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Prologue.

First of all I would like to thank the organizing committee for inviting me to this con-
ference on inverse problems for potential fields. T am particularly indepted to Dimiter
Zidarov whose interesting and original work in geophysics I have learnt about during the
meeting and to Ogny Kounchev who (among a lot of other things) recognized the connec-
tion between the work by me and some of my collegues on quadrature domains and the
work of the Bulgarian school of geophysics, and who also explained part of Zidarov’s work
to me (and the other people in the meeting).

The present paper is an informal summary of some results obtained by Makato Sakal
and myself, mainly in [Gu] and [Gu-Sa]. Many results will be stated here without complete
assumptions concerning e.g. regularity. For complete statements and for proofs we refer

to [Gu], [Gu-Sa].

Some notations and conventions.
If @ C RY then Q° = R¥\Q and xq(z) = 1if 2z € Q,=0if z ¢ . By a mass distribution

we mean, mathematically, a signed measure with compact support in RY. (Thus we allow
negative masses.) Usually our mass distributions will be tacitly assumed to have a density
function which is not too bad (e.g. which is bounded). The Newtonian potential of the
mass distribution p is (if N > 3)

U#(z) = const. /—-M)—_

N-=2?
|z — y|

so that —AU# = u. A body is a bounded open set (with reasonable boundary) considered
as a mass distribution of density one. A solid body is a body without cavities, i.e. with
a connected complement. If Q is a body we write U in place of UX2,

1. On graviequivalent bodies and quadrature domains.
Let us start by considering the following inverse problem of potential theory.

(P) Do there exist two different solid bodies 9y and Qy in RV (N > 2) such that their
Newtonian potentials coincide everywhere on the complement of their uniomn, i.e.

(1.1) Ut =0%  on (9 UQ)?

"This problem is classical, e.g. P. S. Novikov was working on it already in the 1930’s, but
1t seems still to be open. Many partial results are known, e.g. that the answer is “no”
if both ©; and {2 are assumed starshaped or if one of them is a ball. See [Is], [Za] for
history and references.

Now assume that {1.1) holds, with £1,Q; solid or not. Then it can easily be seen that
there exists a common mass distribution x4 concentrated on £y M Q3 such that

{UQl:U”” on §7,
U8 = [ on $f.

(See fig. 1.) Conversely, it is obvious that if (1.2) holds for some p then also (1.1) holds.

(1.2)



Thus the inverse problem (P) breaks down into a family of uniqueness problems, onc
problem for each mass distribution u:

(}) Do there exist more than one solid body  graviequivalent to u in the sense that

(1.3) Ut =U*  on Q°7

For many specific choices of p (e.g. p a point mass) this question can be answered to be
“no”, but in general the answer is not known. A more general problem is:

For any p find all bodies graviequivalent to y in the sense {1.3).
Example 1: If 4 = § (point mass) then the appropriate ball is the only body (solid or
not) satisfying (1.3).

Example 2: If ;1 is a uniform mass distribution on the unit sphere SV=1 = {|z| = 1}
with total mass slightly greater than the volume of the unit ball then there are two bodies

Q) satisfying (1.3): one is the appropriate ball and the other is a certain shell domain
around SN (fig. 2).

Fig. 2
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When we think of it there are actually many natural notions of graviequivalence. If
and v are any two mass distributions then the weakest resonable notion of graviequivalence
is the one which says that p and v are graviequivalent if

(1.4) Ut =U" far away.

This is a symmetric relation. With u = xo,, ¥ = xg, (1.4) is weaker than (1.1) and there
do exist different solid bodies which are equivalent in the sense (1.4) [Sa 1], [Zal. (1.1) toc
is a symmetric relation but 1t turns out that it is not an equivalence relation.

Here we shall be concerned with less symmetric situations, namely equivalence between
a general mass distribution y and one of the form v = xq, i.e. a body. Then (1.4) makes
sense as well as (the stronger) (1.3), but we also have the intermediate one ™

(1.5) TU® = gUH on Q°
(coinciding gravitational fields outside ) as well as that which requires that

(1.6) U =p* on §2° and
(1.7) Ut <yU* in RY.
(1.6)-(1.7) is the strongest and most asymmetrical of all the above notions of graviequiv-

alence. The inequality {1.7) might look unmotivated at first sight but it occurs naturally
in connection with balayage (see § 3) and it also guarantees uniqueness of  given 4.

