 0 ) 2 | + h ( f(0 , f ( C o ) ) = 

= - IOG|C - C0| - iog|f (CQ)! + o(C - C0) + H(F(C),F(CQ) ) , (172) 
and 

S C & C Q ) = - iog|C - C 0| + H(C,C0) • (173) 

THUS, 

U ( G C Q ) = - IOG|F'(C0)| + h ( f(0 . f ( C o ) ) - H(C,C 0) + o(C - CQ) ' 

AND, LETTING Q -> £Q , 

U(C 0,C Q) = " IOG|F'(C0)| + H(F(C Q),F(C 0) ) - H(CQ,C 0) = 

= - LOGIRCYI + C 0 ( f ( C o ) ) - c0(C0) . (175) 

THEREFORE ((171)): 

EITHER c Q(f(0 ) > ^ 0 + LOG|F'(C)| FOR ALL £ € D 
(176) 

OR CQ(F(C) ) * E 0(C) + LOG|F'(G)| , £ € D . 
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Thus (159) - (L6L) are proved, and the proof of the lemma is complete 
as soon as we have proved that the equality case in (176) can hold only 
if f is a conformal isomorphism. 

So suppose we are in the equality case in (176). Then the same is 
true for (171)* that is 

s ( G C o ) H g(f(C),f(C0) ) > G C o ^ D . (177) 

We have to prove that f is one-to-one and onto. But Q =̂  CQ implies 

«> > s ( C C o ) = g ( f ( £ ) . f ( £ 0 ) ) • (178) 

Thus f(C) =(= ̂ (CQ) ' a n c* ^ one~to-one. To prove that f(D) = Cl , 
assume on the contrary that f(D) ̂  Cl . Then there is a point 
z £ Cl FL of(D) (0 denoting boundary). Since z € df(D) there is a sequence 

{ } in D such that ^(C^) "* 2 > a n d because f is injective, as we 
already know, (or actually just because f is an open map) we necessarily 
have -> dD . If € D is any point it therefore follows that 

g k G ^ G o ) -» 0 , while on the other hand g(f(Y,F ( £ Q ) ) "» g(Z,F(C )) > 0. 
This contradicts (177)* so we must actually have f(D) = Cl . 

By this the proof of Lemma 3»7 is finished. 

Now we shall apply Lemma 3»5 to compare the metrics (L48) and (1^9) 
with the Poincare' metric. Denoting the Poincare' metric by 

ds=p(z)[dz| , (179) 

we shall show that 

- c « n ( z ) - c n ( z ) < l 8°) e P° < e 0 < p( z) , 

where the second inequality is everywhere strict unless Q is simply 
connected (in which case all three metrics coincide). 

The first inequality in (L8O) is just (33)* UU (z,z) >0 
P 

(c,_„(z) = c.(z) + UU.(z,z) , (43) ), and the equality cases of it are RU 0 B 
discussed on page 33 , 
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To prove the second inequality in ( L 8 O ) we first recall how the 
Poincare metric is defined. For ID it is by definition 

D S = _ L I Z I _ T ( L 8 L ) 

and for an arbitrary multiply connected region Cl it is obtained by carry
ing over ( L 8 L ) to the universal covering surface of Q and then observing 
that the metric so obtained is well defined on 0. itself. More precisely, 
let Cl denote the universal covering surface of Cl . Thus Cl is a 
simply connected surface which we regard as lying over Cl with several 
(infinitely many) sheets. Let TT : Cl -» Cl denote the projection map. According 
to "the Uniformization Theorem" ([A], Ch 1 0 ) Q is conformally equivalent 

~ - . 1 to ID , with mapping function f̂  : ID -> Q and inverse cp̂  = f say. Then 
f = TT o f : D -> Q is the universal covering map, the "inverse" of which, cp , 
is multiple valued (unless Q is simply connected in which case Q = Q ) . 
The situation is pictured in fig. 3* 1 2 . 

Fig. 3 . 1 2 

The Poincare metric in [AJ however differs from ( L 8 L ) by a factor 2 . 

**)see for example [A] Ch 1 0 for a precise definition of universal cove
ring surface 



Now, we first get the Poincare metric on Cl by pulling back (181) 
with cp : 

\%(*)\ „ „ ~ 
ds = -—-—2 ' | | > z € Q . (182) 

1-1^(2)1 
Then one convinces oneself that if z^ and z^ are two points on Q 

lying over the same point z on Cl (TT(Z^) = n(z^) = z) then 

1̂ (̂ )1 
l - l c p ^ Z g ) ! 2 

(183) 

This is because, regarding z^ as a function of z^ (determined by the 

relation T T ( Z 2 ) = TT(Z^) ) in a neighbourhood of the chosen points, 

cp (z ) and cp (z ) = cp (z (z )) are related by a Mb'bius transformation 

mapping ID onto itself, whereby a simple computation shows (183). Prom 
this it follows that the expression 

p(z) = 1 )̂1 , z € Q (184) 
l-|«P(z)|2 

is well-defined on Cl, despite cp itself being multiple-valued. The 
Poincare metric on Cl is then defined by 

ds = p(z)|dz| . (I85) 

-o0(z) 
To compare p(z) with e we shall use Lemma 3«7* applied to 

the mapping TT : Cl -> Cl. Here we must be a bit careful because Q is not 
a domain in IP and so does not fulfill our general assumptions- in section 
III a) ( Cl is a Riemann surface). However it is easy to see that the 
definitions of the functions C Q ( £ ) , C ^ ( Q ) , . . make sense even for non-
schlicht regions, such as Cl, provided that the Green s. function exists 
(which it does for Cl ), and provided some care is taken with the function 
h(z,Q) because it will not be globally defined (it will however be defined 
for z near Q, which is enough). It is also fairly obvious that the trans
formation formulas in sect.Ill f) will still be valid, as well as Lemma 3»7« 

Thus we can talk about the domain function c Q for Q, and it will be denoted 
c Q = cQ(z). 
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C Q ( Z ) can be expressed in the isomorphism 9^ : Cl -> ID and borrowing 
a formula, ( 4 . 1 7 ) , from section IVb) the result is 

" I - I ^ C Z ) ! 2 

Thus, with Z = rr(z) , 

-c£(z) |CP'(Z)| 
e = — 

l-|«p(z)r 

(186) 

= P ( Z ) , (187) 

so that Lemma 3.7 gives 

-c.(z) -cA(z) 
< e dz 

dz = P ( Z ) (188) 

(clearly dz 
dz = 1 )> with strict inequality holding everywhere unless 

TT is an isomorphism, that is, unless Cl is simply connected. And this 
is exactly what we wanted to prove ((L8O) ) . 

Observe by the way that (187) shows that c Q ( z ) is well-defined as a 
function of z = T T ( Z ) , so we can write c Q ( z ) instead of c Q ( z ) a n d 
regard it as a domain function on Cl itself. 

h) c,v c r\ related to the Bergman kernels. 

For any region Cl the function 

K(Z,C) ^Zjtt (189) 
N O Z D C 

is known as the Bergman kernel for Cl (reference: [B] or [NEH] ). It 
is characterized by the properties that 

F(C) = J J ^ Z M Z , C) dxdy 

Cl 
2 

for all f in L (Q), the Hilbert space of all square-integrable (with 
Si 

respect to area measure dxdy) analytic functions in Cl, and that K(*,£) 
itself belongs to L2(Cl) for all £ € Cl. * See p. 109. 
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Similarly, 

K ( Z , C ) = - - ( 1 9 0 ) 

is the "reduced Bergman kernel", having the corresponding properties with 
2 2 respect to the subspace L (0) of L (fi), consisting of those functions with 
£IS £L 

single-valued integral in Cl. Notice that the right hand side of ( 1 9 0 ) 
does not depend on the choice of 8 (since the left hand side does not). 
This may also be seen directly, using the remark on page 3 2 (formula ( 3 2 ) ) . 

. 2 
Since = loglz -£|= 0 ( 1 8 9 ) can also be written 

o z o C 

K(z, £ ) = - - • *L&L*fJl . 
W TT A Z A £ 

(Similarly for K (z,£).) This gives the following relationship between s 
C Q ( Z ) and K(z,z): 

2 2 2 2 

c (z) = h(z,z) = { h(z,0 + - ^ r h ( z / a - + 
d z d z 0 ^ z d z a z a 2 ozo£ 

2 2 2 
+ -2-- h(z,£) + h(z,C) } = 2 { - ^ z h(z,C)} = - T T K ( Z , Z ) . 

