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IDENTIFICATION OF THE CONDUCTIVITY COEFFICIENT
IN AN ELLIPTIC EQUATION*

AVNER FRIEDMAN AND BJRN GUSTAFSSON

Abstract. Consider an elliptic equation in a two-dimensional domain 1 with conductivity coefficient
a + kxo (k O) where D is a subdomain of II. From the measurements of a pair of Dirichlet and
Neumann data one wishes to identify D. It is proved that this problem is stable in some local sense.
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Introduction. Consider an elliptic equation

(0.1) div (aVu) =0

with Dirichlet data

(0.2) u =f on 01, f const,

and with coefficient a 1 + kxo (-1 < k < oo, k # 0), where D is an unknown subdomain
of l. We seek to determine D by measurements of the Neumann data

(0.3) Ou_ g on 0.
Ov

This identification problem arises in electrical prospecting, whereby one wishes to
discover the location of metals or fluid reservoirs inside the earth.

Let D(t) be a 1-parameter monotone family of domains with D(O)- D such that

d
(0.4) -Xo,) t=0

# 0 in 9’,

and denote by u(t) =- u(x, t) the solution of (0.1), (0.2) corresponding to a 1 +
Our main result asserts that, in case the D(t) are affine transformations of D, C in
t, for all with tl small enough, there holds

(0.5) vv[u(t) u(0)] >- cltl

where c is a positive constant.
If we denote by I, the mapping from a to g (when f is fixed) then (0.5) means

formally that d/da 0; thus, if (al)= gl, (a2)= g2 and Ila=-all is small, then

1
-< C<oo.(0.6) Ila=-a, ll<-cllg=-g, where

IId/dall-
This means that the computation of D among a monotone family of domains is stable
with respect to small errors in the measurement of the Neumann data; for more details
on the significance of a result of this type see [12] and 1 below.
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There are other versions of identification problems. In [2], [4]-[6], [11] one
measures the quadratic form

for all f and shows that this determines a a(x) in O, provided that either a(x) is
piecewise analytic [4], [6] or Ila-111 is small enough [11]. For some special domains
the identification problem can be resolved by separation of variables [3], [8] or by
explicit representation of u by means of Green’s function [9].

In another version (0.1) is replaced by

div (aV u) in f (1 is given)

and one wishes to find a, given the knowledge of u throughout all of f; see [1], [10]
and the references given there. This problem is unstable.

References to physical models and numerical computations of identification prob-
lems are given in [1], [5].

1. The main result. Let f be a bounded simply connected domain in RE with C
boundary 0f (0 < a < 1) and let D be a bounded subdomain of f with C2’ boundary
OD, 1 c . We shall designate points in RE by x- (xl, x2).

Denote by XA the characteristic function of a set A.
We assume that D is star-shaped with respect to any point x* of some nonempty

subset D* of D.
For any x* D* introduce the 1-parameter family of domains

(1.1) D(t) {x* + (1 t)(x x*), x D} (- 1 < < 1).

Then D(t) c D(t’) if > t’. Also

0
(1.2) -Xo t=0

=[3(R)oo in ’,

that is

t=O D

for any b Co(O), and/3 is a continuous and strictly negative function on aD;/3 C ’.
Set De(t)= l\D(t). We shall use the notation w (or wi) to denote the value of

a function w on D(t) taken as a limit from De(t) (or D(t)).
Let k be a fixed number, -1 < k < 0 or k > 0, and set

(1.3) a(x, t)= 1 + kxoo(x),

Consider the elliptic equation

(1.4) div (a(x, t)Vu)=0

with the Dirichlet condition

a(x)=a(x,O).

in f

(1.5) u=f on 0I

where f f(x) is in C’(Of).
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It is well known [7] that the solution u of this diffraction problem is in C’(I))
HI(I)) for some 0</3 < 1, as well as in C2"(D(t)) and in C2"(De(t)\Of), and that

onOD(t)(1.6)

where u is the outward normal to 0D(t).
Set

Ou(x,t)
(1.7) g(x, t) x 01)

where u is the outward normal to 0f. Then g C.
We would like to determine the conductivity coefficient a(x) from measurements

of g(x)= g(x, 0). Since in real terms we can only measure g(x) with some error, we
would like to ensure that if the measurements give us a function g(x, t) "close" to
g(x) then the corresponding a(x, t) is also "close" to the true coefficient a(x). If that
is the case, then by compiling a catalog of various g’s corresponding to various a’s
we can have an effective way of determining the true conductivity: We simply corre-
spond to a function that we obtained by actual measurements the coefficient a which
fits to that g in our catalog that is "nearest" to . This point of view is quite common
in inverse problems 12].