The following notation, due to Sakai, is convenient: given p we write

Qe Qu, ALY if (1.5) holds,
Qe Qu,HLY) if (1.3) holds,
Qe Qu,SLY) if (1.6)-(1.7) hold.

Thus the Q(u,-) are families of bodies graviequivalent to g in various senses,

Qu, SL") C Q(u, HL') C Q(p, AL*)

and (@) is the question whether @y, HL') can contain more than one solid body. In this
question HL! cen be replaced by AL!, because if € is solid then Q € Q(u, ALY) if and
ouly if Q € Q{p, HL').

An equivalent way of expressing {1.3) is by saying that g = 0 outside Q and

(1.8) Q/wlm :/sod#

for every integrable harmonic function ¢ in Q (¢ € HL'(2)). (1.8) is an example of what we
call a quadrature identity (for harmonic functions) and Q is then called a quadrature
domain. This explains the letter @ in the notation Q(u, HL'). For Q{u, AL') and
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Q{p, SLY) there are similar reformulations with S standing for “subharmonic” and, if
N = 2, A for “analytic”. For further information about quadrature domains, see [Gul,

[Sa 2], [Sa 3], [Sh].
Example 3: With y as in Example 2 and setting

Q) ={z e RY 1t <wn ||V <t+/d,u},
where wy denotes the volume of the unit ball, we have (identifying Q(0) with Q(0) U{0})

Qu, ALY) = {Q(t) : 0 < t <wn},
Qu, HLY) = {Q(0), Q(t0)},
Qp, SL') = {Q(t0)}

for a certain value of 45 (0 < 5 < wn).

2. The Zidarov bubbling process.

There is a natural balayage process associated with our notions of graviequivalence (in
particular with the strongest one, (1.6)—(1.7)). This process (as well as other related oncs)
has been developed, from numerical and physical points of view, by Zidarov [Zi] who calls it
“(partial) graviequivalent mass scattering”. Later it has been developed by e.g. Kounchev
[Ko] and (independently) Sakai and myself [Sa 2], [Sa 3], [Gu], [Gu — Sa]. Inspired by
Kounchev’s vivid description of the process during the conference we shall here use his
terminology “(Zidarov) bubbling” for it.

In mathematical terms the Zidarov bubbling process is a projection operator F' : M — M,

where M denotes the set of mass distributions. It replaces a given mass distribution by
the nearest one (in the energy norm) which has density at most one. In lucky cases, but
not always, the result is a body.

We give two equivalent definitions of F'. Let u € M.

Definition 1: F{u) = v where v solves Min ||u — Vilenergy 1 ¥ € M,v < 1.

Definition 2: F(u) = —AV* where V# is the largest function satisfying V# < U#,
_AVE <1,

The function V# in the second definition will coincide with U# far away. Hence it 1s
a potential, namely that of F(u) : V# = UFW, Therefore the two inequalities in the
following complementarity system for F'(y) follow directly from Definition 2.

Fu) <1,
(2.1) Urtn < e
(2.2) F(p)=1 on {UFW < y#}.

The third, complementarity, condition follows easily from the maximality of V#; if it did
not hold V# could be made larger in {V# < U#}. Cf. fig. 3.
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Fig. 3
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(2.3) Q= Q(p) = {F(p) = 1} = the “saturated” part of RV,

Then
prw =+ outside {p)

by (2.1), (2.2). This shows to what extent F(u) is graviequivalent to .

Besides Q = Q(u) there is in general also an unsaturated part of space, where F(u) < 1
but F(p) = 0. The general form of F(1) is

(2.4) F(u)=xa + pxa-

(fig. 4). In “good” cases however (e.g. if 4 > 1 on supp p) (2.4) takes the pure form

(2.5) F(p) = xa,

and this i1s usually the desired result of applying F. To relate F' to our previous notions
of graviequivalence we have

{ Q(p, SLY) = {Q}  if (2.5) holds,
Qlp, SLYY =@ otherwise.

In particular Q(p, SL') contains at most one element.

