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O. Introduction 

Inspired by an observation of Harold S. Shapiro [ 17] concerning the number  of 
singular points on the boundary and certain "special" points in the interior of 
quadrature domains for analytic functions (see w 1 for definitions) we make here a 
systematic investigation of such points from an algebraic geometric point of  view 
(the boundaries of  these quadrature domains are known to be algebraic). Using 
the so-called genus formula we thereby obtain an upper bound for the number  of 
these singular and special points in terms of the order of  the quadrature identity 
(Theorem 2.1). This, which is our main result, contains Shapiro's result as a 
special case. M. Sakai [15] has, using other methods, obtained complementary 
results which, among other things, give lower bounds for the same quantities. 

We also give some examples, one of  which, as a by-product, gives rise to an 
explicit solution of  a certain moving boundary problem studied in [9]. 
This example also shows that there exist different but conformally equivalent 
quadrature domains which admit  the same quadrature identity (for analytic 
functions). 

Some notation 

I E I = area of  E for E c C. 
[~2]: see (1.3). 
D ( a ; r ) =  {zEC:lz-al < r } .  
P = C U { oo } : the Riemann sphere. 
ALl(f2), SU([2): the classes of, respectively, analytic and subharmonic func- 

tions in L ~ (f~, area measure). 
If  f~ c C is a bounded domain and/z is a distribution of the form (1.1) or an 

L~-function concentrated on f~ then 

f~ E Q(g, AL l) means that f fdxdy = p ( f )  for all f E A L I ( ~ ) .  

fl 
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92 B.  G U S T A F S S O N  

Provided that It moreover is a positive measure 

f ~  Q(~, SL ~) means that f fdxdy ~ It(f) for al l fESL~(~).  

f l  

1.  P r e l i m i n a r i e s  

Let 11 be a bounded domain in the complex plane and denote the class of  
integrable (with respect to area measure) analytic functions in t2 by ALI(f~). 
Further, let # be a functional (distribution) of the form 

n k -  1 

(1.1) It(f)= ~ Z ckyfU)(Zk) 
k - I  j - O  

(fEALl(t2)) where z~ . . . . .  zm Ef t ,  c~j EC, m >_- 1, n k > 1. If the identity (quadra- 
ture identity) 

(1.2) f fdxdy = It(f) 
f] 

holds for all f ~  AL~(f~) then t2 is called a quadrature domain (for the class of  
analytic functions) for It. Following [13] we then write t2EQ~u, AL I) (i.e. 
Q ~ ,  AL l) denotes the class of  (bounded) quadrature domains for It). We refer to 
[1], [4], [6], [7], [13], [14] for more background on quadrature identities. 

In the expression (1.1) we can clearly assume that the zk are distinct and that 
Ck.,k-t ~ 0 (k = 1,. . . ,  m). Then the integer n = n~ + �9 �9 �9 + nm is called the order 
of It (or of  the identity (1.2)). We shall now recall some known facts about 
quadrature domains for analytic functions. 

Assume f l ~ Q ( u ,  AL l) with It as in (1.1) and of  order n. It is shown in [1] that 
0t2 is a subset of  an algebraic curve. From this it easily follows that int clos f~ is a 
domain bounded by finitely many continua and that it coincides with 

(1.3) [f~] = {z  ~ C  : 3 r > 0 such that ID(z; r ) \ ~ l  = 0}, 

the areal completion of fL Since 

f~ c [f~], I[~]l = I~1 

[f~] satisfies the same quadrature identity (1.2) as t2 (i.e. [~] E Q ~ ,  ALl)). 
To [[1] the theory in [7] can be applied. Thus, if W is any plane domain 

bounded by finitely many smooth analytic curves and conformally equivalent to 
[t2] and ~:  W----[~2] is any conformal map then 0 extends to a meromorphic  
function on the (Schottky) double I~ = W U OW U I~" of  W (i.e. the compact 
Riemann surface obtained by completing W with a back-side I,~', provided with 
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the opposite conformal structure and glued with Walong OW; see e.g. [3]). On I~" 
there is a natural anticonformal involution ~ --- ~: if ( E W (resp. I~) then ~ is the 
corresponding point on l,['(resp. W), if ( EOWthen ( --- (. If ( I , . . . ,  (,, E Ware 
the points mapped onto zl . . . . .  Zm ~ f~ respectively by ~ then r has poles of  
orders nk at ~k (k = 1 . . . . .  m) and no other singularities. 

In particular, the order of ~ (i.e. the number of times it takes almost every value 
in P) equals n, the order of the quadrature identity. Another meromorphic 
function, r of order n on W can be defined by 

~*(~) = r  (~ ~ ~ ) .  

It is shown in [7] that q~ and ~* generate the field of  meromorphic functions on I~ 
and that they are related by a polynomial relation of the form 

(1.4) P(#, ~*) -~- 0, 

where 

(1.5) P(z, w)= Y, ak~ZkW i, 
k , j -O 

n is the same as above, akj -- ajk and ann ~ O. Moreover P(z, w) is irreducible (in 
C(z)[w] for example) and is uniquely determined after the normalization ann -- 1 

(henceforth assumed). 
The hermitean nature of the coefficient matrix (a~j) means that P(z, 2) is a 

real-valued function (z ~ C). Set 

U= {z P(z, < 0}, 

V= {z~C" P(z, 2)= 0}, 

E -- {z ~ V: q r > 0 such that D(z; r) f~ V ---- {z}} 
= {isolated points in V}, 

e(z, 2) 0} 
0 

B- -  z ~  V: 02 = 

The points in E turn out to be the same as Shapiro's ([ 1 7]) "special points". Also, 
in the terminology of  Sakai [13], E = E([f~];/z, AL~). These statements follow 
from Lemma 1.1 below. 

In our context it is natural to call a point (z, w) E C 2 real if w -- 2. Thus Vcan be 
identified with the real locus of the algebraic curve P(z, w) -- 0 and B with its set 
of  singular points in the real. (Observe that 

o o ) 
e ( z ,  = 
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Since P(z, w) is irreducible there are only finitely many singular points. In 
particular, B is finite. Finally notice that E c B. 

Ifv is a distribution with compact support in C we denote its Cauchy-transform 
by 9: 

whenever it is defined. Thus 09/0~ = - nv and 9(z) ~ 0 as I z I ~ oo. Since, as a 
function of  ~, 1/(~ - z) E AL'(f~) for every z E C \ f~ and the linear combinations 
of  these functions are dense in ALl(f2) [5] we see that f l  E Q(#, AL') is equivalent 
to that 

(1.6) 

Since 

Xa----/2 in C\f~.  

0--; = - . x , o , .  

Z~(z) + ~ t  is holomorphic in [fl] and we can define a meromorphic function S 
in [f~] by 

(1.7) S(z )  = ~ + ! (~.(z)  - k(z)) .  
lz 

By (1.6) S extends continuously to clos s with 

(1.8) S ( z )  = ~ on 0 ~  ~ 0[fl]. 

Thus S is the so-called Schwarz function for 0[~] (or 0~)  [6]. 
The function S(0(O) is meromorphic in W and it coincides with O* on OW 

since, for ~ EOW, O(~)~0[~] and r = 0(~). Therefore 

s (0(O)  = 0"(O (~ e w) (1.9) 

identically, and 

(1.10) P(z, S(z)) = 0 (z ~ [fl]) 

by (1.4). (1.10) shows that S(z) is an algebraic function and hence has analytic 
extensions (possibly with branch points) across 0[~]. (1.10) also shows, by (1.8), 
that P(z, t )  -- 0 on 0[~] (even on 0~), i.e. that d[fl] c V. 

L e m m a  1.1. (a) V \ E  = O(OW) =0[~]. 
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(b) E={~r162 C,(O=r 

= (z e[f~l �9 ]c~(z) = ~(z)} 

= v n In]. 

