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APPLICATIONS OF VARIATIONAL INEQUALITIES TO
A MOVING BOUNDARY PROBLEM FOR HELE SHAW FLOWS*

BJORN GUSTAFSSONf

Abstract. We consider a class of two-dimensional moving boundary problems originating from a Hele
Shaw flow problem. Concepts of classical and weak solutions are introduced. We show that a classical
solution also is a weak solution and, by using variational inequalities, that given arbitrary initial (t--0) data
there exists a unique weak solution defined on the time interval 0_<t<. We also prove some monotonicity
properties of weak solutions and that, under reasonable hypotheses, the moving boundaries consist of
analytic curves for > 0.
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Introduction. The aim of the present paper is to prove a global existence and
uniqueness theorem for a kind of weak solution to a moving boundary problem arising
in two-dimensional Hele Shaw flows. The method used is that of transforming the
problem into a series of elliptic variational inequalities.

The problem we shall treat is a slight generalization of the following problem. Let,
for D any bounded region in R 2 containing the origin, go be the Green’s function for D
with respect to the origin"

-log[zl+harmonic in D,go(z)-
0 on 0D

( Z X -- iy, R 2 being identified with C).

Then, given an initial domain D=D0, we want to find a family of domains (Dr}
for t_>0 (t--time) such that OD moves with the velocity -(VgD,)[ao,. (It is assumed
here that Vgo,--the gradient of go, has a continuous extension to ODt.)

This problem (essentially) was introduced by S. Richardson in [12]. The physical
interpretation for it as described in [12] is, very briefly, that D is the two-dimensional
picture of the region of flow in a Hele Shaw flow with a (time-dependent) free
boundary and a source point. This means more precisely that an incompressible viscous
Newtonian fluid occupies part of the space between two parallel, narrowly separated,
infinitely extended surfaces and that more fluid is injected at a constant and moderate
rate through a hole in one of the surfaces. The region occupied by fluid then will grow
as time increases and, since the gap between the two surfaces is very small, that region
can be very well described by its projection D onto and 2-plane lying parallel to the
surfaces. The origin of that 2-plane is taken to correspond to the injection point. For
more details and for a derivation of the moving boundary condition above, see [12] and
[8]. An incompressible viscous flow in the narrow space between two parallel surfaces is
called a Hele Shaw flow. See e.g. [10, p. 581ff.].

The approach in [12] is that of formulating the problem as a differential equation
for the Riemann mapping function from the unit disc onto Dt,j identifying 2 withC
and assuming that the D are simply connected. No proof of existence or uniqueness of
solutions of this differential equation is given in [i2]. However, a local (for in a small,
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two-sided interval about zero) existence and a partial uniqueness proof for the same
differential equation have been given in [19]. See also [8].

Since 1972 Richardson’s moving boundary problem has been taken up by J. R.
Ockendon [11 ], C. M. Elliott-V. Janovsk, [6], S. Richardson himself [13], [14], M. Sakai
[16], [17], and me [7], [8]. The present paper is, to a large extent, a summary of [7]. It
also has much in common with [17] and more detailed references to that paper will be
given at relevant places in the text.

The paper is organized as follows. In 1 we define in a precise way what is meant
by being a (local) solution of the problem stated above, by introducing a concept of
"classical solution." In {}2 we also introduce a concept of "weak solution" and prove
that a classical solution is a weak solution. In 3 and 4 we prove that being a weak
solution is equivalent to satisfying a series of variational inequalities. From this our
main result, the existence and uniqueness of weak solutions for arbitrary given initial
domains, follows immediately. Section 5 is devoted to proving that a weak solution is
equivalently characterized as the solution of what we call "the moment inequality."
Finally, in 6, we summarize part of our results in a kind of main theorem (Theorem 8)
and also obtain some partial results on the regularity of the boundaries of the domains
of a solution.

List ofsome notation frequently used.
R - is identified with C whenever convenient (by (x,y)z-x+ iy).
D(a;r)- {zC’lz-al<r).
[(r)- [(0; r).
--D(0; 1).
l- the set of integers.
(a,b)-(x "a<x<b}.
[a,b]-{xR "a<_x<_b).
D C C 2 means: D C fl (if f is open and bounded).
IDI-area of D (if D C 2).
X7u- gradu-(Ou/Ox, Ou/Oy) (if u-u(x,y)).
Au- the Laplacian of u- 02u/Ox 2 + 02u/Oy 2.

fou fouCx,y )

the characteristic function of D C -- in D,
X D 0 in 2\D.
C,.(): the space of infinitely differentiable functions in [2 with compact support.
H"’P(f),H"(f)-Hm’2([2),Hd(f): Sobolev spaces as defined in [18]. H0(2) will

always be equipped with the inner product

(f will always be bounded) and norm Ilull-/(u,u).
( u, v )" the pairing between H0(f) and H-([2) (u H(f), v H- (f)) when

H-(f) is regarded as the dual space of H0(f) in the usual way. This is
consistent with

(u,v):fnu.v for uLP(f), I) tq([’), l/p+ l/q- 1, <_p<c.
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We will often use the fact that the Laplacian A is an isomorphism of H01(fl)
onto H- (2) with the property that 8, Thm. 23.1

(0.1) (u,v)=--(u,Av) for u,vn()., is defined in (before Definition 1).
6o,n is defined in 2 (before Definition 2).

1. A classical formulation of the problem. The purpose of this section is to give an
example of how to formulate the moving boundary condition for the problem described
in the introduction in a rigorous way. This is done by our concept of a classical solution
(Definition 1 below). Actually, we have generalized the problem a little by replacing the
Green’s function go by a domain function Po depending on a positive measure #. Our
concept of classical solution is to be thought of as just formalizing the rule according to
which the moving boundary moves, and we have not tried to make any initial value
problem out of it.