Thus 

A c Q ( z ) = — 4 TT K ( z , z ) . ( 1 9 1 ) 

In the same way 

A c R Q = - 4 TT K s ( z , z ) . ( 1 9 2 ) 

2 2 

Prom the inclusion L (fi) <z L (Q) together with well-known properties 
as a 

of reproducing kernels follows the inequalities 0 < K ( z , z ) < K ( z , z ) , 
s 

where the second one is everywhere strict if Q is not simply connected. 
Thus besides the inequality ( l 8 o ) , 
c Q ( z ) < c ( z ) , ( 1 9 3 ) 

we also have 
A c 0 < A c R O < 0 . ( 1 9 4 ) 
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The first inequality in (194) is also easily derived directly from 
( 4 3 ) , using the positive semi-definiteness of the matrix (a. .). 

k j 
The second inequality in (194) assert that c Q and c R Q are super-

harmonic. A particular consequence of this is that they cannot have interior 
minima. 

In terms of the potential function u and the vector field P (p.34-35) 

(191) is 

= (pos.const.)*K(z,Z) resp. (195) 

div P = (pos.const.)*K(z,z) (196) 

(similarly for u and F ). This gives the interpretation for K(z,z) B B 
of being the "source density associated with u and F . 

By (191) the formula (150) for the Gaussian curvature x,(z) for 
-cn(z) 

the metric ds = e |dz| becomes 
2c (z) 

K ( Z ) = - 4 TT K(z,z)'e u . (197) 

(Similarly for H r . ) Therefore, having further information about the re
lationship between ° Q ( Z ) an& K(z,z) is equivalent to having information 
about K ( Z ) . For example, for simply connected regions we have K = - 4 

(p. 62 or formula (4.14) )• Thus 

1 " 2 c o ( z ) 

K(z,z) = - e U , or (198) 
TT 

cQ(z) = - log V T T K ( Z , Z ) (199) 

for such regions. 

For multiply connected regions (198), (199) are however no longer 
true. Indeed, we will prove later (p.82 f ) that H.(z) is not constant 
for such regions (as to *iR(z) we do not quite prove that it is not constant, 
but there is no reason why it should be, and at least it cannot be constant 
for more than one choice of B# and it can never be constantly equal to 
- 4; see p. 82 f). 

Not very much (beyond (191)) seems to be known about the exact re
lationship between g Q ( z ) and K(z,z) for multiply connected regions. 

* (197) also yields the following relationship between K(Z) and K(z,z): 
A (log x(z)) = A l o g K(z,z) - 8 TT K(z z) . (This observation is due to H.S.Shapiro.) 
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In the book [s-o] the question of such a relation is in fact stated 
as an "Open Question" ([S-o], Ch VII 5 I and Open Question 7 p.342 *)). 

From [S-o] we may also extract some positive information. Namely, 
if 8 = (B1»...,B ) is of the form 8. = - 2TT6, . (j = l,...,m) for some 1 m j kj 
k , then 

e P ° <J1TkJ^Q (200) 
([S-O], VII 5 F). Furthermore 

-c Q ( C ) (201) 
J TT Ks(CC) < e 
(VII 5 F), and both inequalities are everywhere strict unless the region 
is simply connected. (VII 5 H). In terms of the curvature (200) reads 

*p( z) < " 4 . (202) 

(200) and (202) can however not be true for arbitrary choices of 8 ; 
for we know (p. 33 ) that equality in 
-c R n(C) -c 0 (0 
e p < e does occur for £ = £ Q if 8 = - 2 T T(w i(£ 0),...C^)), 

so that by (201) 

V TT K (CC) < e P > or K (C) > - 4 for such 8 and £ . s p1 

The book [ s - o ] contains a lot of other valuable information about 
the functions G(z, £), G (z, £), c n(£), c _(£), ... , for example eharac-

p o pU 
terizations of them by various extremal properties. We do not take up 
these topics here but just refer to that book. The reader who wants to 
consult [s-0] will however find that I have chosen extremely bad notations 
with respect to those in [ s - o ] (which are the standard ones). 
Therefore we have, in Appendix 1, given a short "conversion table" between 
the relevant notations in [S-o] and those used here. 

See Appendix 1 for the notations in [S-o] 



1) cn(z) related to the transfinite diameter 

Prom the equation P = grad u ( (46) ) for the force P on the 
charge in the electrostatic problem one obtains the interpretation for 
- u = (pos. const.)*cQ + const. ( (50) ) of being the total energy (up 
to an additive constant) of the physical system. This energy can also be 
computed directly in terms of the actual charge configuration on the con
ductor ( = the complement of the region Cl in question). Since charges 
on a conductor always distribute themselves so that the total energy is 
minimized this leads to representations for -u(z) and c Q ( Z ) as minima 
of purely geometric quantities (or actually as limits of such minima). 
We want to derive such a representation here. The formula we aim at is 
equivalent to the well-known representation in potential theory for the 
Robin* s constant in terms of the transfinite diameter, and we need only 
perform a simple variable transformation on this to reach our goal. This 
formula is then applied to give a simple proof of Lemma 3.4 which was left 
open in section III d) (p. 39 )• 
[A] Ch 2 and [S-O] Ch VII 6 may serve as references-for this section. 

The classical situation is this: Cl c3P is a domain with °° € Cl so 
that K = IPvfi is a compact subset of C. The Green's function g(z, Q 
for Cl has the asymptotic behaviour, for £ = °° , 

g(z,°o) = log|z| + Y + 0(|z|_1) as z -> °° . (203) 

Here, Y is the Robin's constant and 

Cap K = e" Y (204) 

the logarithmic capacity of K (Cap K is usually defined, otherwise, but 
this does not matter here). For n > 2, let 

6 (K) = max ( N |z. - z.j ) n ^ 1 ) 

i, J=' 
i<j 

z i " * ' V K i<j 

V K ) - M 3 N n(n-l) l o g Iz -z I ( 2 0 6) 

-I 
Thus & n = e . Apart from a constant factor I n( K) m a y he interpreted 
as the energy of the equilibrium charge configuration on K when K is a 
perfect conductor and the unit charge is divided into n equal pieces and 
supplied to K. 
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One finds that & 2 > 6-̂  > ... and I 2 < I < ... . Letting 

6(K) = inf 6 = lira 6 (207) n n ^ n 
n r H ° ° 

I.(K) = sup I = lira I , (208) 
n " n^oo 

6(K) being the transfinite diameter of K, the central fact then is that 

Cap K = 6(K) , or (209) 

Y = I(K) . (210) 

Now let QcTP be arbitrary (i.e. drop the hypothesis 0 0 6 Cl ), 

K =TP\Q, and consider any point a £ Cl • If a =}= °°, put 

t - i <211> 
(if a = °° , let £ = z). Let Q and K be the images of Cl respective 
K in the £ - plane, and let g(z,zQ) be the Green's function for Q. Then 

g(z,a) = - log|z - a| + cQ(a) + 0(|z-.a|) = log| C| + cQ(a) + 0(|C|" 1) ( 2 1 2 ) 

as z -» a and £ -» °° . Comparison with (203) together with (210) thus gives 

c0(a) = I(K) . (213) 

Hence 
2 1 c^(a) = lim min ^ „f„_, ^ Jj. lo; 

n-o q , . . , ^ ^ " 1 ) 1 < J | ci" c^ 

2 v l z j - a l i 

n(n-l) i§j l 0 S | Z l-z | 
p | z.-aj' | z .-a| 

= l l m rain , 5 , l Q S L ' V7 , (214) 
n̂ oo Z ; L,. .,zn€K 

or, replacing a by z, 

[z-z.||z-z.[ 
c.(z) = 11m min , L log—, • 11 . (215) 

0 iHoo Z l , . . z neK n(*-D i<j l zi" zjl 

This is the formula we wanted to arrive at. The important thing about it 
is that the right member is a purely geometric quantity. 
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The physical interpretation of the right member in (215) is obtained 
by writing 

J z-z . | | z-z .| 7 

, ^ E log 1 | 11 = 2- { -^r E ^ log -j V -

n(n-l) i < t j | Z l - Z j | n-1 i < C J n ^ \Z±-z. 