If f--const, then u--const, for any choice of a(x, t) and thus g(x, t)-=0. This
means that we cannot gain any information on the coefficient a. Thus we must henceforth
assume that

1.8) f const.

THEOREM 1.1. If (1.8) holds then there exists a positive constant c such that

(1.9) IIg( ", h)-g(. )ll0o >= clhl
/f hl is small enough.

Theorem 1.1 extends to more general monotone families of domains D(t); see 3.
Theorem 1.1 means that we can effectively determine D by the procedure outlined

in the paragraph following (1.7), provided D is known to be imbedded in a monotone
family of domains.

As we shall see in 3 (Remark 3.2), Theorem 1.1 is generally false if D(t) is not
a monotone family (at least in one space dimension, or for an annulus).

The remainder of this paper is devoted to the proof of Theorem 1.1; some
generalizations are mentioned at the end of 3.

2. Proof of Theorem 1.1. Set g(t) =- g(x, t). To prove the theorem it suffices to
assume that

--)0
h L2(OI’)

for some sequence h - 0

and derive a contradiction. From now on h will be restricted to this sequence.
Consider first the case where 0 < h < 1, so that

(2.2) D(h)c D,
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and set

a(t)=-a(x,t), u(t)----u(x,t),

a(h)-a(O) u(h)-u(O)
ah l)h

h h

From (1.4) we get

(2.3) div (a(h)Vu(h) a(0)V u(0)) 0,

which implies that there exists a function wh in Hl(fl) such that

1
(2.4) -[a(h)Vu(h)-a(O)Vu(O)]=curl wh’

here curl w (wx2,-wx,). We normalize wh so that

(2.5) wh(xO)--O at some point x

Since

(2.6)
1
-;-[a(h )V u(h a(0)Vu(0)] a(O)VUh + ahVu(h

we can rewrite (2.4) in the form

(2.7) a(0)
0 0 h

oVh + itg W --ah
Ou(h)

Introduce the function

(2.8) fh a(O)l)h ff- iwh.

Then

(2.9) Ofh Oa(O)
Vh + a(O) OV___h+i

0

and, using (2.7),

(2.10) ofh Oa(O)
l)h ah

O 0

the right-hand side is a measure
It follows by Cauchy’s formula that

Io+ dz,
2ri a z-

LENMA 2.1. As h O,

(2.12) vDxh0

and

uniformly in compact subsets ofDe,

(2.13) foo IVh[ ds ->0.

1
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Proof. Take for simplicity x*= 0. Define

’h xlandl_hf =I(1-h)f,

u(x)=u(x,O),

u(x=- u i- -u(x

Vh(x) =- u(x, h)- u
1- h

Then

Vh(X)= Uh(x)+ Vh(x) inOh.

By the C2’ regularity of u in De (.J OD,

(2.14) Uhl + IV uhl <= C in De f’) fh.

Next,

div(a(h)VVh)=- O-divx a(h)Vxu
1-h

Since

a(h) 1 + kXo(h)(X) 1 + kX(l_h)D(X 1 + kxo 1 h

setting y--x/(1-h), V,= Vy/(1-h), the expression in braces becomes

1
,_2 divy [1 + kxo(y)Vyu(y)] =0 in fh,

(1 n)

(2.15) div(a(h)VVh)=o in fh.

Further,

V(x) u(x,h)-f(x/(1-h))
if x 012h VI 0( 1 h)),

Vh(x) =f(x)-u(x/(1-h)) ifxOh01";
h

since u(x) and u(x, h) are in C 1, in some neighborhood of 0, it follows that in both
cases

vhl <-_ C,

i.e., [vh[ <-- C on Ofh. Hence, by the maximum principle,

(2.16) lEVI-< C in -h"
Recalling (2.14) we conclude that

[Vh[ <= C in D\B(O)
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for any > 0 and h small enough, where B,(A) denotes a 8-neighborhood of a set A.
Since Vh is harmonic in De and vh 0 on Off, we then also have that

(2.17) [vh[--< C in De.
Hence, for a subsequence,

(2.18) vh --> v uniformly on compact subsets of

where v is harmonic in De and

(2.19) v 0 on 0fl;
Ov

here (2.1) was used. It follows that the zero function is a harmonic extension of v into
R2\f and therefore v-=0 in De. Clearly (2.12) now follows from (2.18) and Harnack’s
theorem.