(c) [~] = U U E. Also: for every subset F o f  E U U F is a quadrature domain 
for lz (and ~ is one o f  them) and no domain strictly included in U or strictly 
including U u E is a quadrature domain for Iz. 

Proof .  (a) was proved in [7]. 
(b) The third equality follows directly from the definition orS .  We now prove 

E c : e w, r = 
(1.10 

C {ze[nl:S(z)= z} c V A [f~] c E. 

Suppose z E E .  Since P(z,  i )  = 0 there exists at least one point ~ 6 l~ such that 
(r r = (z, ~) (cf. w i.e. such that ~(~) = O(~) = z. I f (  6 0 W t h e n  z is not 
isolated in V since neighbouring ~jEOW give rise to neighbouring zj = r  
r W) c V. Thus either ~ or ~ belongs to W which proves the first inclusion in 
(1.11). 

The second inclusion in (1.11) follows directly from (1.9). 
If  z6[f~],  S(z) = ~ then P(z,  2.) = P(z,  S(z)) = 0 by (1.10) so that z E  V, 

proving the third inclusion. Finally, V N [[2] C E follows from (a). This proves 

(b). 
(c) E C [~] is clear by (b). Since the singular set B is finite and 0[~] \ B  = 

V \ B ,  P(z,  ~.) always changes sign across O[~]. On the other hand P(z,  ~.) never 
changes sign in [~] since [~] N V = E is finite. Since finally P(z,  e) > 0 for [z I 
large (by the normalization a,,  = 1) one concludes that {z ~ C  : P(z, i ) <  0} - 
[ t~] \E,  i.e. [f~] = U U E. 

From (1.6) and (b) we see that if F is any subset of  [~] then [~] \ F (5 Q ~ ,  AL t) 
if and only if F C E. Also any domain strictly including [~] has larger area than 
[f~] and hence cannot be in Q(u, AL I) (by choosing f =  1 in (1.2)). End of proof. 

Finally in this section we shall introduce a convenient notation. Let f~t, f~2 be 
bounded domains in C. Then, by [ 13], [14], there exists an essentially unique 
bounded open set f~ D f~ U ~2 such that 

fit fi2 fi 

for all f ~  SL~(fl), the class of all subharmonic functions in L l(t)). To make fl  
uniquely determined we require ~ to be minimal  with the above properties. We 
set 
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s +fl2-----fl 

for ~ so defined. (~  may e.g. be obtained as ~ -- {z ~ D  : u(z) > 0} where D C C 
is a sutteicnfly large disc and u ~H~(D) (Sobolev space) minimizes Jo I Vu 12dxdy 
under  the constraint Au + Xta, + Xn, -< 1. Then Au + 2n, + ~ ,  = Xta for the mini- 
mizing u.) 

I f  fit ~ f~2 ffi Z~ then ~ + f~2 simply equals ~ U f~.  If  ~ n f~z * ~ then 
~q~ + f~2 is connected and is the min imum domain in Q((~n, + xn)dxdy, SL t) (see 
[13], [141). 

In both cases it is obvious that if f~ U Q(u~, AL~), i.e. 

y f = / ~ j ( f )  for all f E  AL'(fls) 

nj 

( j  = 1,2) ,  

then 

f fw(]~l+~2)(f) for a l l f~ALl( i~j  + [~2), 

so that C/~ + D z E Q ~ t  + #e, AL t) whenever fit + f12 is connected. 
Obviously the above construction generalizes to define f~ + . . .  + f~v for 

arbitrary N >_- 2. We then have ~ t  + ~2 + ~3 -- (fit + ~2) + i'~3, etc. (e.g. by 
[13, Proposition 3.10]). (The construction also generalizes without changes to 
higher dimensions.) 

2. S ta tement  of  the main  result  

Let D be a bounded quadrature domain as in w 1, namely ~ ~ Q(,u, AL I) with/z 
of  order n, given by (1.1). For simplicity of  notation we now assume that ~ is 
maximal, i.e. that f~ -~ [~]. Retain the remaining assumptions and notations of  
w In particular r  W ~ f~ is a conformal map, r meromorphic  on # and 
P(z, w) is the polynomial (1.5) associated with f~. (Clearly P(z, w) depends only 
on s i.e. is independent of  the choice of  W and ~ when f~ is fixed.) 

Let C denote the set of  cusp points and D the set of  double points of 0f~. This 
means that 

C ~ {zEOQ : z -- r for some ~ O W w i t h  #(~)  = 0}, 

D = {z~OQ:z = r = r for two different ~y~OW}. 

Recall that  E and B were defined in w 1. Set 

c f cardC,  d = e a r d D ,  effi=cardE, 
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p = (connectivity of  f~) - 1 

= genus of  l~ 

(card = "cardinality of"). Our main result is the following. 

T h e o r e m  2.1.  W e h a v e B f C U D U E a n d  

(2.1) p +  Y, J , _ - < ( n - l )  2, 
zEB 

where Jz are certain integers >= 1 satisfying (i)--(iii) below. Moreover, the differ- 

ence between the two members in (2.1) is an even number. 
(i) For z E C ,  Jz ffi �89 (r - 1), where r is the least odd number with c, ~ 0 in the 

Puiseaux-series 

S ( z  + t) = t + ~, Ckt k/2 (t E C  small). 
k - 2  

(z is a branch point o f  S when z E C.) 
(ii) For z E D ,  J, is the least number r for which S~')(z)~S~')(z) (the rth 

deri vati yes), where Si and $2 denote the two branches o f  the Schwarz function at z. 

This gi yes in particular J, >= 2. 
(iii) For z ~ E ,  J~ ffi 1 i f  lS'(z)l  ~ 1, J~ >= 2 i f  lS '(z)l  ffi 1. In the latter case we 

have more precisely: the function S*( ( )  ffi S ( ( )  has an inverse T = S *-~ near 

= t and J~ is the least number r for which Ix')(z) § St')(z). 

C o r o l l a r y .  p + c + 2d + e _-< (n - 1) 2. 

R e m a r k  2.1.  From Sakai [15] one derives the complementary inequality 

c + e ~ p + n - 1 .  

The proof  of the theorem is contained in w below. 

3. Class i f icat ion  o f  s i n g u l a r i t i e s  

In this section we classify the singularities of  the algebraic curve P(z,  w) ffi 0 

and relate them to the singularities of  0f2. From this we obtain Theorem 2.1 
above by applying the so-called genus formula for algebraic curves. 

With notations and assumptions as in w let Q(t, z, w) be the homogenization 

o fP (z ,  w), i.e. 

, ffi akjt 2" - k - j z k w J "  

k , j -O 

Let 
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loc Q = {(t: z :  w)~P2(C) : Q ( t ,  z ,  w )  = 0}, 

l o c P  -- {(z, w ) E C 2 : p ( z ,  w )  = 0} -~ {(1 :z." w)~P2(C) : Q(1, z, w) = 0}. 

Thus loc Q is the completion o f loc  P in projective space P2(C). Set 

A - {~E if:: 0* has a pole at ~}, 

.4--  { ~  if:: ~EA}  = {~E I~ ' :0has  a pole at ~}. 

Then A c W, A C I~. 
Consider the map 

(3.1) ~ :  I~ \ (A  U . 4 ) - ~ l o c e  

given by ~ ~ (~(O, ~*(O). By regarding loc P as a subset of  P2(C) and by setting 

~(0" 0" l) for ~ ~A ,  

! (0" 1 : 0) for ~ E.~, 

extends continuously to a map 

(3.2) �9 : I~--- loc Q. 

Since Q is irreducible and l~'is compact,  (3.2) is surjective and it follows that also 
(3.1) is surjective. Further, due to the univalence of  # ]w, ~ is "essentially 
one-to-one", i.e. O-~({a }) consists of  more than one point just for finitely many 
a Eloc  Q. (Examples of  such points a ~ loc  Q are (0 : 0 : 1) and (0 : 1 : 0) if 
m > l . )  

We first classify the points in IS'with respect to their behaviour under ~.  There 
are three cases to distinguish for a point ~ ~ # .  