Here the factor ^ ~ is harmless and may be replaced by 1 without affec
ting the limit in (215). Having the electrical charge + 1 at z and 
the charges - ~ at each of z^,...,zn 6 K the first sum in the right 
member of (216) represents the energy stored in the forces between the z£ > 
while the second sum represents the energy in the forces between z and 
the z ± . Therefore the expression (2l6) is (approximately) twice the 
total energy of that charge configuration, which should make it clear how 
to interpret (215). 

As an application of (215) we can now complete the proof of Proposition 
3«3 by proving Lemma 3.4 (p. 39 )• Lemma 3»4 says that cQ(z) increases 
if K is replaced by its circular projection, with center z, onto any 
radius emanating from z (fig 3.13). This now follows from (215), for if 

A K 
1 

Pig. 3.13 

the projection map in question is denoted £ i—• Q and K is the projection 
of K then in (215) 

z -z. = z - z.I and 
i' 1 i1 

This proof of Lemma 3.4 is modelled on the proof of the Koebe one-
quarter theorem given in [A], sec 2-3. Lemma 3.4 could also have been proved 
using this one-quarter theorem in place of the theory of capacity. 
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and therefore, for each n, 

2 ^ L Z - Z I L L Z - Z J L 2 ^ L Z - Z
1 N Z - Z

I L min / s Slog — i • u < min — 7 — r v Slog - n(n-l) 0 z.-z. — _ja(n-l) D ,~ ~ , 
1'" n € 1 J ...,zn€K v ' l zi" Zjl 

2 ^ l z - z i l l z - z i l 

z.,..,z €K v 7 z- _ z-
V ' n 1

 1 j 1 

Thus cn(z) < c_(z) (c referring to Q =IP^K), which was to be proved. 

IV Simply Connected Domains 

In this section we specialize to simply connected domains Q c3P. For 
such domains our two kinds of Green's functions, g(z,Q and g_(z,£), 
coincide, so there is no need to write out any 6:s here . First we 
compute "everything" for D (the open unit disc) and then the formulas 
in section III f) are applied to get explicit expressions for our domain 
functions for arbitrary simply connected domains Q in terms of any Riemann 
mapping function f : D -» ft . The rest of this section is devoted to various 
kinds of consequences of the so obtained formulas. 

a) The unit disc 

For the open unit disc D we have 

g(z,0 = - log 1 - Z C 

(1) 

Hence, up to an arbitrary purely imaginary function of Q 

G ( Z , C ) = - L O G Z = ^ = = - L O G ( Z - C ) + L O G ( L - Z C ) 

1-zX 
(2) 

and 
H(z, 0 = L O G ( L - Z C ) 

•*•) 
;with the exception of a passage at pp 82 - 85 

digression to multiply connected regions again. 

where we make a 
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which is a single-valued analytic function (with respect to z) in D, 
with that branch of log chosen which is real for z = £ . This is seen 
to be the correct normalization of H(z,£) in the sense that in the expansion 

H(Z , 0 = cQ(c) + (̂O-Cz-C) + c 2(C)'(z-C) 2 + ... (4) 
C Q ( C ) already is real. Thus 

cQ(C) = Re H(CC) = log(l - | C|2) , or (5) 

e = p- , (6) 

i-l cl2 

and for n > 0 

c n ( ^ - nTT^ 
oz 

H(z,C) =^T (-!)'...-(-nt-l)' ( " ^ ) n
n 

(l-C-C) 
1L 

n(l-|C|2)n n(l/C- C)n (7) 

In particular 

o,(C) - - - ^ - 2 = - — : • (8) 
1 l-icr c-i/c 

The..functions *(£) and q(£) ((3.150),(3«154)) , already noted to 
be constant respectively holomorphic (p. 62 ) become 

2c (0 o2o (0 
H(C) = 4 e 0 P — = _ 4 , ( 9 ) 

oCsC 
q(C) + ^(0 = 0 . (10) 

b) CQJ c^, K and q in terms of Riemann mapping functions 

Now let Q c IP be an arbitrary simply connected domain. Then fj is 
conformally equivalent to ID and we get the domain functions  cq( z)> °^(z)> 

K ( Z ) , q(z) for Q expressed in terms of any Riemann mapping function 
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f : 3D -» n 

by combining the formulas in III f) with the results in IV a) . 

Thus, (3.137) with (5) give 

o (z) = log(l - |C| 2) + log|f (C)| , or (11) 

cQ(z) 2 

e 0 = (1 - |C|2)|f'(C)| , (12) 

where ££33, z = f(£) € Q .(3.l4l) with (8) give 
° l ( z ) f ' ( c ) = " ^ + ^ i ^ ' < 1 3 ) 

(3.151) with (9) give 

K ( z ) a - 4 , (14) 

and finally, by (3.157) and (10) 

q(z)f'(C) 2 = § {f,0 (15) 

(the Schwarzian derivative {f, Q is defined by (3.147) ). 

It will be convenient to have the formulas for c (z),...,q(z) written 
-1 

up also in terms of the inverse mapping function cp = f , 
cp : Q -» 3D • 

Thus 

cQ(z) = log(l - |cp(z)|2) - log|cp'(z)| , (16) 

-c (z) |cp'(z)| 
e 0 = , (17) 

V * - - 2 - i £ f j } - ( 1 8 ) 

cp(z)'cp'(z) 

l-|cP(z)|i 

H ( Z ) = - 4 , (19) 

q(z) = - I {cp,z}' . (20) 
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Prom (13) we see that the zeroes of c^(z) , which we are particu

larly interested in, are exactly the points z = f(£) for which £ € JD solves 

£X£l--iL_ . (21) 
f< C>- H C,2 

In particular z = f(0) is a zero for c^z) if and only if f"(0) = 0. 

It is interesting to choose £ = 0 in (12) and (13). Thus with 

a = f(0) , (22) 

and (assuming a =j= °°) with the normalization 

f (0) > 0 (23) 

we have 
cn(a) 

e ° = f (0) , (24) 

c f a ) _ 1 f"(0) (25) 
Therefore the Taylor development of f at "th® origin begins 

cn(a) 2 a n ^ 9 
f ( £ ) = a + e U •£+c 1(a)e U ' C +.... - (26) 

(Here one can of course compute more terms. The next two turn out to be 

, 2 3c (a) , 
( | e^ar + c2(a) ) e 0 • C? , 

8 "5 (a) 4 ( | 0l(aK + 4 o^a) c2(a) + c^a) ) e 0 * £4 .) 
Observe that given fi and a € Q \ {<»} there is a unique mapping 

function f = f : TD -> Q satisfying (22) and (23). In [H] the function 
oQ(a) 
e (also called the mapping radius) is studied with the development 
(26) of f (£) taken as a starting-point, that is with (24) as a defi-

cQ(a) . 
nition of e 
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If oo £ Q we can apply the well-known coefficient inequalities for 
univalent functions to (26). For example the inequality " |a | < 2" 

2 3 r -i (for univalent F(z) = z + a z + a z + ... j see e.g. [AJ Theorem 
5-2 or [NEHJ Chap V, sec 8) shows that 

2c (a) c (a) 

|e1(a)e 0 | < 2e U , (27) 

that is 
-c (a) 

|c (a)| < 2e 0 . (28) 

Thus the constant B in (3«93) can be chosen as B = 2 (and no less) 
as claimed on p. 45 • 

c) The differential equation ^u = e U and a differential equation for 
the inverse mapping functions 

Next we shall consider equation (14), 

K(z) a - ^ • (29) 

By the definition (3.150 ) of H ( Z ) this is a partial differential 
equation for cQ(z) , namely 

L Q q = . 4 e " 2 c 0 . (30) 

From Proposition 3«3 we get boundary conditions to (30) . Assume for 
simplicity that 0 0 £ Q . Then (3.64) gives ° Q ( Z ) "* ~ 0 0 a s z ̂  ofi 
in the precise sense that 

cQ(z) < log 4d(z) , (31) 

where d(z) denotes the distance to the boundary. (30) looks nicer if 
we make the substitution 

u(z) = - 2c Q(z) + log 8 . (32) 

This u can be regarded as the potential function u in ( 3.50 ) 

having chosen units and constants appropriately. In tenuis of u (30) and 
(31) become 
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A U = E U , (33) 

u(z) > - 21og d(z) - log 2 . (34) 

To get a proper boundary condition out of (34) we relax it to 

u(z) > - 2 log d(z) + 0(1) , (35) 

0(1) denoting a bounded function in Q. 
In Appendix 2 we show that the problem 

A U = e 

u(z) > - 2 log d(z) + 0(1) 
(36) 

has no other solutions than the solution (32). Therefore (36) charac
terizes, and can be used to determine, the function u(z) and, together 
with (3.46) ) 

F = grad u , (37) 

the vector field F. The unique solution of (36) may also be characte
rized as the maximal solution of (33) alone. This also follows from 
Appendix 2. 

