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I. INTRODUCTION

The present paper is mainly devoted to the following differential
equation:

Given f(z), analytic andunivalent in a neighbourhood of |z| < 1, find
f(z,t), for t€ R small, analytic and univalent in a neighbourhood of

|z

< 1, satisfying
Rel[f(z,t)cf'(z,t)] =1 for |z| =1

and f(z,0) = f(z) (for |g|<1). 1In (1) f and f' denote derivates with
respect to t and z respectively.

This differential equation arose in the paper [9] by S. Richardson as
describing the solution of a two-dimensional moving boundary problem.
The moving boundary in question then was the boundary of the domain
Qt='f(m,t), where D={z€( <1} and t is time. Richardson
did not prove existence or unicity for solutions of (1). However,
this, essentially, was done in [12]. The existence of solutions was

proved by using an iterative process, the proof of convergence of which

g

was fairly complicated. Unicity was proved only with respect to solu-
tions which depended analytically on t.

The aim of the present paper is primarily to give a more elementary
proof of existence of solutions of (1) in the case that f(¢) is a
polynomial or a rational function. In that case (1) can be reduced
to a finite system of ordinary differential equations (in t) and
this system has a unique solution by standard theory. This solu-
tion is a polynomial or a rational function (as a function of z)

of the same sort as f(z). (Theorem 4.)

We will also consider a generalization of the differential equation (1)
in order to prove a result on the "moment map"




(2) f - (co,c1,c2,... ), where
(3) ¢, =1]f 2dxdy , Q=f(D).
Q

({cn} are the "complex moments" of the domain Q=f(D)). Namely,
we prove (Theorem 6) that when (2) is viewed as a mapping from
the set of univalent polynomials of degree <r, normalized by
f(0) = 0 and f'(0) > 0, it is an immersion, i.e. its Fréchet
derivative is one-to-one.

The first section- in this paper is devoted to a (rather informal)
sketch of how the differential equation (1) arises from the moving
boundary problem which is the source for (1) in [9].




IT.

PHYSICAL BACKGROUND

a) Technical background

We start by sketching the physical and technical background of the
moving boundary problem we are considering. This description essen-
tially follows Richardson [9] complemented by facts from Lamb [8].:
Aside from the background given here, there are other physical prob-
lems Teading to the same or similar moving boundary problems, for
example the dissolution of an anode under electrolysis (see [6],

or [7], ex. 1 on p. 2), the propagation of a liquid front in a porous
medium flow ([7], ex. 2 on p.2) and the melting of a solid in a
one-phase Stefan problem with zero specific heat (see e.g. [4] and

p. 4 and 26f of [71).

Richardson considers the industrial process of production of thin
lamina of plastics. Molten polymer is injected dinto a mould con-
sisting of two large plates separated by a narrow gap. The injec-
tion takes place through a hole in one of the plates and the space
between the plates is restricted by side walls to give the desired
form to the Tamina. When the melt has filled out the accessible
space it is allowed to solidify. Air vents are placed at suitable
points in order to let the air escape.

After the injection has begun, the melt will describe the form of an
expanding circular disc until it reaches one of the side walls. Then
the motion becomes more complex and there arises the mathematical
problem of describing it.

This problem is very hard. A faithful mathematical model for it would
have to take care of features of the fluid such as

1) compressibility due to high pressures, etc.

2) high viscosity which in turn will generate heat and therefore

3) non-constant temperature and thermal flow.

4) Moreover, a polymer melt is to be considered as a non-Newtonian fluid

(i.e., roughly, the viscosity forces do not depend linearly on the
velocity gradients).




(1)

To get a manageable mathematical problem Richardson makes the drastic
simplification of replacing the polymer melt by a fluid with the
following properties:

1) it is Newtonian,

2) dincompressible and

3) thermal effects are negligible .

On the other hand, the fluid is still allowed to have high viscosity
(in fact, the higher the better).

Still, however, the problem is too hard (to begin with at least)
so Richardson makes one further simplification:

4) let there be no side walls in the mould and instead (to get a non-
trivial problem) Tet the fluid initially occupy some given more or
less arbitrary region.

A flow in the space between two parallel surfaces at a short distance
from each other and with the fluid fulfilling 1)-3) above is called
a Hele Shaw flow. Thus the problem is that of describing a Hele Shaw

flow with free boundaries and with a source point.

b) Derivation of the Hele Shaw equation

Following Lamb [8] (p.581f) we now derive the equations governing
a Hele Shaw flow starting from the Navier-Stokes equations. Let
the two plates have equations

{Xs

X3

h and
0

"

respectively in Euclidean 3-space with coordinates X{3XosXg where
h > 0 is the distance between the plates (h small). Let further




v = (v1,v2,v3) be the velocity vector of the flow,
p  the pressure of the fluid,
p  the viscosity coefficient,

h
—-% f\/dx3 the average over the gap of the velocity,
0

<
1

p  the density of the fluid (constant by the imcompressibility
assumption).

The Navier-Stokes equations for an incompressible, isothermal New-
tonian fluid in the absence of outer forces (the influence of
gravity is neglected) read

v
5t *+ (vegrad)v = —%gradw % Ay

3 3 2
(v.grad is the operator ¥ Viﬁg"' and A the Laplacian X mé—f ).
Now we assume the injection of fluid is slow enough for the
flow to be approximately stationary. This means that the term g%

can be neglected in (1):

v
5t =0

Moreover it is reasonable and customary to assume that the flow
is entirely horizonatal, i.e. that

Vg = 0.
With these assumptions (2) written up in component form becomes
9 9 S NI
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(10)

The boundary conditions are

It
[aw]

Vi = Vo = 0  whenever X3

1l
=

0
Y‘X3

If h is sufficiently small the first and second order derivatives of
v in the X9 and X5 directions are negligibly small in comparison with
the derivaties of the same order in the X3 direction.  Thus

( \2 )2 ) )2 ( )
+ v, << V. i=1,2).
8x12 ax22 J ax32 J

For similar reasons and assuming that u is sufficiently large we
also have
5 2

P y__i_)__ .
<V18x1 + v, 8x2> Vs < < 5 8x32 Vs (3 =1,2) .

