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I.

INTRODUCTION

a. General introduction

The aim of the present paper is to prove a global existence and
uniqueness theorem for a kind of weak solution to a moving boundary prob-
lem (MBP) arising in two-dimensional Hele Shaw flows. This problem was

introduced by S. Richardson in [17] . Our main results are summarized in
Theorem 13 (p.69). We also give some applications to quadrature domains
(p.78f).

Our MBP occurs as a specific example in a class of MBP:s which can
be described as follows:
Let there to each region D in some suitable class of regions in
R" be associated (by some rule to be specified) a function 9p de-
fined, harmonic and positive in a neighbourhood in D of the boundary
oD, taking the boundary value zero on 3D. Then, given an initial do-
main D==DO the problem it to find a family of domains t - Dt for

t>0 such that 3D, moves with the velocity -(grad

z t Y (g th)‘BDt
(it is assumed here that grad th has a continuous extension
to aDt).

More generally the role of the boundary 3D above can be played
by some distinguished subset S of it, so that only St moves while
aDt\St remains fixed.

This defines the class of MBP:s which we have in mind. In _order to

specify a single problem in it one has to specify three things: the class

of regions D under consideration, the rule which associates 9p with D and
the subset Sc< 3D for each D.

Let us at once notice that a family t +~ Dy solving a MBP of the above
kind necessarily is an increasing family (DT < D, for 1 <t) since the
vector field -grad th points perpendicularly out from Dt at BDt (or St).

We shall give three examples in the class of MBP:s just described,
the third of which is the one which shall be treated in this paper.




3

Ex. 1: Let K be a fixed compact set in R2 or R” and let, whenever

D is in the class of bounded domains containing K, 9 be that harmonic
function in D~K which takes the boundary values

_ {1 on K
D on w

and let S = 3D.

The MBP so arising occurs in electrochemistry, in which case K is a
cathode, D~K is an electrolyte and R"\D is an anode, the surface of
which gradually dissolves under electrolysis so that D grows according
to the rule described above. Here -9 is the electric potential and
grad 9 is the electric current (up to a positive factor). See [7] for
details.

2

Ex. 2: Let L be a subspace of R" (or R3) of codimension one, let H

be one of the half-spaces in which it separates R? (or R3) (think of

L as being horizontal and H as being the lower half-space) and consider
the class of subdomains D of H such that 3D = LUS for some sufficient-
1y smooth curve (or surface respectively) S in H. Let h be a fixed
positive function on L sufficiently small at infinity (typically h(x) =

= ae_bxz, a,b>0 1if L=R) and define 9 to be that harmonic function
in D which takes the boundary values

B {h on L
D 0 on s

This model is suggested in [16] to describe the growth of a propagat-
ing water zone (the region D) penetrating a rock (H) when the surface (L)
of the latter is impinged on by a heavy water jet. This example is an
instance of porous medium flow governed by Darcy”s law. 9p is propor-
tional to the hydrostatic pressure of the water and -grad 9p is pro-
portional to the flow velocity.

2

Ex. 3: Let D range over all bounded domains in R" containing the

origin, and let, for such D, 9p be the Green”s function for D with
respect to 0€D, i.e.



gp(z) = - Tog |z| + harmonic in D,

0 on 3D .

il

gD(Z)

2

Here we have identified R™ with € and used z = x+ iy as variable.

S=23D in this example.

This is the MBP to which the present paper is devoted. It occurs
in two-dimensional Hele Shaw flows with free boundaries and with a
source at the origin.

More precisely, this means the following: Let two large surfaces be
lying parallel to each other and to the R2-p1ane and at a small distance
from each other. The space between the surfaces is to be partly occupied
by a fluid (corresponding to the region D) which might well have high vis-
cosity but which is supposed to be Newtonian and incompressible. At the

point corresponding to the origin in RZ

fluid is injected at a constant
and moderate rate. Then the region of fluid D will grow according to

the mathematical model described.

The function 9p is here proportional to the hydrostatic pressure of
the fluid (the pressure turns out to be constant in the direction perpen-
dicular to the Rz-plane), and according to the so-called Hele Shaw
equation - grad 9p is proportional to the fluid velocity, or more correctly
to the average of it across the gap. This gives the moving boundary con-
dition (that 3D moves with the velocity - grad gp» Up to a constant fac-
tor).

The assumption that the fluid is incompressible implies that 9 is a
harmonic function (div ( -grad gD) =0) and the injection of fluid gives
a logarithmic singularity at the origin for 9p - Further, 9p takes a
constant value on 3D (a constant which can be chosen to be zero) because
the pressure outside the fluid is constant (the air pressure) and because
the pressure drop across 3D due to the surface tension will be approximate-
ly constant along 3D (this presupposes that the curvature of 3D is not too
high). This motivates that 9p equals the Green”s function for D with
respect to the origin.




For more details and technical background to this example, see
[171.

Aside from this Hele Shaw interpretation the choice for 9p in
Ex. 3 (possibly with several logarithmic singularities) has been used
to describe "migration of 0il in hydrostatic environment". See [15],
in particular Chapter XV, §7.

Another interpretation of the moving boundary conditions in the ex-
amples above is that they describe a one-phase Stefan problem with zero
specific heat (i.e. R'~ D is a melting solid held at its melting tem-
perature, taken to be zero, D is the growing liquid phase with temperature
gp and the Tiquid is supposed to have zero specific heat). See e.g. [3]
and p. 26 ff in the present paper.

The MBP to be treated in this paper (Ex. 3 above) was introduced by
S. Richardson in [17]. In that paper the moving boundary condition is
formulated as a differential equation for the Riemann mapping function
from the unit disc onto the domain Dt (identifying ]R2 with the complex
plane (€ and assuming that Dt is simply connected). This differential
equation is of a quite uncommon type and no existence or uniqueness proof
for solutions to it is given in [17]. (A Tocal existence and a. partial
uniqueness proof for solutions to the same differential equation seems,
however, to have been given in [21]. )

Richardson also discovers in [17] a sequence of simple constants of
motion (the complex moments, see p. 9) for his differential equation
and uses them to obtain a functional equation for the Riemann mapping
function.

In the present paper we re-formulate Richardson”™s MBP in a way which
leads us into the theory of variational inequalities. By using this
theory we are able to give a global existence and uniqueness proof for
a kind of weak solution to the MBP.



The theory of variational inequalities has already proved to be use-

ful in handling MBP:s of various types. Most relevant for us are the
works by G. Duvaut and C.M. ETliott. In [5] Duvaut gives a variational

inequality formulation for classical two-phase Stefan prob]ems*/ and

indicates existence and uniqueness proofs for their solutions. In [6]
ElTiott outlines variational inequality formulations for problems of_our
type (our Ex. 1 is treated in [6] §4). ETliott also announces a paper
together with V. Janovsky on our Hele Shaw problem (Ex. 3).

Despite the works of ETliott and others there seems so far to exist
no complete, detailed and relatively simple treatment of the Hele Shaw MBP
(Ex. 3) from a purely mathematical point of view /. The present paper is
intended to partly fill this gap. Probably our paper and the announced
paper by Elliott - Janovsky will complement each other rather than complete-
1y overlap since Elliott seems to work along somewhat different lines than
we and since the work of Elliott seems to be more directed towards applica-
tions and numerical questions while the present work is completely theo-
retical.

Acknowledgements: I am very much indebted to Professor Harold S. Shapiro for
having proposed the problem and for the many long and valuable discus-
sions on it without which I would perhaps not have been able to carry
the project to an end. I also wish to thank Gunhild Melin for her
excellent and rapid typing of this manuscript.

*/Here "classical" stands for the requirement that both phases shall have
strictly positive specific heat. When our problem is interpreted as a
Stefan problem the specific heat is zero (cf. p. 4 and 26 ff).

**/Recent1y there has appeared the work [19] of M. Sakai which contains
a detailed theoretical study of the Hele Shaw problem. See p. 13 ff.




b. A survey of the contents

This paper consists of four sections of which the present introduc-
tion is Section I.

In Section II we formulate a number of properties, (A) to (F), of one-
parameter families t - Dt of domains in RZ which in various ways are to

express our moving boundary condition.

The first of these, (A), expresses that t>D, solves our MBP in a
classical sense, i.e. that aDt moves with the velocity - grad 9p
This formulation is not very flexible because it requires the
boundary aDt to be rather smooth and also involves a parametrization
of it. Thus, this formulation cannot cover occasions at which Dt changes
connectivity.

{B) is a weakened and somewhat more flexible way of formulating the
moving boundary condition. It does not require (directly at least) a
parametrization of aDt, although it involves a contour integral along aDt.

We then arrive at our concept of weak solution, (C). In (C) we have
freed ourselves from all regularity requirements for the boundary. Fur-
ther, (C) makes no explicit reference to the Green’s function.

Let us indicate more closely what (C) is. It can rather easily be
seen that the moving boundary condition can be expressed in distribution
language by the equation

d
~F Xn = Agy + 278
ot Dt Dy 0

Here Xp is the characteristic function of Dt’ 9 is the Green’s func-
tion for Dt with respect to the origin, extended to all R2 by defining
it to be zero outside Dt’ and 60 is the Dirac measure at the origin.
These functions are considered as distributions on Rz. Actually, (1)
is nothing else than the condition (B) formulated within distribution
language. Also (1) can be given a direct physical interpretation.

See p. 26 ff.




(2)

*
By integrating (1) with respect to t and putting /

t
u, = dt
t é %,

one obtains

Thus, (1) is equivalent to (2) and (3) together. Since 9p, 2 0 and a solu-

tion t - D, of (2), (3) must be increasing u, must also tsatisfy

t t
up >0 (for t>0) and
up = 0 outside Dy

Now (C) is essentially (3) combined with (4) and (5), i.e. we say that
t > Dy (for t>0) is a weak solution if for each t > 0 there exists a dis-
tribution u, on R% which satisfies (3) - (5). The conditions (4) and (5)

t

replace the coupling (2) of u to the Green’s function, and it will be

t
seen that these conditions are strong enough to guarantee uniqueness for

solutions of (3)-(5) (given DO) .

Observe the remarkable feature of the transformation leading from (1)
to (3) - (5) of having 1iberated the problem from any essential dependence
on t; the concept of weak solution is a concept which has an independent
meaning for each fixed t, and a weak solution can always be found for any
particular value of t without bothering about the solution for any other
value of t.

*/The subscript t in Uy is used to indicate that Uy is a function

on Rz.which depends on t (i.e. t is a parameter). We never use
subscripts to denote partial derivatives in this paper.




In Sections II and III we want to work in a Sobolev space (Ha(ﬂ))
on a bounded domain Q < R2 ( a sufficiently large disc). Therefore,
condition (C) is not formulated exactly as above but we have been forced
to make some minor modifications of it. Thus, the Dirac measure in (3)
is replaced by an approximation to it (TT}T-XI) ,» r>0 small), we have
to require that the Dt:s are relatively compact 1in @ for all t under
consideration and this t-set has to be a bounded set ([0,T], 0 < T < «),
It is also required that utEZHA(Q) for all t.

Next to condition (C) come conditions (D1) and (D2) which express
the moving boundary condition as a series of so-called linear complemen-
tarity problems (LCP:s), one for each t. In these problems the explicit
occurrence of the domains D, has disappeared. (D1) is obtained from (3) -
(5) by replacing the occurrence of Dy in (3) by the inequality resulting
from th < 1. Thus (D1) is the problem of finding u,, defined on @ with

boundary value zero on 3Q such that
Aut+Awt§0
up 2 0

Uy -(Aut-+Awt) =0

Here by is the solution - essentially I o of )
Awt=xD0-1+2ﬂt-60 in Q
Yy = 0 on 23R

(D2) 1is the same as (D1) but expressed in terms of the function
Ve = Up wt instead:

*/60 in (7) has to be smoothed out. Then thIHa(Q) and it is required
that u, €H (2).




(vt-wt) *Avy =0

Each of the LCP:s (D1) and (D2) 1is equivalent to a series of varia-

tional inequalities, (E1) and (E2) respectively. (E1) is
Find (for each t) u E:Hé( ) such that Bug + &, < 0 and

j'V(u u.) «vu, >0 for all u€|4 (Q) w1th Au+tp, <0,

and (E2) is

« Vv 0 for all

1V

Find vt Uﬂ such that v, > ¥, and [v(v-v
vEZH (2) w1th v > wt . &

t) t

One very nice property of solutions t - Dt to our MBP is the exis-
tence of an infinite number of simple constants of motion for it, namely
the compiex moments

c (D) = [ 2" dx dy (z = x+1y)

Dy
for n = 1,2,3,... . The zeroth order moment c,(D,) = [D| = area of D,
increases linearly with t. For the case that the D; are simply con-
nected the set (11) of constants of motion may also be expected to be
complete, i.e. given DO simply connected, a map t - Dt (satisfying some
suitable regularity requirement) should be completely determined by the
property that the Cn(Dt) remain constant.

Our final formulation (F) of the moving boundary condition is a
strengthened form of this moment property. Namely, we say that t - Dt

. satisfies (F) if for each t > 0
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(12) [ >2mt-9(0) + [ o
D D0

t
for every subharmonic function ¢ in D . To see why (12) strengthens (11)
observe that a natural generalization of (11) is that

(13) [o=2mt-00) + [0

Dy Do

for every harmonic function ¢ in D, (0 = z"  yields (11) ) .

The moment inequality (12) turns out to be sufficiently strong to

be equivalent to (C).