Suppose we have determined u, by (36) for example. Then we can 
compute the function 

2 2 
3 c_ 3c 0 3 u 1 - N . . . O 

3z 3z 

which as we already have remarked (p. 62) is holomorphic (Q being simply 
connected). q(z) can on the other hand also be expressed in terms of any 
inverse Riemann mapping function cp : Q -»ID , namely by 

q(z) = - I { cp,z } . (39) 

We can look upon (39) as a differential equation to be solved for cp(z) 
when q(z) is given. Differential equations of this kind are well studied 
and the solutions of (39) are exactly the functions of the form 

*) see for example [NEH] Ch V, sec 7 or [HIL] 
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u.(z) 

<p(z) = , (40) 

where u^(z) and u^(z) are linearly independent solutions of 

u"(z) - q(z)u(z) = 0 . (41) 
It follows that solving (39) we do not only get one mapping function 
cp : Cl -> 3D but also all functions of the form + d ' t h a t i S W e 

get all functions mapping Q conformally onto half-planes and discs. 

The steps 

Cl ' * n i • q t • cp 

constitute an interesting programme for computing the inverse Riemann 
mapping functions for a given domain. When Cl is multiply connected this 
programme leads to the multiple-valued inverse cp of the universal covering 
map (see p. 67 ) and in fact one of the early attempts (proposed by 
H.A. Schwarz and later brought to an end by Picard, Poincare and Bieberbach; 
see [BE]) to prove the famous uniformization theorem ran along these lines. 

d) A u =}= e for multiply connected domains. 

The derivation of (33) depended strongly on Cl being simply connected. 
In fact, having an equation of the kind 

A u = const*eU (43) 

is equivalent to the curvature K being constant, and, as noticed on 
page 62 this just reflects the property that any two points of Q 
can be mapped onto each other by a conformal self-mapping of Q. Since 
this property does not hold for multiply connected regions one cannot 
expect equations of the kind (43) to hold for such regions. It also 
seems very hard to get any physical interpretation for equation (43). 

When Q is multiply connected the potential that is relevant in the 
hydrodynamical situation is not u itself, but rather 

u0(z) = - 2c _(z) + log 8 . (44) 



There is however no reason why this function either should satisfy an 
equation 

u 
A u = const, e ° . (45) 

B 

At least it cannot do so for more than one choice of B = (6^, • • «,6 m ), 

since the left member of (45) is found to be independent of 6 (this 
is seen directly from (3.192) for example), while the right member depends 
effectively on R. 

Let us be a little more precise concerning the equation (43) for 
multiply connected Q. Suppose that u (or u ) satisfies 

p 

A u = a* e u , (46) 

where a is a constant, (necessarily positive, by (3«194) ). Then 
= u - log a (respectively, u^ = - log a) ' satisfies 

Ul 

A u : = e , (47) 

and also the boundary condition 

ux(z) > - 2 log d(z) + 0(1) . (48) 

From Appendix 2, (p. 106), it follows that u^ then must be 

u^z) = u(z) = - 2c Q(z) + log 8 , (49) 

where u and c^ are defined with respect to the universal covering 
surface Cl of Q. This gives 

cQ(z) = cQ(z) - I log a (50) 

~ 1 

(respectively, c R 0(z) = cQ(z) - ̂  log a). 

Now, it is rather easy to see that 
cQ(z) - c0(z) -> 0 as z -> bCl , (51) 

at least if the boundary bCl is sufficiently smooth, say consists of 
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r^i r>j rv-1 analytic curves. Indeed, let g(z,£) denote the Green's function for 0, 

which we, for z and £ close to each other on Cl, may regard as a function 
of their projections z and C on Q. Then we have 

c (z) " o (z) = lim (g(z,C) - g(z,£) ) • (52) 
£"*z 

If bCl is analytic then g(z,£) - g(z, £) extends across to a function 
which is regular harmonic in z and £ (close to each other) in a neighbour
hood of Cl U bCl. Since g(z, £) and g(z, £) vanish for z £ bCl it follows 
that c Q ( Z ) ~ C Q ( Z ) vanishes on bClt as asserted. 

Prom (51) we conclude that the constant ^ 1°6 CX in (50) must be 
zero, that is that g Q ( Z ) = C Q ( z ) ' This however contradicts the second 
inequality in 

cR0(z) > cQ(z) > cQ(z) ; (53) 

(53) is just (3«l8o) combined with (3« l87)>(ln writing strict inequality 
in (53) we have assumed that the connectivity of Cl is strictly greater 
than one. ) This contradiction shows that (46) cannot hold if Cl is 
multiply connected. The circumstance that we carried out the argument only 
for regions with analytic boundary does not mean any loss of generality 
since (46) is equivalent to the conformal invariant K ( Z ) being constant 
(K(Z) = - 4a) and all regions we consider are conformally equivalent to 
such with analytic boundary. 

The corresponding reasoning for u instead of u, however, does not 
P 

completely rule out the possibility that u^ satisfies an equation (46) 
for some choice of B. In place of (51) one obtains 

Gp0(z) - cQ(z) -» a ^ as z -» Tj (j = l,...,m), (54) 

where r,»»»»»r are the components of SQ and a, . the matrix elements 1 m kj 
in (3.15). (54) combined with (50) and (53) yields 

a = - - log a > 0 , j = l,..,m , (55) 
J J 

which does not give rise to any contradiction in general. For some par
ticular choices of B, namely if B - = ~ 2 T T 5 (j = l,...,m) for some 

J K J 

k, (55) is however in conflict with (3.21), so at least for such B 
(46) is disproved. We also see from (55) that if (46) is true for some 6 
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then necessarily 0 < a < 1. In terms of the curvature K this means 
that if it is constant it must lie in the interval -4 < H_ < 0. 

P 
Let us finally point out that equation (46) is not quite so special as 

it looks. What we mean is that if u (or u ) did satisfy an equation 
of the type 

Au = f (u) (56) 

for every region (or for every region of some conformal type), with the 
function f possibly depending on the region, then this equation must 
necessarily be of the kind (46). For (56) can be written 

Au 
e g = fx(u) (57) 

or, switching over to C Q and K , 

K = f2(c0) , (58) 
where f and are some other functions. (58) means roughly speaking 
that each level line of the function c^ is also a level line of H , and 
it is rather easy to see from the fact that x and c Q transform in dif
ferent ways under conformal mappings (3'137) resp. (3.15])) that this 
cannot be the case for all regions in a whole conformal class unless K 
and f are constant. And then we are back to the case of equation (46), 
as asserted. 

e) A bounded starlike domain with several zeroes for c^(z) 

As we have seen in section III e) (p. 51 ) the function c^(z) (and 
c j(z) ) always has at least one zero if the domain in question is bounded. 
We also indicated that for regions with certain geometrical properies the 
number of zeroes must be strictly greater that one. In this section we shall 
give a more specific example of a region with several zeroes for c^(z). 
The region we are going to construct has the further property of being star
like with respect to the origin (every point of it can "be seen from the 
origin", that is the line segment connecting the origin with any other point 
in the region is itself entirely contained in the region.) This at once 
frustrates a conceivable generalization of the result we are going to prove 
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in section V, namely that for convex regions (other than infinite strips) 
c^(z) can only have one zero. 