Inserting (9) and (10) into (5) - (7) there remains

¢ 2
o 0N
ax1 3 Xq
2
<_§E_ = fi)il
axz 32x3
op
L |
8x3
\

Here (13) shows that p, and hence g%i and g%i , do not depend on X3
Therefore (11) and (12) imply that v4 and Vo Zconsidered as functions
of x5 are polynomials of degree at most two. The boundary conditions

(8) yield that these polynomials are




( -
6v1
V,I - - “B"z—" X3(X3-h)
!
602
257 X3(x5-h) ,

= 1
mm@v.—ﬁ

Bp .o M2ug
ax1 7;7 1
op o 2wy
8%, 737 2
Since also i3 = - %%; 93 (= 0) we have
2

- h
where V = %~f v dx3 . (16) is known as the Hele Shaw equation.
0

We notice the following consequences of (16).

1) The flow is irrotational, even a potential flow, despite high vis-
cosity of the fluid. Moreover, the potential function for the velocity
field is proportional to the pressure.

2) The pressure p 1is a harmonic function, as a consequence of
divv = 0 (incompressibility of the flow).




c) Derivation of equations for the moving boundary

Let us now consider the Hele Shaw flow as a two-dimensional flow
(in the (x1,x2)—p1ane). We then pass to complex variable notations
as follows.

€ = the (x1,x2)-p1ane

I
il

Z = X+iy x1+1'x2 the position variable in C

the complex conjugate of the averaged velocity

]

W = u+iv = 91-102

vector (the bars on ViV denote here averages; in the sequel
bars will always denote complex conjugation).
3

= 0 . 9
s = = F 13? = grad

Let further

Q =0, «C denote the region in € occupied by fluid at time t

t
and let

0eqn be the point of injection.

Then the Hele Shaw equation (16) becomes

We are now going to compute the function p, given Q. Since p is
harmonic in §, or, more correctly, in Q~{0}, we only have to know
the boundary values of p on 3Q and what kind of singularity p has
at z=0 (the point of injection).

On 3Q we have

p = the pressure of the fluid

(the pressure outside the fluid) +

(the surface tension).

-




(20)

(21)

Now we may assume that

the pressure outside = constant = the air pressure.

In fact, the pressure outside must at Teast be constant on each com-
ponent of 3Q. A more sophisticated model would allow the pressure to
take different constant values on different components of 5Q2. One
could, for example, think of the situation that in each bounded com-
ponent of Q% there is a certain amount of air (namely the air which
was there when the component in question was created) which is not
able to escape and which therefore exerts a pressure on its component
of 3Q that varies with the size of the component (e.g. according to
Boyle“s law). However, we shall assume (19) for simplicity.

As for the surface tension this is known ([8], §265, p455-56) to be
(roughly) proportional to the mean curvature. Assuming that the
curvature of 90 1is moderate it will be the radii of curvature in ver-
tical sections through the flow which will have most influence on the
surface tension and these radii will be of the order of magnitude h,
hence will be essentially constant. Thus the surface tension will be
approximately constant.

The above discussion results in
p = constant on 3Q

(under the assumption that the curvature of 30 is moderate).

To determine the singularity of p at the origin, let Q denote the
rate by which area is created at z=0 ("area" in our two-dimensional
model corresponds to “amount of fluid" in the three-dimensional model).
This means that

Q='dqutl .

Let U be a small neighbourhood of z=0 in Qt. Then, as is easily seen,

the total flow of W per time unit through the infinitesimal element dz




10.

of 3U equals Re[ws(-idz)] (cf. Fig. 1 below and observe that the scalar
product of two complex numbers A and B, regarded as vectors, is Re[A<B]),
and it follows that

il

amount of area passing out through aU per time unit

Q

Re[w - (- 1dz)]

Q0
<

i

Re %- J wdz = 21 Re Res wdz
ou z=0

Moreover, since p is real and single-valued we have by (17)

Refwdz=%—f(wdz+ﬁdﬂ =
oU oU

2
- . h op P 43) -
= m afu<§z dZ+8.Z. dZ)—
2
h
:—-——.——Idp:O
T2 5y

Thus ImReswdz= 0 and so
z=0

- Q
Res wdz il

z=0

Assuming that w and p are no more singular at z=0 than necessary,
it follows that




(23)

1.

W = %%4% + regular analytic

and

p= - 6u , Q «log|z| + regular harmonic
H? T

at z=0.

Now (20) and (24) (together with the fact that p 1is harmonic)
give

_ 6uQ (
= =53 . z,0) + constant,
P ﬂhz gﬂ

where gQ(z,c) is the Green”s function for Q .

Also, by (17)

.23
W= T 92 gQ(Z,O)

Equation (26) yields the rule according to which 8q, moves as t

increases. In fact, a point z on 3Q, moves with the velocity

t
0z _ -~ .
5F ° w(z) i.e.
3z _ _Q 3

Q
- o grad gQ(Z,O) .

1]

Equation (28) can be said to constitute the moving boundary condition.

It could be formulated in a more precise way, for example along the
following lines:
t - Qt
ries Q. are sufficiently smooth (say C2, so that grad th(z,D)

is a solution of our moving boundary problem if the bounda-

have continuous extensions to aQt) and there exist parametrizations

s » z(s,t) of them which depend smoothly on both s and t and
for which




(29) EE%%;El = - %%~grad th(z(s,t),O)

holds.

Equation (28) is an equality between vectors (or complex numbers con-
sidered as vectors). The content of (28) 1is also expressed in the
following scalar (or real) equation in which anz/at denotes the ve-
locity of IO at the point z in the direction of the outward
normal to oy and a/anz denotes the outward normal derivative on

¢ -
- 89, (2,0)
(30 g —
m an

There are a lot of other ways fo formulate the moving boundary con-
dition (28). One such way is by the equation

; 0 39, (z,0) ,
31 2 g, (2,0) =-<—-——£———— ,

to hold on 3Q,. (31) is derived as follows. For pairs (z,t) with

t
ZE€ BQt we have
32 = .
Thus
(33) d(Z,t)th(Z’O) = 0

with respect to variations of (z,t) subject to zE:BQt. (d(z £)9% (z,0)
denotes the total differential of the function t

(z,t) » 9 (z,0).) On the other hand
t




(35)

13.

ag og 99
d( t)g = M ds + Qt dn + i dt
z,t)%5 3s an
where g% denotes derivative with respect to arc-length s, and ds

is the arc-length differential (this is not the same s as the one on
p.11-12).  Since 39y /3s = 0 (33) and (34) yield

t
99 %9y

t dn +
on

t

dt = 0 .