(I) ~ CA O ,,i and r and #*'(O are not both equal to zero. Then the branch 
ofloc Q which is parametrized by �9 near ~ is nonsingular at r (which does not 
exclude that q ~ )  is a singular point  of  loc Q since another branch may be 
crossing at ~(O).  

(II) ~ CA U ,'1 and #(~) = #*'(O = 0. Since # Iw (and hence ~* [a,) is univa- 
lent, this can only occur for ~ C O W .  Then z = ~ ( ~ ) E ~ O W )  = O ~  is a cusp point 
of0f~ (z E C). Also, 0~'(O (and r must be non-zero due to the univalence. 

It follows that, in terms of  a local parameter t on I~" with t = 0 at ~, 

~ + t ) =  z + a2t 2 + a3 t3 + �9 � 9  

~*(~ + t )  = 2 + b2t ~ + b3t 3 + �9 � 9  

with a2,/72 ~ 0. Since a2 # 0 we can define a new parameter  z near ~ by 

z = t ~ / a 2  + a3t + �9 �9 �9 
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(one of the branches chosen). Then 

(3.3) r + z) -- z + ~ ,  

(3.4) ~*(~ + z) -- ~ + ~ c~  ~, 
k - 2  

for suitable Ck ~ C. Here Ck ~ 0 for at least one odd value of  k, for otherwise we 
would have a contradiction to the fact that �9 is essentially one-to-one. In terms of 
the Schwarz function, (3.3), (3.4) becomes, with e = z~ and using (1.9), 

S ( z  + ~)  = 2 + ~ c ~  k/: for a small. 
k - 2  

Following [12] we shall use the following terminology for cusps. Suppose 
(z, w)Eloc P and consider one irreducible branch of loc P through (z, w). After 
an affine change of  cordinates in C 2 ((z, w)-space) this branch can be para- 
metrized in terms of some local variable t on I~by t ~ (t m, t n + cn + ~t ~ + ~ + �9 �9 �9 ), 
where m is as small as possible and n > m .  If m = 1 then the branch is 
non-singular (smooth) at (z, w), if m > 1 it has a cusp of  multiplicity m. If 
n = m + l the cusp is called simple (otherwise it is of  ~higher order"). The 
terminology " n / m - c u s p "  will also be used. 

Thus (3.3), (3.4) parametrizes a cusp of  multiplicity two and the cusp is simple 
if and only if c3 § 0. (Observe that the possible ~2-term in (3.4) disappears by 
subtracting a constant multiple of (3.3) from (3.4).) 

( l id  ~ EA U A. Assume ~ EA for example. Then r  is one of  the points 
z~ . . . . .  z~ in ( 1. l), say zk. Then ~* has a pole of  order nk at ~ and ~ is regular and 
univalent at ~. This means that i f t  i~ a local variable on Wheat  ~, with t -- 0 at ~, 
then c l ~ ( ~ + t ) - - ( l : ~ + t ) : ~ * ( ~ + t ) )  behaves like ( l : z k + c t : t - ~ 0 =  
(tn, : z d  n. + ctn, § : l) near t - 0, where c = #(~)  § 0. Thus �9 parametrizes, in a 
neighbourhood of  ~, a simple cusp of  multiplicity nk of  loc Q at (0 : 0 : l). 

Similarly for ~ ~,4. 
Next we classify the points in loc Q -- loc P u {(0 : 0 : 1), (0 : 1 : 0)}. For 

(z, w)Eloc P we distinguish two cases. 
(A) (z, w) = cl~(~) for only one point ~ ~ W\ (A U/1). If(l)  above holds for ~, 

then (z, w) is a non-singular point ofloc P. lf( l l)  holds, then (z, w) = (z, ~) (since 
~*(~) = ~(~) for ~ E O W )  with z E0s a cusp point ( z E C ) .  Moreover, by (3.3), 
(3.4), (z, w) is a cusp of  multiplicity two on loc P a n d  therefore (z, w) is a singular 
point of  multiplicity two of  loc P. (The multiplicity of  a singular point (z, w) of  
loc P is defined as the degree of the lowest order terms actually occurring in the 

Taylor expansion of  P(z, w) at (z, w).) 
(B) ( z , w ) = r  for (at least) two different points ~,,~2E 

W \ ( A  U 4 ) .  The conditions on ~,  ~ can be written 
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I r -- r162 -- z, 
(3.5) lr r  ~. 

Because of  the univalence of r (3.5) can occur only if 
(1) ~, ~ W, ~2 E gs or conversely 

o r  

(2) r ~2~0W. 
In both cases it follows from the univalence of ~ I w that we cannot have 
(z, w)--q~(~3) for a third point ~3~ W\ (A  U A) and that (I) (not (II)) holds for 
both of  ~ and ~2. Therefore (z, w) is an intersection between exactly two smooth 
branches of  loc P. These branches have the same tangent directions at (z, w) if 
and only if 

(3.6) r _ r r162 r 

Consider case (1). Since either (~ or ~2 belongs to W we have z E f~. Similarly 
a, ~ f~. Let us assume that ~, ~ W, ~2 E W. We have two subcases. 

(a) (2 = ~.  Then (z, w) - - (z ,  :~). Thus z ~  V. Since moreover z ~ C ( O W )  we 
have z E E  by Lemma 1.1. Using (1.9) the criterion (3.6) for tangency becomes 
S'(z)  = l /S '(z) ,  i.e. IS'(z)[ = 1. 

(b) ~2 ~ ~,. Then a, § z due to the univalence o f r  [w. It follows that z ~ V(and 
~, ~ V); for if P(z,  ",)-~ 0 there would be some ~ ~ I~'\(A U .4) with r  z, 
~ )  -- z and if say ~ E W (recall that z g~ c/)( O W) ), the univalence of  ~ ]w would 
give ~ -- r and the contradiction z = r = ~(~) = ~,. 

Thus in subcase (b) (z, w) is a singular point ofloc P which does not show up in 
the real locus V. (This is also true for the singular points (0 : 0 : 1) and (0 : 1 : 0) of  
loc Q.) What can be said of the non-real singular points of loc  P (or loc Q) is that 
they appear in pairs because of  the symmetry of  loc P: corresponding to the 
involution r - -~  on if ' there is the involution (z, w)-- (a , ,  t )  on loc P (extending 
to Ioc Q) and by definition, the real points of loc P are exactly the fixed points of  
this involution. If(z, w) is a singular point, (~v, 2) is clearly a singular point of  the 
same type (multiplicity etc.). 

Consider finally case (2). It is immediate  that (z, w) -- (z, ~) with z a double 
point of0fJ  (z ED).  Also, it is straighforward to check that the two branches of  
loc P through (z, w) always have the same tangent directions in this case. 

(C) Finally we investigate the points ( 0 : 0 :  1) and ( 0 : 1 : 0 ) .  Developing 
Q(t,  z,  w) around (0 : 0 : 1) for example we get (setting w -- 1) 

Q(t,  z, 1) -- ~ ak/2n-k-Jz ~ 
k, j -O 

(3.7) 

= ~ a~t"-~z  ~ + Y~ ak,._~t"-k+~z ~ + . . . ,  
k - 0  k - 0  
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Type of Points in Ioc Q 
pre-image 
in # Type in Appearance Multi- Type of  singularity 

classification in the real plicity in P2(C) 

(I) (A) V \ B 1 non-singular 
or non-real 

(II) (A) C 2 

(I) (B) la E 2 

(1) (B) Ib non-real 2 

(I) (B) 2 D 2 

(lid (C) non-real n 

cusp of multiplicity 2 

intersection between two 
smooth branches 

intersection between two 
smooth branches 

intersection between two 
smooth branches 

m simple cusps of 
multiplicities n~ . . . . .  nm 
with distinct 
tangent directions 

tangency iff 
IS'(z)l = 1 

always tangency 

which shows that (0 : 0 : 1) always is a singular point of  multiplicity n (recall that 

a, ,  = 1). (This also follows from (III) above: we had m branches through 

(0 : 0 : 1), one for each Zk, the kth branch had a simple cusp of  multiplicity nk at 

(0" 0" 1) and Z~'-i nk = n.  Compare below.) 
It is shown in [7] that the terms in (1.5) which are of  degree n and n - 1 in w are 

explicity related to the data (1.1) of  g by 

i ak.n- I g k  1 n k -  l 

k-o - i ~, J!% + constant 
i a,.,,z k n k - I  j-O ( Z - - Z k y  +l 

k - O  

(3.8) 
I 

-- - ~(z) + constant. 