To prove (2.13) we multiply (2.15) by Vh and integrate over ff’= f\B,(af), where
0 < r/< dist (D, 0ff). We obtain, for small h,

f ft’ (h)]Vvh]2<= fol’ a(h)[vvh] ]vh]"

Since Vh is harmonic and bounded in Bo(Of’) (8o is independent of h) the right-hand
side is uniformly bounded; hence

 lv

c.

Recalling (2.14) we deduce that

l’(2.20) IV v.I C.
ft’n De

Now, for any small > 0,

fo ’Vh[<=C fo ,VVh,+C j ,Vvh,+C Io ’Vh’.
D nBa(8D) m’nDe)\Ba(OD)

The last two integrals on the fight-hand side converge to zero as h- 0, whereas the
first integral is bounded by C$1/2 (by (2.20)). It follows that

supf Ivhl <=lim C81/2,
hO ]OD

and, since is arbitrary, (2.13) follows.
From (2.12), (2.5), (2.7) we conclude that

(2.21) fh
_

O, Vfh 0 uniformly in closed subsets of

Taking h 0 in (2.11) we see that if

(2.22) / lim (-) Ina(0)h-,0O z--Vh, dxdy,
(2.23) J lim ah dx dy

h-.O O z-

exist for any " DU De, then fh()fO(), where

(2.24) fo(,) I-J if " D U
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from (2.21) we also have

(.5)

Now clearly

f(sr) 0 ifDe.

0a(0)
-y(R)3oo in@’

where y is a C1’ function on OD. Therefore

lim__,o Oa(O)oe z-Vh dxdy=imo
o z_V(Z) ds=O

by (2.13), i.e.,

(2.26) I=0.

Next, by (1.6) and the fact that u(t) is in CI(D(t)) and in C(De(t)) with moduli
of continuity independent of t, it follows that

Ifo Ott(h) l fo( elim ah-- dx dy kfl
Ou(O) 1

ds"
h-O O Z-- o O / Z--

here we used (1.2) and (2.2). We conclude that J exists and, by (2.24), (2.26),

(2.27, f(,,=ko () 1
ds if,eDUD.

here u u(x, 0).
Let T(z) be the positively oriented tangent vector to OD at z. Then

& T(z) ds along OD.

Using this in (2.27) we get

r( - ( e D .
In view of (2.25) and the standard jump relation of the integral in (2.28) across

OD, we then have

(.9 fo() i
r(z) o]

on0

where fo(z)= (f(z)) is the limit off from D. Obsee also from (2.28) that

(2.30) fo(z) is holomorphicin D.

LMMA 2.2. ere holds

(2.31) 0_) =0 on OD.

The proof is given in 3. Assuming its validity, we shall now proceed to complete
the proof of Theorem 1.1. Since/3 0 along OD,

on OD.



784 AVNER FRIEDMAN AND BJ6RN GUSTAFSSON

Recalling the jump relation (1.6) we deduce that for some constant c, the function
U u-c vanishes on 0D together with its first derivatives. By the argument following
(2.19) it then follows that U-= 0 in B(OD) and, by analytic continuation, u c in De
which contradicts (1.8).

So far we have assumed that (2.2) holds. If-1 < h < 0, so that

(2.32) D(h) = D,

then we replace (2.6) by

1
7[a(h)Vu(h)- a(0)Vu(0)] a(h)Vvh + ahVu(O)

and proceed as above (with minor changes) to establish (2.24) with the corresponding
I vanishing and with J being the same as before.

3. Proof of Lemma 2.2. Set

Then

(3.1) on c3D,Ul /’/2

(3.2)
(gUl

(k + 1) c9u2
on OD.