This gives

dg, /ot
BHZ . Qt
ot Bth/an

which by (30) is (31).

Since */
2 2 2
ag _ _ 9g _ 499 99
(gﬁ) = |grad g| = fzgff =457 =5

(31) also can be written

_a.g.z_z.g_ég..?_g, on QQ

(31) and (38) do not, however, seem to be particularly useful because
they are equations which are to hold only on a set the location of
which is not known a priori (namely aﬂt).

Still another way to forumulate the moving boundary condition is to write

it as a partial differential equation to hold in the distribution sense

*/ For convenience we now drop some subscripts. Thus
3 3

g=q, , == = =—— etc.
Qt on anz
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for the characteristic function Xq of the set 2 -
With t

QQt(Z,O) for z = x + 1y€§2t
u(x,y,t) =

0 otherwise

o
e

liA
o

H(u(x,y,t))

>
=2
—
N
—
1

and the differential equation in question is

d - Q
EH(U)—?'TFAU +Q'(SO

Here A is the Laplace operator (Au will be a distribution with support
on ant and at the origin) and 6015 the Dirac measure at the origin. The
derivation of (39) from (28) or (30) is left to the reader, or he/she

is referred to [7] (p.22-25).

Now, and finally, we shall derive that equation for the moving boundary
which will be the subject for investigation in the rest of this paper.
This is an equation for the Riemann mapping function from the unit disc
D onto Q. Thus we shall assume from now on that 2 is simply connected.
Let ft(c)='f(g,t) be the (unique) conformal map

f. Dke Q

t t

subject to

(recall that OEZQt for all t).




(41)

(42)

15.

Then the equation we have in mind is
Re [Cfl(gst) '%(Cat)] = % 5

to hold for all z€3D. Here, and in the sequel, f' denotes the
derivative of (the analytic function) f with respect to ¢ and f
its derivative with respect to t.

In order for (1) to make sense 80, must fulfil some regularity require-
ments, e.g. so that f' and f are continuously extendible to aD. We
shall, however, not bother to formulate any such conditions here. Also,
the derivation of (40) will be quite informal but the reader might
easily formulate for himself suitable conditions on f for which (40)
and the derivation of it is valid. In the rest of this paper (sections
IIT and IV) we are in any case going to work with conditions on f which
are more than enough for (40) and the derivation of it to make sense,
namely that f is analytically extendible to some neighbourhood of D
(for all t under consideration) and that it is continuously differen-
tiable as a function of (z,t).

Now to the derivation of (40). We have, by well-known transformation
properties of the Green”s function,

g (f((:’t)sD) =g (Cso) = - 109 !(:l for CElD
Qt D
This gives
0 = 5%— (-Tog |z]) =
3 ath
= 'é’f th(f(Zst):O) = *'S'"t’— (f(C5t)90) +
8th 5 (z,t)
.._._.___—__C’ -
+ "g‘z—" (f(CSt)5O> 3t +
g
9]
bt (F(gt),0) L)
7 ot




(46)

(47)

16.

Further

1 9 _
T (- loglzl) =

z g

8th 5 (z,t) g (. 1)
= AR t LoTlz,.t)
- 99, of

Z 9JC
Hence

ot 9z 3t
and

g _ _ 1

9z of

Thus (38) gives, for ce€3bD,

- 9g , of

Q _ /st 2Re[az at]

er 439,99 499 . 99
4’5% 37 b5z 37

1 af /ot] of of
"7 Re[89782} = Re [C’ESZ _8?]
which is (40).

Remark: Whether f satisfies (40) or not, the left member of (40)
can be interpreted as

G

: F of] _ Q the normal velocity of 0
N
“ag ot

" 21 the flow velocity at BQt




(49)

(50)

17.

(47) follows from (46), (37), (36) and (26) in the following
manner.

Re [Cgf_ ._a_f_] _ 99/t %% anat _ an/at
o 0t 49,09 - ag/em 129907 21/ * W]
9z

There are alternative ways to formulate (40). For zc€5D, ¢ can
i6 3 . 9

be written ¢=e with 6€ R. Then Csf'z - i and (40)
becomes >

of of] _ _ Q
Im[% §E:|— —2‘-1? N e R

With f=u+1iv we have

f ,3f] _ su_av _ av _ du _ d(u,v) _ . .
Im[5§ 'ETJ =99 °3t T30 5t - 56 E) - (the Jacobi-determinant

of the map (6,t) - (u,v))

Thus (48) takes the form

V) _ _ Q
= -5, O,teR

(50) can be regarded as a differential equation for the two real func-
tions u and v defined on R x R and 2w-periodic in the 6 variable.

As such it expresses that the map (6,t) -» (u,v) shall be area preserving
up to a constant factor. The two functions u and v in (50) are,
however, not independent of each other bu@e(SO) has to be supplemented

i

by the condition that, as a function of e’ ", u+1iv has an analytic ex-

tension onto D. That is, v shall be the Hilbert transform of u.

Remarkably enough it is possible to write down the "general solution"
of (50). Namely, following [3] (Anhang zum ersten Kapitel, §4, s.49f),




(54)

18.

introduce new independent variables o and B and regard 6,t,u and v
as functions of o and B

0

u(a,B)
v{a,B)

6(a,B) u
t(a,B) v

TN
ot D
H 1]

Then

o(u,v) _ alu,v) , 3(68,t)
o(a,B) ~ 3(6,t)  3(a,B)

and (50) becomes

a(u,v) _ _ Q 3(e,t)
3a,B) ~  ?r 3(a,B

Now the "general solution" of (53) is

B =0 + 38 u =k (B+-aa)
=g - oW 2 koo (o 00
t = B aa Vv o= k (OL 88) 5

where w = w(a,B) is an "arbitrary" function satisfying

2 2 2 2
9w 3w o w
"(5&5@‘)* ' + 0.

and where k = vQ/2m . (The expression in the left member of (55) is

: 3(6,t)
the same thing as e BT )
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TREATMENT OF THE DIFFERENTIAL EQUATION

a) Notations and preliminaries

The rest of this paper is devoted to equation&(11.40) and certain
generalizations of it. The question which will interest us is that
of existence and unicity of solutions (locally). To state the problem
more accurately we introduce notations as follows.