Let #0 be a finite positive measure with compact support in [ 2. For domains
D C 2 with supp/CD let Po be the (superharmonic) function in D defined by

(1.1) -Apo=# inD,
(1.2) po=O onD.

Here (1.2) should be interpreted as follows: for each e >0 there is a compact set KCD
such that ool<e outside K. For all domains D considered in this section, the problem
(1.1)-(1.2) has a unique solution. This solution, moreover, satisfies po>-0 by the
minimum principle for superharmonic functions. We are going to consider the problem
mentioned in the introduction but with the Green’s function go there replaced by the
more general function Po. The special case Po-gz) is obtained by choosing #-2,r6 in
(1.1)-(1.2) (where 6 the Dirac measure at the origin).

Let to be a fixed open neighborhood of supp # and set
,0-the class of all simply connected domains D C 2 with to C CD and such that

OD is a Jordan curve of class C (i.e. such that there exists a twice continu-
ously differentiable map from the unit circle to OD which is bijective and
whose derivative never vanishes; such a map will be called a diffeomorphism
of class C2).

For D, Po exists and is unique and moreover both po and XTpo have continuous
extensions to D. Let IcR be an open interval.

DEFINITION 1. A map I -D o, is a classical solution of our moving boundary
problem if there exists a map ’: R//’ I- 2 of class C2 (i.e. twice continuously
differentiable) such that

(i) g(s,t)aD for all s,t,
(ii) ’(.,t) R/’ OD is a diffeomorphism (of class C2) for each tI, and
(iii)

O(s,t)(1.3) = XTpo,((s t)) for all s t.
Ot

Comment. (i) and (ii) say that for each fixed t,(.,t) parametrizes ODt. The
parameter s (in which " has period 1) numbers the points on OD and (iii) says that each
such point moves with the velocity -X7po,((s,t)). Here X7po, is the continuous
extension of the gradient ofpo_to ODt.
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For simplicity we have preferred, to let the domains of definition of classical
solutions be open time intervals. For that reason the concept of a classical solution is
not immediately well suited to formalize initial value problems of the kind stated in the
introduction. Consider e.g. the following attempt in that direction (where and 0 are
given):

Given Do find, for some e>0, a classical solution (-e, + c) t---> Dt$, such
that D0-- D. This formulation has the drawback that it requires the existence of the
solution for -e<t<0 and, as it turns out (see below), this can only occur if OD is
analytic.

A perhaps better attempt would therefore be:
Given D find a classical solution (0, + c) -D ,, such that lim t-. o Dt-- D

in some specified sense. This formulation does away with the problem of the former
formulation, but nevertheless one cannot expect a solution to exist for arbitrary D
This is because we have not, in our definition of a classical solution, built in any
possibility for D to change connectivity and it is easy to see that without such a
possibility global solutions cannot exist in general.

The above remark shows that the concept of a classical solution has to be fairly
complicated in order to be well suited for a formulation of a global initial value
problem. We have not thought it to be worth the effort to make such a formulation,
since our concept of classical solution is introduced mostly in order to motivate our
concepts of a weak solution (and for this purpose we think that Definition 1 is good
enough). A global concept of a classical solution (allowing connectivity changes) has,
however, been given by Sakai [16].

Definition is, however, well suited for formulating a local problem:

Given D,o find, for some e>0, a classical solution (-e, e)
--, D $, such that DO D.

The task of proving existence and unicity for solutions of this problem is seemingly
hard. In fact, we will prove here (Theorem 10) that a necessary condition for a solution
of (1.4) to exist is that 0D is an analytic curve. Probably this condition is also sufficient.
In any case, in the special case that/x-2ri, Vinogradov and Kufarev [19] have proved
local existence of solutions when the problem is formulated as a differential equation
for the Riemann mapping function (as in [12]), under the condition that OD is analytic
(see also [8]). It is, however, not quite easy to prove rigorously that a solution in their
sense is also a classical solution in our sense. (The converse is easier.) Vinogradov and
Kufarev also prove uniqueness for solutions depending analytically on (of their
problem). Here we prove at least that a solution of (1.4) is unique for >0 (Theorem
10).

Let us next make a remark about the measure /x; namely, as far as classical
solutions are concerned, we can always assume that/x is a smooth function. The reason
is that nothing but the behaviour of Po near 0D comes into Definition and that
therefore Po can be smoothed out in a neighbourhood of supp/. To be precise, let h be
a smooth (C), positive, radially symmetric (i.e. a function of radius only) function
(" mollifier") on R 2 with total mass one (fh- 1) and with compact support in the open
unit disk [. Define
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(Thus supp h, C D(0; e), f h,= 1, h ->0.) Then we have
PROPOSITION 1. Let #, o and I be as before Definition and choose e >0 such that

2e <dist(suppg, 0o). Then I -Dt,o is a classical solution for g if and only if it is a
classical solution for g h (which is a smooth function). ( denotes convolution.)

Proof. The proof consists of the observation that the function PD defined by
(1.1)-(1.2) only changes inside 0 when g is replaced by g, h (for D$o). In fact,
define

PD*h in {zD’dist(z,OD)>e),
qD--

PD in (zD’dist(z,suppl)>e).

Then qD is well defined because PD is harmonic in a whole e-neighborhood of any point
in the overlap between the two domains above, and therefore pD * h--pD in that
overlap by the mean-value property for harmonic functions. Since A(pD h)-
ApD, h=--Ix * h, it is immediately seen that qD is the solution of (1.1)-(1.2) with
Ix, h in place of Ix. Since qD--PD near OD, the conclusion of the proposition follows
immediately.