Notice that the function OUE/OZ is homomorphic in D. Multiplication of both sides of
(2.29) by Ou2/Oz gives

(3.3) F’(z) T(z) 2ikfl(z) (z OD)
O Oz

where F is a holomorphic function in D, namely, the primitive off(z)OuE/OZ.
Along OD we have

2 i -i
Oz Ox Oy

=+i=e- +i

where is the outward normal, O/Os is in the tangential direction obtained from
by rotation counterclockwise by /2 and is a real valued function. Therefore by
(3.1), (3.2) we easily obtain

(3.4) 40UlOU2 (Ou2) 2 (Ou2) Ou2Ou2
Oz

Hence, if k > 0,

4 Im c9ul gu:z
k cu2 9u___22 < c3u2 gu. OUl.OU2

Similarly, if -1 < k < 0,

4 In----0ul 0u2 Ik] [(k+l) (0U22

+ (Ou2] 21kl[Re 0ul On2].
O Oz -2(k+l) / / 3 k+l 0 J

Since fl is real valued it follows that in both cases, for any z OD,

r z) (z + ix ; lx l
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where

min {1, k + 1}"

Writing the holomorphic function F in the form F V+ W we have

dF
V+iWs Vs+iV alongOD.

ds

Since also

dF dF dz
ds dz ds

-F’(z)T(z),

we conclude from (3.4) that

(3.6) vl =< CI Vsl along 0D.

Suppose V const, in D. Then V must attain its maximum in/5 at a point x 0D
and V(x) >0. Since also V(x) =0, we get a contradiction to (3.6). We have thus
proved that V= const, and therefore also F= const. From (3.3) it then follows that

OU 0U2
fl -0 onOD

05 Oz

which, in view of (3.4) and (3.2), implies (2.31).
Remark 3.1. Theorem 1.1 extends (with minor changes in the proof) to the case

where the domains D(t) are conformal affine transformations of D varying in C 2

manner and monotonically in t, provided/3 0 on 0D. The theorem also extends to
the case where f depends on t, say f=f(x, t), provided

1

h
If(" h) -f(., 0)] --> 0 in cl"’(OD)-norm

as h --> 0. If the D(t) do not vary monotonically in t, then Lemma 2.1 is still valid with
(2.13) replaced by

]Vh[ ds - O.
O( Dt.J D( h

But this is not sufficient for proving (2.26); see also next remark.
Remark 3.2. Consider the case where l-I is one-dimensional, say II {0 < x < 1}.

The solution of (1.1) with u(0) a, u(1) =/3, u’(0) a’, u’(1) ---/3’ is given by

(3.7)
dy

u(x) + I
.to a(y)

where

(3.8) u(O)a’=(-a) fl’-a(y)’ a(1)

For any other conductivity ti(x) with

(3.9) ti(0) a(0), ti(1) a(1),
a(y) t(y)’
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the Neumann data g corresponding to the Dirchlet dataf are the same as for a. Clearly
(3.9) is satisfied if ti(t)= 1 + kxo,, a ti(0) whenever D(t) is a translation of D. In
this example the mapping a g is thus nonunique; furthermore, the assertion of
Theorem 1.1 is not valid if D(t) is a translation of D. If however D(t) is monotone
in then the assertion of Theorem 1.1 is valid, as can be verified directly by means of
(3.9). Similarly, if is an annulus l {rl <lxl < r2} andf= ci on {Ixl-- r,}, c, constants,
then the assertion of Theorem 1.1 is valid for a family of annuli D(t)=
{d(t) < Ixl < d=(t)} provided the family is monotone in t, but it is generally false if the
D(t) do not vary monotonically in (note however that 1 is not simply connected,
as required in Theorem 1.1).

Remark 3.3. Let b(z) be a conformal mapping of f onto the closure of a
domain fi and set /(t)= (D(t)), a= qb, f=fo , u a o, -I’1 . Then
(1.4), (1.5) and (1.7) are equivalent to

Since

div (SV5) 0 in f, a=f

0<c_-< -_<C<,
Ig(t)-g(O)[l

Theorem 1.1 extends to the family D(t) of subdomains of .
Remark 3.4. Theorem 1.1 extends to inhomogeneous equations

div (aVu) l(x) in l

provided s C 1, and S-= supp satisfies: S c De and De\S is connected; if 0 and
l> 0, then the condition (1.8) is not needed. The function may also be taken to
depend on t.

Remark 3.5. The results of this paper extend with minor changes to the case where
the Neumann data (1.7) are prescribed, whereas the Dirichlet data f=f(t, x) are
measured; here it is assumed that 0n g 0 and u is normalized, say, by on u 0. The
assertion (1.9) is replaced by

IIf(’, h)-f(. )llc<o.) clhl
where c is a positive constant.
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