D(asr) = {z€C : |z-a|<r} (if a€C, r>0),
D

1]

D(031)

n

P = CU{w} = the Riemann sphere .

If Q<€ s an open set

H(2) = {holomorphic functions on Q},
M(Q) = {meromorphic functions on Q}.

For an arbitrary set Ec (¢ let

H(E) = {functions, holomorphic in some open set containing E}.

In H(E) two functions are identified if they agree on some neighbourhood
of (i.e. open set containing) E.

O ={fcHD) : f' +0 onD},
) 0} ,
0 and f'(0) >0},

1

01 = {fed : f(0)
H(Tﬁ),I = (FEHMD) : f(0)=0 and Imf'(0)=0).

The following notations will not be needed just now but we gather them
here in order to have all notations in one place.

If f is a function meromorphic in an open set UclP we set

Div, f

U the divisor of f in U

the formal sum of the zeroes of f (occurring with plus signs)
and poles (with negative signs), both counted with multiplicities.

t
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Pdivuf = the pole divisor of f in U
= the formal sum of the poles of f in U counted with
multiplicities (and with plus signs)
Zdiva = the zero divisor of f in U
= the formal sum of the zeroes of f in U (counted with
multiplicities)
Thus

DiVUF = Zdiva - PdivUF

When U=P we just write Div in place of DTWP etc.

The set (or abelian group) of divisors is partially ordered in a natural
r

way, namely so that a divisor = n; -(cj) (”j integers, cjejP) is

non-negative, J=1

if and only if ”j 20 for all j, assuming here that all the Cj are
distinct. Then D1g D2 (D1,D2 divisors) means that D1--D2 20. With
respect to this partial order the concepts max (= sup) and min (= inf)
make sense and will be used.

Rn and Pr are defined on p. 28-29.

* will denote the reflection map in 3D and various associated maps,
namely,

* = 1/¢ for points <z€ P ,

(Z n. -(g.)) =3 n, (g% for divisors (n, integers),
j J J ] J J
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E* = {z*¥€lP : €k} for sets Ecp ,

F*(z) = F(c*) for meromorphic functions F,

'k/:

Now we can state the problem

Given fOEG find an € >0 and a map

17’
(-e,e)3t » ft601

such that the function f(z,t) = ft(c) is continuously differentiable
in a neighbourhood of D x (-g,e) and such that

Re[f(z,t) « 2f'(2,t)] = 1

holds for €3, t€ (-e,e).

The requirement ftE:01 means that the mapping function ft shall be
normalized (ft(O) =0, f%(O) >0), analytically extendible across 3ID and
locally univalent on D (f£=#0 on D). Since f, originally appeared
as a mapping function it is natural to require it to be univalent on D
(or D). However, in the mathematical treatment of (1) it makes no
difference whether ft is univalent on D . or merely Tlocally univalent
and the latter condition being simpler to work with, we have preferred
to use that one. Observe also that if fO actually is univalent on D
and t - f, solves (1), then if €>0 is chosen small enough also all

ft are univalent on D .

It was shown in [12] that problem (1) always has a solution, and that the
solution is unique **/ if it is required to be analytic in t (i.e. be
expressible as a convergent power series also in t). The proof of this
is complicated and consists of converting the problem into a system of

integral equations which is solved by an iterative method. Here we are

*
/From now on we choose Q = 2r in eq. II.40.
**/i.e. any two solutions coincide for small t.




22.

going to give an elementary proof of the existence and unicity of
solutions to (1) in the case that fO is a polynomial or a rational
function. It turns out that the differential equation (1) then re-
duces to a finite dimensional system of ordinary differential equations
(in t) which has a unique solution by standard theory. This solution
ft is in turn a polynomial or a rational function of the same kind as fO‘

b) Reformulation of the equation

Our first step will be to solve equation (1) for f.

Proposition 1: Given f6101 the equation

Relzf'(z) < g(z)] = 1 for £ €30

has a unique solution g in H(D)1. This solution is given by

g = F(f)

where F:0, - H(lD)1 is the operator defined by

FO(D) = f'(0) -5 J F1(z)| 2 2L dz

-7 2z

Proof: We transform the problem into a statement about two other ana-

lytic functions, F and G, related to f and g as follows.

—
o~
¥
S

il
O
~r
T~
N
N
o
N

w
—
oY
~—
£}
Y
[p]
—
Y
~—
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Then the first statement in the proposition transforms into:
Given FEH(D), non-vanishing on D and with F(0)>0, the equation
Re[F+G] =1  on aD

has a unique solution G in H(D) satisfying ImG(0) =0.

On dividing by |F|2 in (9) we get another equaivalent formulation:
Given F€H(D), non-vanishing on D and with F(0) >0, the problem
Rel[G/F] = |F|~2 on 23D

G/FEHMD), Im G/F(0)=0

has a unique solution for G (or for G/F).

Now in this last formulation the statement is directly seen to be true.
Namely, the solution for G/F of (10), (11) is

G/F = ‘P[[FI'Z]
where P stands for "the Poisson integral of" . Explicitly
G(C) = '__1__ Zf’n |F( 16 I"z eie+?; de
F(z) ~ 2w eie ¢ -
_ 1 -2 z+g dz
T2 &D F(2)] -7 z

Actually (13) only gives G/F as an analytic function in DD, but it is
easy to see that G/F extends analytically across 3D as required in (1).
In fact, the function |F(z)|-21n the last integral of (13) can be re-
placed by (F(Z)F*(Z))—1, which is holomorphic in a neighbourhood of 3D,
and then the path of integration for that integral can be moved slightly
out from 3D showing that the last member of (13) is an analytic function
of ¢ in some neighbourhood of D .
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Thus the statement (10)-(11) is true and so also the statement (2) of
the proposition is true. The expression (4) for the (hence well-defined)
operator F follows from (5), (6) and (13). This proves the proposition.

Theorem 2: Let fE:01 .
(%) Let U be any open connected set containing D . Then if
feH(U) F(f)eH(U). Thus F is well-defined as an operator

F: 0y n H(U) > H(U).

Moreover, with H(U) provided with the topology of uniform con-
vergence on compact sets, this operator is continuous.