2. The weak solution. We now introduce the concept of a weak solution and prove
that a classical solution is a weak solution.

The concept of a weak solution is much more flexible than that of a classical
solution (e.g. one does not have to bother about boundary regularity or connectivity of
the domains), it is much easier to show existence of solutions for, and it is also more apt
for numerical treatment (because it is closely related to variational inequalities). These
are the main reasons for introducing the concept of a weak solution.

Let Ix 4:0 be a finite positive measure with compact support in R 2, and choose
bounded open sets 0 and f in R 2 such that supp Ix c 0 c cf and with 2 smooth, and
let T>0. Set

6,,a the class of all open sets D CR2 with o c cD C C f.

In order for the definition below to make sense, we have to assume that Ix belongs to
the Sobolev space H-l(f). This is an assumption of purely technical nature and does
not mean any restriction of the class of problems considered (in view of Proposition
above).

DEFINITION 2. A map of [0, T] D o f is a weak solution of our moving
problem if, for each [0, T], the function u Ho() defined by

(2.1) X Dt-- X Do-- Autqc- t" IX

satisfies

(2.2)
(2.3)

Comments. 1) Notation. The subscript in u just indicates that u depends on t. We
never use subscripts for partial derivatives. (2.1) and (2.2), like all other equalities and
inequalities on open sets in this paper, are to be interpreted in the sense of distribu-
tions. In (2.3) 1-X o, is regarded as an element of H-l(f)-the dual space of H0(f)
and (.,.) denotes the duality pairing between H01(fl) and H-(f). Since, in the present
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case, 1--XD, fEL2() (and utH()CL2()), the left member of (2.3) reduces to the
Lebesgue integral

and since 1-Xo,>-O, (2.2) and (2.3) together express that ut->0 in f and ut--O a.e.
outside Dr.

2) Since X n,- X. Oo- t. I H- l(fl) and the Laplacian A is an isomorphism from
H(fl) onto H- (fl), (2.1) really defines u uniquely.

3) It is clear from the definition that given DO
,e, the domains Dt of a weak

solution can be unique at most up to two-dimensional Lebesgue measure zero, since
(2.1)-(2.3) are not affected if D is replaced by another D: oo,,u such that Xo;-X z),
a.e..

4) In order to motivate the concept of a weak solution, we now sketch a proof that
a classical solution is a weak solution.

So suppose tD is a classical solution. Condition (iii) in Definition 1 can be
written

(2.4) n--;-= On on OD,,

where 8n/St denotes the normal velocity of iD (in the direction out from Dr), and
O/On denotes outward normal derivative. (2.4) is equivalent to

8n(2 5)
" -.qds= o q) ds for all q C(2)

(ds denotes arc-length measure).
It is not hard to see that

8n dfoy d

D,-(ds - dxdy - ( X o, (p )

Extend Po, to all R 2 by settingpo,= 0 outside Dt. Then

-Apo,=#+ ds,

where (Opo,/On) denotes the distribution

a nonpositivc

and (2.)
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Now integrate (2.6) with respect to t. With

(2.7) ut- po,d

this gives X o,- XD0- Au + t" IX, to hold in the sense of distributions. Thus u defined by
(2.7) satisfies (2.1) of Definition 2. Since pD,>_O in D, pD,-O outside D, and because

D, CD2 for ’l <z2 (if t --, D is a classical solution) ut, defined by (2.7), also satisfies

U ’0 in all R 2 and

ut-- 0 outside Dt,

that is, (2.2) and (2.3) of Definition 2.
This was a sketch of a proof that a classical solution is a weak solution. A formal

proof of this will be given later (Theorem 1).
5) A nice feature of the concept of weak solution is that the time variable only

occurs as a parameter in it: (2.1)-(2.3) is just a series of uncoupled problems (actually
free boundary problems), one for each t[0, T]. The transformation (2.7) plays a
crucial role in this respect. The efficiency of transformations similar to (2.7) on certain
kinds of free and moving boundary problems is now well known and has been demon-
strated in works by Baiocchi, Duvaut, Elliott and others. (See e.g. [2], [4] and [5].)

Just as for classical solutions, there is no loss of generality in assuming that the
measure IX in Definition is a smooth function.

PROPOSITION 2. Let Ix, to, and T be as in Definition 2, choose e>0 with 2e<
dist(suppix, Oto) and let h be as before Proposition 1. Then [O,T]tDt,,u is a
weak solution for IX if and only if it is a weak solution for IX h . In case they are solutions
we have

u , h in suppix+)(0;e),
(2.8) I)

u elsewhere in ,
where u (vt) is the function occurring in Definition 2 for Ix (Ix * he). (suppIx+ D(0; e)
(z + w R 2 z supp Ix and w D(0; e)}.)

Proof (sketch). Let D be a weak solution for Ix, let u H(2) be defined by
(2.1) and define v by (2.8). Then u is harmonic in to\suppIx (by (2.1)) and the
mean-value property for harmonic functions, together with the properties of h , show
that u * he---u a distance e away from O(to\suppIx) in to\suppIx. It follows that v is
smooth in thejoin between the two ranges of definition and in particular that v H0().
Now it is easy to check that v satisfies (2.1)-(2.3) of Definition 2 with Ix h in place of

Ix. This proves the proposition in one direction.
Next, let t D be a weak solution for Ix h and u H(f) be defined by (2.1) for

Ix. In order to prove the proposition in the other direction, we have to prove that u also
satisfies (2.2) and (2.3).