(See also Remark 3.1 below.) Thus Z~-0 a ~ z  k = I l ~ - i  ( z  - Zk) nt SO that we get, for 

the lowest order terms in (3.7), 

a : - ' : =  fi 
k - O  k - - I  

This shows that at (0 : 0 : 1) we have m distinct tangent directions, one for each 
Zk, the kth direction having multiplicity nk. 

This finishes the classification of  the points in loc Q. The results are summar- 
ized in Table 1. Observe that B = C t.J D U E is a particular consequence of  the 

classification. 
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In the first two columns (I), (A) etc. refer to the cases in the classification above. 

In the third column, if e.g. ( l ' z "  w)~ loc  Q is the point in question then 
"non-real" means that w § ;r while e.g. C means that w - 2 and z E C. 

In general, if loc Q is an irreducible algebraic curve of  degree d in P2(C) the 
genus formula says that 

(d - 1)(d - 2) 
g+Er  

q 2 

where g is the (geometric) genus of loc  Q, q is summed over all singular points of  
loc Q and ~q are certain integers _-_ 1. (See below.) 

In our case we have d - - 2 n  and g = genus ( g / ) - - p .  We shall now use the 

classification above to say as much as possible about the t~q. 
In general 

(3.9) tSq >= nq(nq - 1) 
2 

where nr is the multiplicity of  the singularity at q. Moreover, equality in (3.9) 
holds if and only if (i) all the branches of  loc Q through q have different tangent 

directions a n d  (ii) each branch either is smooth or has a simple cusp at q. See [ 12]. 
From the above we immediately obtain (in our case) 

n ( n  - 1) 
~(0:0: I) ----" ~(0: 1 : 0 )  

2 

For z E B we write Jz = J(z. ~). Then J~ > 1 if z E C, J: > 2 if z ~ D (by tangency) 
and, if z ~ E ,  J~ > 1 with equality if  and only if [S'(z)[  # 1 (the non-tangency 

condition). 
The more detailed assertions about J: in Theorem 2.1 follow by applying the 

technique in [ 12, p. 116ff]. Assume z ~ E  for example. Then the two branches of  
loc P passing through (z, 2) can be parametrized by 

(( close to z) and 

-- S(O) 

--" ( S * ( O ,  

(( close to ~) respectively. If  I S ' (z) l  § 1 these branches have different tangent 
directions and we have J, -- 1 by the previous paragraph. 

If  I S ' (z) l  -- 1 (or, more generally, if  S ' ( z )  # 0) S*(O has an inverse T near 
= ~ and the second parametrization can by replaced by 

---(L T(O) 

(~ close to z). Now set 
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R ( x ,  y)  = (y - S ( x ) ) ( y  - T(x) )  = y2 _ ( S ( x )  + T(x ) )y  + S ( x ) T ( x )  

((x, y ) E C  2 close to (z, $)). Thus R(( ,  S ( ( ) ) =  R( ( ,  T(())~-~0 so that, close to 
(z,  ~.), R ( x ,  y) = 0 is an equation for loc P of  a special form (in a translated 
coordinate system, with the origin at (z, ~), it becomes a Weierstrass polynomial 
in y). The meromorphic differentials 

de 
aR 
ay (~' s(O) 

and 
d( 

OR 
- -  ( ( ,  T ( ( ) )  
Oy 

have poles of certain orders (namely = r in the theorem) at ( -- z and, by [ 12], ~ 
equals one-half times the sum of  these orders. This gives (iii) in the theorem. 

(ii) is treated similarly with S((),  T(()  above replaced by $1((), $2((). For (i) 
one can use explicit formulas [11 ], [12] for 6 for cusps or one can use the above 
technique slightly modified. In the latter case one can exploit the parametrization 
(3.3), (3.4) ofloc P near (z, z) and define 

R ( x ,  y )  = tY - ~ * ( v / ~  - z ) ) . ( y  - ~*(  - v / ~  - z ) )  

= y 2 - ( ~ * ( V q  - z )  + ~ * ( -  v / -~  - z ) ) y  + ~*(v / -~  - z ) ~ * ( -  .o f f  - z ) .  

Then R ( x ,  y )  is well-defined (for (x, y) close to (z, ~)) if x / ~ -  z and - x/~ - z 
are the two square-roots of x -  z, and R(O(r), #*(r)) = 0. By [12] dz equals 
one-half times the order of  the pole at z = 0 of  the differential 

This gives (i). 

dr 
OR 
- -  (r ~*(O) 
ay 

Substituting into the genus formula gives 

n(n  - 1) (2n - l)(2n - 2 )  
p+2  2 + 2  ~+Y. 6,-- 2 

z E B  q 

where q is summed over all non-real singularities in C 2. Since these occur in pairs 
((z, w) and (~, ~)), Y. Jq is an even number and we obtain (2.1). By this Theorem 

2.1 is proved. 

R e m a r k .  It may be worth explaining why (3.8) holds. Writing P(z ,  w ) =  

Y,~-o Pj(z)  wJ and using that (by (1.7)) - (1/~r)#(z) simply is the singular part of  

the Schwarz function S(z ) ,  (3.8) can be written 

e,_,(z) 
S ( z )  + - -  

e , ( z )  
holomorphic (in [2). 
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Let Sl(z) . . . . .  S.(z) be the branches in s of  the algebraic function w = w(z) 
defined by P(z, w) = O. Then S(z) is one of  them, say S(z) = St(z). Thus S,(z) 
is in particular single-valued in [2 while S2(z) . . . . .  S.(z) may have branch- 
points and get mixed up with each other. Since ( w  - S t ( z ) )  . . . . .  ( w  - S . ( z ) ) = -  

P ( z ,  w)/P.(z), 

e . _ t ( z )  

P . ( z )  
- -  - S ( z )  + & ( z )  + . . .  + S n ( z ) .  

From this it follows that h ( z ) = S 2 ( z ) + . . .  +S , ( z )  is single-valued in f~. 

Moreover, h(z) has no poles in ~ because St(z) . . . . .  S,(z) have altogether at 
most n poles in s (since ~, or r has only n poles) and already St(z) = S(z) has n 
poles. Thus h(z) is holomorphic in fl, proving (3.8). 

Using 

Y~ S~(z)&(z) = p"-3-! ,... , S,(z) ..... S,(z) = ( - l) ~ P~ 
,~_k<j~_, p~(z) P~(z) 

one obtains, by recursion, further relations for S(z), namely 

S(z): + P~- l(z______~) S(z) + P~-2(z) = h o l o m o r p h i c ,  
P.(z) P.(z) 

S(z)  3 + P.-t(z__~) S(z)  2 + P.-2(z_____)) S(z )  -~ P. -3(z )  
e.(z) en(z) e.(z) 

- -  -- holomorphic (in f~) 

etc. If  S(z) is known explicitly these relations can be used to determine 

Pn-, ,  Pn-3 . . . . .  P0. 
Finally we wish to remark that i f~ j  6 Q(gj, ALt) ( j  = 1 . . . .  , N) and Pj(z, w) is 

the polynomial associated with ~j  then, provided the gj have mutually disjoint 
supports, the polynomial P(z, w) associated with ~ = ~ t  + �9 �9 �9 + fl# (see w is 
of  the form 

(3.i0) P(z, w) ffi Pl(z, w) . . . . .  PN(z, w) + R(z,  w), 

where R(z,  w) is a polynomial of  the form 

n - 2  

(3.11) R(z, w)= Y. b~izkw / 
k, j -O 

(b~j ffi ~k) and n is the order ofgl  + �9 �9 �9 + g# ( =  the sum of  the orders of  the/~j). 