(ii1) If f is a polynomial of degree < r then so is F(f).

(iii) If f is a rational function with
r
Pdivf < ¥ n, «(zg.) +n, ¢ ()

j=p 9 T o

where gJEZE ~D, nj 2 0 and ng 2 1 then F(f) is a rational

function with

Pdiv F(f) <
J

HM-=s

1(nj+ ) (g5)+ng - (=),

Proof: (ii) is a special case of (iii) so only (i) and (iii) need
to be proven. Returning to the functions F and G used in the proof
of Proposition 1, the relation

g = F(f)  (for feo,, geH(D),)
is equivalent to

Re[F+G] =1 onaD

for F and GEH(D) satisfying ImF(0) = ImG(0) =0, F non-vanishing on
D and related to f and g by (5) to (8). Apart from the continuity
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statement in (i), (i) and (iii) now follow from the following
Temma.

Lemma 3: Suppose F,G€H(D) satisfy

)

Re[F «G] =1 on 3D

and that F has no zero on D. Then
(i) if FEH(U) then GeH(U) (for UoD open and connected)

(ii) if F is a rational function then so is G, and

Pdiv G £ PdivF.

How the theorem (except for the continuity statement) follows from
the Temma:

(i) If fEH(U) then FeH(U) and, by (i) of the lemma, GE€H(U).
Hence g€ H(U) by (8).

(ii1) Suppose f is rational with

r

Pdivf < 351”3 . (cj) +ng ()

(where ng 21). Then F=f"' is rational with
r

PdivF < j>::1(nj+1) . (aj) +(ng=1) < (=)

and it follows from (8) and from (ii) of the Temma that

Pdivg < PdivG + 1e¢(e») <

™M s

(nj+1) ® (CJ) +n0'(°°)

Jj=1

as claimed.
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It remains to prove the lemma and the continuity assertion in the
theorem.

Proof of the lemma: Relation (16) can be written (see p. 19f for

notations)

Re[F* «G-1]= 0 on 3D .
This shows that the function
H=F*eG-~1

which is holomorphic in a neighbourhood of 3D extends by reflection
to be analytic in a domain which is symmetric with respect to 3D.
In fact, (18) shows that

H= - H* on 3D, and hence identically,

so that if H is a priori analytic in (say) V (20) defines an analytic
extension of it to V U V*,

To prove (i) of the Temma we observe that a priori the function H
defined by (19) will be holomorphic in U*n D (FeH(U), GEH(D)).

Thus it extends analytically to (U*n D) U (U n D*) (= UnU*, in

view of U > B}, in particular to U n D*. Since F* is holomorphic

and has no zeroes in U n D* it follows from (19) that G is holomorphic
there. Thus G 1is holomorphic in U=(U nD*) uD , and (i) is proven.

To prove (ii) of the lemma observe first that for F a rational function,
H defined by (19) is meromorphic in D, hence by reflection is mero-
morphic on all |P. This means that H 1is a rational function. Hence
also G 1is rational (by (19)).

Now (17) follows from the following computation in which the first in-
equality depends on Z<jivD*F*=:O, the second one on Pdivﬂ)G==0 and where
also the symmetry (20) of H=F « G* -1 is used.
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. » . 0 *
PdivG = Pdivp,G < Pd1vm*(F*-G-1) = [Pd1vD(F*~G—1)] <
< (PdivF*)* = Pdivp,F = PdivF .

This proves Lemma 3.

It remains to prove the continuity of F :01{1H(U) - H(U) for
UuD open and connected. So suppose fn - f uniformly on compact
subsets of U (fn,f6101f1H(U)) and we shall prove that F(fn) - F(f)
in the same topology. It is clear (by the maximum principle) that
it is enough to prove that F(fn) - F(f) uniformly on every compact
subset of U which does not contain any zero of f' (in U~ D).

Let K be such a compact subset. Then we can choose an open connected
set V with nice boundary, such that K U DcVeVc U, and such that
also V avoids all zeroes of f'. Since the function (f'(z)f'*(z))"]
then is holomorphic in a neighbourhood of V ~ID and equals |f'(z)|-2
on 3D we have, for ¢ €D

F() = of' () gy [/ (2] 28 -
R 1 1 z+y dz
= Cf (Q) °27T'i 3{[) fi(z)f.*(z) .Z'C - =
Y 1 1 z+r dz
= of o) oy S F(2)F*z) "7t z

v

Both the first and the last members of this equation are functions (in z)
holomorphic in V. Thus the equality between these is valid for all
z€EV.
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Formula (21), with equality holding between the extreme members for all
z€V, also is valid with fn in place of f whenever n is large enough.
For fn - f on compacts implies that fn' has no zeroes on V for n
large (since f' has none), and so all that has been said about f
above also applies to fn (for large n).

Thus

. 1 1 d
Ff () = oy () 77 [ frayr s T

for z€V, n large.

Now fn - f uniformly on compacts implies fn'» f' uniformly on K and

on 3V, and fn'*» f'* uniformly on 3V. Therefore, since !é}%l is bounded
above for z€ 3V, €K and fn'(z)fn'*(z) is bounded away from zero for
z€3V and n large, (22) and (21) show that F(fn)(;) > F(f)(z) uniformly
for €K as n-o .,

This proves the continuity of F and finishes the proof of Theorem 2.

c) Existence and uniqueness of rational solutions to the equation

We now apply Theorem 2 to the differential equation f = F(f).
Given integers nO,n1,...,nrz 1T Tet

- r+1
n = (nO,n1,...,nr) €eZ

+MN,+...+N
Moy P

{rational functions f which have r distinct poles Cyseresly
(depending on f) in € of orders exactly Nysesesh, respectively,
a pole of order at most o at « and no other poles}.

In]

~
[t}

Thus fEZRn means that there exist Ly = cj(f)Eim (3=1,...,7r),
aj = ajk(f)EZE (k=1,...,nj, j=1,...,r) and ay = ak(f)éim (k=0,...,n0)
with C; * Cj for i #j and with ajn + 0 (j=1,...,r) such that

J
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n. n
r J a. 0
(23) f(z) = ©» 3 ~——QE~E + X akck
j=1 k=1 (c-cj) k=0

For r=0, r1=(n0) Rn reduces to

Rn = PnO = {polynomials of degree < nO}

With (cj,ajk,ak) in (23) as local coordinates R_ is given the structure

n
of a complex differentiable manifold of dimension
r
r+ % nj+n0+1 = |n+1|. We shall regard R, as a real manifold, hence

of dimension 2[n+1]. Then R n®, and R nH(D), are submanifolds of
R, of dimension 2|n+1| -3 (the conditions f(0) =0 and Imf'(0)=0 reduce
the dimension by 3).