Some further properties of F worth mentioning here are

F(F(py)+p2) = F(pa +p2) i 1220,
Fpy) < Fps) if 1 < s




Q)
Fig. 4

3. A partial order.
The following partial order < among mass distributions and bodies turns out to be
useful.

Definition:

p1 < pe i UM >U#*2 in RY,
Q2 =<Q i URH>2U% o RY.
My experience is that among mass distribution which are graviequivalent in the sense (1.4)
{1 < po means in some way that y; is “more concentrated” than g, (or £; is “more solid”
than Q5 in the case 1 < Q3). In Example 3, e.g., we have Q(t1) < Q(t2) if and ouly if
11 <ig.
Some simple results about < are:
) Suppose 4,8 € Q(p, HL'). Then
(3.1) if 21 < Qq then 99, C Q2 (the closure);
(3.2) if 1% @ then there exists z € 2\ such that U%z(z) > Ut(z), gU%(2) =
VU#(x).
If Q; € Q(u, SLY) then, by (1.7), (3.2) cannot occur. Thus
(3.3) « If Oy € Q(p, HL'), Q3 € Q(u, SLY) then Oy < Qo.

So, among all bodies graviequivalent to g in the sense (1.3) the one (if any) obtained
by Zidarov bubbling is the least solid one and the boundary of any of the other ones is
contained in its closure. Even if F(i) is not of the form (2.5), so that Q{u, SL!) is empty,

one has Q; < F(u) and 091 C Q(u) for any Q4 € Q(u, HL'). Note in this connection that
in terms of < the second definition of F can be written

Flpy=mmf{reM: :u<vv <1},

where the infimum is taken with respect to <.




A consequence of (3.1) is:

° If Q € Q(p, HLY) is solid then § is minimal in Q(gu, HL') with respect to <. (The
same is true with AL! in place of HL1))

Combining this with (3.3) gives:
° If the body €2 € Q(u, SL!) obtained by Zidarov bubbling of « turns out to be solid,
then it is the only body graviequivalent to g in the sense {1.3), i.e. Q(p, HL!) =

Q1.

Example: If 1 > 0 and has support in a hyperplane then it follows from the result in § 4
that Q € Q{u, SL') exists and is solid. Thus the answer of (Q) is “no” for such .

An interesting operation which can be performed within Q{u, AL') and Q{p, HL') is
that of the least upper bound with respect to <: if Q1,0 € Q(u, AL') then there exists
Q= VO € Q(u, AL) such that Q) < Q, Qs < Q and such that 2 < Q' for any Q' with
the same properties. Moreover, if Oy, Qs are in Q{u, HL) then so is 2.

For Q(u, AL') we also have the following: if Q,Q; € Q(p, AL') with Qg < € then
there exists a chain Q(t) € Q{pu, ALY), 0 < ¢t < 1, joining 2y and 2y (i.e. Q(0) = Q,
Q1) = 1 and Q(t1) < Q(t2) when ¢y < £3). Cf. Example 3. Combining this with the
preceding result shows that the family Q(u, AL') always is connected (in particular it is
a “continuous” family): any two £2;, 22 € Q(u, AL') can be continuously deformed into
each other within Q{p, AL!), namely via Q; V €4. This result is particularly interesting
in connection with the question (equivalent to (Q)) whether Q(u, AL} can contain two

different solid bodies.

4. On the geometry of the bubbling process.

Let p be a positive mass distribution and assume that supp p is contained in {e.g.)
the lower half-space H = {xnx < 0} (z = (z1,... ,zn)). Then one can show [Gu — Sa]
that the part of F(u) which bubbles up above H is a body which is the subgraph of
a real analytic function. In other words F(u)lge = xp where D = Q{u)\H is of the
form D = {z : 0 < an < @(x1,... ,zy_1)} for some real analytic function . Morcover
D C ) where D denotes the reflexion of D in ax = 0. (Fig. 5.)

I, given p > 0, we apply this result to all half-spaces containing supp # we obtain a lot
of interesting information about F(u) outside the convex hull K of supp y, e.g.:

. U\ is real analytic;
. Q(p) U K 1s solid (no cavities);

) for any @ € 9Q(p)\K the inward normal N, of 9Q(p) at z intersects K (if N = 2
and supp i is connected it even intersects supp p). (Fig. 6.)
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One can also use these results in the reverse direction: given a body { one may ask for
mass distributions p > 0 which generate Q in the sense that F(u) = xo ( € Q(p, SL'))
(such a g is called a “mother body” or “maternal body” by Zidarov, at least if supp p
is minimal in some sense). We then obtain information of the type indicated in fig. 7
namely saying that supp g necessarily has to enter certain parts of (.

k]

Any mother body
has to enter all
the shaded areas.

/)

Fig. 7
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