This follows by a straightforward computation using (3.8). Actually (3.10), (3.11) 

hold whenever f l E Q ( g t + . . .  + /z# ,AL t) (not necessarily of  the form 
~ l  + " " " + ~ ) -  
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4. Examples  

We shall exemplify Theorem 2.1 for certain small values of  n. 
For n --- 1 the theorem gives that p = 0 and that B is empty. Also it is a classical 

result (see [ 1 ] for references) that the only quadrature domains for n = 1 are the 

circular discs. 
For n -- 2, (2.1) becomes p + Z Jz < 1. Since the difference is to be an even 

number we actually must have equality. Since moreover it is known that p -- 0 

when n - 2 [4], [7] (this also follows by using Remark 2.1) we get Z Jz = I. It 
follows that B = C O D U E consists of  exactly one point which either is a I-cusp 
or a point in E. This result (essentially) was first obtained by Shapiro [ 17]. Also, 

both cases can occur (examples are given in [I 7]). Further studies of  the case 

n = 2 can be found in [15]. 
For n >_- 3 we shall consider quadrature domains i) E Q(.u, AL ~) where/z =/~, is 

the measure 

I z , ( f )  = ltr 2 ~. f (Zk ) ,  
k - I  

r > 0, zk = o9k, O9 = e 2=/". Observe that/z, has certain symmetry properties: it is 
invariant under rotations z - -  Ogkz and under reflexions in the lines e k~/" R (k ~ Z). 

We shall only consider domains f~ which also are invariant under these transfor- 
mations. Also, for simplicity of  notation we shall assume that i)  = [~]. 

The principal example of  an [2 ~ Q(/z,, AL ~) as above is, if r > sin0t/n), 

D - - D ( z t ; r ) +  - . .  + D(z , ; r )  

( +  defined in w If r =< sin(n/n) this t)  is disconnected. 
In the sequel we consider a fixed domain ~ E Q ~ , , A L ~ ) .  Let P ( z ,  w ) -  

Z a ~ k w  j be its associated polynomial (as in (1.4), (1.5)). Then P ( o g z , - ~ ) ~  

P ( z ,  t.) by the assumed symmetry o f ~  and it follows that akj can be non-zero only 
when o9k-j = 1, i.e. when k - j  E nZ. Since/z has order n this shows that P is of  

the form 

P ( z ,  w )  = ao + a~zw + �9 �9 �9 + a , _ 2 ( z w )  n -2  

+ a , _  ~(zw) n - ~ + ( z w ) "  + a ,  oz" + aonw n 

(aj -- a~ ER).  Here an-l, a,0, a0, can be determined using (3.8). This gives 

(4.1) 
P ( z ,  w )  ffi ao + a l z w  + . .  �9 + a , _ 2 ( z w ) ' - 2  

_ n r 2 ( z w ) ,  - I + ( z w ) "  - z n - w n. 

Let u be - 1/2n times the logarithmic potential o f~a  - #, so that 
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Au = Xn -/.tr, 

OU 1 
- 6 c o - g )  

az 4zt 

in C. Thus, at each point in C, Xta =/~, if and only ifOu/Oz = O. Hence, by (1.6), u 

is constant in each component o fC  \ ~ .  In the exterior component this constant is 
zero because u - - 0  at infinity. Further, b y  Lemma 1.1 

E = {z~f~:Ou/Oz = 0}, 

i.e. E simply consists of  the stationary points o fu  in f~. Since E -- V fl f~ (Lemma 

1.1) this shows that, for z ~i'~, 

P(z,  t )  -- 0 if and only if Ou _- 0. 
Oz 

The last relation enables us to obtain some information about the coefficients 
a0 . . . . .  a , -2  in (4.1) (for n ---- 3 we will obtain complete information). 

Suppose first that 0 E [1. Then it follows from the symmetry that u is stationary 
at z -- 0 (hence 0 ~ E )  with the development 

u(z) = u(O) + ~lz I s + O(Iz  13) 

(z --- 0). (Observe that Au = 1 near the origin.) In particular, u is strictly increas- 

ing on each radius emanating from the origin (in some neighbourhood of  the 

origin). 
Consider now u on the radii 

N k =  z ~ _ C \ { O } : a r g z = - + k  , 
n 

k - -  1 . . . . .  n. Since OE~'I there is a (unique) point ~k~-O~ N Nk such that the 
segment [0, ~k) belongs to ~ .  There are two cases to distinguish: either ~k is a cusp 

point o f  O~ (~k~-C), or ~k is a smooth point or a double point of  O~ 
(~k ~ . ( V \ B )  U D). In the latter case the tangent of  0~'1 at ~k is perpendicular to Nk 
and therefore, since u solves a Cauchy problem Vu -- 0 on 0~, Au = 1 in ~ in a 
nei#lbourhr  of  ~k, U must be strictly decreasing (as a function of  I z I ) on [0, ~k) 
in some neighbourhood of  ~k. (In fact one obtains 

U(Z) f U ( ~ k ) + � 8 9  3) f o r zE [0 ,~ k )  

close to ~k.) 

Combining this with the information about u near the origin it follows that if  ~k 
is not a cusp point of  Of~ then u I~, must have an interior local maximum on 

[0, ~k). Since, by symmetry, the derivate o f u  in the direction perpendicular to NK 
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always is zero (on Ng) this local max imum is a stationary point o f u .  Thus (0, (k) 

contains at least one point  in E (if (k ~ C). 
To summarize the case 0 ~ f ~  we have at least n + 1 points in B, namely 0 E E  

and  either n points ((k) in C or another  n points in E.  

Consider now the case 0~f~ .  Then f l  N Nk contains a segment ((k, r/k) with 

(k, r/k ~ 0~2. An analysis similar to the above shows that  either at least one o f  ~k 

and  r/k is a cusp point  o f  Of~ or the segment ((k, ~/k) contains a point in E .  Thus we 

have at least n points in C or at least n points in E .  Moreover p > 1 in this case. 

Let us now stick to the case n = 3. By Theorem 2.1, p + Z ~z < 4 and by the 

above analysis, p + Z ~z ->- 4. Hence we have equality and it follows (using the 

above analysis) that  we have the following four possibilities. 

(4.2) 

(i) p ---- 0, c ---- 3 

e =  1, d = O ,  

(ii) p = 0, c = 0, 
e = 4 ,  d = 0 ,  

(iii) p -- 1, c -- 3, 
e = O ,  d = O ,  

(iv) p -- 1, c -- 0, 
e = 3 ,  d - - 0 .  

In particular D -- O in all cases. Also Jz -- 1 when it is non-zero, and,  except for 

the three possible cusps (necessarily ~-cusps), O~ is smooth. We shall see later that  

all four cases above can occur. 

For  n -- 3, (4.1) becomes 

(4.3) P(z ,  w) = ao + alzw "- 3r2z2w 2 + z3w 3 - z 3 - w 3. 

To use the obtained informat ion about special points on Nk we study P(z ,  ~) on 

Nk. Thus set 

(4.4) 
= s6--  3r2s4 + 2s3 + ais2 + ao ( sER) .  

The following should be observed. Set 

(s ~ R). 