Define v by (2.8). As before we have v H(f), and v satisfies (2.1) with Ix h in
place of Ix. Since the solution of (2.1) is unique and D, is a weak solution for Ix h ,
v also satisfies (2.2) and (2.3). From this it follows immediately that u satisfies (2.3).
Moreover, ut>_O clearly holds outside supp IX + (0; e) (ut- v there), and in fact also in
suppIx+)(0; e) because ut>-u h (=v/_>0) there due to the fact that u (by (2.1)) is
superharmonic in o (3 supp Ix+ 2)(0; e)). Thus u also satisfies (2.2), and the proposi-
tion is proved.
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Now we shall prove that a classical solution is a weak solution. Let/x 4:0 be a finite
positive measure with compact support in g 2 such that/x H-l(g 2), let supp/ c 0 and
let a <0 <T<b. Then

THEOREM 1. Suppose ( a, b) --. D ,o is a classical solution. Then [0, T -D,o, is a weak solution if f is chosen such that DTC C f. Moreover, the functions Pot and
u occurring in the classical and weak solutions respectively, are related by

(2.9) ut= pod"

(a Hlo(f)-valued integral), where PD, is extended to all f by setting it equal to zero outside

Proof. Let (a,b) D , be the classical solution, which we shall prove to be
weak. We shall first prove that

(2.10)
d

--dt fz,p dx dy foz,p
Opl
n ds

for all qo C(R 2) and that the right member of (2.10) is a continuous function of t.

Let x,y be the coordinate variables in R 2 and let

denote the components of ’(s,t)8t 2 (see Definition 1). Then (iii) of Definition
becomes

0(s,t) OPD, (’(s, t)) Ol(s,t) OP’ ((s,t)).Ot Ox Ot Oy

Thus the right member of (2.10) becomes

(2.11) --rOD,p On Ox dy-.-y dX fo" (--dy---dx).
Next we rewrite the left member of (2.10). Choose smooth functions, a(x,y) and

b(x,y), on 2 such that Ob/Ox-Oa/Oy-q (e.g. a(x,y)-O and b(x,y)-fq(u,y)du).
Let T -/Z (the range of the variable s). Then, using Stokes’ formula at the first step,
we get

adx+bdy(2.12) dxdy -- ot

= a((s,t)) - +b((s,t)) as

+
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-7+b. ds+ x y t s t s

Ox Oy Ot Os O Os -s a -+b - ds

ds

By (2.11) and (2.12) we have proven (2.10). It is seen from (2.12) also that the right
member of (2.10) is a continuous function of and that hence fD, 9 dx dy is continuously
differentiable with respect to t.

We next prove that D ,o, for t [0, T] if is chosen such that D C c f. Since
0c CD0 (DoGS,o), it suffices to prove that DCD for r<t. Since pz,_>0 in D we have
-Opo,/Orl>--O on ODt. Therefore (2.10) shows that fo,qdxdy is a nondecreasing func-
tion of for all tpC(R 2) such that _>0. This easily implies that DCD for r<t.
Thus we have proved that D ,o, for [0, T ].

Now let utHd() (for t[0, T]) be defined by (2.1) and extend Pz, to all f by
setting it equal to zero outside Dt. Then it is easy to see that p/, H01(f). We now want
to prove that

(2.13) ut- pz,dr.

Equation (2.13) means by definition (we are using the "weak" definition of vector-val-
ued integrals as exposed e.g. in [1 8, p. 73]) that

(2.14) (ut,P)--fot(pD,,P)d’r"
for all p H- l(f). Since A: H(F) H- l(f) is an isomorphism, (2.1 4) can be written

( ut, Aq ) fot( po,, Aq ) dr

for all 9 H(f), i.e., using the fact that ( u,A) ( p, Au ) for u, 9 H(f),

(2.15) (P,Xo,--XZo--tlx ) fot( pz,, kp } d".

We first prove (2.1 5) for q C(f). Green’s (second) formula gives (for Cc())

---n as fo? APD +fotAq Pz
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Combining this with (2.10) gives

SDy SD7 t( PDt,i.ds)dff.(qn’Xo,--Xo)= --S0 --SOD,’’ On

--() I)-JI-fot( po,,Aq) d
This proves (2.15) for C([2).

To extend (2.15) to all q H(f) it is enough to prove that the right member of
(2.15) depends continuously with respect to the H0(f)-norm on q; for Cc(f) is dense
in H(f) and the left member of (2.15) obviously depends continuously on

We have

Sot(PD,,fD) I1 11 f0tllpo, d,r>

where (u,v)-fuXzu. Vv is the inner product in H([2) and Ilull-v/(u,u), and it is not
hard to prove that fll po,lld< c. (Details are found in [7, p. 40].) Thus the right-hand
side of (2.15) depends continuously on q and so (2.15) is proven.

Now it only remains to prove that u satisfies (2.2) and (2.3). (2.2) follows im-
mediately from (2.13) and pn,>_O, and (2.3) follows from

ut, l--XD,)--fot pl),,1--XDt) d"t"

by choosing p X o, in (2.14) and

( Po:, l-xo,)-fPz).(1-Xn,) -0
for ’[0,t], a consequence of DCD (already proved) and pn,-0 outside Dr. This
completes the proof of Theorem 1.

3. Complementarity problems and variational equalities. By weakening still more
the concept of a solution, we arrive at a series of linear complementarity problems.
These are equivalent to a series of variational inequalities which are shown to have
unique solutions.

Let/t,o, and Tbe as before Definition 2 (/xCH-l(R2),/x_>0,/x0, o,f open,
0f nice, supp C0 C C t2 and T>0). Let also DO 6, be given and define tt- tt,no
H-l(f) by

(3.1) ot- 1-Xno-t’l.
Then (2.1)-(2.3) in Definition 2 can be written

mut--[t--XD,- 1, ut>O, ( Ut, 1 --XD,) --0

or

mut--Pt--XD 1, utO (ut,Aut--Pt)--O.
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Since XD,- 1 -<0, this immediately shows
THEOREM 2. Suppose [0, T] D , is a weak solution. Then the functions

u -:n(’) defined by (2.1) also solve the linear complementarity problems

(3.2) Aut.<_pt,
(3.3) utO
(3.4) (ut,Aut--Pt)--O
(t [0, T]), where )t are defined by (3.1).