Section III consists essentially of a number of theorems giving the
precise relationships between the conditions (A) to (F). These relation-
ships (and the flow of Section III in general) are as shown in the follow-
ing diagramme.

Thm 1 Thm 2 Thm 3 Thm 5
A =] 6| = & (1) | ¢
Thm 10 ﬁww:ﬂmﬂ

Thm 5
l(Dz) & | (E2) | <—

Lemma 8 ‘L Thm 7

A (
Minimal Have unique
properties solutions
and with
monotonicity regularity
properties properties
(Thm 7 (Thm 6)
(_ with cors)

Thm 3
Here an arrow —» , say (C) == (D1), means that a solution t>Dy

in the sense of (C) in a simple way (made precise in Theorem 3) pro-

vides a solution t-+ut of (D1).
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As the diagramme shows the conditions (C) to (F) are all equivalent
while (A) implies (B) and (B) implies (C) to (F). The main goal of Sec-
tion III is to show the existence and uniqueness of solutions to (C)

(weak solutions). This result is stated as Corollary 9.1. The steps

(A) = (B) = (C), showing that a classical solution is also a weak solution,
together with the fact thata weak solution is unique, serve to motivate the
concept of weak solution and also proves uniqueness for classical solutions.

The hardest step in the diagramme is to carry over a solution of (D1)
or (D2) to a solution of (C)(Theorem 9). Since (D1) and (D2) concern func-

tions only (u, and Vi respectively) while (C) concerns sets (Dt) this step

involves show%ng that a certain function (namely -Avt) is a characteristic
function of a set (namely the set which is to be the complement of Dt)'
This is the content of Lemma 8. Its proof requires regularity properties
of the solutions of (D1) and (D2) (Theorem 6) and also monotonicity proper-

ties possessed by them (Lemma 7 _with corollaries).

Section III concludes by showing the equivalence between (C) and (F)
(Theorem 10).

In Section III we work within a Sobolev space (Ha(Q) on a fixed bounded
domain c:]R2 (a disc)). This has forced us to smooth out the singularity
of the Green”s function (in order that it shall belong to that Sobolev
space). Section IV begins by showing that the solutions of (C) do not
depend in any essential way on the choice of @ (as long as it is sufficient-
1y large) and are not affected by the smoothing of the Green”s function
(Lemma 11).

We are then able to summarize much of the work in Section III be for-
mulating a kind of Main Theorem - Theorem 13. It states that given an
initial domain D0 (an open bounded set containing the origin) there is a
unique weak solution t - D, defined for all t € [0,0) of our MBP. It also
states that this solution satisfies the moment inequality and that it has
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those monotonicity properties which it is supposed to have, namely that
Dt
served for all t >0 .

increases with t and that inclusions between initial domains are pre-

The nature of our MBP is such that one expects Dt to become nicer
and nicer with increasing t. For example, for all t>0, aDt is expected
to consist of analytic curves (even if BDO does not) and asymptotically as
t - o the shape of Dt should approach that of a circular disc. We are
not able to prove any complete result of that sort but we at least make
some steps in that direction. Thus in Theorem 15 we prove that aDt con-
sists of analytic curves for t > 0 under the assumptions that Dt is fi-
nitely connected and that it contains Dy compactly (i.e. that 56 c Dt)'

The last assumption can be replaced by the assumption that t is sufficient-
ly large or the assumption that BDO is analytic (Remark 1 after the theorem).

This paper concludes with two applications to so-called quadrature
domains (QD:s). The first result states that the property of being a QD
is preserved by solutions of our MBP (Theorem 16), and the second result
asserts the existence of QD:s of certain kinds (Corollary 16.1).

c. Some further bibliographical notes

Treatments of MBP:s of kinds similar to ours by the methods of varia-
tional inequalities are found in [5] and [6]. See also §3 of the survey
article [11] and Chapter VIII of the recent book [12] (MBP:s in one
space dimension).

In the context of Stefan problems there is an established notion of
"weak solution”, discussed e.g. in [8] and [3]. This concept of weak so-
Tution 1is not the same as that used in the present paper.

In [3] Crowley proves unicity for weak solutions (in the sense of
[8] and [3]) to MBP:s of our type (in particular that of Ex. 1, p. 2).
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In the present paper two kinds of LCP:s ((D1) and (D2)) and two
kinds of variational inequalities ((E1) and (E2)) are treated side by
side. Our concept of weak solution (C) is most naturally connected with
the problems (D1) and (E1). The main reason for also involving (D2) and
(E2) is that these problems are of more conventional type than (D1) and
(E1). For example the variational inequalities arrived at in [5], [6]
and [11] are of the kind (E2), and most literature on existence, unicity
and regularity of solutions of variational inequalities (e.g. [12], [13]
and [2]) concern those of the type (E2).

Recently there has appeared the paper (preprint) [19] of M. Sakai
in which (among other things) our Hele Shaw MBP is treated. The main
subject of [19] is the construction and investigation of quadrature do-
mains of rather general kinds, and the results on the MBP are obtained
as applications of this. These results are similar to (or slightly strong-
er than) those of the present paper, while the methods used are quite dif-
ferent.

Let us indicate rather briefly what Sakai has done on the Hele Shaw
problem.

1) Sakai formulates a concept of solution of the Hele Shaw flows.*/ This
concept is similar to (but weaker than) our concept of classical solution
in the sense that the core of it is an equation equivalent (essentially)
to our equation (iii) of (A) (p. 22).  Sakai’s concept of solution is,
however, a global one (i.e. a solution is always to be defined for all
t>0 and it is formulated in a way that allows the domain to develop cer-
tain kinds of singularities and to change connectivity. As a consequence
of this Sakai”s concept of solution is very complicated. Sakai expects
that a solution in this sense always exists but he is not able to prove
it. (Uniqueness of solutions is, however, proved; cf. 4 below.) -

*/Whenever the term "solution" (of Hele Shaw flows) appears on the follow-
ing pages, it is understood to mean solution in this strict sense of
Sakai. The exact definition of this concept of solution is, however,
too complicated to be reproduced here.
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2) Sakai formulates a concept of weak solution which is as follows

(with our notations):

Given an arbitrary bounded domain DO’ {Dt} is a weak solution if
t>0
for each t>0 Dy 1s a domain containing D, such that

(i) [ odo+t-0(0) < [ odo
DO D,

for all function ¢ which are subharmonic and integrable on Dt’

(i) Dt has finite area,

(i11) Dt is minimal with the properties (i) and (ii).

This concept of weak solution is similar to our moment inequality (F).
In fact, the essential difference is that in (i) Sakai has a somewhat larger
test class than we have. A further difference is that Sakai only requires
finite area of the domains ((ii)) while we require boundedness. However,
Sakai proves (Theorem 6.4 in [19]) that a D, satisfying (1) to (iii) ne-
cessarily is bounded, so in effect there is no difference at that point.

As regards (iii) it can be looked upon as a kind of normalisation. Sakai
proves (essentially Theorem 3.7) that there is a minimum (not only minimal)
domain satisfying (i) and (ii) (i.e. there is a domain D; satisfying (1)
and (ii) such that if G also satisfies (i) and (ii) then Dtc:G).

It follows from what has been said above that a weak solution in the
sense of Sakai satisfies our moment inequality (F) and so is a weak solu-
tion also in our sense (i.e. satisfies (C) on each finite interval [0,T]
and for suitable R and r). On the other hand, a weak solution in our sense
is unique up to null-sets (Corollary 9.1). Therefore the two concepts of
weak solutions are identical modulo null-sets. Incidentally this gives a
kind of answer to a question posed by Sakai (p.113 in [19]) concerning the
relation between his concept of weak solution and that one obtained by
variational inequality techniques.
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3) Sakai shows existence and uniqueness for weak solutions. The existence
is proved by simply constructing the domains "by hand" (more or less).
This construction is rather lengthy and is done in such a way that the
domain obtained can be proved to be the minimum of all domains having

the properties (i) and (ii) under 2) above. Uniqueness is then trivial
due to the requirement (iii). (Actually Sakai proves existence of quadra-
ture domains for rather general classes of positive measures and for va-
rious classes of test functions (subharmonic, harmonic and analytic) in
this way, and the weak solutions of Hele Shaw flows are just applications
of this.)

4) Sakai proves that a solution is also a weak solution (Proposition 13.1

in [191). Since Sakai”s concept of solution is weaker than our concept

of classical solution and his concept of weak solution is stronger (a priori)
than that of ours, this result is better than our Theorems 1 and 2.

The weak solution being unique, the above result also shows uniqueness
for solutions. Existence of solutions is, however, never proved although
Sakai has a partial result in that direction asserting that a weak solution
known a priori to fulfil certain of the requirements for a solution actually
is a solution (Proposition 13.4).

5) Sakai shows that a solution essentially is bounded by analytic curves.

More precisely, if {Dt} is a solution then, for t>0, every non-
t>0
degenerate component of aDt is analytic except at certain exceptional

points (certain "corners" and ends of slits). The union over all t>0
of these exceptional points is a set which is at most countably infinite
(Coroltlary 13.3.)

6) Finally, Sakai proves that for large t a solution of Hele Shaw flows
is a simply connected domain bounded by a simple analytic curve and that
it asymptotically as t+« converges to a disc in the sense that the Rie-
mann mapping function from the unit disc (scaled in the proper way) con-
verges uniformly on the closure of that disc to the identity map (Propo-
sition 13.5).
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FORMULATIONS OF THE MOVING BOUNDARY CONDITION

a. Notations and preliminaries

2 =Z( : we will identify RZ with the complex plane (€ whenever con-
venient. Often the only consequence of this will be the usage of
letters such as z and ¢ for variables in RZ.

D(a;r) = the open disc in R% with center a and radius r.

Dr = D(0;r)

D = D(031)
(a,b) = {x€ R : a<x<b}
[a,b] = {x€ R : a<x<b}

@ will generally denote our "universe", a fixed boundary region in R2
containing the origin. (Actually © will always be a disc centered
at the origin.)

2

= the boundary of D in R%, if D c:]R2

SQD = 3DNnQ = the boundary of D in @, if D<@

_ . 2

D =Du3dD = the closure of D in R (D c:RZ)

Dcc@ means : Dc @ (if Q is open and bounded, D < Q)

do = dxdy = element of area measure in R2 (will often be omitted in

integrals)

D] = area of D if D c R

(also |z| = y& +y if z=x+iy€e )

Xp = the characteristic function of D

1 for z€D

)

if Do R (xp(2) =l0 for z €D’ -
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§ = 60 = the Dirac measure with respect to the origin in R" (the unit
point mass at 0 € R")

(au au)

Vu = grad u = X By

gD(z,;) is the Green”s function for the domain D
(=-1log|z-¢&| + harmonic in D,

0 on 3D as a function of z)

gp(2) = gp(z,0) (if 0 € D)

c™(Q) : the (linear) space of functions @ >R all of whose derivates of
order < m exist and are continuous (m = 0,1,2,..., ).

c*(Q) : the space of functions u:Q -+ R which are Tocally Hglder continuous
with exponent a (0 < a < 1), i.e. which satisfy

sup U@ -]
z,z€K |z - g[a
221

for each compact K< Q .

c™%(Q) : those functions in CM(Q) whose derivates of order m belong to
¢MQ)  (m=0,1,...,0<a<1).

S : the class of simply connected regions*/ D c:]R2 with 0 € D and
such that 3D is a Jordan curve of class C2
(i.e. admits a twice continuously differentiable parametrization).

?LR » © the class of open sets DcR? with D.c<DecRp (R,r > 0).
R : the class of open bounded sets D =R? with 0 € D.
Thus R = U R, .
R,r>0 R,y

*/region = domain = open subset of R
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D) = C?(Q) : the {linear) space of test functions on @ (infinitely
differentiable functions Q@ - R with compact support).

D' () : the space of real-valued distributions on § .

H™P(q) : the Banach space of real-valued distributions on @, all of
whose distribution derivatives of order < m belong to LP(q)
(m>0,1<p <), normed by

n+k
3 u
lullg,p = = |
M>P n,k>0 ax”ayk LP(q)
n+k<m

H_m’p(Q) : the space of distributions of the form
n+k

3 Unk
¥ ——p  with u €LP(@) (m>0,1<p <),

n,kz0 axnay
n+k<m

H(q) = H™2(q) .

1’Z(Q) : the closure of C?(Q) in H1’2(Q) .

T
—
—
2
~—
1]
I

We will primarily work in the Sobolev space Hé(@) and H7(%).
Hé(ﬂ) will always be considered as a real Hilbert space, equipped with
the inner product

au av au av

(U,V)=IVU'VV="’-§§W 'gy—a—y

Q 94
This bilinear form is an inner product because § is bounded ([20],
Prop.23.4). The norm it induces, |[|u || = /(u,u), is equivalent to the
norm Hulh , defined above.
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For ued'(Q), 0€D(Q) we set
(u,@) = {@,u) = ulp) (value of u on o).

The following facts are well-known (and easy to verify):

(i) VEZLZ(Q) if and only if the map () € » {(p,v) is continuous in
the LZ(Q) topology, and in that case the (unique) continuous extension of
it to LZ(Q) is given by

(uy,v) = fuev (u,veL?(Q)) .
Q2

(ii) veH () if and only if D(Q) 3¢ » (9,v) is continuous in the
Hé(Q) topology. The (unique) continuous extension of this map to Hé(Q)
(when v EH-1(Q))defines a bilinear pairing between Ha(Q) and ,H—1(Q)
(also denoted (.,.) ), by means of which H™'(Q) can be identified with
the dual space of H)(2) (201, Prop. 23.1) .