Then, by Lemma 1.1, p ( s ) <  0 if  and only i f  z E f t \ E ,  p(s)----0 i f  and only i f  

z E 0f~ O E.  When z E 0s \ C the tangent direction o f  Ofl at z is perpendicular to 
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Nk by the assumed symmet ry  o f f l  (recall also that  D = ~ ), hence p'(s) ~ 0 (note 

that  z ~ B ) .  When z ~ C the cusp has the direct ion o f  Nk (by symmetry)  and  it 

follows that  p ' (s )  -- 0 and that  p changes sign at s. In par t icular  p "(s) = 0. Finally, 

when z E E ,  p'(s) = 0 and p ( t )  < 0 for  t § s in a ne ighbourhood  o f s .  In par t icular  

p ' ( s )  _-< O. 

We conclude f rom the above  that  p(s)= p'(s)= 0 i f  and  only i f  z ~ E  tA C, 
and that  then p~(s) <= 0 with p negative on at least one  side o f s .  By the earlier  

analysis (E  U C) N Ark contains exactly one point.  Therefore  there exists exactly 

one T > 0 with 

(4.5) p ( ~ ) = p ' ( ~ ) = 0 .  

Moreover  

(4.6) p*(z)<=O 

and p is negative on  at least one  side o f  x. 

We shall use this z as a pa ramete r  in the sequel. F r o m  (4.4) 

Hence  (4.5) shows that  

(4.7) 

p'(s) = 2s(3s 4 -- 6r2s 2 + 3s + a0 .  

a l = - - 3 z ( z 3 - - 2 r 2 z + l ) .  

Substi tut ing this into (4.4), (4.5) gives 

(4.8) ao ---- T3(2z 3 - 3r2z -[- 1). 

Taking one more  derivate gives 

Thus  

Define 

Thus,  by (4.6), 

p"(s) = 2(3s 4 -- 6r2s 2 + 3s + al) + 6s(4s 3 -- 4r2s + 1). 

p"(z) = 6~(4z 3 -- 4r2z + 1). 

Po(Z) = 4z 3 - 4r2z + 1, 

qo(z) = 2T a - 3r2z + 1, 

ql(~') ---- ~s _ 2r2~. + 1. 

po(T) _-< O. 
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It also follows that r > ,r for when 0 < r < v/3/2, po(x) > 0 for all z > 0, and 

when r -- , f3 /2 ,  po(z) ~ 0 only for z -- �89 and then p(s) turns out  to be positive on 

both sides o f  s -- z. 
Finally, since 0 E E  or 0 ~ f ~  we have ao _>- 0, i.e. 

qo(O ->- 0. 

Now set 

L = {3 > 0 : p0(3) _-< 0, #o(T) _-> 0}, 

Q = { ( r , z ) E R 2 : r > ~ ,  zE l , } ,  

and, for (r, z ) E Q ,  

t2(r, z) = [{z E C  : z3~ 3 - -  Z 3 - -  •3 __ 3r2z222 __ 3zql(z)z2 + z 3 q 0 ( T ) <  0}]  
(4.9) 

-- [{z E C  : e(z, 2) < 0}1 

with P as in (4.3), (4.7), (4.8). Up to now we have shown that every f~ E Q(/t,, ALL 1) 

which is invariant under  the same rigid transformations as /z ,  and  satisfies 

f~ = [f~] necessarily is o f  the form ~( r ,  3) for some z E l ,  and that  �9 > v/3/2. We 

shall next establish the converse. 

P r o p o s i t i o n  4 .1 .  ~(r, z)EQ(lZr, ALt) for all (r, ~)EQ. 

Before going to the proof  we shall try to get a picture o f  the set Q. Straightfor- 

ward analysis shows that  the set o f z  > 0 satisfying p0(3) < 0 is (for �9 > ~/3/2) an 
interval [3,, %], where 0 < 3t < �89 < 32. zj = 3j(r) are monotone functions of  r with 
31~--'�89 as r - ,  v/3/2, 31-'0, 32 ~ as r ~ .  For r=  2-L/6> q/3/2, 32--2 -2/3 

(this to be used later). 
For  ~v/3/2 < �9 _-< 2 - v6, qo(3) > 0 for all 3 > 0. For  r > 2 - ,6 the set o f  3 > 0 

satisfying qo(Z) > 0 consists of  two intervals, (0, ~3] and [34, ~ ) .  Here 0 < % < 
2-2/3< z4, 3~ are monotone  functions o f  �9 with T3.4---2 -2/3 as r--* 2-,/6, % ~ 0 ,  

T4--" ~ as r - -  oo. Observe that  in the l imiting case r -- 2 - 1/6, ~2 = 33 -- z4 = 2 -2/3. 

Next we observe that  for r > 2 - i/6, q0(Tl) > 0 and q0(~2) < 0. In fact, for z = 31 

or 32, 

q0(T ) ~___ q d T )  __ ~ P 0 ( 3 )  ffi - -  (T3 1 ~) ffi - -  ( 3  1 2 - 2 /3XT2  + 2 - 2 / 3 3  + 2 -4 /3  ) 

and zl <�89 < 2-2/3 and (for �9 > 2 -1/6) 32 > 2 -2/3. It follows that rl < % < T2 < 34 

for r > 2 - 1/6. Hence we have 

Ir -~- [Tl(r), 32(r)] for ,r < �9 < 2-1/6 

I, ---- [3t(r), z3(r)] for r > 2 - 1/6 
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In particular I, is a closed interval of  positive length for every r > x/~/2. 
Thus Q is bounded by the arcs z = T l ( r )  ( r > x / ~ / 2 ) ,  z -~32(r )  

(x /~ /2  < r < 2-'/6), 3----%(r) (r > 2-1/6) (belonging to Q) and the two special 
points (x/~/2, �89 and (2 -~/6, 2-~3), of  which just the last one belongs to Q. 
Assuming for a moment  that the proposition is already proven we can interpret 
the different parts of  Q as follows. For (r, 3) in the interior of Q, po(3) < O, 

q0(~) > 0, hence p~(3)  < 0 and a0 -- p(0) > 0. This means that ~(r ,  z) is doubly- 
connected (0 ~ f~(r, z)) and that the double zero p ( z )  = p ' (3 )  = 0 corresponds to 
(three) points in E. This is the case (iv) in (4.2). 

On the arc ~ = Tl(r), Po(Z) = 0 and qo(z) > 0. Thus p ( z )  = p ' (3)  = p" (T )  = O. 

Moreover p ' ( 3 ) ~  0 ( p # ( z ) =  p " ( T ) f f i  0 holds only for (r, z )  ffi (x/~/2, �89 Q), 
hence p changes sign at z and it follows that ~ corresponds to (three) cusps on O[~. 
Also, ~( r ,  z) is doubly-connected. Thus we are in the case (iii) in (4.2). The same 
applies to the arc z--z2(r)  (for x/~/2 < r < 2-1/6). In this case the cusps are 
located on the exterior component  of  Os 3), whereas for 3 = zm(r) the cusps are 
on the interior component.  

For (r, z) ----- (2 -1/6, 2-z'3), po(~) = qo(z) ffi O. Po(~) = 0 still means that we have 
three cusps on the exterior component  of  0~(r,  3) while qo(z) = 0 means that the 
interior component  of  O~(r,  ~) now has degenerated to become a point in E 
(namely z = 0). Thus we are in the case (i) in (4.2). 

On the arc �9 = %(r) finally po(3) < O, qo(z) = O, which means that we have four 
points in E ( z  = 0 and one point on each Nk). Hence we are in the case (ii) in (4.2). 

P r o o f  of Proposition 4.1 .  Set 

J, = { z E L  : ~ ( r ,  z ) E Q ( l z , ,  ALl)} 

and we shall prove that J, -- I, for all r > x//3/2. For this it is enough to prove that, 
for each r > x/~/2, 

(i) J, is closed, 
(ii) J, N int I, is open, 
(iii) Jr A in t / ,  is non-empty. 