Physical intuition suggests one should try regions looking like that in 
fig. 4 . 1 , with the zeroes for c^(z) at the three indicated points (the 
middle one being a saddle point for g Q ( Z ) J the other two minima). 

Fig. 4 . 1 

Such a domain is obtained by, for R > 1 , taking the following mapping 
function from the unit disc: 

f(G) - c • 
C-R 2 L C-R c+R J ' (59) 

One easily checks that f is univalent in TD for all R > 1 . Moreover, 
Cl c B (where Cl = f 0D)) and + 1 £ bCl for all R > 1 . As R -» 0 0 , 

f(C) C uniformly on ID . Hence fi approaches ID as R -» °° . 

As R -> 1 , f(£) -> 0 . On the other hand, still as R -» 1 , 

f(C) and the function maps ID onto the slit 
1-R~ C-l = ^ ' 
domain C s { iy : |y| > — (y real) }. This gives an idea of how Cl 
behaves as R-> 1 (cf. fig. 4 . 2 ) 

Fig. 4 . 2 

Now, computations give 

f(Q = ( R 2 - D C + R " 
2 
R - 1 + 

( C-R) 2 ' ( C+R) 2 
] , ( 6 0 ) 

( 6 1 ) 



87 

hence, by (ll), (12) and (13) : 

2 2 2 
on(z) - log(R2-l) + log(L-L^L )|G 1̂  1 

0 l R - c r 
0 

and 

|H 2-C 2! 2 

(R 2-I)(I-|C| 2)|R 2+C 2| 

c (z)f'(£) = 2 

1 i-icr 

C-(C 2+ 3R2) 

(62) 

(63) 

(64) 

Thus, the zeroes for c (z) are the points z = f(C) for which 

1 C'(C2+3R2) 
- + Ij—If— = 0 . (65) 

1-| C| C-R" 
One solution of (65) clearly is 

C = o . 

Considering only real values of Q (probably there are no non-real solutions 
of (65)), the other zeroes are obtained from 

4 4 2 ? 2 
G - R + (l - C K G + 3R2) = 0 , 

which gives 
? 2 2 4 

- C -(3R - 1) + 3R - R = 0 , 

£ = + 

3R2-1 P-l/R 2 

Thus, for 1 < R < JS, equation (65) has the three real solutions 

G = o, ± \ / - * % 
'3-1/R 

(66) 

The corresponding points z = f(Q in are 

z = 0, + j / ( > R 2 ) ( > ^ ) ' • (67) 
R 

One finds that (for 1 < R < J3) 

0 < | A / ( > R 2 ) ( 3 - i 2 ) ' < I ' (68) 
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and that 

i 7(>R2)(3- -
R 1 

2 

as R -» , 

as R -» 1 , 
(69) 

in accordance with what one expects from the figures 4.1 and 4.2. 

Finally, to show that Q is starlike (with respect to the origin), 
one only has to check that 

&f (0 
Re f ^ > 0 for \Q\ < 1 . 

(See for example [NEH] Chap V, sec. 8. ) 
We have, by (59) and (60) 

f ( C ) " -2 .2 ' 

(70) 

R - C 

from which (70) follows immediately. 

V Convex Regions 

a) Only one zero for c^(z). 

We have seen that the domain function c^(z) always has at least one 
zero if the domain Q in question is bounded, and that the number of 
zeroes in general is greater than one. The object of this section is to 
show that for convex regions, however, the number of zeroes is never greater 
than one, with the exception of infinite strips. This result was proven 
already 1950 by Hans H. Haegi ([H], Satz 4), in the formulation that the 

cQ(z) 
"mapping radius" e has at most one stationary point when the domain 

•* 
is convex and not an infinite strip. Nevertheless we have preferred to 
include our own proof of this result, which is quite different from Haegi* s 
proof. 

Our proof goes in two steps. First we reformulate the statement of the 
result (Theorem 5.1) so as to become essentially the statement that a 
certain anti-analytic mapping has at most one fixed point (Proposition 5-5 
or the statment (43 ) ). This reformulation makes use of Schwarz*s 
lemma. Then the reformulated statement is proved, and this proof essentially #• See p. 109. 
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consists of another application of Schwarz*s lemma. In section V b) we 
discuss in some generality how the reformulated fixed point statement is 
related to the "invariant form of" Schwarz's lemma. Here also our metric 

-cQ(z) 
ds = e |dz| comes in. 

Theorem 5»Is Suppose that Q is convex but not an infinite strip. 
Then c^(z) has at most one zero in Q. 

An infinite strip is a domain of the kind 

0 = { z € C : | Im(az + b)|< 1 } , (1) 

where a,b € C, a ^ 0. That this case has to be excluded is clear since 
c^(z) for symmetry reasons must vanish along the whole symmetry line for 
such a domain. 

A convex domain is necessarily simply connected. To prove Theorem 5.1 
we shall need the following well known characterization of convex regions 
in terms of the (any) Riemann mapping function from the unit disc: 

Lemma 5»2: Suppose f : 3D -» CL is a conformal isomorphism. Then Q is 
convex if and only if 

r f " ( 0 

Re [ C + 1 ] > 0 (2) 

for £ € 3D . 

For a proof of this lemma we refer to literature, say [A], section 1-3. 

Now, let CL be simply connected and let f : 3D -» Q 

be any conformal isomorphism. By (4.21) the zeroes for c (z) in CL 
correspond exactly, under z = f ( C ) , to the solutions in 3D of the equation 

2C 
f< C>- H C,2 (3) 

Multiplying (3) by £, thereby introducing an extra solution Q = 0, 
and adding 1, gives the new equation 

( W i - u i 
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Put 

P(C) = tp(X)  +  1 • <5 )  

Thus F(£) is holomorphic in ID and has the following properties: 

Q F(0) = 1 (6) 
(7) 

2) N is convex <^> RE P(C) > 0 in 3D K U 

5) the zeroes of c^z) in Q correspond exactly, under z = f(C)> "to 
the solutions, besides the trivial solution Q = 0, of the equation 

P(C) = p (8) 
i-KI 

in 3D. 
Conversely, starting from any function F(£) holomorphic in 3D and 

satisfying P(0) = 1, the equation (5) can be solved for f(£) : 

£XQ _ F(0-I F 9 ) F(C)~ C ' IYJ 

C 
log f'(C) = J F ( 2 ^ " 1 dz + log A , A ± 0 , (10) 

0 C T 
f (£) = A.JEXP { J* ^=1 dz } dt + B. (11) 

0 0 

One sees that all solutions, f(C), are locally univalent (i.e. f'(C)=f= 0) 
in 3D , hence determine, possibly non-schlicht, domains in G. The 
significance of the integration constants A and B is that "the" solution 
domain is determined only up to a rigid transformation in C (arg A and B) 
and a homothetic scale change (|A|). 

In order to carry over the hypotheses in Theorem 5»1 to the function 
F(0* we must investigate the case when Q is an infinite strip. Since 
the most general function mapping 3D onto the right half-plane Re w > 0 is 

£ H- w = A6+*_ , ab + ab > 0 , (12) -b£+b 

and log w maps the right half-plane onto an infinite strip (namely 

I Im z| < ̂  ), the most general function mapping 3D conformally onto an 
infinite strip is 
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f(£) = clog a ^ + _ a + d , (13) -b£+b 

with ab + ab > 0 , c =)= 0 . 

Some computations show that (13) yields 

HO ^: A B:^ 2 ^ • ^ 
ab + (ab - ab)£ - ab* £ 

Conversely, if F(£) is of the form (14) all integrals f(£) of (5) 

are of the form (13), hence map D onto infinite strips. Therefore 

(?) F(C) is of the form (14) 4=> Cl is an infinite strip. 

Mow it follows from (T) - (4) that Theorem 5-1 is a consequence of 

Proposition 5«3? 

Suppose F( £) is holomorphic in 3D , 
P(0) = 1 , 

Re F(£) > 0 , £ €333 
F(£) is not of the form (14) . 

Then the equation 

HO = 2 
1-KI 2 

has at most one solution in I) , besides the trivial solution £ = 0 . 