Remark. Clearly (3.4) (in the presence of (3.2) and (3.3)) expresses that at (almost)
every point in f equality holds in at least one of the inequalities (3.2) and (3.3).

The complementarity problem (3.2)-(3.4) is equivalent to a variational inequality:
THEOREM 3. Let iotn-l() (e.g. given by (3.1)). Then utH() satisfies (3.2)-

(3.4) if and only if it satisfies

mut<--) and (U--Ut,Ut)>--O for all uH(f) with mu<--)t.

Remark. Theorems 2 and 3 together are similar to [17, Prop. 2]. However, [17]
deals with the equivalent variational inequality (3.11) below in place of (3.5).

Proof. If u satisfies (3.2)-(3.4), then (ut, mu--)tO---(ut, mut--Pt for all u
H(f) with Au<_Pt. By subtracting ut, Pt and using (0.1) the theorem immediately
follows in one direction.

Conversely, suppose (3.5) holds. Then (by (0.1))

(3.6) ut,mu--t<--ut,mut--)t foralluH(f)withAu<-pt.

Since A:H(f)H-(fl) is an isomorphism, we can chooseuH(f) in (3.6)
such that Au= Pt or such that Au= 2Aut--Pt (Aula is fulfilled in both cases). The first
choice shows that the right member of (3.6) is _>0, while the second shows that it is _<0.

Thus

(3.7) ut,mut--Pt--O.
By (3.7), and writing q=Au--Pt, (3.6) becomes (ut, q)<-O for all H-l(f) with
tp_<0. This shows that ut>_O. Thus (3.2)-(3.4) hold for u and so the theorem is proven
in the other direction too.

Remark. The variational inequality (3.5) differs somewhat from those variational
inequalities most often met with in the literature in that the condition AuPt is of an
unusual kind, but it is equivalent to a variational inequality of "obstacle-type." To be
precise, define kt H(f) by

(3.8) -At=pt.

Then, in terms of the function

(3.9) Vt-- Ut"t
the complementarity problem (3.2)-(3.4) can be written

(3.10) mVtO Vtt vt--t, mvt --O.

By an argument very similar to the proof of Theorem 3 (see [7, pp. 43-45] for details),
(3.10) can be shown to be equivalent to the variational inequality

(3.11) find vt_.n(’) such that Vtt and (v-vt, vt)>_O for all
v H(f) with v >_kt.
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This variational inequality is of obstacle-type (kt describing the obstacle). See [9, Chap.
II, 6].
THnO 4. Let pt_H-l(). Then the ariational inequality (3.5) has a unique

solution utIgl(f). If, moreover, ptLP() for some 1 <p<o, then utH:’P(), in
particular u is continuous ( ifp >2 even continuously differentiable).

Proof. The existence and unicity of a solution is immediate from the general theory
of variational inequalities or in fact just from ordinary Hilbert space theory since (3.5)
just expresses that u is the unique element of minimum norm in the closed and convex
set K= {u H(): Au<_pt. The regularity of the solution also follows from the
general theory of variational inequalities, e.g. by first rewriting the problem into the
form (3.11) as indicated in the Remark above, and then invoking [3, Th6or6me 1.1].
There is, however, also a direct and rather nice proof of the regularity. This goes as
follows.

Let PtLP() with 1 <p < o. To prove that ut.H2’p(), we shall consider a new
variational inequality, namely

find wt H( ) such that

(3.12) min(0,pt) <--Awt<--pt and

(3.13) (w-wt,wt)>-O for all wH(f) withmin(O, pt)<_Aw<_pt.

This variational inequality has a unique solution w H(f]) for the same reason as
for (3.5). Moreover, this solution a priori belongs to H2’P(f) since (3.12) shows that
AwtLP(f) (and AwtLP(ft) implies wtH2’P(f)). Thus, to prove that utH:’P(f),
it is enough to prove that ut-wt. For that purpose we only have to show that w
satisfies (3.2)-(3.4) (by Theorem 3).

To prove (3.2)-(3.4) for wt, first rewrite (3.13) as

for all wH(f) with nn(O, Pt)<--Aw<--pt. Setting p--Aw--Pt and using that the brac-
ket (., ) in the present case reduces to a Lebesgue integral, we get

(3.14) f,wt. <_f,w,. ( awt- p, )

for all q9H-(f]) with min(0, -pt)<_p<_O. First choose q=0 in (3.14). This gives

f,w,. ( >_o.

Then choose

min(0, Pt) in N,
P- Awt- Pt in \ N,

where N={z:Wt(z)<O}. (Since wtH2’p(), w is a continuous function and so

wt(z) <0 has a natural meaning and N is a well-defined open set.) We get

fwt. min(0,--pt)<--fNWt’(Awt--Pt),
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or

(3.16) fwt" ( Awt-- Pt-- min(0, --p,)) >0.

Since Awt--Pt--nn(O --pt)--Awt--rnJn(O, Pt)>O and wt<O in N (3.16) shows that

Awt- min(O, Pt) 0 in N.

In particular,

(3.17) Awt<_O in N.

But now wt=O on NtA f] (by the definition of N, and since w is continuous and
belongs to H(f])). Therefore (3.17) implies wt>_O in N (minimum principle for super-
harmonic functions). Comparing with the definition of N, we conclude that N is the
empty set. Hence

wt>--O (in f).