Now we may consider the operator F :(91 - H(@)1 as a vector field on 01
(tﬁg tangent space of 01 at any point f6201 may be identified with
H(ID)1 in a natural way) and the content of part (iii) of Theorem 2 then
is that the restriction of this vector field to the submanifold O1f1Rn
is tangent to 01r1Rn. (We shall motivate this in a moment.) Thus
FIO1r1Rn may be considered as a vector field on (along) O1r1Rn .

Moreover, this vector field is very smooth as can easily be seen from,
say, (4). Now a smooth vector field on a finite dimensional manifold
always admits a unique integral curve through any point on the manifold
and so it follows that given f06£01r1Rn there is a unique smooth map
?—»ft6201r)Rn defined in some interval around t=0 and satisfying
Fo=F(F,). .
existence and uniqueness of rational solutions of fo = F(ft), given

This 1is roughly the proof of Theorem 4 below, asserting
fo rational.

In order to work out the details of the above discussion consider an
arbitrary differentiable curve
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(26)
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t—)ft
in Rn. With
n. n
rooj a.. (t) 0
fle)= = % »——sﬂi*~—jz L ak(t)ck
Jj=1 k=1 (c-cj(t)) k=0

the tangent vector of this curve at the point ft becomes

n. N n. ° n
. ro 3 ag(t) roo kag, (t)r.(t) 0,
fle)= = =z X AR ik L+ X ak(t)z;k =
3=t k=t (emg(8))7 0 §=1 k=1 (gt (1)) k=0

njajn.(t)tj(t) + ; 29 (k~1)ajk_1(t)ij(t)~+éjk(t) )

V(- (t)) 9 J=1 k=1 (c-cj(t))k
j

Now for any fixed fEﬁRn consider all curves with f0=f. As (24) varies
over all such curves the derivatives éj(O), éjk(O), ék(O) range over all

n.

ny+1
19 x C 0" ¢|n+1land it follows from the last member of (26)
(t) # 0 there) that the tangent vector fg then

" xc
(observing that niajy,

ranges over all J

i M3

Tf(Rn) = {rational functions g with Pdivg <

; (nJ+1) '(Cj)+n0'(°°)}

1

i
1}

cj(O) are the poles of f=f0). This means that the linear space
(R ) is the tangent space of R_at f€R_(whence the notation for it).
f n n
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(29)

(30)

(31)
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Considering RnnO1 instead of Rn it is easy to see that the tangent

spaceofRnno1 at fERnn01is

{rational functions g with Pdivg <

J

r
Tf(Rnr101) :1(nj+1)-(gj)-+n0-(uﬁ

and with g(0) =0, Img(0) =0

Tf(Rn)nH(iﬁ)1

(51,...,cr,w are the poles of f).

In terms of the above notation, part (iii) of Theorem 2 (together with

the fact that F(f)EiH(D)1) say that

F(f) € Tf(Rnno1) for ferznno1 .

Thus F(f) is tangent to Rano, for fer no,, i.e. FanrIO is a

smooth vector field on Rn{101, and so the problem 1

f, = F(f,)

fo € Rn n (91 given
has a unique smooth solution

t - ft€Rnﬂ(91

defined in a neighbourhood of t=0.

We have now proved

Theorem 4: Given any rational function f which is holomorphic and locally

univalent on D and satisfies f(0) =0, f'(0)>0, choose n =(n0,n1,...,nr)
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with njz 1 so that f€12n (i.e. Nyseeesn shall be some enumeration of
the exact orders of the finite poles of f and o shall be greater or
equal to the order of the pole of f at infinity). Then the problem

fo = F(f

or, equivalently, the problem (1) has a unique solution
t -~ ftERnnO‘I

defined in a neighbourhood of t=0.

d) The moment property of solutions

The next theorem shows the existence of an infinite number of simple
constants at motion for a solution t - ft of our differential equation,
namely the analytic moments

¢, = [f 2"dxdy = [ f()"f'(c)|%dedn  (c=E+in)
Qt D

for n=1,2,... . Here Qt==ftUD), which is regarded as a Riemann surface
over € if f, is not (globally) univalent on ID. The zeroth order
moment

o = JJ dxdy = IQtl
D

will increase linerly with t, This moment property of solutions of
(ITI.1) was discovered by Richardson ([9]).
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Since the c, are Tinear in z" we also obtain constants of motion by
taking linear combinations of the z". Thus define, for arbitrary

polynomials P(z) and for f6301

= JJ P(z)dxdy = [] P(f(2))|f'(z)] %dedn
Q D

where Q@ = f(D) (as a Riemann surface). Then we have

Theorem 5: Suppose (-e,e)3t - ft6201 solves (1)
(equivalently %t==F(ft)). Then

2 I, (f,) = 2nP(0)

for each polynomial P(z).

Proof: Let Q'(z) =P(z). Then we have, using the formalism of differen-

tial forms (see [5], Section I.3, p19ff e.g.)

1 2i1,(F,) = 4t 2i é; P(2)dxdy = & {BIQ'(z)dZdz -
t t
d _d
R ORE FICRGLINONE
Ot
= O (DU (0) + [T (D) (f(F,(2))) =

i
——
O
Lo
.-h
‘—t.
—
Y
N
N
——
-+
-+
T~
LU
-
—h
‘—'-—
——
¥
N
o
Y
]
—h
—
Y
N
——h
‘+
o~
Y
S
Q.
Y
SN’
i

24 LPUFy ()] In| £ (£)F () de | =
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- 21 fP(F (0)Re[ F(2)ef () 9% =

9D 4
2m i6

= 21 [P(f (e'"))do = 2i - 2nP(f,(0)) =
0

= 27 « 27P(0) .

In the last few lines above we used the fact that along 3D,
dg = ie'%p = izde (c=e1e).

This proves Theorem 5.

Remark: The proof of Theorem 5 gives hints for possible geometric
interpretations of the differential equation

Re[%(c)é?rzgj] =1 on 3D .