The Laplacian operator A is an isomorphism of H&(Q) onto H_1(Q)
with the property that

(uV) = = (u,av) U,V EHY(R)
({201, Thm 23.1). Thus - A identifies two representations of the dual of
Ha(ﬂ), namely Hg(ﬂ) (in being a Hilbert space) and H1(q).

If uE:Hé(Q) and vEIH_1(Q) the product uev  has in general no
meaning. Despite that it will (in similarity with (2)) sometimes be con-
venient to use the symbolic integral [usv as an alternative notation

for (u,v) (the pairing defined under (ii) above). Thus,
Juev = (u,v) for ue:Hé(Q), veu () .

If u and v 1in (4) happen to be such that the integral fuev exists
in the sense of measure theory, then one wants the symbolic L integral

in (4) to agree with fuev . This is actually the case, at least in the
Q




(5)
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following two situations:

(i) VGLZ(Q) (then u-v€L1(Q) since ueHg](Q) c LZ(Q)) ;

(i) u is a continuous function (in Ha(ﬂ)) and v is a Radon measure
Gin () .

These two cases will cover our needs.

Using the above kind of notation formula (3) takes the form

JVuevv = - fuepv (u,vE:Hé(Q)) .

Primarily the elements of HS(Q), H_1(Q),... will be considered
as distributions. Thus statements such as

u>0 in D,

if D Q 1is open, always has its meaning and shall be interpreted in
the sense of distributions. On the other hand the sentence

u>2~0 in D

has no meaning in general and such sentences will be used only if the
distribution u is known to have a representation in the form of a con-
tinuous function (necessarily unique) and shall then have its usual mean-
ing in terms of that continuous function. Similarly, inequalities such
as (6) and (7) when D is non-open will be used only when we have addi-
tional information about u and their meaning will depend on the context.

If ue:Hg(Q), vE:H_1(Q) the following are true.
u>0 (in Q) if and only if (u,0) > 0 for al]tpEH_1(Q) with © > 0
and

v>0 if and only if (o,v) >0 for a11cp€H8(Q) with ¢ >0 .
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Some abbreviations sometimes used:

MBP moving boundary problem
LCP 1linear complementarity problem
QD quadrature domain

Formulas are numbered subsequently within each section (I to IV).
When a formula is referred to from another section its number is preceded
by the number of the section to which it belongs (e.g. (III.12) = formula
12 of section III).

b. A classical formulation of the moving boundary condition

We shall give an example of a precise formulation of the condition
that the boundary 3D of D moves with the velocity -VgD in order to be-
able to prove later that a classical solution is also a weak solution. For
simplicity we formulate this condition only for simply connected regions,
but it is obvious how to extend it to the multiply connected case.

Let § denote the class of all simply connected regions DcR? = ¢

such that 0€D and such that 23D is a Jordan curve of class C2.

For
DeS et 9p denote the Green”s function for D with respect to the
origin (gD(z) = -log|z| +harmonic in D, gp =0 on oD). The assump-
tions on D imply (aside from the existence of gD) that g, and Vgy have

continuous extensions to D = DU aD.

Let (a,b) = R be an open interval containing 0€ R. Then we say that
a map (a,b)3t > D, €S

satisfies condition (A) or is a classical solution of our moving boundary
2

problem if there exists amap ¢z : R/Z x (a,b) > R of class 02

(twice continuously differentiable) such that
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(i) z(s,t) € oD, for all s,t ,

(i1)  z(e,t) : R/Z ~» aD, is a diffeomorphism
(of class Cz) for each te (a,b) ,

(i) 36(;;?) =.-ngt(c(s,t)) for all s,t .

Comment: (i) and (ii) say that for each fixed t, z(+,t) parametrizes

aDt. The parameter variable s (in which ¢ has period 1) numbers the par-
ticles on 3D and (iii) says that each such point moves with the velocity

t’
- Vg, (z(s,t)). Here Vth is the continuous extension of the gradient of
t_
g, to D_ .
Dt t

c. A semi-weak formulation of the moving boundary condition

Next we give a formulation of the moving boundary condition which
serves as a link between the classical formulation and the final weak
formulation. Let S be as on p.21 and let (a,b) =R be an open interval
containing the origin. Then we say that

the map (a,b)3t - DtES

satisfies condition (B) or is a semiweak solution of our moving boundary

2), [ @dxdy is a continuously differen-

Dy

problem if, for each ¢ €CZ(R
tiable function of t with

d "9
g8 Jedxdy = - fcp-——a-n—tds.
Dt BDt ’

Comment: g% denotes the derivate in the direction of the outward normal

of aDt , ds denotes the arc-length measure on aDt .
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To see that (B) expresses the same moving boundary condition as (A)
does, Jjust integrate (11) with respect to time from t to :t+6&t (8t>0
small). This gives

BgD 5
(12) [ o-fJo=- [o- L ds « 6t +@(st°)

an
Divst Dt oDy

expressing that the width of the strip Dt+5t ~ Dt’ that is the distance
'agD
. _ t . 2 AN .
from 3D, to My, st » 18 S5 st +@(st°) . This is precisely what
the moving boundary condition (A) wants it to be.

d. The weak formulation of the moving boundary condition

This is the formulation we are going to work with and for which we
shall prove existence and unicity of solutions. We give the formulation
first and discuss it afterwards. Let r,R,T>0, let Q = DR and Tet
® denote the class of all open sets D < ]R2 with DY‘C cD cc ]DR.

R,r
Then we say that

(C) the map [0,T]1 3 t - Dt EﬁRR,r

satisfies (C) or is a weak solution (with parameters r,R,T) of our moving
boundary problem if for all t€[0,T] the function u =ut€EH8(Q) defined by

(13) Xn - Xn = Au, + 2mt - X
Dy D0 t lErl Dr
satisfies

(14) u, >0 and

(15) fut . (1-XD ) = 0.

t
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-24-

Discussion: First, observe that equation (13) really defines u, since

Xp

t
1 -1 . . .
. - XDO - 2mt 1IZ:F XI%. € H (Q) and A is an isomorphism

1 -1
HO(Q) ~H (Q) .

The left member of (15) can either be interpreted as the duality
pairing between Hé and H| (utE:Ha, 1-%p E:H_1) or as an ordinary

t

Lebesgue integral (1--)(D eL?
t

the integrand in (15) is non-negative) (14) and (15) together express that

; cf. p.19 f). Since 1 “Xp. 2 0 (so that-
t

up >0 in ©and that u, = 0 (a.e) outside D, .

t

Let us motivate the concept of weak solution by sketching how it
arises from condition (8) and also be giving a physical interpretation
of it.

Observe first that equation (11) in (B) can be expressed in distri-
bution language as
5 o9
§T'XDt'" an

+ (arc Tength measure of aDt) .

Here the second factor in the right member is the distribution

©- [@ds on R%.

BDt

Combine this with the fact that
ath ’
Agp = - 2m 8y - » (arc length measure of aDt) ,

Dt on

where it is understood that the Green”s function 9p is extended to all
Rz by putting it to zero outside Dt’ and where hence

39p
an
aDt when passing from the outside of Dt into Dt (besides being just the

also equals the jump of the outward normal derivative of gp, across
t

normal derivative from the inside of Dt itself). Then we get
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(20)

(21)
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)
Xn = Agn + 218
at”Dy Dy 0

Now (13) is essentially (19) integrated with respect to time. That

is with
t

ug = [gp dt
0 T

integration of (19) gives

Xp, ~ Xpn = Aut + 27t -60

t 0

which essentially is (13). (14) and (15) are clearly also satisfied for
(20) since gD >0, and 9D = 0 outside Dy for t€[0,t] (DT increases
with 7 ).

The difference between (21) and (13) 1is that the Dirac measure 80
is smoothed out to TITT'XD in (13). This rep]acement is necessitated by

the fact that 60¢I4 ( ) (equ1va1ent1y th&iH (Q) ). Thus, the function
n (C) is not intended to be exactly (20) but rather

1
9p (z) = T % gDT(z,;) doC
r

T

(Here gD(z,c) is the Green”s function with respect to an arbitrary point
z€D.) This modification of gp does not affect the moving boundary con-
dition since it is easily seen that §D = 9p in a neighbourhood of 3D. In

fact, one has




-26-

o 1
(24) §(z) = gn(z) + log|z] - T [ log|z-g|do, =
D D : ! r Dr ¢
gD(z) + log|z] - TﬁLT' f»]og[z-c[doC for z€ D,
r Dr
= {9p(2) zED~D,
0 zeQ~D .

Next Tet us give a direct physical meaning to (13), or rather to (19)
in the context of heat conduction problems and Stefan problems. Thus, con-
sider the ordinary heat equation

(25) M= VKT +q ,

describing the heat flow in some matter. Here T = T(X,y,t) is the tempera-
ture, ¢ = ¢(T) > 0 the specific heat, k = k(T) > 0 the thermal conductivity
and q = q(x,y,t) is a source term (the heat production per unit volume). The
density of the matter is assumed to be constant and is taken as unity. It

is also assumed that ¢ and k do not depend explicitly on x,y,t.

If ¢(T) and k(T) are smooth, strictly positive functions (25) describes
an ordinary heat conduction problem.

If c(T) is of the form
(26) c(T) =L -S(T-TO) + a smooth, strictly positive function

(25) can be seen to describe a two-phase Stefan problem of a melting solid.
Then T0 is the melting temperature, L>0 the latent heat, the inequalities
T<T0 and T>T0 define the solid and liquid phases respectively and the
equation T(x,y,t) = Ty defines the moving boundary separating these two
phases.

Now I claim that our equation (19) is of the type (25) with

(27) c(T) = &(T)




(28)
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Thus our moving boundary problem will be a Stefan problem of generalized
type (of "generalized type" because classically one requires the specific
heat to be everywhere strictly positive). Our problem will also in practice
be a one-phase problem since our boundary conditions are such that

T = constant (= 0) in one phase (the solid phase; the description of the
solid phase as that defined by T < T0 cannot be taken Titerally in this
case).

To prove the claim we introduce the enthalpy (heat function) H and
the temperature function ¢ defined by

T
H(T) = [ c(T"')dT! and

T
®(T) = [ k(T')dT respectively.

(The lower 1imits of the integrals are immaterial.) 1In terms of
these (25) becomes

LR
Now the choices

c(T) = &(T)

k(T) = 1

yield

oT) =T

H(T) = the Heaviside function of T
_|0 for T <@

1 T>0

Thus by observing that XDt is essentially the Heaviside function of 9p
t

(there arises a tiny problem of how to define the Heaviside function at the



(38)

-28-

jump point, but this problem is in any case unimportant since the functions
9p. > XDt in (19) and ¢, H in (308) can be changed by additive constants
t

without anything happening) we see that (30) goes over into (19) with

(b:T:g R
Dy
H=x and
D¢
g = 2ﬂ60

This proves the claim.

It is clear from the formulation of (C) that (given DO) a weak solu-
tion t - Dt can be unique at most up to sets of two-dimensional Lebesgue
measure zero; for (13) - (15) is not affected if D, is replaced by another

set D! €R such that x5 = X in the sense of distributions, i.e.
t R,r Dt Dt
almost everywhere. Thus phrases such as "unique up to null-sets" will

appear in some theorem later on.

If we had wanted to we could have remedied this situation by choosing
representatives in each equivalence class of D:s (calling D and D' ESQR’r
equivalent if Xp = Xp a.e.). There is at least one natural choice
for such representatives: 1in each equivalence class there is a unique
maximal element, the union of all its members, or, what amounts to the
same, let DGj{R,r be represented by

D" = RO~ supp(1-xp)

where supp means support in the sense of distributions. In other words,
the representative D' of D consists of those points z which have a neigh-
boorhood U with the property U n DI = |U|

One reason why we have chosen not to formulate (C) in terms of these
canonical representative domains is that we later shall work with other
choices of Dt’ namely
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Dy

Dy U {z€q : ut(z)>0}
*
and it is not quite clear whether these two choices always are the same. /
A nice feature of (C) is that the time variable appears only as a
parameter in it: (C) just consists of a number of uncoupled problems,
one for each te€[0,T] . Each of these problems can be viewed as a free
¢ - ¢ satisfy (C) then
up must be continuously differentiable since (13) implies that ru€EL”
(cf.p. 45f), and it follows that Uy and Dt solve the following free
boundary problem (at least if it is assumed that oD, = B(Q\~Dt).

boundary problem for 3D In fact, if Dt and u

Find a region Dt (infRR and a continuously differentiable function

— P)
Uy on Dt such that

1 .
Auy =1 - xn - 271t e X in D
t Do IDrI Dr t

*/Sakai, in [19], works with another representative, namely that domain
defined by (i) - (iii) on p. 14 (which he shows to be unique).
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e. Two linear complementarity problems

These two problems constitute an intermediate step between the weak
formulation of the moving boundary problem and variational inequalities.
The expression "linear complementarity problem" has been used by Elliott
([61) and has been adopted here.

Let r,R,T>0, put Q=]DR and let DOC R2 be a given domain with
D, =< Dycc D, (i.e. Dy ERR r)' For each t€[0,T] introduce the

function by € Ha(ﬂ) defined by

_ - oo
(43) Ay = XDO 1 + 2nt D] XDr.