Thus (3.3) (for wt) is proven. (3.2) is part of (3.12), and (3.4) follows by combining
(3.15) with (3.2) and (3.3). Hence w satisfies the complementarity conditions (3.2)-(3.4)
which characterize u t, hence wt-- u as we wanted to prove.

The statements about continuity and continuous differentiability of u follow from
Sobolev’s inequalities. See e.g. [18, Thm. 24.2]. This completes the proof.

4. From variational inequalities to a weak solution. Up to now we have performed
a series of weakenings of the concept of solution,

solution of solution of
classical weak complementarity . variational
solution solution problems inequalities

and we have proved existence and uniqueness of solutions at the fight end point of this
series. On the way from weak solution to complementarity problems we have also lost
the domain D from the problem.

Now we want to perform the step

solution of
complementarity weak

solutionproblems

thereby also proving existence of weak solutions with a given initial domain (unique-
ness is already proven, by uniqueness of solutions of the variational inequalities). This
step involves among other things recovering the. regions D from the functions u
(constituting the solution of the complementarity problems). We need two lemmas.

LEMMA 1. Let Pt H- 1([’) and let u H( ) be the solution of the complementarity
problem (3.2)-(3.4). Then ut<_u for all u H(f) which satisfy Au<-pt and u >_O.

Comment. Lemma 1 says that among the functions that satisfy the inequalities
(3.2) and (3.3), there is a smallest function, namely that function for which these
inequalities hold complementarily.

Lemma is closely related to [9, Thm. 6.4, Chap. II]. In fact, that theorem says
that if v H(f) is the solution of the variational inequality (3.11) or, equivalently, to
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the problem (3.10), then vt<_v for all vH(f) which satisfy v>_tpt and Av_<0 (pt
H01(f)). In view of the remark after Theorem 3, this gives a proof of our lemma by
setting ut- vt-Pt, u-v-Pt and by defining Pt H(f) by (3.8).

Let us, however, give an independent proof of Lemma 1. For simplicity we restrict
ourselves to the case that 0 L’() for somep > (which suffices for our purposes).

Proof of Lemma in case lot L’(f), p > 1. Suppose Pt L1,(f) where <p <.
Then u H2, p(f), in particular u is continuous, by Theorem 4. Thus

I--{z:ut(z)--O) and D--\I--{z:ut(z)>O)
are well-defined (relatively) closed and open sets in f respectively.

Put w--u-ut. Thus we want to prove that w_>0. In view of (3.2) and (3.3) it
follows from (3.4), which can be interpreted as a Lebesgue integral in this case, that
mu t in D. Thus

(4.1) Aw=Au--ot<_O in D.

Take an e>0 and define N--(z:ut(z)<e). Then N is an open neighborhood of
IU Of in 2. Now, from u-->0 and (4.1) we have

(4.2) w+e-->0 inN and

(4.3) A(w+e)_<0 inD.

Since 0D CIU 0f, it essentially follows from (4.2), (4.3) and the minimum principle for
superharmonic functions that w+ e_>0 in D and hence

w+e>_O inf,=DUN.

The only problem is that w is not (necessarily) a nice function but just an dement of
Ho(), so that some care is needed in applying the minimum principle.

To this end, choose r>0 with 2r<dist(0N, OD) and let hr be as before Proposition
1. Then an application of the ordinary minimum principle to (w+e).hr in (z
D dist(z, OD) >r} shows that

(w+e).h>_O in (zf :dist(z,O)>r}.

Letting first r 0 and then e 0, (4.4) yields w->0 in 2, as we wanted to prove.
COROLLARY 1. Let O, O’ H- l() and let u and u’ be the solutions of (3.2)-(3.4) for

pt p and O’ respectively. Suppose that p’ <-O. Then u<_u’.
Proof. This follows from the lemma with Ot O, ut= u since Au’ --<O’ --<O and u’-->0.
Remark. There is also an inequality in the other direction. Namely, let p, tp’ H01(f)

be defined by --Ap= o and --Ap’= o’ respectively. Then, if O’_<O, we have u’<_u+
(p-p’). This follows by applying the lemma with ut-u’ and "u in the lemma"-u+
(-’).

COROLLARY 2. The solution u of (3.2)-(3.4) is monotonically increasing (=non-
decreasing) as a function of each of #,Do and (more generally, as a function of
Xzo+t.#) when Ot is given by (3.1), i.e. if DoCD, #<_#’ and t<_. then ut<_u’ (self-ex-
planatory notations).

Proof. This is just a special case of Corollary 1.
LEMMA 2. Suppose # L1,(f) for some <p <c and let u (- H(f) be the solution

of (3.2)-(3.4) with Pt given by (3.1). Define
(4.5)
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Then

(4.6) Aut-xn,-Xno-t.ix-Xz,- +tat.

Proof. By Theorems 3 and 4 utHE’p(), in particular u is continuous. Thus D is
a well-defined open set. Observe also that the definition (4.5) is consistent for t-0
since ut--- 0 is the solution of (3.2)-(3.4) for t-0 (in view of po_>0).

Define I (g " Ut( Z ) 0). Because u H2, p(), all partial derivatives of u Of
order _< 2 vanish almost everywhere on It. (This follows e.g. from [9, Lemma A.4,
p. 53 ].) In particular

(4.7) Aut--O a.e. on/t.

Hence (3.2) shows that PlY0 a.e. on It. By (3.1), using that supp/t CD0 and IX_>0, this
gives Ot 1 -XOo a.e. on It, or, using (4.7),

(4.8) mut--[kt--Xoo- a.e. on/t-

Now, since Aut--latLP() and u is continuous, the left member-of (3.4) can be
interpreted as a Lebesgue integral, and it follows from (3.2)-(3.4) and the fact that
U >0 in fl \ I that

(4.9) mut--[kt=O in fl\/t-

Equation (4.8) together with (4.9) gives

Aut--Pt=(XDo--1)’XIt--X(.\Do)AI
(a.e. or in the sense of distributions). Since (f \Do) f3 It- f \ Dr, this shows that
Aut--Xo,-- 1 + Pt, which is the desired result.