To prove (i), suppose % ~Jr ,  ~n ~ ~ (n ~ oo). Thus ~r~,.~.) =~ r  in C \ ~ ( r ,  ~,) by 
(1.6). Using that ~(r ,  z)---int c l o se ( r ,  3) it easily follows that ~r~,.~)=/z, in 
C \ ~ ( r ,  ~). Thus we have [2(r, z ) ~ Q ( l z , ,  AL~), i.e. z E Jr, if  we merely can prove 
that O~r, ~) is connected. 

So suppose that ~(r ,  T) is not connected. Then it still follows (e.g. by consider- 
ing the function S ( z )  ffi 2. + (1/70 (~r~r.,~(z)-/~r(Z)), which is meromorphic  in 
fl(r, z) and equals t on OO.(r, z)) that each component  o f ~ ( r ,  z) is a quadrature 
domain.  Using also the symmetry properties of  ~(r ,  ~) it more precisely follows 
that fl(r, z) has exactly three components,  these being quadrature domains for 
the m e a s u r e s f ~  ~r2f(zk), k -- 1, 2, 3 respectively. Hence (compare the beginning 
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of this w ~(r, z) is the disjoint union of the discs D(zk, r), k = 1, 2, 3. This 
however is a contradiction, since r > v/3/2. 

To prove (ii), let (r, z )~J ,  N intI, .  Then f~(r, z )EQ(p , ,AL ~) is doubly- 
connected with 0f~(r, z) smooth algebraic by the earlier analysis. It is enough to 
prove that there exists a one-parameter family f~(t) ( - e < t < e ,  say) of domains 
in Q~, ,  AL l) depending smoothly on t, having the symmetry properties ofF, and 
satisfying f~(t)--[~2(t)] and [2(0)--L2(r, z). For then we must have f~(t)= 
F~(r, ~(t)) for some function z(t) with z(0) -- z. If the map t ~ F~(t) is smooth and 
one-to-one then z(t) must be smooth and invertible (hence also monotone) and 
therefore produces a neighbourhood of z in J,. 

Such a family f~(t) may be obtained by solving the moving boundary problem 
in [9]. Unfortunately, the conclusions in [9] are not strong enough to ensure that 
the (weak) solution constructed in [9] really is in Q(,u,, AL I) (although the 
construction easily can be modified to ensure this property). However, in the 
present case a family f~(t) with the desired properties (and being a classical 
solution of the problem in [9]) can be constructed in a rather elementary way by 
variation of the mapping function ~: W ~ ~ ( r ,  z) in w  

By w this ~ : W ~ f~(r, z) is a meromorphic function on W, which is a torus in 
the present case. W is conformally equivalent to C / a Z  + 2iZ for some a > 0 and 

can hence be represented by a doubly periodic (elliptic) function (which we also 
call ~) with periods a and 2i. We may assume that the half fundamental domain 
spanned by 0, a and i corresponds to W and hence is mapped onto f~(r, z) by ~. 
The "back-side" I~ of # may then be represented by the half fundamental 
domain spanned by 0, a and - i. 

shall have three simple poles in each half fundamental domain corresponding 
to W and elsewhere be regular. It follows that ~ is of the form 

3 
~ w )  = Y. Ak~(W -- Wk; a )  + AO 

k - I  

with wk in the half fundamental domain in C corresponding to if:, A~ ~C,  
Z~ Ak = 0 and where ~(w; o) denotes minus the anti-derivate of the Weierstrass 
fg-function with periods a and 2i (d~(w; a ) / d w  = - [?(w)). ~(w; a) may be 
normalized to be odd and is then uniquely determined. (See e.g. [2] for the above 
material.) ~(w; a) is not elliptic itself, but ~ becomes elliptic when Z~ Ak = 0. 
Since Wadmits a one-parameter group ofconformal isomorphisms r should also 
be normalized in some way, let us say by requiring that Re w~ ~- 0. 

The family fl(t) is now obtained as conformal images of the half fundamental 
domains spanned by 0, a f t )  and i under 

3 
(4.10) r  t )  = Y~ A ~ ( t K ( w  - walt); a( t ) )  +A0(t) 

k - I  
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for suitable functions a f t ) >  0, Wk(t), Ak(t) subject to Z~Ak(t)= 0 and the 
normalization Re w~(t) -~ O. To see how these should be chosen let F be a (test) 
function holomorphic in a neighbourhood of clos t2(0) (so that F E AL~(f~(t)) for 
all t small enough). Then, as in [8], one obtains 

(4.11) 

d 
dt f F(z)dxdy= f F ( z ) I m [ ~  t dz] 

P,( t ) ~P,( t ) 

- f  
a w ( t )  

F(C(w; t))Im[r t)~'(w, t)dw], 

where 0 W(t) denotes that part of the boundary of the half fundamental domain 
spanned by 0, o(t) and i for which Im w -- 0 or 1. (A dot denotes derivative with 
respect to t.) 

We want to have 

(4.12) , f  F(z)dxdy = 0 
~(t) 

for F as above, for then fl(0) ffi f~(r, z)E Q(u,, AL l) implies f~(t)E Q~, ,  AL~), at 
least for t small enough. By (4.11), (4.12) holds if 

(4.13) Im[~w, t)fY(w, t)] -- 1 

for Im w -- 0 and 1. ((4.13) is a classical formulation of the moving boundary 
problem in [9] expressed in terms of conformal mapping functions.) Thus, if we 
have a solution ~w, t) of (4.13) with ~(w, 0) -- ~(w) (mapping onto f~(r, z)) and 
with ~(w, t) elliptic of the form (4.10), then ~(w, t) will be univalent (in w) for t 
small enough and map onto doubly connected domains ~(t)  depending smoothly 
on t (if this is true for ~(w, t)) and satisfying L2(0)--f~(r, z) and, by (4.12), 
D,(t)EQ~,, AL~). Also ~ ~ 0 by (4.13) so F~(t) really changes with t. 

The treatment of(4.13) essentially parallels that of a similar equation in [8] and 
we will not give the details here. The result is that the "Ansatz" (4.10) in (4.13) 
gives a system of ordinary differential equations for o(t), Wk(t), Ak(t) in normal 
form (i.e. solved for d, wk, Ak as smooth functions of o, w,, Ak). By standard 
theory this system has a unique local solution. Hence (4.13) has a unique local 
solution of the form (4.10) and we obtain a smooth (and non-constant) family of 
domains O,(t)EQ(#,,AL~). By the uniqueness f~(t) must have the required 
symmetry properties and it is also rather immediate that ~2(t)--[O,(t)]. This 
proves (ii). 
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From (i) and (ii) it follows that for each r > ~ /3 /2  either J, -- I, or Jr N int I, =ffi 
Z~. Now J, is certainly non-empty for all r > v/3/2 because 

D(r) : ffi D(zi; r) + D(z2; r) + D(z3; r ) E Q ~ , ,  SL l) c Q(/z,, ALl). 

Clearly D(r) has the required symmetry properties so that 

[D(r)] ffi ~(r, z(r)) 

for a certain function z(r). 
Thus z(r)~J,  for all r>x /~ /2 .  Moreover z(r)>xl(r)  and, for r < 2  -1/~, 

z(r) < z2(r). In fact, in the contrary case OD(r) would have (three) ~-cusps, which 
is impossible because inside a J-cusp the logarithmic potential o f / z , -  XDr 
becomes negative (cf. [16]) and this contradicts D(r)EQQz,, SL I) by [13], [14]. 
However z(r)=%(r)  from some r on (at least from r - - 1  on, since 
0ED(z~; r) U D(z2; r) t2 D(z3; r) c D(r) for r > 1) so z ( r )~ in t  I~ for large r. 