(Since the right member above belongs to H-1(Q) (43) defines a unique
function ¢, in Hé(Q). )

Expressed with the aid of ¥, condition (C) becomes

(44) Aut-+Awt = XDt -1
(45) y Ut Z 0
(46) fut -(Aut+A\pt) =0

Now, the first of our linear complementarity problems is just (44) - (46),
but with (44) weakened to the inequality Auy + Ay, < 0, and the second
one is the same thing expressed in the function Vi = Up * b Thus we

say that
(D1) the map [0,T]31:—>ut€H8(Q) satisfies (D1) if for all te€[0,T]
(47) (u, > 0
(48) {duy +ap, <0
(49) Jug s (Qug+w) =0,

and we say that
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f(vt-wt) *hv, =0

Comments: A difference as compared with the earlier versions (A), (B), (C)

is that the regions Dt have disappeared from the formulation, except for
the initial domain D0 which is now given beforehand and 1is implicitly con-
tained in the function wt .

It is clear that the conditions (D1) and (D2) are meaningful for ar-
bitrary given functions thng(Q) (not necessarily of the form given by
(43)) and we will sometimes take the liberty to refer to (D1) and (D2)
for thZHa(Q) not of the form (43). We will also refer to (D1) and (D2)
for isolated values of t without involving all the correspondences
[0J]3t*utﬂt.
u, € Hg(Q) satisfy (D1) for t=t," (given tO) . Similar remarks hold for

the problems (C) and (E1) and (E2).

That is, we will use formulations such as "let

For fixed t€[0,T] (D1) and (D2) can be considered as free boundary
conditions. Consider (D2) for example. Introducing the coincidence set

It = {z€Q : vt(z) = wt(z)}

one can see that (D2) implies that outside I.» v, satisfies the over-

t
determined problem

Avt =0 in QN It

Vi = U and

grad Ve ® grad by on aIt .
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(59)
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Thus we have a free boundary condition for BIt . This free boundary prob-
Tem is known as "the obstacle problem" (the function wt describes the
obstacle). See [11] or [12] for example .

f. Two variational inequalities

We shall formulate two variational inequalities which are to be equi-
valent, respectively, to the linear complementarity problems (D1) and (D2).

Let r,R,T, Q ’DO and by be as on p.30 . Then we say that

the map [0,T]13t ~» utEZHS(Q) satisfies (E1) if, for all te€[0,T],
Buy + &y < 0
and

é V(u-uy) +Vu, >0 for all

ue Hé(ﬂ) with Au+dp, <0 .

\

We say that
the map [0,T13t » v €H)(2) satisfies (E2) if, for all te[0,T],
"’t Vi
Jand
é V(v-vy)evv, >0 for all
KvE:Hg)(Q) with v > ¢, .
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g. The moment inequality

Let R denote the class of all bounded open sets Dc R2 with 0 €D

(thusR= U R with RR . asonp.23), and let T>0. Then we

r,R>0 R,r

say that

the map [0,T]2t » DtEZgi satisfies (F), or satisfies the moment
inequality, if, for each t€[0,T],

[o- [o>2mt-0(0)

Dy Dy

for every function ¢ € HZ(RZ) which is subharmonic in Dy -

Remarks: By definition (see e.g. [20], Sect. 30) a subharmonic function

is required to be upper semicontinuous and to have the sub-meanvalue pro-

The choice of the test class in (F), HZ(RZ), is perhaps not the most
natural one, but it is a choice for which the proof of our only theorem
involving (F) (Theorem 10, (F) « (C)) works fairly well.

By choosing ¢ -+Rez" and +Imz2" (n>0) in a neighbourhood of
Bbtfﬁt we see that (F) implies the moment property:

IDtI = IDOI-f 2mt (n=0) and
[2" = " for n>1.
Dy Dg
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RELATIONS BETWEEN THE MOVING BOUNDARY CONDITIONS, AND

EXISTENCE AND UNICITY RESULTS

We shall now set up the relations between the moving boundary con-
ditions (A) - (F) in Section II and thereby also prove existence and

unicity of solutions of (C)

- (F) (for (A) and (B) only unicity).

also prove some monotonicity and comparison theorems.

The diagramme below illustrates the contents of this sections.

Thm 1 Thm 2
w|l=|6|=

Thm 10 ]]:Nn 9 ]I Thm 4
(D2)

Thm 3 Thm 5

(D1)| &

Thm 5
&

Lemma 8 ‘L Thm 7

Minimal
properties
and
monotonicity
properties
(Thm 7

) S
\>w1th cors) J

(E1)

(E2)

We will

solutions
with
regularity
properties
(Thm 6)

..

Have unique

—

.,

Thus the conditions (C) - (F) are all equivalent, but we are not able to

infer (A) or (B) from them.
(C) follows from the elementary fact that (E1) and (E

solutions.

2) have unique

The existence and unicity of solutions to
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a. (A) = (B)

Theorem 1: Suppose the map (a,b) 3t - D, € S satisfies (A). Then it
also satisfies (B).

Proof: A1l we have to prove is that the formula
BgD

d rodxdy = L

q Jo Y = Jo—g ds

t oDy

holds for all q)E:q:(Rz ) and that the right member of it is a continuous
function of t. Let x,y be the coordinate variables in R2 and Tet

j

denote the components of g(s,t)EIRZ(p.21-22). Then (A)(iii1) becomes

£(s,t)

n(s,t)

39y,
aga(ts,t) - axt (z(s,t))

< 39D

Langz,t) - ayt (z(s,t))

Thus the right member of (1) is
a9 ag a9
D D D
- - oty -t = J3Eqy - 9N
[ —g=ds = f“’(ax - 5y dx)‘ f‘p(atdy atdx)

and we only have to prove the formula

d b) d

gF Jo dxdy = f<p%%dy-§%dx).
Dt aDt

To prove (4) we consider the expression ¢dxdy as a ¢*  2-form on

R2. Since a 2-form on R? s automatically closed (i.e. d(pdxdy) = 0),
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and hence exact (]R2 being simply connected), there is a C_ 1-form

w=adx + bdy (a=a(x,y), b=b(x,y)) on R% such that do = pdxdy, i.e.
3b da _
SUCh that —ES(--W = ¢

Now, let T = R/Z (the range of the variable s). Then, using
Stokes™ formula at the first step, we get

—ddefwdxdy =ad,€ an adx+bdy =
t t

- it { [2(e0s,0) 2D+ bie(s,0) MY s -

2 2
_ , 3¢ .. °n 3 38 33, 9nydE _,db  dE_3b  dnyon].. _

%9 n_dn 3¢
A 2 A A

ob d 9f 9 an 9 9.0 9
= % (2 - 98y o Hyys 4 g §§(a5%+-b§%)ds

X ay’ ‘ot os 3 as T
~ (9E An _ an & _ (35
= J o (53 - 5p3) O ‘aé“’ (5gdy -5 dx)
t

The above computation is valid under the given regularity assumptions
(the map ¢ = (£,n) is of class 2 and z(-,t) is a diffeomorphism T > aDt).

It also follows from the above computations that the right member of
(1) is a continuous function of t and that hence [ @dxdy iscontinuously
differentiable with respect to t._ T

This proves Theorem 1.
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b. (B) = (C)

Theorem 2: Suppose (a,b)3t—>Dt€S satisfies (B) and choose r,R,T>0 so that
[0,T] = (a,b), D == Dy and D == Dp , and Tet @ =D, . Then DtEfRR,r
for all t€[0,T] and [0,T]13t » D,C€ﬁR . satisfies (c) .

Further, the function utEHé(Q) occurring in (C) is

O+

(5) Uy = §D dt

T

(a vector-valued integral), where §D is the "smoothed out Green”s function",

defined by
. o )
(6) gD(Z) = I]D | ng(Zag) dOC =
r D
r
' 1
9p(z) + Toglzl - [loglz - ¢ldo for z €D
D & r
r
«QD(Z) Z € D\]DY‘
LD z€2ND

Proof: We first have to prove that Dt ERR r for te[0,T], i.e. that
DY‘CC D cc]DR for t€[0,T]. Since IDrcc D0 and Dch]DR it suffices

t
to prove that DT c Dt for T <t.
Now—aﬁ—t— <0 on 3D, so that formula (II.11) shows that
d
(7) g J edxdy >0
Dt

for all g€ C°C°(]R2) such that ¢>0. Thus [ @dxdy is a non-decreasing
function of t, i.e. Dy

(8) [odxdy < [o@dxdy for T <t,

DT Dt
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for all o€ C°C°(]R2) with ¢>0. It is easy to see (in view of the regu-
larity requirements on aDt)that this implies that DTc:Dt for t<t. Thus

DteﬂR,r for te[0,T] is proved.

Next we have §D EIH&(Q) . In fact §Dt is continuous in all @ ,
is continuously differentiable in @ \~8Dt , and at aDt V§Dt is bounded
due to the regularity assumption for aD,, (DtGZS). Thus , §Dt€iH1(Q),
and so D,c= @, §Dt =0 on @~D, implies §Dt€ZH6(Q).

Now let u €H(1](Q) be defined by (I1.13), i.e.

t

(9) Aut = XD -XD

1
- 21t * (tel0,T]).
¢ "Dg DT,

Then in order to complete the proof of Theorem 2, there are three things
to prove. First that

t
(10) u, = é gy dt
and then that (II.14) and (II.15) hold.

(10) means by definition that

t
(11) <utsp> = é' <§D ap> drt
T

for all pEZH_1(Q) = Hé(Q)'. It will follow from the computations to come
that the function [0,T] > T ~ (§D .0y €E R is continuous for each pEZH-1(Q)
(see the last piece of the Remark'on p. 40 f), so the integral in (11) cer-
tainly exists. Since A :Hé(Q) - H_1(Q) is an isomorphism, (11) can be
written

£
(12) Uy »b0) = é@o Loy dt  for all weH)(a) ,
T

i.e. using (9)
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t

1 oy 1
(Xp - Xp. - 2mt .Tﬁ;I_XDr’@ = g(gDT,A@ dr  (for all q)EHO(Q)) .

t 0

We first prove (13) for w(ZCZ(Q). Green”s (second) formula gives
(for (pEC?(Q))

99y o9p
t t
- f(po an ds = - é(po an ds = - é(poAgD + fA(p.gD -
aD 3 t D t
t t t t
=-fo ('T%TTTX )+fAco-§D =(|~%T~—|xm,cp>+<§D » 1)
Dt r Dr 9} t r r t

Combining this with (II.11) we get

t 99p
(xp ~Xp. @ = [o- fcp=£(- [ 0 ——ds) dr =

t 0 Dt D0 BDT

t
1 ~
= (2t e X 2 @) + [ (G s00) dT
IDrI Dr 0 DT

Thus (13) is proved for o€ Cz(ﬂ) . To extend it to all @€ HS(Q)
t
we need only to prove that the right member f(gD ,Mp)dt  of (13) depends
0 "t .
continuously with respect to the Hg-norm on ¢; for CC(Q) is dense in

Hé(ﬂ) and the left member of (13) obviously is Hg-continuous with
respect to o

We have
t _ t N t _ t .
| [(@y soedt] = | [ (G 0dde] < [ 1@ 0ldt< [18, | - llol v =
0 "1 0 T 0 T 0 T H0 H0

— t >~ d
“ ol - [11g e
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and thus it is enough to prove that

t
[ 113y tdt < = .
0 T

To prove this we estimate H§D -§D I 1 for 1<t */.
t T HO(Q)

BQD BgD BgD

=- [3 c—Ltds=- [g e——Lds <max g, (- [ ds) =
D D on BDT Dt D on

= 2T +max g

5D Dt
T

Since 9p. < 9p for te€[0,T] this shows that
t T
”@D -9 HZ < 2memax gy < for all t€[0,T] . In particular H§D || is
t 0 BDO T t
bounded for t€[0,T] and so (15) is true.

t

Remark: If we knew a priori that the vector-valued integral | §D dt did
0
0

T
exist, then it would be trivially true that the right member of (13) de-
t
pends continuously on ¢ . A sufficient condition for f §D dt to exist
0

T
is that the map [0,T]13t > § €I41(Q) be continuous (see [18], p. 73f).
Dt 0

*/We are then using the fact, already proven (p. 37-38 ) that
DTth for T<t .
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It seems very reasonable that this is the case but I have no proof for it.
It may, however, be seen from the computation on p. 40 at least that

t-+§Dt is continuous from the left, i.e. that §D > th as Tt .
T

Moreover, it follows from p. 39 that t - §D is weakly continuous,
t

j.e. that t » (QD ,0) is continuous for each peH-1(Q). In fact, from
t

g
D
~ t 2m
(16) Ty s00) = = [ o—=—=ds = (mg1Xp » @)
Dt aDt on IDrI Dr

we see that t - (§D ,p) is continuous for a dense set of p:s
t

(p = ho, wEZC:(Q)), since the first term in the right member of (16) is
continuous by assumption (p. 22) ,  and the continuity for all p611_1(Q)
then follows automatically from the boundedness of "§D | (tel0,T1).

t
(End of Remark.)

It remains to prove (II.14) and (II.15). (II.14) follows immediately
from (10) (now proven), since gp 20 .
T

To prove (II.15) first observe that

t
Ju O =xp ) = (ueat=xn ) = [ (G, »1-xp ddt
t D, t D’ =4 ‘9o D,

by choosing p = 1-x, in (11) .

t
But now
@y s1-Xn ) =[Gy U-xn) = [ §y =0 for T€([0,t] ,
D, N Di”  olp, D

since D_< Dy (p. 37-38) and §DT = 0 outside D, - Thus
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O t+

(§D ,1-XD Ydt = 0
T t

and (II.15) is proven.