THEOREM 5. Let IX, o, and T be as before Definition 2 with Ix L (for simplicity),
let Do,,u and let Pt be defined by (3.1). Suppose utH(f) and solve (3.2)-(3.4)for
t[0, T]. Then, if f is large enough and D is defined by Dt--Dot3 (zf u,(z)>0), the
map

(4.10) [O, T Dt v,,u

is well defined and & a weak solution. Further, the function "ut" appearing in the
definition of a weak solution is identical with the u above.

Remark. This theorem, showing that solutions of the complementarity problems
give rise to weak solutions, is similar to [17, Prop. 3].

Proof. We first show that the map (4.10) is well defined., i.e. that f C CD C C
for all [0, T].

tC CD is evident since C CDo and DoCDt. Next, choose M>0 and 0<r<R
such that IX<--M.Xa<r and D0 C D(R), and define Rt>O for [0, T] by

Then I claim that DtC(Rt) for all t, and hence that it suffices to choose f such that
D(Rr) C CfL

To see this, put t-1-Xa)-tMxa) and define u’tH(f) by
XaR)--tMxat). Then it can be checked that u’t>O in D(Rt), u’t-O outside D(R/).
This shows that u’ is the solution of (3.2)-(3.4) corresponding to

But now p _< Pt. Therefore ut <- u’t by Corollary of Lemma 1. Hence ut- 0 outside
D(Rt), showing that DCD(Rt).
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It remains to prove that u and D satisfy (2.1)-(2.3) of Definition 2. (2.1) follows
from Lemma 2, (2.2) is (3.3) and (2.3) is (3.4) combined with (4.6). This completes the
proof of Theorem 5.

THEOREM 6. (corollary of Theorem 5). Let , o, f and T be as before Definition 2
and let D @,,u be given. Then, if merely f is large enough, there exists a weak solution

(4.11) [O,T]DtDt@o,
with Do- D. This solution is unique up to sets of two-dimensional Lebesgue measure zero.
Moreover, let u Hd(f) be the function appearing in the definition of a weak solution.
Then u is unique (as an element ofH(f)) and D above can be chosen to be

(4.12) Dt--DoLJ (Z’ Ut(z)>O )
(Equation (2.1) shows that u is continuous outside supp/t, in particular outside Do, so that
the right-hand side of (4.12) is a well-defined open set.) Further, the weak solution (4.11) is

monotonically increasing (-nondecreasing) as a function of each of ix, DO and (more
generally, as a function ofX Oo + t. l) i.e. if t <- t’, Do CDO and <- then D CD up to null
sets.

Proof. Suppose first that/ L(f). Since the problem (3.2)-(3.4) has a unique
solution (Theorems 3 and 4), it follows immediately from Theorem 5 that there exists a
weak solution (4.11) such that (4.12) holds. Since u0-0 for the solution u of (3.2)-(3.4),
we also have Do- D. As to the unicity, suppose we have two solutions, D and Dt’,
with Do-D-D. Then we get, by Theorem 2, two solutions, u and u’t, of (3.2)-(3.4)
for the same 0t- Thus ut- u’ and (2.1) shows that Xo,-Xo;. This is what the unicity
statement of the theorem amounts to. The last sentence of the theorem follows im-
mediately from Corollary 2 of Lemma 1. Thus the theorem is proved in case/ L(fl).

If tt S L(fl), we merely apply Proposition 2. Then we are back in the previous
case and the theorem follows as before, noting only that the function u and v in
Proposition 2 differ only inside to, in particular inside D0, so that (4.12) is not affected
by the smoothing process. Note also that the application of Proposition 2 does not
destroy the validity of the last sentence in the theorem since the smoothing process is
order-preserving (we used positive mollifiers in Proposition 2). This proves the theorem.

5. The moment inequality. We have hitherto shown the equivalence between three
concepts of solution for our moving boundary problem, namely the concept of a weak
solution, the solution of the linear complementarity problems and the solution of the
variational inequalities. There is another equivalent concept of solution which we now
want to discuss.

With/t=/=0 a finite positive measure with compact support, with to, and T as
before Definition 2, and with DO o, given, let us say that a map [0, T]
satisfies the moment inequality if for each [0, T]

(5.1)

for every function q EH2( 2) which is subharmonic in Dt.

The reason for calling this property the moment inequality is that with t-8 (the
Dirac measure at_the_origin) and by choosing q-+Rez and +Imz (n_>0) in a
neighborhood of DO hi Dr, (5. l) yields

IDtl-IDol+t (n--O) and f z"--f z" (n_>l).
Dt Do
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The quantities foz n are called the complex (or analytic) moments of the region D.
Thus, if (5.1) holds for t-o Dt, all complex moments of order _> of D are preserved
under the map t-oDt, while the zeroth order moment (=the area of the domain)
increases linearly.

The fact that solutions of the Hele Shaw problem have this moment preserving
property was discovered by Richardson ([12]). The idea to consider relations such as
(5.1) for subharmonic functions p is due to Sakai ([ 16] and [17]).

We shall now prove that satisfying the moment inequality is equivalent to being a
weak solution. More complete results in the same direction are given in [17] (our
Theorem 7 corresponds to [17, Props. and 4]).

THEOREM 7. Let l, w, f] and T be as above with IL(f) (for simplicity). Then a
map [O,T]t-oDt,o,u is a weak solution if and only if it satisfies the moment
inequality.