To produce points in J, r int I, for larger r (r > 2 - ~/6) we therefore have to 
modify the construction o lD( r )  a little. Starting from any (ro, %)~ int Q such that 
~(ro, T0)~ Q(/z,, AL l) (i.e. Zo~J,o N int I , ,)we set 

3 
D(r; ro, + Y, D(z ; rv/rv/ - r3) 

k - I  

for r > r0. Then D(r; ro, zo)E Q ~ , ,  AL ~) and is symmetric. It follows that 

[D(r; ro, %)] -- ~( r ,  z(r; r0, %)) 

for some function T(r; ro, %). Hence ~(r; ro, Zo)EJ, for all r>ro.  Moreover 
z(r; ro, To) > x~(r) and, if r < 2 - ~/6, z(r; ro, To) < z2(r) because OD(r; ro, %) cannot 
have ~-cusps, by an argument similar to the earlier one 

(D(r; ro, %)E Q(lz,/~-,g + )~at,~,flxdy , SLY)). 

Notice also that, by construction, ~(r0, %)C D(r; r0, %). This implies that 
T(r; ro, %) < %(r) for r in some interval ro < r < r0 + e where e = e(ro, %) > 0 
can be estimated. In fact, if  the area of  the bounded component  of  ~(ro, %) is 
denoted A --A(ro, %) then z(r; r0, %) < %(r) whenever 37r(r 2 -- ro 2) < A  (i.e. 
r <x/A(ro, r0)/31r + r02) because then the D(zk; x / ~ - -  r 2) do not enough area to 
fill in the hole in f~(r0, %). The important  thing about e(r0, %) is that it is bounded 
from below (away from zero) on every compact subset of  int Q. 

Now we can conclude that J, tq int I, # ~ for all r > x/~/2. For in the contrary 
case set  

p -- sup{r > v /3 /2  : J, tq int I, § ~ }. 
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Then 2-  u6 < p < oo, J, -- I, for r < p and we can choose a point (r0, %) ~ int Q 
with ro<p so close to p so that p -  ro<e(ro, %). Since, by the definition of  
e(ro, Zo), T(r; r0, %)E J, A int I, for all ro < r < ro + e(ro, %) we get a contradiction 
to the definition ofp .  This proves (iii) and finishes the proof  of  the proposition. 

Remark  4.1 .  It is worth emphasizing that, with a different parametriza- 
tion, the family {~(r, z) : r E in t  I,} for any fixed t > ~/~/2 is a classical solution 
of the moving boundary problem studied in [9]. In fact, for r E int I,, ~(r, r) is 
doubly connected, O[~(r, r) is smooth algebraic and depends smoothly on t (by 
the explicit representation (4.9)) and, since F~(r, r ) E  Q(#,, ALl), 

d ( .  

(4.13) dr  J fdxdy=O 
~r,  T) 

for all f h o l o m o r p h i c  in a neighbourhood of  clos f~(r, r). From (4.13) it follows 
that 

d f l d f loglzldxdy. ~OU ds (4.14) -~T udxdY = 2---~ -~z On 
~ r ,  ,:) ~ r ,  t) r 

for every u harmonic in a neighbourhood of  dos  f~(r, z). Here F is any closed 
oriented curve in [~(r, z) surrounding, with index + 1, the hole in ~(r ,  z). 

(4.14) shows, by [9, Prop. 1.1 ], that expressed in terms of  a parameter t -- t(z) 
satisfying 

dt= 1 d (" 
(4.15) log l z l dxdy, 

dr 2 n d r .  3 
~(r, r) 

the family {[~(r ,  z)  : r ~ in t  I,} is a classical solution as stated. The right member 
of(4.15) turns out to be negative so t(r)  is monotone decreasing. From [9] it also 
follows that the family {t2(r, r ) :  r E i n t L }  is monotone in the sense that if 
~(r ,  r) j and f2(r, r)" denote the bounded and unbounded components  of 
C \ t2 ( r ,  r)  respectively then t2(r, r ) J~t2(r ,  r ')  ~ and f~(r, rV ~t2(r,  r ' ) '  for 
r < ' [  p. 

Remark  4.2 .  The fact that, for x/~/2 < r  < 2  -u6, the domains t2(r, r) 
develop cusps on the inner boundary component  as r ~ r~(r) (/, = [r~(r), r2(r)] 
now) and on the outer boundary as r ---- r2(r) has the interesting consequence that 
within the family {f~(r, r ) E  Q(lz,, AL I) : r EL}  there must  be pairs of(different) 
domains which are conformally equivalent. Thus there exists different but 
conformally equivalent quadrature domains (for analytic functions) which admit  
the same quadrature identity. 
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To see this let, for any doubly connected domain [2 (with sufficiently regular 
boundary), u = ua be the harmonic function in f l  with boundary values 

t "  

ua -- ~ !  
o n  9'1, 

to o n  9'0, 

where 9't, 9'0 denote the inner and outer components of Of~ respectively, oriented 

as Of L Set 

c=c(~)= f IVul 2= f 0u ds, 
On 

the capacity of ~ (O/On the outward normal derivative). 
We first notice that the quantity c(f~) is a measure of the "modulus" of fl, 

namely that c(~t)  = c(~2) if and only i f f ~  and f~2 are conformally equivalent. In 
fact, if v is the (multiple-valued) harmonic conjungate of  u then the function 
exp 2n(u + iv)/c is univalent on ~ and maps it conformally onto the annulus 
{ 1 < [z I < exp 2rt/c}, proving the assertion. 

Now the idea is that a cusp on 0~ (pointing inwards) has the effect of  creating a 
peak (top) value for the capacity c(~), so that, within the family {f~(r, z) : r El ,},  
c(f~(r, 3)) has local maxima at the endpoints of/ , .  Therefore c(fl(r,  z)) cannot be 
a monotone function of  3 and the assertion follows. 

To make the above idea more precise it is convenient to reparametrize f~(r, 3) 
as in Remark 4.1. Thus set f~(t) -- f2(r, 3) with t related to 3 as in (4.15). Then 
T E L  ---- [3~(r), 32(r)] corresponds to say t ~[t l ,  t2], tl < t2 (fi (resp. tz) will corres- 
pond to 32 (resp. 31); that I, corresponds to a bounded interval follows from (4.1 5) 
or from [10]). By Remark 4.1, {~(t) : t ~ (t i, t2)} now is a classical solution of  the 
problem in [9]. This means that O~(t) moves with the velocity -Out~t~On, 
measured in the direction of the outward normal of  O~(t). From this one easily 

gets that 

Ou = ( Ouy on Ofl(t). 
(4.16) -~t \On~ 

Consider now 

d c(f~(t)) d 12 --5 f Iv ,, 

for t E(tt, t2). The derivate in the right member  is the sum of  two terms, one in 
which d/dt acts on the domain of  integration and one in which d/dt acts on the 
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integrand. The first term becomes (using that O~(t) moves with the velocity 
- Ou/On) 

f. 
\On~ 

0 

S t )  S t )  

For the second term we get, using (4.16), 

f ,vu 2fvu.v --zf  =2f Tn  On/ 
~(t) fit) 00(t) 

Thus we arrive at the formula 

_d c(a(,))-- f (ouy  
dt \On~ 

of}&) 

oO(t) 

for t ~(fi,  t2) (then we certainly have enough regularity for the derivation to be 
valid). When t--*tin (corresponding to r-*r2(r))  the outer component yo(t) 
develops cusps while the inner component ?t(t) remains smooth. I f s  denotes an 

arc-length parameter along ?o(fi) such that s ~= 0 corresponds to a cusp point then, 
in the limiting case t = tm, Ou/On will have a singularity at s -- 0 at least as bad as 
1/x/~. See [13, Lemma 2.4]. Since Ou/On is negative on ~'o this shows that 

(OU~ 3ds = --  00. 

7u( t O 

Using e.g. Fatou's lemma (and the monotonicity properties off,(t) mentioned in 
Remark 4. I) one concludes that 

(O__~Uyd s __.. _ ~ .  

f kOn/ 
7u(h) 

as t --* t~ while Sr,(o(Ou/On)3ds remains bounded. 
Hence dc(12(t))/dt becomes negative for t close enough to ft. Similarly, it 

becomes positive for t close enough to t2. This shows that c(~(t)) is not monotone 
on [tb t2] as claimed. 
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