This finishes the proof of Theorem 2.

c. (C) = (D)

Let r,R,T,Q,D, be as on p. 30.

0

Theorem 3: Suppose the map [0,T]3t » DtGETLR v satisfies (C) and let

1]

ut,wt,vteHg)(Q) be the functions defined by (I1I.13), (I11.43) and

Vi T Up + P
Then [0,T13¢t - utEHg)(Q) satisfies (D1) and [0,T]13t - vtEHg(Q)
satisfies (D2) .

Proof: This was proved already on p. 30 (the step (C) = (D1) just con-
sisted of replacing the equality in (II1.13) by an inequality based on

XDt-1 <0, and (D1) & (D2) is obvious).

Although obvious we formulate the equivalence between (D1) and (D2)
as a separate theorem.
Theorem 4: Let ut,vt,wte HA(Q) be related by Vi = ut'*wt (wt not ne-
cessarily defined by (I1I.43)). Then [0,T]13t - utE:Ha(Q) satisfies
(D1) if and only if [0,T]3t » v, €H}(R) satisfies (D2).
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d. (D) & (E)

Let r,R,T,Q,D0 and wt be as on p. 30.

Theorem 5:

(i) the map [0,T]13t-u
satisfies (D1) .

£ € Hé(ﬂ) satisfies (E1) if and only if it

(1) the map [O’T]'Bt"VtEZHé(Q) satisfies (E2) if and only if it
satisfies (D2) .

(i) « : Suppose t - Ug satisfies (D1). Then, by (I11.47) and (II.49) ,

Jug-(ou+ap) <0 =[u(u +p,)

for all uEIHg(Q) with Au+ My < 0. Thus (by subtracting [ ut-Awt)

f ut-A(u-ut) <0,
or
[ wuv(u-u) >0,

for all u€H((R) with au+ap, < 0. Since (I1.57) is (I1.48) this

shows that t - Uy satisfies (E1).

(i) = : Suppose t - u, satisfies (E1). Then

t
/ ut-(Au-kAwt) < ut'(Aut-FAwt)

for all u eHg(Q) with Au+ My < 0. ((17) is just a reformulation of
(I1.58)). Here the choice u = nz shows that the right member of (17)
is > 0 , while the choice u = 2(u, +y,) -y, shows that it is < 0.
Hence
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(18) fut4m%+m%)=0

Writing o= Au+Ap, and using (18), (17) becomes
(19) fugpee<0

for all p€H 1 (Q) with p <0 .

This shows that

(20) u >0 .

Now (20), (II.57) and (18) constitute the conditions in (D1) and so we
have proven that t - u satisfies (D1) .

(ii) « : Suppose t - Vi satisfies (D2). Then, by (II.51) and (II.52)
JOv = )by, <0 = f(vt =) by

for all vEIHg(Q) with v >y, . Thus f(v--vt)-Avt <0, or

fvlv-v. )Wv, >0 |,

t t

for all ve:Hé(Q) with Pp. Since (I1.59) 1ds (II.50) this shows

v
that t - v, satisfies (E2) .
(ii) = : Suppose t + v, satisfies (E2). Then
(21) [ (v=w)enve < flvg-wp)avy

for all veR! (@) with v > v, . ((21) is (I1.60)). The choice v = v,
shows that the right member of (21) is > 0 , while the choice
v = 2(vt--1pt)+wt shows that it is < 0. Thus

(22) / (vt--wt)~Avt =0 .
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Thus, with @ = v-1, (21) becomes
[ @by, <0
for all @E€H(R) with @ > 0.  This shows that

0

Avy < 0.

Since (II.59), (24) and (22) constitute the conditions in (D2)
we have proven that t - v, satisfies (D2) .

This finishes the proof of Theorem 5.

e. Existence, uniqueness and regularity of solutions to (E)

Let r,R,T,Q,D0 and by be as on p. 30. Before formulating the next
theorem we shall recall some general regularity results.

Let 2<p<~ and let (perﬁ(g) . Then the following implications
are true:

Ao € LP) = oe HP@)
1,0 . _ 2
=o€ C>(Q) with oc—'l-—p—

Here we£C1’a(Q) means that ¢ is continuously differentiable in Q@ and
that its first order partial derivatives are locally Holder continuous
with exponent o (0<a<1), i.e.

1$2(2) - 22(1)|
<

+ o

sup
z,zeK |z -z|®
74T

for each compact K cq , and similarly for the y-derivative %%
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The first implication in (25) is a consequence of the fact that the
operator A 1is uniformly elliptic. ([12], Theorem 4.10, p. 34).

The second implication follows from a well-known lemma by Sobolev
([12], Lemma A 9, p.56).

Now from the definition (I1I1.43) of Y, we see that AthZLw(Q) .
Thus AthLp(Q) forall p < and so, by (25), lPtEHZsP(Q) for all p <=
and wt€1C1’a(Q) for all o < 1.

Theorem 6 below is essentially a special case of a standard existence,
uniqueness and regularity theorem for solutions of variational inequalities,
e.g. Théoréme I.1 in [2]. More precisely, the part of Theorem 6 which
concerns the function Vi is a direct consequence of Théoréme I.1 in [2]
while those parts cﬁﬁtérning"ut follow by then applying Theorems 4 and 5.

Despite of this we will include a proof of Theorem 6 here. We prove
existence and uniqueness of solutions because this is very easy to prove
and it is nice to be self-contained to such a low price; and we prove
regularity of solutions because we have a proof of that part which is simp-

ler and more elementary than the standard proofs and which perhaps is new.

Theorem 6;

(i) The variational inequalities (E1) and (E2) have unique solutions
ug, vy €HI(Q) (telo,T]).
(This depends only on the fact that thIHé(Q).)

(i1) Uy and vy are related by Ve = Up Uy

(iii) Upsr Vi € Hz’p(Q) for all p < «» . In particular Uy vtEIC1’a(Q)
for all a < 1.

(This part depends on thZHZ’p(Q), all p <w,)
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Proof: (i) follows from standard Hilbert space theory. Consider (E1)
for example. Fix te€[0,T] and Tlet

(26) K = {uEHg(Q) DAU+ APy < 0} .

Then K 1is a closed convex set in Hé(Q). That it is convex is obvious

and that it is closed follows from the fact that the condition Au+ &, < 0
can be formulated

(27) (Qu + &h,0) <O for all @EH)(R) with >

\4
o
-

or

1

(28) (u,0) > -(wt,w) for all (pEHO(Q) with ¢ >0 .

1V

(28) shows that K 1is the intersection of a set of (weakly and strongly)
closed halfspaces and so is closed (weakly and strongly).

The condition in (E1) now becomes (for fixed t€ [0,T])

Uy € K and
(29)
(u —ut,ut) >0 forall uek,
and (K being closed and convex) this condition is satisfied by a unique
utEZHA(Q), namely that Uy which solves the minimum norm problem
(30) Find u €K such that fu.ll = inf u] .

ueK

Thus (i) is proved (with a similar argument for (E2)).

(i) follows by combining Theorem 5 and Theorem 4.

(ii1): In view of (ii) 1t is sufficient to prove that one of the

functions Uy and Vi belongs to Hz’p(Q) . We give two alternatives.

Alternative 1: For the fact that vtEZHZ’p(Q) (whenever thZHZ’p(Q),

2<p<e) we may refer to the existing literature on variational in-

equalities of the kind (E2), for example [2], Théoréme I.1.
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Alternative 2: We can prove that u

tEiHZ’p(Q) by a rather simple and
elementary argument which also might be of independent interest. It
goes as follows:

We want to show that if IPEP%(Q) n Hz’p(ﬂ) for some 2<p<w ,
then the solution lJEHa(Q) of

Au + Ay <0 ,

Je(u'-u)evu > 0 for all u'E:Hg(Q)

[with Au' + Ap <0

also belongs to Hz’p(Q). ((31) is (E1) for a fixed t€[0,T].) To this
end, consider the following auxiliary variational inequality, in which
the conditions on u are more restrictive:

Find uE€ Hé(Q) which satisfies

min(0,Ap) < Au+ap <0,

[v(u'-u)evu > 0 for all u'e€ Hg(ﬂ)

with min(0,Ay) < Au' +A9 <0 .

Since, just as for (E1), the constraints on u (and u') above delimit
a closed convex subset of Hé(Q), (32) has a unique solution lJ€H8(Q) .
Now this solution a priori belongs to Hz’p(Q) since the conditions on
u are of the form f, < Au< f, with f1,fZEILp(Q). Therefore if we
can show that the solution of u of (32) is the same as the solution of
(31) we are done. And to show this we need only show that u satisfies

(D1), i.e.

u>20

AU+ AP < 0

Jue(au+nyp) =0

since these conditions characterize the solution of (31) (Theorem 5 (i)).
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Thus Tet uEIHa(Q) be the solution of (32) and we shall prove that
u satisfies (33) - (35) above. First we get from (32) that

(36) Jous(bu' +ap) < [ ue(bu+2y)
for all u'e€ Hé(Q) with min(0,AY) < Au' + AP < 0, or
(37) [ uso < [ us(bu+ap)

for all peH ' (@) with min(0,a0) < p <0 .

First choose p = 0 in (37). This gives
(38) [ u-(du+ay) >0 .

Then choose
min{(0,Ay) on N

(39) o =
Au + AY on Q@~N
where
(40) N={zeqn : u(z) <0}

(Observe that since uE:HZ’p(Q), u is a continuous function, so that N
is a well-defined open set in Q .) We get

(41) [ u-min(0,Ap) < [ us(Au+Ap) , or
N N

(42) [ ue(Au+ Ay - min(0,409)) > 0
N

Since Au+AY - min(0,Ap) >0 and u <0 on N (42) forces
Au+ AP - min(0,Ap) =0 on N. This shows that

Au <0 on N.
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But now u=0 on 3NU3Q (by the definition of N, and since u
is continuous and belongs to Hé(Q)). Therefore Au <0 on N implies
u>0 on N . Comparing with the definition of N we must conclude
that N is the empty set. Thus

u>20.
Thus (33) 1is proven. (34) we know from the beginning (it is part
of (32)), and combining (33) and (34) with (38) yields (35).

This ends the proof that the solution of (31) belongs to Hz’p(Q),
and completes the Alternative 2 program.

This also finishes the proof of Theorem 6.

Remark: Observe that, although it is trivial that (D1) and (D2) are
equivalent via the relation v, = u +y, (as stated in Theorem 4), it

is not a complete triviality that (E1) and (E2) are equivalent under the
same relation, i.e. statement (ii) of Theorem 6 is not completely obvious.
In terms of the minimum norm problems associated with the variational
equalities (E1) and (E2) it says for example that the following two
problems have the same solution (=vt = ut-+wt) :

0 (vEHg(Q))

A

Minimize Hv-th when  Av

Minimize |[v]| when v >y, (VEH)(R)) .
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f. (D) = (C).

By the Theorems 4, 5 and 6 we know that (D1) and (D2) have unique
solutions Uy and Vi (te[0,T1), that these are continuously dif-
ferentiable functions and are related by Vi T U+ Uy Our goal now
is to prove that these solutions give rise to a solution of (C). As a
preparation for this result (Theorem 9) we need two lemmas, Lemma 7
and Lemma 8.

Lemma 7:

(i) Let utEZHé(Q) be the solution of (D1). Then wu, <u for all

ue Hé(Q) which satisfy Au+Ay, <0 and u > 0.

(i1) Let vtEIHé(Q) be the solution of (D2). Then v

VE Hé(Q) which satisfy v > by and Av < 0.

g SV for all

Remark: (i) says that in the class of functions that satisfy the two
first conditions, (I1.47) and (TI.48), in(D1) there is a smallest function,
namely that function which also satisfies the third condition, (II.49).
Similarly for (ii).

(ii) of Lemma 7 is (more or less) a special case of Lemma 1.1 in
[13], and (i) is a consequence of (ii). Due to the importance of Lemma 7
for us we will, however, include a proof here. In this proof the function
Vi will be assumed to be that function defined by (I1.43), or at least
be some function in Hz’p(Q) (for some p < ), although Lemma 7 is true
for arbitrary thiHa(Q).

Proof of Lemma 7: Since we know that the functions Uy and Ve in (i) and

(ii) respectively are related by Vi = U+ Uy (Theorem 4), and since

the relation v = u + Uy obviously sets up a one-to-one correspondence be-
tween the functions u satisfying the conditions in (i) and those functions v
satisfying the conditions in (ii), it suffices to prove one of (i) and (ii).
We prove (ii).
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With Vi and v as in the statement of the Temma, put w =v - Vis

and we shall prove that w > 0. Let

I(vt) = {z€Q : vt(z) = wt(z)} .

This is a well-defined closed set in Q since, by assumption, thin’p(Q)

and so (Theorem 6) vy and v, are continuous functions.

Denote by suppAvt the support of Avt as a distribution on Q (so,
by definition, SUppAV, is a relatively closed set in @ ). Then, Vi - by
being a non-negative continuous function which is >0 in Q ~ I(vt), it
follows from (II.51) and (II1.52) that

suppAv, < I(vt) .
(44) shows that

M =2av<0 in QN I(vt) .
Everywhere in @ we have

wo=(vi- ) - (v - ) 2 - (v -0y

Since -(vt - wt) is a continuous function which vanishes on I(vt) and on
30 (46) shows that (in some sense)

w>0 on 3(Q~I(v))<=3au I(vy) .