Namely, we may extract from the proof the formula

4t J Py = [P(T ()P o) (e
t

(where Q = ft(D)). On using the symbol § to denote variations (or
differentials) with respect to t (53) can be written

5 [ P(2)dxdy = IP(f(c))Im[Gf(c)-df(c)]
9] oD

or, by pulling the right member back to &9

6§ P(2)dxdy = fP(z)Im[éSE-dz]
Q of
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Now, 6z is the increment up to 0((6t)2) of f(z) for fixed 7€ 3P
as t increases by §t. Since

Im[6z-dz] = the area of the parallelogram spanned by &z and dz

(see Fig. 2 below) (55) can be interpreted as saying that Im[&Zedz]
is that mass distribution on 3p the density of which is proportional
to the local increment of the area of Q caused by the motion of a9 .
Expressed in a careless way

Im[8z+dz] = |&Q| along a0

(1...]1 = area with sign here).

8z

Area = Im[8Z-dz] — - \
/\\\
‘ dz

o2

Fig. 2.




Equation (52) can be written

Im[8z+dz] = &t-d6

(withz;=e16

, z=f(¢)) and thus by (57)
|8Q] = Stedo .

This is the interpretation of (52) we had in mind.
is the same as (II.50).

36.

Actually (59)
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GENERALIZATIONS AND APPLICATIONS

a) The Generalized Differential Equation

Now we are going to consider a generalization of equation (III.1),
obtain similar results for this equation as for (III.1), and

apply these results to prove that a certain mapping is non-singular
(Theorem 6). The generalized equation is

. cos nbd
Relf(z)- cf'(g)] =
sin n6
where z;=e]6€alD and n€Z. For the case with cosné in the right
member and n=0 (1) is the old equation (III.1). Each n>0 in Z
and each choice of cosn6and sinne (1) gives a new equation. For
negative n€Z the same set of equations appears again (essentially).

Let us therefore make the following convention in order to be able to
speak of the equations (1) conveniently:

Choose the right member of (1) to be
cos no for n=0,1,2,...
sinng  for n=-1,-2,...

Thus there is precisely one equation (1) for each n€Z and, aside from
the zero function and up to a sign, all possible choices of right mem-
bers in (1) are covered,

(1) can be rewritten as

ImlF(z)f' (£)dz] = Relf(z)zf (2)1de

(A%

0)

$inno do (n < 0)

N

{cosnede (n




38.

5 (" +c7") ?—g (n20)
=9

(- (n < 0)

- +Im d(z™") (n > 0)
=JIm dlogg (n =0)

1 -n

w Re d(z ) (n < 0)

for ¢ = eie €3 .

Using (II1.53) this shows that if t - f=ft€O1 is a solution of (1),
nz0 and P(z) is a polynomial, then

aqt' I(f) = 8{DP(T“(C))Im[%(&)f'(z;)dz;] = %a{n P(F(2)) "™+ Z‘n)g_cg _
(on p(£(0)) (n = 0)
) P(F( D)
“ﬁﬁyﬁ%' (n > 0)
2r P(0)
) W[A1(f)P'(0)+...+An(f)P(n)(0)] (n > 0)
\

where Aj(f) Jj=t,...,n are complex numbers that depend on f and,
in particular,

%H)=%¢%m”¢0.
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Similarly, for n<0

‘dqf I,(f) = iﬂlzié P(f(z))-c"! - in[A1(f)P'(0)+...+A_n(f)P"”(0)J .

Justas on p.22 (Proposition 1) equation (1) can be solved for f
(uniquely with the requirement fEZH(ﬁ)1) whenever f6201. Namely,

{cos né n=0,1,2,...

Re[f(;)-gf (2)]= sin ne n=-1,-1,...
for ¢= e'¥ e oD is equivalent to

f=F (f)

where F 0, - H(E% are the operators defined by

Fo(f)(z)

n

vye b T ey -2 L JCOS MO z4g dz
o @ gy gp 1@ (sinnef "7 7 "

(z=¢'%)

(o, =2 6
¢f'(g) P [[f'(e1e)l . {E?Z 26}}(g)

(cos n® for n 2 0, sin no for n < 0).

Thus FO =F ,

Also Theorem 2, Lemma 3 and Theorem 4 have their generalizations to the
equation (1) for arbitrary n€eZ. Theorem 2 generalizes to

Theorem 2':Theorem 2 (on p.24) holds true with any Fn (n€Z) in place of F
under the following assumptions:

For (ii) r > |n] (In] =+nz20), and

for (iii) ng > Inf.

Proof: The proof of Theorem 2' is essentially the same as that of
Theorem 2 with the role of Lemma 3 now played by the more general
Lemma 3' below.




(10)

40.

Lemma 3': Suppose F,G €H(D) satisfy
Re[F -Gl =H on 3D

where H 1is a rational function which is real on 3D, and suppose that
F has no zero on D. Then

(i) ifU>D is open and connected, Fe€H(U) implies GeH(U)
(ii) if F 1is rational then also G 1is rational, and
PdivD* G = max{PdiﬂD* F, Pdivm* H} .

How the theorem (except for the continuity statement in (1)) follows
from the Temma:

We only treat the case n 2 0, the case n < 0 being similar. With

T
C Y
™~
N

It

N —
——
il

e
+
Nt
i
>
g

Now (i) of Theorem 2' is proved in exactly the same way as (i) of Theo-
rem 2, with Lemma 3' in place of Lemma 3. (ii) of the theorem is a
special case of (iii).