It will be convenient to perform a Mb'bius-transformation on Proposition 
5.3* Namely, define 

S ( C ) - F ( 0 - 1 h 6 ) 

- F(£) + 1 " C f - ( C ) + 2f'(£) ^ 
Then 

p ^ = r M i 8 - > (17) 
F(0) = 1<^S ( 0 ) = 0 , (18) 

1 + |C|2
 2 

no = 2 &  s^ = ICR • (19) 
1 - ICR 

F - 1 
Moreover, since F H S = — maps the half-plane Re F > 0 onto the 

F + 1 
unit disc |S| < 1 : 
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Re P(C) > 0 <^> | S ( C ) | < 1 . (20) 

Finally, (13) becomes 

S (C) = "_(AV I B K . (21) 
2AB + (ab - ab)C 

Thus Proposition 5*3 is equivalent to 

Proposition 5»4: 

Suppose S (C) is holomorphic in D 
S(0) = 0 
| S C O | < 1 » C 63D 

S(0 is not of the form (21) . 
Then the equation 

s(C) = |C|2 

has at most one solution in D , besides the trivial solution 
C = o . 

We shall rewrite the problem one last time before solving it. Namely, put 

T ( C ) = ^ P , C€D. (22) 
Then, by Schwarz's lemma, the first three hypotheses in Proposition 5«4 
are equivalent to 

T(£) is holomorphic in JD and 
(23) 

| T( C) | < 1 • 

(21) becomes 
T(Q - 2 A B ' C " " A B ) (24) 

(ab - ab)' Q + 2AB 

or 
T ( C ) - ^ i , (25) 

B - C + A 
where 
| A = 2AB _ ( 2 6 ) 

( B = ab - ab , 

|A|2 - |B|2 = (ab + ab) 2 > 0 . (27) 
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(25) means that T is a Mbbius-transformation, mapping ID onto itself. 
p 

In the equation S(£) = |£| we have divided out the trivial solution 
£ = 0 , and the equation becomes 

T(£) = £ • (28) 

Therefore, the following proposition implies Proposition 5«4 • 

Proposition 5 . 5 : 

Suppose T(£) is holomorphic in ID with 

|T(£)| < 1 . (29) 

Then the equation 

T(£) = £ (30) 

has at most one solution in ID , unless T is a Mobius-trans
formation (mapping ID onto itself) . 

When T is a Mb'bius-transformation on ID , that is when 

T(£) , |A|2 - |B|2 > 0 , (31) 
B£ + A 

the solutions of (28 ) either consists of just two points on SID or 
else consists of a whole circular arc C (fig. 5«3)» 

intersecting d 3D at right angles. 
The latter case occurs exactly 
when 

Re B = 0 , 1^1) (32) 
and it is not hard to see that 
these are exactly the Mobius-
transformations which arise from 
our process 
f h- F H s H T , Pig. 5.3 

where f maps ID onto an infinite 
strip, Q. In this case 3D D C corresponds to the symmetry-line of Q . 
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Proof of Proposition 5«5" 

Suppose (30) has two solutions, Q and ^ , f . Then we must 
prove that T is a Mobius-transformation. 

Consider first the case that £ = 0 . This means that T(0) = 0 . 

Then Schwarz* s lemma says that 

|T(£)| < |£| for all £ € 3D , (33) 

and that equality in (33) can hold at a point in 3D >• {0} (if and) only if 

T(£) 3 a-£ , |a| = 1 . (34) 
But £g solves (30) means that equality in (33) holds at 

£ = £2 6 3DX{0} . Thus T is a Mobius-transformation, (34). 
If £̂  =[= 0, let U be a Mobius-transformation (mapping 3D onto itself) 

with U(0) = q . For example 

c + c, 
u(£) = - 3 ~ i • (35) 
Then (30) is equivalent to (with £ = U(z) ) 

TU(z) = U(z) , (36) 
or 

T:(z) = z , (37) 
where 
T^z) = U_1(TU(z) ) . (38) 

Now , (37) has the two solutions z = U _ 1(£ 1) = 0 and z 2 = t f 1 ^ ) =j= 0 , 

and since clearly |T (z)|< 1 in 3D , the previous argument (Schwarz* s 
lemma) shows that T^ is a Mobius-transformation. Thus also 

T(£) = U(TJJ_1(£) ) (39) 

is a Mobius-transformation, which proves the Proposition. 

By this also Proposition 5*4, Proposition 5»3 and Theorem 5« 1 are 
proved. 

One might ask if the conclusion of Theorem 5.1 holds true for some 
wider class of domains that just the convex ones. It seems however hard 
to find any very natural such class, since the perhaps most natural candidate, 
the starlike domains, has turned out to fail to have the desired property 
(section IV e) ). 
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b) A fixed point lemma. 

There is another very elegant way to look at (and prove) Proposition 5«5 

based on the so called invariant form of Schwarz's lemma or, better, on 
Lemma 3«T' Namely, observe first that the assumption (29) without serious 
loss of generality can be replaced by 

|T(£)| <1 , C €3D , (41) 
since the Proposition is trivial if |T(£)| = 1 for some Q 6 ID. 
Rewriting (30) as 

T (C) = C (42) 

Proposition 5«5 therefore can be formulated 

An anti-analytic mapping 

T : D ->D (43) 

can have at most one fixed point unless it is an anti-Mobius-trans-
format ion 

This is a special case of 

Lemma 5«6 ("fixed point lemma"): Let Q be a domain in IP, and let 

By this is meant that the sets { z € Cl : G Q ( z ) > X } are convex. 

There is however another kind of generalization of Theorem 5.1 which 
"should be" true, although I have not been able to prove it. Namely, one 
expects that all level lines c_(z) = constant, that is all orbits of a 

o \ 
.v.) 

freely moving vortex, are convex curves if Cl is convex. 
Since g Q ( z ) has the same level lines as the function u(z) = - 2c^(z) + log 8 

((4.32)), and this function is characterized as the unique solution of 
Au = e U in Cl ( 4 o ) 

u = + 0 0 on bCl 

(more precisely stated in (4.36) ), this conjecture could also be stated: 
Are all level lines of the unique solution of (40) convex if Cl is convex? 

In this form the conjecture makes sense in IRn for arbitrary n > 2 . 

This conjecture is suggested by Harold S. Shapiro. 



f : ci -» ci 
be an analytic or anti-analytic mapping. Then f can have at most one 
fixed point unless it is a conformal, or an anti-conformal, isomorphism. 

To prove this, consider first the more general situation that f is 
an analytic or anti-analytic mapping between two different domains D and 

f : D -> Cl • 
Letting £, c (£)*••• refer to D and z, cQ(z),... to Q, we have the 
metrics 

-e (£) 

ds = e"C° |d£| and (44) 

ds = e 0 Idzl (45) 
on D and Cl respectively. Recall that Lemma 3«7 says that f is locally 

•*) 
distance-decreasing with respect to these metrics , the decrease being 
everywhere strict if f is not an isomorphism. 
What we need is a global version of this. 

Therefore, consider two points C*Cp € D and let z. = f(£ ) £ Cl, 
j = 1,2. The distance between ^ and £g in the metric (44) is by 
definition 

-o 0 (C) 
6(C,,C,) = taf J ds - inf J e | dfl , (46) 

Y 6 r Y Y e r Y 
where r denotes the class of all rectifiable curves in D, connecting 
£ and . biz^z^ and V are defined similarly. If y £ f then 
f(y) e r * l Thus f(f) c r. By Lemma 3.7 we have 

e 
-o.(z) -c (£) 

0 |dz| < e 0 |d£| , z = f(£) , (47) 

!£) " ' 

Actually, Lemma 3.7 states this only for analytic mappings, but it is 
easy to see that it holds also for anti-analytic mappings, by applying it 
to f : D Cl if f is anti-analytic. Here the bars denote complex con
jugation. 

We think of y,y as parametrized curves rather than subsets of D Cl. 
Thus y i s a function from some parameter interval to D, and f(y) is 
by definition the composed function f o y . 
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and, Integrating along y , 

|dz| < J e K l (48) e 
F(Y) Y 

Taking infima therefore gives 

6(z ,z ) = INF J ds < INF 
Y€.R Y Y 6 F ( F ) 

J DS = INF J_ DS < 
Y ~ € F F(Y) 

< INF J* DS = dCq . C g ) • (49) 
Y € R Y 

Lemma 3«7 moreover says that unless f is an isomorphism, the inequality 
(47) is everywhere strict. In that case also the inequality (49) must 
be strict, as is easily seen. Therefore, the following global counterpart 
of Lemma 3« 7 is proved. 