The argument will now be that (45) together with (47) imply w > 0 in
Q~ I(vt) (by the minimum principle for superharmonic functions) and this
then gives the desired conclusion, w > 0 in all @ .

However, some care is needed in applying the minimum principle since

w not need be a nice function but is just an element of Hé(Q), We can

proceed for example as follows.
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Choose an arbitrary € > 0. Then there is a neighbourhood N of
I(vt) UdR in Q such that

e-(vp-v) >0 in N .

t

Since w + e >e - (v, - y,) everywhere (by (46)) we have

w+e>0 in N

(in the sense of distributions). By (45)

Aw+e) <0 in o~ I(v,) ,

and in particular in a neighbourhood of the compact set @ ~ N (= @ ~ I<Vt))‘
(49) and (59) now show that

w+e>0

in (a neighbourhood of @ ~ N) UN = Q , for example by applying the or-
dinary minimum principle for C2 superharmonic functions to some suitable
family of regularizations of w + ¢ (say to (w+e)«h_, and letting
o~ 0, where hp(z) = p_zh(z/p), where heZC?(RZ), h>0 and f[h=1).

Since € >0 in (51) was arbitrary, we conclude that w > 0 in Q,
and Lemma 7 is proven.

Corollary 7.1: Let vy, w'e:Hg(Q) n Hz’p(Q) (for some p < =), and let

u,u' and v,v' be the solutions of (D1) and (D2) corresponding to the
choices by = ¥, ',

(i) If Ap < Ap' then u<u' .
(ii) If y>¢' (or if Ap < Ap') then v > v' .

(iii) (= (i) and (ii) combined)
If Ap < AP' then

u' - (W -y')<u<u and v+ (g -9') >V,
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Proof:

(i)  We have Au' + Ap < Au' + AY' <0 and u' > 0. Thus (i) of the
lemma gives (with Pp =¥, up = u) u<u' .

(ii) We have v >y >y' and Av < 0. Thus (ii) of the lemma gives
(with wo = 9', ve = v') v <v. (8 < sy implies y > v' as

/N w'EIHA(Q) by a weak maximum principle. See [20], Corollary

28.10 for example.)

(iii) (i) gives u + v <u' + ¢, i.e. v<v' +(p -y'), which together
with (ii) is the second pair of inequalities in (iii). The first
pair is then obtained by subtracting vy .

Corollary 7.2: Let r, R, T, Q, Do and wt be as on p. 30, let
[0,T]13t » uy € Ha(Q) be the solution of (D1) and
[0,T]3t - vy € Hé(Q) the solution of (D2). Further let eEng(Q) be the

. . 1
function defined by A8 = ST X
! r' Dr

Then, for T < t,

up - 2n(t-1)+6 <u_<u and
v, o+ 2m(t-1)+0 > Vo 2V
Proof: From
1
AN, =xn -1+ 2nte X =
t D0 lﬁr' Dr
= Xp. - 1 - 2nt-AD
0

we get

AwT < Awt for <t
and
Vo

Now Corollary 7.2 follows from (iii) of Corollary 7.1 .

- Py o= 2n(t-1)0 .




(52)

(55)

(56)

(57)

-55-

Corollary 7.3: Let r, R, T, Q be as on p.30, let Do’ Dé satisfy
D.<c<Dy<=Dyce Dy and Tet Vi by be defined by (I1.43) with
respect to D0 and Dé respectively. Let Uys ué and Vis v% be the
corresponding solutions of (D1) and (D2). Then

Up <up and ve > vy

t
for all te€[0,T] .

Proof: Since Awt < Aw% for all t€[0,T] the corollary follows

immediately from (i) and (ii) of Corollary 7.1 .

Lemma 8:  With r, R, T, 2, Dy and y, as on p. 30, Tlet

[0,TI3t v, € Hg(Q)

be the solution of (D2) and put
I(vt) ={z€Q: vt(z) = wt(z)} ,
D, = Dy U (Q~ I(vt)) .

Then

SUppAV, < (9~ DO) n I(Vt) and

Dt c QN suppAvt s

where in both inclusions the difference-sets have measure zero.
Moreover,

Av, = -1.

t =7 Xa~py)ni(v,) T Xpg

Proof: Recall (p. 45-46 and Theorem 6) that Vi vtEIHz’p(Q) for

all p<e . Thus Ui Vg are continuous functions, I(vt) is a well-
defined closed set in Q and Dt is an open set.
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Observe next that the definition (54) of Dt is consistent for t= 0
since the solution of (D2) for t=0 is Vo =¥ (in view of My <0),
and so I(vo) =Q .

Now wt, vtEﬁHz’p(Q) implies that Awt and Avt are Lp-functions.

We claim that v, =y, on I(vt) implies

Avy = Ay a.e. on I(vt)

(58) is a consequence of the following lemma, which is non-trivial
and which will not be proven here.

Lemma: Suppose u € H2P(Q) (1 <p<w=) and that u=0 on a closed set
I<Q. Then all partial derivates of order <2 vanish almost every-
where on I, in particular Au=0 a.e. on I.

(By "derivative" we always mean distribution derivative. For a function
in -HZ,P every such derivative of order <2 have a representative in
form of an Lp-function, and to say that it vanishes a.e. on a set means
to say that any one, and then all, of its representatives vanishes a.e.
on that set.)

For a proof of the above lemma we may refer to [12], Lemma A.4,
p. 53 . Two applications of that lemma yield our lemma.

Applications of the Temma to u=v, -y, settles (58). Now
Lemma 8 will follow by combining (58) with the following facts:

suppAvy <= I(vy)

Avy <0 s

1
2t . Xpn >0 on D
Iﬁrl D, r
Awtz 10 DO\]D

r

-1 Q ~ D0
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(67)

(68)
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(59) was proven on p.52, (60) is (II.51) and (61) is (II.43)
(together with D.c< DO).

(58) and (60) imply that almost everywhere on I(vy) we have

My = Ave <0,

hence by (61)

My = - XQ\\Do (a.e. on I(vt))
hence
Avt = = Xq~p (a.e. on I(Vt))

0
In view of (59), (64) shows that in all @

AV = - ¥ * X = - X
t a~D, IWt) (Q\D& ﬂIWt)

Since (Q\~Do) n I(vt) is relatively closed in Q , (65) shows that
SUppAv, < (Q\\DO) n I(vt) .

It also follows that the difference-set in (66) has measure zero. (Gene-
rally, if E 1is a closed set in R" then SUppXp < E and E\\suppr has
n-dimensional Lebesgue measure zero.)

Thus (55) is proven. (56) is obtained from (55) by taking complements
(and using the definition of Dt)’ and (57) is (65) above together with
the definition of Dt‘

This proves Lemma 8.

Theorem 9: With r, R, T, Q, D0 and wt as on p. 30, let -
: _
[0,T]I >t~ uy € HO(Q) and

1
[0,TI >t - v, € HO(Q)
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be the solutions of (D1) and (D2) respectively (so that Vi = ut-+¢t).
Define

Dt = D0 U (Q\~I(vt)) = D0 uf{zeaqn: ut(z) > 0}

for t€ (0,T]. Then, if R is large enough or T small enough (it

suffices that R2 > 2T + p2, if D0<: Dp ), the map

[0,TI1 3t~ Dte RR,r

is well-defined and satisfies (C). Further, the function "ut appearing
in (C) 1is identical with the ug (= vt-wt) above .

Proof: First we must prove that D, ETRR ~ forall te[0,T], i.e.
that IDrcc Dtcc ]DR (t € [0,T]) .

DY‘CC Dt follows from ]Drcc D0 and Doc Dt .

To prove Dt<ZC:DR we shall apply Corollary 7.3. Choose ¢ such
that D0 c]Dpcc ]DR and let D(') = ]Dp. Then ]Drcc DO c D(')cc ]DR , and
with w%, u%, v% defined as in Corollary 7.3 we have by Corollary 7.3

<uy (te€[0,T1) , or Vi - g S v% - W% . This shows that

u t

t
I'(vp) € 1(vy)

where I'(v%) = {z€ Q: v&(z) = w%(z)}.

Now we claim that
Q\I'(v:c) =D for te€(0,T] ,
Pt
where Py > 0 1ds defined by
D | =2nt+ D | , i.e.
Qt ¢

2 2
ot = 2t + p



(75)

(77)

-59-

Once (72) is proven D,==Dp will follow (for t€ (0,71 and assuming that

p$ = 2T + p2 < R2) since (71) and (72) then give
_ / 1 ' _ =
Dt = Dy U (Q\I\Vt)) c DO U (Q~1 (vt)) = Dy U ]Dpt— ]Dptc ]Dpch ]DR

To prove (72) is equivalent to proving that

{zeqn : ué(z) >0} = Dpt R

and this can be proved simply by computing the function u% explicitly .

In fact it is found that u,

t is the function in Hg(Q) for which

1
Aul = ¥ - X1 - 2mt e X R
t Dpt D0 Iﬁrl Dr

and (76) follows from (77). ((77) is suggested by the fact that the map

t-D,  isa solution to (A) and (B), and hence to (C), with D, =D =D
' 0
t
as initial domain and that therefore by Theorem 3 u% = [ gI) dr .
0

Or

It is also easy to check directly that u%EﬁHé(Q) defined by (77) solves

T ) v 1 o
(D1) with thZHO(Q) defined by Ay, = X06 1 + 2mt ﬂﬁ;T XDr and Dy = Dp.)

0

Thus (72) is proven, and so we have proven that Dt efRR P for

te[0,T] if 2T+0% < R%, Dy D,

It remains to prove (II1.13) - (II.15) of (C).*/ Lemma 8 (57) shows that

-1
t

which in view of (II.43) is (II.13). (II.14) is (I1I1.47), and (II.15)
is (I11.49) combined with (77) above.

Aut + Awt = Avt = Xp

This completes the proof of Theorem 9.

*
/w1th u; given by (67) .
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Corollary 9.1: Let r, R, T, @ and Dy be as on p. 30 with R large
2

enough (R® > 2T + p2 suffices, if Doc:Dp) . Then there exists a solu-

tion
[0,T] 3t > D, efRR,r

of (C). This solution is unique up to null-sets, i.e. Xp, s unique as
a distribution for each t € [0,T]. Moreover, let

1
u, € H

t 0

() be the function appearing in (C). Then uy is unique
as an element of Hé(Q), and in (78) above Dt can be chosen to be

Dt = D0 Ufzeqn:ul(z) >0}

t

for all t€([0,T]. (In (79) u
of u

t refers to the continuous representative

t')

Proof: The existence of the solution (78) follows immediately from
Theorem 9 (combined with the fact that there exists a solution of (D1)).
Theorem 9 also shows that D, can be chosen as in (79) for te (0,T].

For t=0 (79) is true since u, =0 in that case (this follows from (II.13)
for example). As to the unicity, suppose we have two solutions of (78),
say t - Dt and t - Dé (where Dé= DO)’ and let Uy and ué € Hé(ﬂ) be

the corresponding solutions of (II.13). Then Uy and u% both solve
(D1) (for the same wt) by Theorem 3. Thus ut==u%

(D1) is unique (Theorems 5 and 6). Thus, also by (II.13), Xp, = Xpy @S
t

since the solution of

distributions, or almost everywhere. This shows the unicity part
of the corollary.

Corollary 9.2: Let

[0,T] >3t~ Dt euh:R’r

satisfy (C). Then, for T < t, DT c Dt except for a null-set
(i.e. D, ~D, has measure zero, or x; < Xp in the distribution sense).
T t
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Proof: Let u, and v, be the solutions of (D1) and (D2) produced

by the solution (80) of (C) (as in Theorem 3). Then the uniqueness

part of Theorem 9 shows that, by changing Dt with a set of measure zero
if necessary, we can assume that Dt is

D, = Dy U (2~I(v,)) =

DO Uu{zen: ut(z) >01}.

Now, by Corollary 7.2 u. <u for T < t, showing that DT<: Dt for

t
T <t as was to be proved.

Corollary 9.3: Let

[0,T13t - D, ERR,r and
[0,T]3t » D,'C ERR’r

be two solutions of (C), and suppose that Dy = Dy - Then D, = D¢
(except for null-sets) for all t € [0,T].

Proof: The proof is similar to that of Corollary 9.2, but with Corollary
7.3 used in the last argument instead of Corollary 7.2.

Corollary 9.4: (Unicity of classical solutions): Suppose

(a,b) 3t - Di» Dy € S

are two solutions of (A) or (B), and suppose that for some ty € (a,b)

D, =D . Then D, =D; forall t>t; (te€ (a,b)).

Proof: We may assume that ty = 0. By applying Theorem 2 (and Theorem 1
in case of (A)) we obtain for suitable choices of r, R, T > 0 (T can be
chosen arbitrarily close to b) two solutions

[0,T1 3t~ Dt’ D% efRR,r

of (C). The unicity part of Corollary 9.1 combined with the regularity
assumptions on Dt and D% then gives that Dt = D% for t € [0,T] .
This implies the corollary.
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g. (C) & (F)

Theorem 10: A map

[0,T1 3t > D, e'RR’r

satisfies (C) if and only if it satisfies (F).

Proof:

= : Suppose (81) satisfies (C). Since D<= @ =Dy for all te[0,T]
it is enough to prove (II.61) for all ¢ € Ha(ﬂ) n H2(R2)
subharmonic in D

which are
.

Let u, € Hé(Q) be the function defined by (II1.13). Then u, >0,
and u, = 0 a.e. an @~ D, (by (II.14) and (II.15)). Moreover, ug is

t
continuous (since Aug € L®(Q)), in particular bounded (as uy = 0 on Q).