To prove (iii) let f be rational with

Pdivf <

M-
=
~~~
Y
N
+
=]
e/
—
8
N

where n, > In| . Then F=f' is rational with
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r
Pdiv F §j§1(”j+1)'(§j) +(ng=1) (=)
and since
Pdivm*li = ne(e) < (n0—1)'0»)

(10) shows that

AN

Pdian(f) < PdivG + 1+() < % (n.+1) '(Cj) +(n0—1) « (@) + 1e(o0) =

This proves (iii) of Theorem 2', and also finishes the proof of that
theorem.

Proof of Lemma 3': The relation (9) shows that the function F*<G - H
is purely imaginary on 3D and hence extends by reflection to be holo-
morphic in some region which is symmetric with respect to aPD. This
gives (i) of the lemma exactly as in the proof of Lemma 3 (i).
(Observe that H is holomorphic in € ~{0}.)

Moreover, it is clear (by a reflection argument) that if F s rational

then so is G. Now the rest of (1) follows from the following series of
inequalities.

PdivG = PdivD*G < Pdiy,

puF* G

< max{PdivD*(F*-G-H), Pdiv,,H} =

D*

= max{[PdivD(F*-G-H)]*, Pdiv,,H} <

D*

< max{[PdiWDF*-G]*, [PdiWDH]*, Pdiv,. H} <

D*
< max{[PdivF*1*, PdivpH} =

= max{PdiwD*F > Pdivp,H) .
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b) Non-singularity of the moment mapping.

Now we want to apply Theorem 2' to prove the non-singularity of a
certain mapping. For f6101, nz0 define

£ %dedn

c (f) =[] 2"dxdy = ?%-fj 2"dzdz = [f .
Q Q2

where Q@ = f(D) and where © is regarded as a Riemann surface over €
in the first two integrals above if f is not globally univalent.
The numbers CsCpaCps-.. are called the complex moments*/ of @ or
of f. The map

f > (co,c1,c2,... )

has attracted some attention in recent years. For example, H.S. Shapiro
raised the question ([2], Problem 1, p.193) whether the map (16), de-
fined on the set of univalent functions mapping ID onto Jordan domains,
was one-to-one. Shapiro conjectured that the answer was "no", and this
was confirmed in 1978 by M. Sakai ([10]), who constructed two different
Jordan domains having the same set of moments oy

Here we shall prove a modest result in the other direction, namely that
when restricted to the set of locally univalent polynomials of any given
degree the map (16) is at least Tocally one-to-one (Theorem 6 below).

Recall that PN denotes the set (or linear space) of polynomials of
degree <N. It is easy to see (byacomputation) that for f(§01f]PN

cn(f) =0 for nxN.

Conversely (but somewhat deeper), if (17) holds for some fEI@1 which is
univalent on D then fePy. (See [1] where the result on p. 16

easily implies the assertion above.)

*/

or "analytic moments".
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(20)
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By (17) only the moments co(f),...,cN_1(f) are of interest for

f(301!1PN . Thus we consider the map

Ji f o (cglf)snnniey_q(F)

\%

for f€0,nPy. Since co{f) = |@] 2 0, hence is real, we may con-
sider J as a map

J 01f)PN - VN

where Vy =R x ¢V Notice that

diqR VN = diqR O1r1PN = 2N -1
(VN is a linear space, 01f1PN is an open subset of a linear space).

Clearly J enjoys all kinds of regularity properties one may wish for
(e.g. it is real analytic). Now we have

Theorem 6: The Fréchet derivative of J is everywhere non-singular.
Hence J is a local diffeomorphism.

Remark: C. Ullemar has proved special cases of Theorem 6. Namely, when
N=3,4 or 5 she proves that the restriction of J to polynomials
fEIO1rlPN with real coefficients is locally one-to-one ([11] p. 14-16).
She also conjectures an expression for the Jacobian of J for arbitrary
N (p.16 in [11]1), and for N=3 she proves that J is globally one-to-one
on the set of those fEZPN which are univalent on D and have real co-
efficients (p.17-23 in [11]).

Proof: Observe first that

¢, (f) = I,(F)

with P(z) = z", where I, was defined on p.33 . If t - fL €0, NPy is
any differentiable curve with fO = f given, then
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(22) o 1pliy) = [PFy)IN]F (07} (0)ec]

according to (I11.53). Thus

d _ n oL [T
I cn(ft) a{)ft(g) Im[ft(g)ft(c)dc}

(n=0,1,..., N-1), and
N-1

d ) "l (2)f] -
(24) g I(fy) = <£5ft(C) Im[ft(c)ft(g)dcbn:o

(églm[?;dft] gbe ' [f df J) :

it

As t - f 6(91(1PN traces through all curves with f0='f the tangent
vector fo at f traces through all of

: h(0)=0, Imh'(0)=0}.

(25) (PN)1 = {hePpy :

In other words (PN)1 is the tangent space of 0,NnPy at the point f.

Now (24) shows that the Fréchet derivative of J at f€0,nP

1 N is the

linear (over R) map.

(26) de : (PN)1 - VN
defined by
L N-1
(27) dd.(h) f(z " Im| h( ) (z)d =
SURIGRCIRE. CCCL
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We have to show that this linear map is non-singular. Since the domain
and range spaces have the same dimension ( = 2N-1 over R) is is enough
to show that de is surjective. For that purpose we shall make use of
the operators Fn defined on p. 39,

Namely, for m=-N+1,...,0,1,..,N-1 choose h=hm=Fm(f) in (27) (Observe
that Fm(f)e (PN)1 for |m| <N by Theorem 2'.) Then, by the definition
of Fm’

I[h( T )d] {cos mo do (m 2 0)

m =

m'® erde sinme do6 (m < 0)
T, m _-m dg N
'Z'(C +7 ) i (m = 0)
T,.m__-m dg
gt -¢ ") i (m < 0)

as in (2). This shows that the n:th component (n=0,...,N-1) of
dde (hm) for m>0 is

(a0(h,)) = f #(c)"mn]

n ob m oD &
= 7 Res f(g)n—qg-=
=0 cmz
* for n <m
=<f' (0)" n=m
0 n>m

Here, and in the sequel, * stands for complex numbers whose values are
unimportant for us. For m=0 we obtain

{Z’IT for n=0

(dd¢(my) = 0 for n>0

L




and for m<0
1 n,.m _-m dz _ f(z)" dg
(ddg(h ) = [ flg) (2" -z™™) S22 =47 Res .
f'om A 5D 1z =0 Clml 4
* for n < |m|
= { i (o) Ml n=|m
0 n> |mj

In summary, the range of de contains the vectors

(2m,0,... 0) (m=0)
(*,.o.x,  wf (0)™0,.., 0) (m=1,...,N-1)
(*,..,%,-inf' (0) 1™ 0, ....0) (m==1,...,-N+1)
+ 4

component 0 |m| N-1

Since f'(0) + 0 these vectors span Vy =R x eV over R. Thus

46.

de is surjective, hence non-singular and so Theorem 6 is proven.
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