Lemma 5.7: Suppose f : D ** Cl is analytic (or anti-analytic). Then, 

Now, having Lemma 5«7 the proof of Lemma 5.6 just consists of the ob
servation that if z^ and z^ are two fixed points for f , then 

6(f(z^),f(z^)) = 6(z ,z^), and the conclusion follows immediately from 
Lemma 5»7» 

If D and Cl are simply connected the metrics (44) and (45) co
incide with the Poincare' metrics for D and Q, and Lemma 5*7 (and also 
LEMMA3.7) become the same as what is called the invariant form of Schwarz's 
lemma. When D, Cl are allowed to be multiply connected the inequalities 
in Lemma 3.7 and 5*7 are true also for the Poincare metrics, but the 
assertions about the cases of equality are false. For example if Cl is 
multiply connected, D =3D and f : ID -> Cl is the universal covering map, 
then the definition of the Poincare metric on Cl (see p.67F) just amounts to 

saying that f is locally an isometry, despite that it is not an isomorphism. 
Therefore, Lemma 5.6 cannot be proved by using the Poincare metric in the 
multiply connected case instead of the metric (45). 

with the above notations, 

(50) 

for all C^Cg € D , z. = f(£j) . 

If equality holds for some pair q, q, + Cp 

(and equality holds for all C-^Cp)* 
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(f o U)'(0) > 0 
(f o U)"(0) = 0 

G ) The zeroes for from a function-theoretic point of view. 

We shall finish this section by giving some function-theoretic versions 
of the results that c^(z) has at least one zero if Cl is bounded and at 
most one if Q is convex, not an infinite strip (p«51 resp. Theorem 5«l)« 
Namely, let G be a given simply connected domain and let f : ID -» Q be 
any Riemann mapping function. By the formula ((4.13)) 

c.(z)f(£)= , z = f ( C ) , (51) 

1 ^1^2 2 f (Q 
we see that z = f(0) is a zero for c^z) if and only if f"(0) = 0 . 
Since, when Q is given, the quantities z = f (0) and arg f' (0) can 
be prescribed arbitrarily and uniquely determine f, we have the following: 

Suppose Cl is bounded (and simply connected). Then the Riemann mapping 
function f : ID -» Cl can be chosen so that f"(0) = 0. 
Or: 
Suppose f is univalent and bounded in ID . Then there exists a 
Mobius-transformation U : 3D -»3D such that (f o U ) " (0) = 0. 

Reformulation of Theorem 5«1* 

Suppose Cl is convex, but not an infinite strip. Then there is at 
most one choice of the mapping function f : 3D -» Cl for which 

f(0) > 0 
f"(0) = 0 . 

Or, calling a univalent function convex univalent if f (CD) is a 
convex domain: 

Suppose f is convex univalent and not of the form (13)« Then there 
is at most one Mobius-transformation U : 3D -> 3D such that 
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VI Appendices 

Appendix 1 : Notations in [S-O] . 

In the book [ s - o ] so called "capacity functions" are used to study 
various kinds of degeneracy questions for boundary components of Riemann 
surfaces. An example of a capacity function is the function 

p(z,£) = c (£) - g p ( z , C ) > (1) 

with say B = (- 2rr, 0, . . . , 0 ) . It is characterized by being harmonic in z 
with the singularity 

p ( z , C ) = l o g |z-C| + 0(|z-G| ) (2) 

a t z = Q , and by being constant ( a s a f u n c t i o n o f z ) on each boundary 

component, w i t h t h e c o n s t a n t s so chosen so t h a t 

2ir f or Y = I\ 
J*dp ( - , C ) 
Y 0 for Y = I\ , J =j= 1 

J 

(3) 

( is the boundary component which correspond to the - 2TT in B )• 
Since Sg(z, £) = 0 for z € T1 (this follows from ( 3 .11) and ( 3 . 1 3 ) ) 

the boundary constant for p(z, Q on is  c^q(0 >  t h a t  i s  

c ( £ ) = 11m p(z,C) . (4) 

Now, although the function g„(z,Q exists only for a rather restricted 
P class of domains, the combination p(z,Q of gD(z, £) and c (£) can 

P P U 

be defined on-an arbitrary Riemann surface. If then (4) is taken as a 
definition of °^q(0 i _ b c a n happen that  c^q(0 ^ + 0 0 >  o r equivalently 

- ° 6 0 ( C ) 

that the "capacity" e p vanishes identically. Such a phenomenon 
indicates that the boundary component of the surface is degenerate 
in some sense (it is "weak"). This is the kind of phenomena studied in [ s - o ] . 

Thus our various domain functions c ( C ) , c ((),... are studied in 
(j pu 

[S - o ] , but with other applications than ours in mind. Despite that , [s-0] contains 
a lot of material which is of interest also in our context, for example extremal 
properties possessed by c^(£), c_(£),... Since our notations disagree very badly 

u go 
with those in [S-o] (which are the standard ones) we have on the following few 
pages given a short "conversion table" between the relevant notations in [ s - o ] and 
those used here, to be of help if [ s - o ] is consulted. In that table all functions 
are supposed to refer to a region Q which fulfils our regularity assumptions 
(p.27), with boundary components denoted I\ ^ , . . . , r m . 



100 

Notation in fs-ol Notation here Comment 

P l y(z,0 

c 0 ( C ) - s(z,C) 

C
P 0 ( C ) " S B ( Z ' ° 

capacity function 
(B stands for the ideal 
boundary of Cl) 

capacity function; 
y is a component of Sfi; 
if Y=rk then 
B,=-2rr6 (j=l,...,m) 

o 0 ( C ) Robins constant; 
Y (C) is another common 
notation for it. 

k 1 Y ( C ) Y and 8 are related is above 

c p ( C ) = e 8 

- c 0 ( C ) 
capacity 

r * , v ( 0 

capacity 

c (C)= max c (C) 
Y = F K IY 
k=l,.. .,m 

P R + i P R 
P p ( Z , C ) = e B 6 

c Q ( C ) -G.(z,C) 
e • e 

multiple-valued analytic 
(with respect to z) 

P, + 1P, 
P 1 Y(z, C ) - e 1 Y 1 Y 

univalent (as a function of z), 
mapping Q onto a circular slit 
disc centered at 0 and with 

C R 0 ( 0 , radius e p (Q is mapped 
onto 0 and y onto the circum
ference of the disc). The quan-

C R 0 ( C ) 

tity e K is therefore 
often called the mapping radius 
with respect to Cl, at least if 
C is simply connected (then 
V " °°(C\ 
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K(Z,C) U z,0 

K(Z,C) KS(Z,C) 

C (0= yrrK(CC) V T T KS(C.C) 

the Bergman kernel 

reduced Bergman kernel 
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Appendix 2 : Uniqueness questions for Au = e U . 

The problem ( 4 . 3 6 ) , 

Au = e ( 1 ) 

u(z) > - 2 log d(z) + 0(1) 

in n has the solution ( ( 4 . 3 2 ) ) 

u(z) = - 2cQ(z) + log 8 (2) 

if Q is simply connected. We shall prove that (l) has no other solutions 
than (2) and also that ( 2 ) is the maximal function satisfying Au = e U . 
It will also be proved that whether or not Q is simply connected, (1) 

has at most one solution, and when it has, it is at the same time the maximal 
solution of A u = e U . 

We first consider the case Q = 1D and then pass to the general case by 
conformal mapping. The following lemma, which we need, is essentially the same 
as Lemma 1-1 in [A]. 

Lemma 7*1: Suppose u and v are real, twice continously differentiable 
functions in ID satisfying 

Au = e u (3) 

u(z) -» + 0 0 as z -» 3D' , (4) 

A v > e V . (5) 

Then u > v in ID . 

Proof: Choose a number 0 < r < 1 and consider the function 

2 
w(z) = u(z) - v(rz) - log r , z € ID . 
Clearly w is twice continously differentiable in ID , and by ( 4 ) 

w(z) -* + oo as z -» SD . 