Now, let o € H;(Q) n HZ(RZ) be subharmonic in D, - then Ap > 0
in Dt in the sense of distributions. Moreover, since Ap € LZ(Q), the
above properties of Uy show that Uy -AwaLZ(Q), Uy Np =0 a.e. on

@~ D, and hence [ u, +p =0 . Using these facts and also (II.13)
Q~D
t

and the submeanvalue property of ¢ in I%‘ we get

f(p'f@ =<XD _XDsQD>=
Dt DO t 0

1 -
(Aut + 2nt 'Tﬁr:—r X]DY, s (D> =

- Lo -
= <ut’ Np) + 27t _”D;:l_ <X]Dr’(p> =

1 -
ut.Aw+2ﬂt.Tﬁ;T f @ =
r

n
D

S

v

1
éut‘A(D'FZTTt‘TD';T ]{)(D
t r

v

1
Zﬂt'TD—Yj—I(DE Zﬂt‘(D(O) .

DY‘

Thus (81) satisfies (F) .
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< : Suppose (81) satisfies (F).
Thus

(82) o - [o>2mt-e(0)
Dy Do
2

for every ¢ € H RZ) which is subharmonic in Dt . As we shall presently

see this implies that

1
(83) [o - [o>2nt. [o
0, 0, Do,

for all @ € H;(Q) n HZ(Q) which are subharmonic in Dt .

Let us assume (83) for a moment and define utEZHa(Q) by (II.13).

Then (83) can be written
(84) (Bugs @) > 0

for all o € H}(2) n H(2) with &p > 0 in D,. Since A maps

Hé(Q) n HZ(Q) (bijectively) onto LZ(Q), (84) is the same as (with p=Ap)

(85) (ug,p) 2 0

for all p € L°(R) with o >0 in D .

Since all non-negative p € LZ(Q) are allowed in (85) we have

(86) uy >0 (in Q) .

The choice p = XDt - 1 s also allowed in (85). This gives

(87) fut ¢ (XD '1) = (utsXDt'1> Z 0 s

t
and so, since the integrand in (87) is non-positive,

(88) Jug » (xp -1) = 0.
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This proves that the function utEZHé(Q) defined by (II.13) satis-
fies (II1.14) and (II1.15) ( = (86) and (88)). Thus the map (81) satis-
fies (C), and the proof is complete as soon as we have deduced (83)

from (82).
For that purpose observe first that the test class HZ(RZ) for (82)
can be replaced by HZ(Q) since the restriction mapping HZ(RZ) - HZ(Q)

is onto ([201, Theorem 26.7). Now let ¢ € Hl(Q) n HZ(Q) be given with

A@ > 0 in Dy and we shall prove (83). Since ¢ is continuous (as

@ € HZ(Q)) there is a continuous function @ in @ which coincides with ¢
outside . and which is harmonic in D, . This function is also subharmonic

in D, but unfortunately it does not belong to H2(Q) since A® will be a meas-
ure having a singular part on 3D, hence A€ L2() ). Suppose nevertheless
that (82) were applicable to & . Then we would obtain, using the mean-value
property for harmonic functions and the fact that ¢ > ¢ in IDr (and every-

where),
(89) fo - [0 = [6- [o32mt-5(0) = 2nt e [G > 2t ~r— [0
2 DTJ%2 WTH¢ "
o, 0, O, D D, D

Thus (83) would be proven.

To actually prove (83) it is enough to prove that the function @ above
can be approximated uniformly by functions @ (e 0) to which (82) is
applicable. For with @E in place of & in (89) the first inequality
there will be valid (by (82)) and in the remaining equalities and in-
equality (which are valid for @) there will be errors which tend to zero
as € » 0 . Thus (83) will follow.

It remains to construct @E . Consider A® . It can be decomposed
asA® = p + u , where p is the singular part of A® , supported by BDr,
and p = AP - u. What we have to do is to smooth out wu. Thus let

{he}€>o be a family of positive mollifiers, say of the kind

h.(2) = € %h(z/c) , where heCT(RZ) h>0 and fh=1, let

3, € Hl(Q2)  be defined by
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(hence & EZHZ(Q), as pEILZ(Q)), and let
1

~

(92=£b'(b1-

Extend both 61 and &2 to all R2 by putting them zero outside @ . Then
@1 will be continuous (on RZ), hence also @2 will be so.

Now define

Pe =@ + Py * he

Since 62 is continuous @2 * h8 - @2 uniformly as € - 0 , and so
@8 » & uniformly. Further §_ € HZ(Q) since §, € HZ(Q) and

~ oo, 2 . ~ .
By * h€ € C (R"). Finally we have AB_ =p+uxh_ >0 in D
since p >0 1n Dt and u >10.

Thus @8, e > 0, have the required properties: they approximate o
uniformly as € - 0 and (82) applies to them.

Thus (83) is proved and the proof of Theorem 10 is complete.
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SUMMARIZING RESULTS AND APPLICATIONS

a. Main theorems

We now want to summarize the essential result of Section III in
a way which is free from some of the technicalities of Section III (e.g.
occurrence of the parameters r,R,T). Our main theorem is Theorem 13.
Theorem 12 is a preliminary theorem. We begin with a lemma.

Lemma 11: Let

(0,713t > D, ERR’Y, and

[0,T']€t > Dy EB,R. o

be two solutions of (C) (with parameter values r,R,T and r',R',T' re-
spectively), and suppose that D0 =Db. Then, modulo null-sets, Dt= D% for

t € [0, min(T,T"')] . Moreover, Up = Uy in Dmin(R,R')\'D
for t€ [0, min(T,T')].
(ut,ué are the functions defined by (II.13) in (C).)

max(r,r')

Proof: We may suppose that the triplets (r,R,T) and (r',R',T') differ
only in one component, since the general case then is obtained as a
combination of these pure cases.

*
Case 1: r+r' /,R=R',T=T' . We may assume that r<r'. Put
Q= DR and let wEZHé(Q) be the solution of
bw= - el xp - Ty X )
r r r' Dr'

Then it is not hard to see that w>0 in 2 and w=0 outside D .. .

*
/To mean "not necessarily r=r'
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Define for t€[0,T]

t ut + tew ,

u

D¢ = Dy

We want to show that t - Dy (together with u%) satisfies (C) for

the parameter triple (r,R,T). Whenever this is done it follows from
M

the unicity part of Corollary 9.1 that D} = Dy / (except for a null-

set) and up = uy

the lemma in Case 1.

which, in view of the properties of w, proves

Using the properties of w we get (for t€[0,T]) ug € Hé(DR),

up >up >0,
Jug - (1=xpp) = fup = (1=xp0) + £ fwe (1-xp,) = 0

(since w=0 outside D£:>Dr.) and

1 1
Xpe = Xpu = Aul-teAw+ 2nt . X = Au} +2mt - X
D} Do t ID,..1"D,.. t DT "D,

(6), (7) and (8) show that t -» D%, u% satisfies (C) for r,R,T

as we wanted to prove.

Case 2: r=r', R#R', T=T' . We may suppose that R'<R .

Define, for t€[0,T] ,

<
1l
-

0 in D,~D

RI

=2
I
o

*/ Observe that D} =D

0 0
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1

1(]DR) (since U£€3H0(DR.)) and it is immediately verified

Then u%EIi

0
that t » D%, u% satisfies (C) for r,R,T. The unicity statement of
Corollary 9.1 shows that DE = Dt (a.e.) and uE = Uy which is the

required conclusion in this case.

Case 3: r=r', R=R', T*T'.

The required conclusion follows trivially from Corollary 9.1 in this
case.

The proof of Lemma 11 is complete.

2 with 0€D, (i.e. given

a DOEZT% (p.33)) there is a map
[0) 3t->D, € R

such that for each T > 0, for each r > 0 with DrC:C D0 and for each

R >0 sufficiently large (R > 2T+p2 suffices, if Doc:]Dp ) the re-
striction of (9) to [0,T] satisfies (C) for the parameter values r,R,T.
The map (9) is unique with these properties, where "unique" means that
each Dt is unique up to a set of measure zero.

Moreover, (9) has the following properties:

(i) It satisfies the moment inequality, (F). (Strictly speaking,
as (F) is formulated, the restriction of (9) to [0,T] satisfies
(F) for each T>0.)

(ii) Modulo null-sets DT c Dt for T <t.

(ii1) If [0,) > t > D; € R has the properties of (9) with respect to
another initial domain Dé € R, and DO c Dé then Dt c D%
modulo null-sets for all t € [0,o) .
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Proof: Corollary 9.1 gives a lot of solutions of (C) (for the given Do
and corresponding to the various allowable choices of r,R and T) and
Lemma 11 shows that these melt together into a global solution (9) with
the asserted property. The unicity of (9) follows also immediately from
Corollary 9.1, and the three additional properties (i), (ii) and (iii)
follow from Theorem 10, Corollary 9.2 and Corollary 9.3 respectively.
This proves the theorem.

Let us finally give a formulation of Theorem 12 which is self-
. . . . . 1
contained (i.e. does not refer to (C) etc.), in which the function X
TD.1”D

. . . . r
is replaced by what it approximates, the Dirac measure & at the

origin, and which is formulated in such a way that the domains Dt
really become unique.

° with 0€D, (i.e. given

a D€ ) there exists a unique map
[0,00)3t—>Dt€fR
with the following property:

For each t € [0,»=) there is a distribution Uy with compact
support in R2 such that

Xp, = Xp. = Aut + 2mte§ ,

t 0
up > 0 and
_ 2 .
Dt = D0 U {z€e R : ut(z) >0} ,

where (11) shows that u; has a representation in form of a function,
continuous outside 0, and (13) refers to any such representative.

The map (10) has the following additional properties:
(i) Jo - o > 2mt-p(0)

Dy Dy

for every o € HZ(RZ) which is subharmonic in D, -
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(i) D.c D, for T<t.

(111) If [0,@) 3 t > Dy € R is another map with the properties
of (10) for another D, € R and if

D0 c D[') then

Dt c D% for all t € [0,o) .

Proof: Essentially, the main part of the theorem follows by combining

Corollary 9.1 with Lemma 11 just as in the proof of Theorem 12. We

need only modify the functions u, in Corollary 9.1 a 1ittle. Thus,

t

in the situation of Corollary 9.1, add to Uy the function W,

= - L ] - 1 -
wt(z)— t«(loglzl 775;1 I{ loglz cIdOC) .
r

This means that

1

AWt = - 27Tt'((8 _TjT—lX]D ) )
r r
w, >0 everywhere (in Rz) and

w, =0 outside Dr

defined by

Then it is easily seen that the solutions of (C) provided by Corollary 9.1

fit together into a solution (10) satisfying (11) - (13) for the new Uy -
The unicity and the three additional properties of (10) also follow
easily (cf. Theorem 12).

Corollary 13.1: Let MO,M1,M3,... and ¢ be given complex numbers with

M0 and ¢ real and positive and suppose that there is a bounded domain

D= € containing the origin such that

[ dxdy = M, foralln>0.
D
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Then there exists a domain D' (bounded and containing D) such that
dxdy = MO +C and

ZMdxdy = M for all n > 1.

Proof: Apply the theorem with DO = D. Then D' = Dt for t = v
has the required property as is seen by choosing ¢ = +Re 2" and

+Imz" in D' (and defining ¢ outside D' in such a way that
@ € HZ(RZ)) in the moment inequality (i) .

b. Additional properties

We shall give a few further properties of the map (10) in Theorem
13. Thus the background situation will now be that in Theorem 13:

D0 € B is a given domain and
[O,oo)at»DtER

is the map uniquely determined by the following property: there exist
*
distributions uy (te[0,o)) with compact support in the (€ ! such that

Xn -~ Xp = Aup + 2mted
Dt Dg t

u, >0

o
|

= D0 Uuf{zetcC: ut(z) >0}

The distribution Uy

function (also called ut) completely determined by

will always be represented by the pointwise

0 for t =20 and

[
o+
—_
N
~—
1]

ut(z) is continuous outside z= 0

O)=+oo

*/ We are going to use some complex variable theory in this section,
SO we now replace R? by C .
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for t >0 . (18) is possible since up =0 for t=0, (19) is
tEZLoo outside 0 by (15), and (20) is natural since
ut(z) n-teloglzl near the origin. In particular (17) refers to

possible since Au
this representative of Ug

With this pointwise definition u, 1is a subharmonic function

t
outside 0 and is a superharmonic function in D0 .
Now Theorem 13 gives us three properties of the map (14):

(i) It satisfies the moment inequality ,

(1) D, is an increasing function of t,

(ii1) D, is increasing as a function of Dy for fixed t.

One expected property of (14) which would be nice to prove can be
vaguely stated as follows:

(iv) D, becomes nicer with increasing t.

(iv) could be made precise for example in the following way:
Suppose D0 is connected but otherwise allowed to be very irregular
(to have infinite connectivity e.g.). Then one expects that

(a) DOc:c Dt for all t >0 .

(b) Dt has finite connectivity for all t > 0.

(c) Dt is simply connected for all sufficiently large t .

(d) Asymptotically as t - o the shape of D, approaches that of
a circular disc .

(e) oD, consists of analytic curves for all t>0.
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We have not been able to prove any complete form of (iv). What
we shall prove is only that assuming (a) and (b) are true, then e)
holds (Theorem 15 below) */ . We begin with a Temma which among other
things shows to what extent the term D, in (17) really is necessary.

