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LET G? BE a bounded open set in W” with 352 smooth and let Q(. , + ) denote the Dirichlet inner 
product on H&J), 

a(u, u) = 

The aim of the present paper is to give a relatively short and seemingly new proof of the 
following well-known result ([6, Chapter IV, theorem 2.31 for example). 

THEOREM. Let n <p < 30, p 12. Suppose f~ D(Q) (C H_i(S2)), v E H’+‘(Q) and let 
u E H&(Q) be the solution of 

1 UEK 

a(u, 0 - u) I (f, u - u} for all 0 E K, 
(1) 
(2) 

where I( = {u E H&R) : u I $11. Then 

fS -Au 5 max{-Av,f}. 

In particular u E H”*J’(Q) and u E Cl*@(a) with E = 1 - n/p. 

(3) 

Notational remark. We are using the notations H”+‘(S2), N”(Q) =i Wm,‘(Q), Hy(S2) = 
E@*‘(Q) etc. for Sobolev spaces on S2 (as in [8]) and (- , a> for the standard duality pairing 
between N-i(Q) and Hb(Q ). When nothing else is stated, equalities and (nonstrict) inequalities 
on open sets between elements in function spaces are to be interpreted in the sense of 
distributions. 

The variational inequality (l)-(2) is known as the variational inequality of the obstacle problem 
in its simplest form ([6, Chapter II, Section 61) and the existence of a unique solution of it is a 
widely known fact (16, Chapter II, theorem 6.21). 

The regularity of the solution of (l)-(2) is also well-known and a number of different proofs 
of it exist. The first proof (by “penalization”) appeared in (7, theorem3.11). See also [6, Chapter 
IV, Section 21. Two other proofs are in 13, corollaire II.31 and [2, theoreme 1.11. The estimate 
(3) is not mentioned explicitly in these papers but it is more or less implicit in them (it follows 
e.g. from [7, corollary 3.11 and is in any case well-known). 
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We are here going to give a proofof the regularity theorem that is somewhat shorter and more 
elementary than those given in [2, 3. 71. It should be remarked, however, that in these papers 
the results are stated under more general hypotheses than here, allowing a(u, u) to have 
variable, continuously differentiable, coefficients and to be nonsymmetric (-A correspondingly 
changed), requiring only I/J B 0 on aS2 in place of I+ = 0 there and, in [3], requiring only 
1 < p c =. Compare, however, the remark after our proof. An example of a short variant of the 
method of [3], specialized to essentially our case, is given in [4, pp. 26-291. Our proof seems to 
be new except that I have used the same method in [S, pp. 48-501. The idea of the proof is to 
consider a new variational inequality. (1)-(j) below (which appeared naturally in the work on 
the problem in [5]), for which the estimate (3) a priori is fulfilled, and then showing that the 
solution of that variational inequality also solves the original one. Then the theorem follows by 
uniqueness of solutions of (l)-(2). 

For convenience, before giving the proof, we list a few standard facts that will be used in the 
proof. 

(i) -A is an isomorphism from HA(Q) onto H-‘(n) [8, theorem 23.11. 
(ii) If -Arc E D(S2) for u E HA(R) and 1 <p < x, then u E #J’(Q). 
(iii) a(u, u) = (-A u, u) for U, u E H;(Q) [8, Section 231. 
(iv) If fE L!‘(Q) with p 2 2 and 11 E HA(R), then (f, u) = Jof. u dx. Here the left-hand 

side makes sense because LP(S2) C N-‘(n) and the right-hand side because 
Hi(Q) C Lq(Q), where (l/p) + (l/q) = 1. 

(v) Iffg 0,~ 2 0 (fE H-‘(R), u E HA(Q)), then (f, u) Z 0. 
(vi) If u is continuous in a bounded open set N, -Au 2 0 in Nand lim U(X) = 0 for anyy E aN, 

X-Y 

then K Z 0 in N (minimum principle for superharmonic functions) [8, statement (30.4) together 
with proposition 30.61. 

(vii) H2*p(Q) C C1+a(G!) if n <p < x, (Y = 1 - n/p and as2 is smooth [l, theorem 5.4, part 
IIC’]. 

Proofofthe theorem. We shall prove the theorem in the special case that 11, = 0. The general case 
then follows by applying the special case with 11 - J/J in place of u andf + Ayt in place off. Thus 
we assume from now on that J#.J = 0. 

Put 

L = {u E H;(Q) :fS -Au Zf’} 

(f+ = max{f, 0)). Thus we want to prpve that u E L (where u is the solution of (l)-(2) with v = 
0). Observe that L C H**“(Q) C C(Q) by (ii) and (vii). In particular, the members of L can (and 
will) be considered as continuous functions on S?, instead of just equivalence classes of functions 
or distributions on R. Moreover, since L C HA(R) and dR is smooth, these funcrions must be 
identically zero on a Q [8, Proposition 22.21. 

It is easy to see that L is a closed, convex and nonempty set. Therefore, and since a( - , .) is 
coercive on HA(R), the variational inequality 

i 

WEL (4) 

a(u - w, w) z 0 for all u E L (5) 
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has a (unique) solution w. We shall prove our theorem by showing that w also solves (l)-(2). 
Since (l)-(2) has only one solution, this will imply that w = u and hence that u E L. 

The first, and main, step is to prove that w satisfies 

i 

WZO (6) 

-Aw-fZ0 

(-Aw -f, w) = 0. 

By (iii), (5) can be written 

(-Au + Aw, w) 2 0 for all 0 E L. 

First, choose u E HA(Q) with -Au = f in (9). This gives 

(f+Aw,w)ZO. 

Second, choose u E Z-!;(Q) with 

(7) 

(8) 

(9) 

(10) 

f' in N 
-Au = 

-Aw inQW, 
(11) 

where N = {x E R : w(x) < 0). Clearly, since w E Hz+‘(Q) C C(Q), Nis a well-defined open set 
and the right member of (11) defines a function in LP(R). This gives (using (iv)) 

I 
(f T + Aw) .,r dx 2 0. (12) 

.v 

But (f’ + Aw) . w 5 0 in N. Hence (12) implies (f’ + Aw) * w = 0 a.e. in Nand so 

-Aw = f - in N (a.e. or in the sense of distributions). (13) 

Now (13) shows that w is a superharmonic function in N. On the boundary, aN, of N in R” we 
have w = 0, in view of the definition of N and because w E HA(Q) fl C(a). Therefore, the 
minimum principle for superharmonic harmonic functions (vi) shows that w 2 0 in N. Comparing 
with the definition of N it follows that N is empty. Hence 

wZ0 inR. 

This proves (6). (7) is part of (4) and (8) follows by combining (6), (7) and (lo), using (v). By this 
(6)-(8) is proven. 

From (6)-(8) we easily deduce (l)-(2) with w in place of K: (1) is the same as (6) and 

a(w, u - w) - (f, u - w) = (-A w-f,u-w)=(-Aw-f,u)-(-Aw-f,w)EO 

for u E Kin view of (7) and (8). proving (2). 
Thus the solution w of (4)-(j) is also a solution of (l)-(2), which, as we have remarked earlier, 

proves the theorem. 

Remark. It is easily seen that our proof goes through under more general hypotheses than stated 
in the theorem. Specifically, what is required of a(. , .) and -A is only that a( - , .) is coercive and 
that (i), (ii), (iii) and (vi) above hold. This results in about the same hypotheses on a(. , *) and 
the operator replacing -A as in [2,3,7]. 
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