This is to be interpreted: for each M < + there is a compact K c m 

such that u > M outside K . 
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is a one-to-one correspondence between solutions of the equalities/inequalities 

Therefore w must have a minimum point in 3D , say z^ . Then 

Aw(zQ) > 0 . (7) 

On the other hand 
2 A / \ A r / \ r \ -i 2-, u(z) v(rz )+log r , Q s Aw(z ) = A Lu(z) ~ v ( r z ) " l o S r J < e v - e v ' ° , (o) 

°y (3) and (5), so that (7) gives 

e U ( z 0 } > e
V ^ Z o ) + 1 ° S r 2 , or (9) 

w(zQ) > 0 . (10) 

Thus w(z) > 0 for all z £ ID , that is 

2 

u(z) > v(rz) + log r , z € ID (ll) 

Since this holds for all 0 < r < 1 we get 

u(z) > v(z) , z €3D , (12) 

as was to be proved. 

One solution of the problem (3) - (4) is 
u(z) = - 2 log(l - |z|2) + log 8 (13) 

(obtained from (2) and (4.5)). It follows immediately from the lemma that 
this is the only solution. It also follows that the function (13) is maximal 
among all functions satisfying Au = e U . 

Now we want to carry over Lemma 7«1 to an arbitrary simply connected 
domain Q . Let f : ID -» Q be any Riemann mapping function and cp = f * 
its inverse. We use the variable Q In D and z in Q . It is easy to 
see that the correspondence 

u <-> u (14) 

between functions u in ID and functions u in - Q , defined by 

u(C) = u(f(C)) + log|f'(C)|2 = u(z) - log|cp'(Z)|2 , z = f(0 (15) 
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A u = e U in D and solutions of the corresponding equalities/inequalities 

A u =. e in Cl (in fact e A r
 u = e A u ) . 

Moreover, the correspondence is order-preserving (i.e. u < v in ID 
u < v in Cl )' Prom this it follows that Lemma "J. 1 carries over 

verbatim to Cl if only ( 4 ) is replaced by the corresponding boundary 
condition in Cl • By ( 1 5 ) this boundary condition is 

u(z) - log|cp' (z) | H> + oo as z -» bCl . ( l 6 ) 

In order to get a boundary condition which is more geometrical than ( l 6 ) 
we shall use the inequality 

1 - | < P ( Z ) | 2 

d ^ < |cp-(z)| • < 1 7 ) 

where d(z) is the distance from z to the boundary. ( 1 7 ) is simply 

the inequality d(z) < e in Proposition 3 0 » combined with ( 4 . 1 7 ) . 

Prom ( 1 7 ) there follows 

2 log d(z) < - 2 logJcp'(z)| + 2 log(l - |cp(z)|2) , ( l 8 ) 

and 
u(z) + 2 log d(z) < u(z) - logjcp'(z)|2 + 2 log(l - |cp(z)|2). ( 1 9 ) 

Since the last term in ( 1 9 ) tends to - 0 0 as z -» bCl , we conclude that 
the boundary condition 

u(z) + 2 log d(z) > 0 ( 1 ) , z £ Cl , ( 2 0 ) 

is stronger than (i.e. implies) ( l 6 ) . Now, Lemma 7*1 clearly remains 
valid if ( 4 ) is replaced by a stronger condition. Therefore, we have proved 

Lemma 7 » 2 : Suppose u and v are real, twice continously differentiable 
functions in a simply connected domain Q , satisfying 

A u = e U ( 2 1 ) 

u(z) > - 2 log d(z) + 0 ( 1 ) ( 2 2 ) 

A v > e V . ( 2 3 ) 

Then u > v in Cl . 
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As an immediate consequence of Lemma "J.2 we have 

Theorem 7.3: Suppose Q is simply connected. Then : 

a) Among all twice continously differentiable functions in Cl satisfying 

Au = e U , (24) 

there is a unique maximal one, namely 

u(z) = - 2oJz) + log 8 = 2 log r + log 8 . (25) 
0 I-|CPOO|2 

where cp is any conformal isomorphism of Cl onto ID . 

b) This function is also the unique solution to the problem 

Au = e u (26) 

u(z) > - 2 log d(z) + 0(1) (27) 

(In the last member of (25) we have used (4.17)0 

Let us finally consider the case that Cl is multiply connected. If 
f now denotes any universal covering map 3D -» Cl and cp its multiple-
valued inverse, we can proceed exactly as in the simply connected case, 
the only difference being that the correspondence (l4) now is a one-., 
to-one correspondence only between a certain subclass of functions u 
in 3D ^ and functions u in Cl , The inequality (17) is still true 

c
0 ( z ) 

because it is the inequality d(z) < e , where c Q ( z ) refers to the 
universal covering surface Cl of Q (it is easy to see that the part of 
Proposition 3»3 which concerns this inequality is valid also for nonschlicht 
regions, such as Cl ). The multiple-valuedness of cp will never cause 
any problems because cp always occurs in the single-valued combination 

1 " |cp(z)|2 c (z) 
|cp'(z)| ( = 6 ; of p. 68 ). 

_ 
To be exact: to f : 3D -» Cl there corresponds a certain group G of 

Mobius-transformation on 3D (the covering transformations), and the sub-
class in question consists of those functions u in 3D which satisfy 

u(cp(z)) + log|cp'(z)|2 = u(Tcp(z))+ log| (Ttp)' (z)| 2 (= u(z) ) for all T 6 G 

(having chosen a branch of cp in a neighbourhood of a given point). 
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It follows that Lemma "J.2 remains true with the hypothesis of simple con
nectedness dropped. 

Passing to Theorem 7'3> it is seen that a) remains true (without the 
hypothesis of simple connectedness) if ( 2 5 ) is replaced by 

u,(z) = - 2 c_(z) + log 8 = 2 log ^ + log 8 ( 2 8 ) 
1 0 1 - |cp( Z )| 2 

since this is the function on Cl which under (14) corresponds to the 
maximal solution (13) of &a = e U in 3D ). 
As to b), the problem arises that it is not obvious (perhaps not even 
true) that the function ( 2 8 ) really satisfies the boundary condition ( 2 7 ) . * " 

(That the function ( 2 5 ) does satisfy ( 2 7 ) is due to the upper bounds 
for cQ( z) given in Proposition 3 * 3 , and those upper bounds do not hold 

for CQ( z) since their proofs rest on Lemma 3.4 whose proof uses the 
theory of capacity and transfinite diameters (section III i) ) and therefore 
depends in an essential way on the domain being embedded in 3P.) In any 
case, leaving this question open, there remains the following part of b) 
(being a direct consequence of Lemma 7 « 2 ) : 

The problem ( 2 6 ) - ( 2 7 ) has at most one solution, and when the so
lution exists it is ( 2 8 ) , the maximal solution of Au = e U . 

This statement will be enough for our purposes (p.83)» 

•#• ( 2 7 ) is indeed not true in complete generality, i.e. with our 
regularity assumptions on p. 2 7 dropped. For example, for Q = C x { 0 , 1 } 
one can show that 

cQ(z) = log|z| + log log J|J + 0 ( 1 ) as z -> 0 . 

(See [A], 1 - 8 (Theorem 1 - 1 2 ) . ) 
Thus 

u^z) = - 2 log |z| - 2 log log y^-j- + 0 ( 1 ) as z -> 0 

which does not fit into ( 2 7 ) . 
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Addendum 

Two footnotes 

p. 69: The reasoning on p. 67-69 to show that the metric (148) is shorter 
than the Poincare metric can be replaced by the following more transparent 
argument, inspired by [K] (outline): 
The universal covering map f : 3D -» Q is locally distance-preserving for 
the Poincare metric (by the definition of this metric), but is distance-
decreasing for the metric (148) (by Lemma 3«7)« Since these two metrics 
are found to coincide on 3D the desired conclusion follows. 

p. 88: [H] also shows (Satz 5) that if Q is m-symmetric (and convex) 
then this stationary point coincides with the symmetry point. (A region Q 
is m-symmetric if there is a symmetry point z such that Q, is left 
invariant by rotations of angles k • — ( k integer) about z^. ) 
Moreover, [H] obtains sharp upper bounds for the values of 
oQ(z) 
e at these stationary (maximum) points (Satz 6, Satz 7)« 