Lemma 14: Let
Ut ={zeC: ut(z) > 0}

Then, for t > 0 ,

(1) Uy is connected.
(ii) If N is a component of Dy then either N U, or N n Uy =9 .

(iii) D, is the union of Ut and those components of Do which do not

meet Ut'

(iv) If D0 is connected then Dt = Ut and Dt is connected.

Proof: (i) It 1is enough to prove that each component of Uy contains 0.
Thus Tet V be a component of Ut . Then 23V c BUt e~ Ut’ SO Uy = 0
on 3V. Since Uy > 0 din V this shows that Ut cannot be a sub-
harmonic function in V. But u, is a subharmonic function outside 0.

t
Thus 0 € V as we wanted to show.

(ii) 1In DO’ and in particular in N, Uy is a superharmonic function.
Therefore, since N is connected and ug >0, if uy attains the value 0
in N it must be constantly equal to 0 in N. Thus either Uy > 0

in N or u =0 in N, proving (i1).

(iii) is an immediate consequence of (ii) and the defintion of Dt’
Dt = D0 U Ut'

(iv) Since 0 € Dy N Uy (i) and (ii) show that Dy = Uy (D0 being
connected). This gives immediately (iv).

*

/ Sakai har proved that a) is true, under the hypothesis that Dy is a
“domain with quasi-smooth boundary", meaning essentially that ~ 3Dy
is of class C! but with certain types of corners allowed (finitely
many). See [19], Theorem 3.7. Sakai also has results on b) to e)
for solutions (in his sense) of the Hele Shaw flow problem. Cf. p. 15
in the introduction (of the present paper).
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Theorem 15: Suppose that, for some fixed t > 0, Dt is finitely connected
*/

and Doc:c:Dt . Then aDt is a finite disjoint union of analytic curves
and isolated points.

Proof: Let U, = {z€eC : ut(z) > 0} . Then Dg=<= Dy = Dy U Uy shows
that BDO c Ut . This implies that each component of D0 intersects Ut’
and so, by (ii1) of Lemma 14, Dy = Ut . Thus

- In particular Dt is connected.

Now let vy be a component of aDt = BUt and we shall show that vy
is an analytic curve or a point. Let C = C U{=} denote the Riemann

sphere. Since U, is connected there is exactly one component of C~y

t

which contains Ut (namely that component which contains 0).

Let V denote that component. Then it is easy to see that 3V = v.
Since y 1is connected this also shows that V s simply connected.

Put
(21) N=Dt\ DO=Ut\ DOC )
and define
— dut
(22) S(z) =z - 452

for z € WU y. Due to the assumption that Dt is finitely connected
D¢
cluster at vy ). Since Dy is a compact subset of Dy (also by assump-
tion) it follows that also W is a full neighbourhood of y in V.

is a neighbourhood of Y in V (the other components of aDt cannot

*

/By "anq]y?ic curve" we mean the following: a subset of € is an analytic
curve if it is the image of (say) 8D under some non-constant function
holomorphic in a neighbourhood of 3D . Thus an analytic curve is allowed
to intersect itself and to have cusps and other singularities. We say
that the analytic curve is non-singular if the function above can be
chosen to be univalent in a neighbourhood of 5D.
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As Uy is continuously differentiable outside the origin S(z) is

a continuous function on WU y. On vy ~ Ut Uy attains its mi-

nimum (ut =0). Therefore
But
57 = 0 ony , so

In W S(z) is holomorphic since, by (15),

~3§ = 1-Au

9Z

=1 -y +Xn +2mtS = 0 in W.
t D, * %

Now it is known that the existence of a function with the properties
of S(z) above gives the desired conclusion for <y . To be precise, if
just consists of one point we are done. Otherwise (since V is simply
connected and 5V = y) V can be mapped conformally onto D . Let
f : D~V be the inverse map .

Then S(f(z)) is holomorphic in the neighbourhood f_1(w) of 3D in
D and (23) shows that

S(f(z)) - fF(z) - 0 as ¢ -» 3D

(e D)

It can be seen that (25) implies that f(z) extends analytically
across 3D by defining

f(z) = S(f(1/z))

for z in a neighbourhood of 3D in €~ D .
Moreover it is seen that

f(ab) =vy

This shows that y is ananalytic curve (as defined on p.74) and the

theorem is proven.
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Remarks:

(:) It might seem that Theorem 15 is not of much value since it pre-
supposes knowledge a priori about the unknown domain Dt before drawing
conclusions about it. It would be desirable to have a theorem with
hypotheses only on D0 and with the conclusion that aDt is analytic.

Then it should be enough to assume about D0 that it is connected (so

that D, = U, for t > 0; Lemma 14(iv)). However, since the hypotheses

on D, in Theorem 15 seem very plausible (except perhaps in very pathologi-
cal situations), Theorem 15 at least makes the assertion that 3Dy is
analytic very probable.

Let us mention two situations in which the hypothesis Doc:c Dt
can be dispensed with. Firstly, whenever t 1is large enough Doc:c Dt
is automatically fulfilled since by applying Theorem 13 (iii) to the
situation Dé c DO’ where Dé is some disc centered at the origin, we
have D% c Dt for all t, and clearly for t Targe enough DOc:c D%-
(If Dj =D, then Di =D with o2 = of + 2t.)

Secondly, suppose (in place of Dpee= Dt) that D0 is connected and
that aDO is a finite disjoint union of non-singular analytic curves.
The first hypothesis implies that Dt = Ut and the second one implies
(and can be replaced by) the following: there is a function 50(2) de-
fined and continuous on (D0 ~K)u aDO where K 1is a compact subset
of DO’ ho1omorphic in D0 ~ K and with

So(z) =7Z on BDO .

Then, in the proof of Theorem 15 we change the definitions (21)
and (22) of W and S(z) to

W = Dt ~(Ku {0}) eV and




-77-

In (30) it is assumed that So(z) is extended to W Uy 1in some way,
say by SO(z) =z for z€e(WuU Y)‘\Bb . Then S(z) is continuous

on Wu vy , holomorphic in W (since (15) shows that 3 0 in

W~ 3D, and 3D, is a nice curve) and S(z) =z on v. 9z
The rest of the proof of Theorem 15 works as before, and so the
conclusion of the theorem holds with the changed hypotheses.

(:) If vy 1is any non-singular analytic arc there is a function S(z),
the Schwarz function for vy , defined and holomorphic in a neighbourhood
of vy such that S(z) =Z on y. See [4]. The interpretation of S(z)

is that the anticonformal map 2z - z* = 5(z) is the reflection in y.

It is clear that the function S(z) in the prodf of Theorem 15 is
the Schwarz function for aDt at the pieces of aDt where it is non-
singular. This gives an interpretation of Up near the boundary.

Namely, by (22), if z € D Z near to aDt, the reflection of 2z in

0 t’
aDt is
aut
z* =z - 4-=(z) .
0z
Thus,
ouy 1 1
-grad ut(z) = - 2—(2z) = 2(2*-—z)==7 . (the vector from z to its
9z

reflected point z*).

(:) Theorem 15 is similar to theorems on the regularity of the coinci-
dence set for variational inequalities of the kind (E2). There are such
theorems having as conclusion that the boundary of the coincidence set
is an analytic curve, e.g. Theorem 4.3 in [13] (see also § in [11]).
These theorems cannot, however, be immediately applied to our problem
since they always require the obstacle function (our wt) to be real
analytic, a hypothesis which is not satisfied for us (along with other
hypotheses on the obstacle function which are not satisfied).
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The last 1ines above shed some 1light on the hypothesis Dy =< Dt
in Theorem 15. Namely, although by is not real analytic in all @

it is so outside D0 and the hypothesis Doc:c D, can be viewed as a way

t
to guarantee a priori that aDt avoids the set where Ve is not real

analytic.

c. Applications to quadrature domains

The next theorem concerns a class of domains called quadrature do-
mains. We say that De( 1is a quadrature domain if there exist points
ZysenesZ,
ryz 1, such that

in D and complex numbers ko where 1<j<n, ngfrj-h

r.-1
2o (k)
[fdo= £ £ a,,  f'(z;)
b j=1 k=0 J:K J

for every function f which is analytic and integrable in D.

Quadrature domains and quadrature identities (i.e. identities of
the kind (31) above) are treated in [1] and [9], from which we shall
cite some results. Let D be a bounded domain in €. Then

(i) D is a quadrature domain if and only if there is a function S(z)
meromorphic in D and continuously extendible to D such that

S(z) =z for =z € 3D

([11, Lemma 2.3).

(ii) If D 1ds simply connected then D is a quadrature domain if and
only if some (and then every) conformal map of the unit disc D
onto D is a rational function ([1], Theorem 1).

(iii) If D 1ds a quadrature domain then 3D is a complete algebraic
curve (i.e. there exists a real polynomial P(x,y) such that
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3D = {z = x+1y : P(x,y) = 0}

except for a finite set (the set in the right member of (33) may
contain isolated points not in 3D)) ([11, Theorem 3 and [9],
Theorem 3.4).

It follows from (ii) that the quadrature domains make up a dense
subclass (in any reasonable topology) of all bounded simply connected
domains. This is also true for domains of higher connectivity (to some
extent) ([9], Theorem 3.3).

Now return to the situation on p. 71 and suppose that D0 there
is a quadrature domain, say satisfies (31). Then, for t>0, the moment
inequality (Theorem 13) shows that

ffdo=ffdo+21rt-f(0)
D¢ Do
r.-1
I P
. ik j
j=1 k=0 9

for all f € HZ(RZ) */ which are analytic in D,. (Apply the moment in-
equality to tRef and *Imf.) This nearly shows that Dt is a quadra-
ture domain. We must only extend the validity of (34) to all f € L1(Dt)
which are analytic in Dt' Instead of doing so, however, we shall base
our proof that Dt is a quadrature domain on the characterization (i)

(p.78).

Theorem 16: Suppose D0 is a quadrature domain. Then, for each t>0,

Dt is a quadrature domain. In particular aDt is an algebraic curve.

*/ . 2,2
We temporarily admit complex-valued functions in H°(R") .




(36)

(38)
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Proof: Let So(z) be the function given by (i) on p.78 for D = Dy -
The theorem is proven as soon as we have established the existence
of a similar function St(z) for D=D, .

Define, for z € Dt .

3 (2 (52D

where we have extended So(z) (continuously) to all € by
So(2)

z for all ZEE\DO.

Then St(z) is continuous, except at the origin and at the poles of SO(z).
On 3D, the last three terms in (35) vanish, so

St(z) =z on aDt

In Dy \.Bb and in Dy, except at the origin and at the poles of So(z),
EEE
3z
Since St(z) is continuous in a neighbourhood of 3D, (which is an algebraic
curve) and (Dt\DO)UDOUBD0 > D, it follows that St(z) actually is
meromorphic in all Dt . Thus St(z) has all the required properties and

= 0 (by using (15)). Thus, St(z) is meromorphic in (Dt*\ f%) U Dy.

the theorem is proven.

It is clear that the quadrature identities for D0 and Dt in
Theorem 16 are related as follows.
If that of DO is

n rj-1 0
[fdo = = % a; T (z;)
D, j=1 k=0 I J
then that of Dy s
n rj—1
é fdo = Toas f(k) (zj)-+b1f(zi) ;
¢ j=1 k=0 I

where b1 = 2rt and z% =0 .
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Let us now combine Theorem 16 with the existence part of Theorem 13.

This yields that if D0 is a bounded quadrature domain containing the
origin with the quadrature identity (37), then given any b1 > 0 there
exists a quadrature domain Dt with the quadrature identity (38),
where zi = 0. Since the origin is not in any way a distinguished point
in the context of quadrature identities it is clear that the two hypo-
theses 0 € DO and zé = 0 can be replaced by the single hypothesis
26 € DO . Actually this hypothesis can be relaxed to zi ¢ SDO since
if zi ¢ D0 we may apply the previous reasoning with D0 replaced by
Y D(zi;e) for € > 0 so small that Dor1D(zi;e) =@ and el <by ;
DOLJI)(zi;e) is then a quadrature domain with zi € Dy U D(zi;e) and
the gquadrature identity

rj-1
1 igp ik

(k) 2

é f do =
0U]D(Z%;e) j

Mz

(zj)-+we -f(zi) .

The above reasoning may be repeated finitely many times for finitely
many points zi,...,zﬁ with zj ¢ BDO if we just take care to make the
modification of D0 indicated in the last lines above at once and simul-
taneously for all those zj for which zj ¢ DO (to avoid that at some
step some zj 1ies on the boundary of the current domain at that step).

Thus we have proved the following corollary of Theorem 16.*/

Corollary 16.1: Let D be bounded domain in € admitting the quad-

rature identity

o (k) 1,0y **/
é'ﬁdo = 51 kEO aj,k f (Zj) (f e La(D)) .

Then given finitely many points zi,...,z& e, zj ¢ 3D and arbitrary
positive numbers b1,...,bm there exists a bounded domain D' with

*/More general results, along the same lines as this corollary, are
obtained in [19] .

**/L;(D) denotes the space of integrable analytic functions in D.
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[ fdo =
D! J

M=
MLI
QU
—h
Lot
-
S
—~
N
o
+
M3
o
—h
~~
N
o

1 k=0 sk J j=1 J J
for all f € L;(D') .

In particular (choosing D = @ above), given zi,...,z& €, by,...;b. >0
there exists a bounded domain D' with

m
[ fdo= = b,f(z!)
D' J=

for all fEL;(D') )
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