Proof. Suppose [O,T]3t-oDt,o is a weak solution. Since DtC C f, it is
enough to check (5.1) for all pH2(R2i which are subharmonic in D and vanish on
Of. Thus we assume p H2(R 2) N H0(f).

Let utH() be the function defined by (2.1). Then ut>_O and ut-O a.e. on
f \D (by (2.2) and (2.3)). Moreover, u is continuous and bounded.

Now let p H(f)fH2( 2) be subharmonic in Dt. Then A_>0 in D in the sense
of distributions. Moreover, since ApL2(f), the above properties of u show that
ut.AepL2(), ut.Ap--O a.e. on \D and hence ff\DtUt’Acp=O. Using these facts
and (2.1), we get

:f,lutAIBD"-’ffDdl&--fDtUtAq)"t-lfIBDd’ffDdl-o
Thus the moment inequality holds.

Conversely, suppose that the moment inequality is satisfied for [0, T]3 t-oD
,o,n. Again define u H(f) by (2.1). In terms of u/(5.1) takes the form

(5.2)
for all W H2( 2) subharmonie in Dt. Since the restriction mapping H2( 2)

_
H(f)

is onto [18, Thm. 26.7] the test class, H2() for W in (5.2) can be replaced by H2(f).
In particular (5.2) holds for all H2(f) fqH0(f) which are subharmonie in D. For
pH2() CIHo(f]) we have (fD, mut)--(ut, m)). Therefore, and since A maps H2(f])
H0(f) onto L2(f]), (5.2) can be written

(5.3) (ut,P)>_O
for all pL-(f) with p->0 in Dt. (5.3) shows that

(5.4) ut>_O (in f)

(because all nonnegative pL-(f) are allowed in (5.3)). The choice P-Xo,-1 is also
allowed in (5.3). This gives (ut, xo,- 1)_>0 and therefore, since ut>_O, Xo,- <-0,

(5.5) (ut,xo,-1)-O.
The fact that (5.4) and (5.5) hold for ut defined by (2.1) shows that our map t--,D is a
weak solution. Thus the proof of Theorem 7 is completed.
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6. Summarizing results and further properties of weak solutions. In this final
section we shall first reformulate the main result, Theorem 6, so that it becomes more
self-contained and simple, and then we shall prove some modest results on properties of
weak solutions.

Theorem 6 and the definition of a weak solution suffer from being a bit com-
plicated because of our desire to work in the Sobolev spaces H() and H-(f). The
following theorem is just Theorem 6 liberated from these complications, and it defines
implicitly a more simple concept of a weak solution.

THEOREM 8. Given a finite positive measure i with compact support in R 2 and a
bounded open set DO in 2 with supp/xCDo there exist, for each t>0, a unique open
bounded set D containing supp and a unique distribution u in 2 such that

(6.1)
(6.2)
(6.3)

XD,--XDo Aut+t’l,
ut>--O and

D/:DoU {zr2"ut(z)>O},

where (6.1) shows that u has a representation in form of a function continuous outside
supp (in particular outside Do) and (6.3) refers to any such representative.

Further, D is monotonically increasing as a function of each of Ix, Do and (more
generally, as a function ofX Do+ t. l), i.e. ifI <-- I’, DO CD and <_ then D CD. Finally

(6.4)

holds for every function q H2(R 2) which is subharmonic in Dt.

Proof (sketch). If/x is not sufficiently smooth (/1 (H-1( 2)), we first smooth it out
by convolving it with some radially symmetric mollifier (as in Proposition 2) so that
supp/x is still contained in D0. Then by choosing appropriate to,,f and T and by
applying Theorem 6, we obtain functions u and domains Dt, related by (4.12) for
arbitrary large t. It is easily seen that if we extend the u by putting them equal to zero
outside f, both the u and the D become independent of the choices of to, f and T, and
they satisfy (6.1)-(6.3) (for the smoothed out/x).

Now the D will actually provide a solution also for the original and the u will
satisfy (6.1)-(6.3) after a change inside D0. The details of this are completely similar to
the application of Proposition 2 at the end of the proof of Theorem 6 and are therefore
omitted. (The details in the case that # 2,r8 are given in [7, {}IVa].)

The unicity and monotonicity properties of D also follow easily from Theorem 6.
As to the moment inequality (6.4) it follows from Theorem 7 that

fo,-fOo>-t"fa(t*h)
for all qH2(2) subharmonic in Dr, where h, is that mollifier, defined by (1.5) for
some suitable e>0, used in the beginning of this proof. But, since tp<q,h, in a

neighborhood of supp/x by the sub-mean value property of subharmonic functions, we
have

f f
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and so

for tp H2( 2) subharmonic in Dt. This ends the proof of Theorem 8.
Now consider a weak solution t-D in the sense of Theorem 8. There are strong

reasons to believe that D in some sense becomes nicer as increases. One for example
expects that for any >0, D is bounded by analytic curves even if DO is not. This we
cannot prove (and it is not true for completely arbitary initial domains Do, as we shall
see in a moment). What we can prove is the following.

THEOREM 9. Let D be as in Theorem 8 and suppose that, for some fixed t, D is
connected and finitely connected, and DO C CDt. Then OD is a finite disjoint union of
analytic curves and isolatedpoints.

By an "analytic curve" we mean precisely the following: a subset of C is an
analytic curve if it is the image of 0D under some nonconstant function holomorphic in
a neighbourhood of OD. Thus an analytic curve is allowed to have singular points. For
the proof of Theorem 9 we need the following lemma which shows to what extent the
term DO in (6.3) is necessary.

LEMMA 3. Let, in the situation of Theorem 8,

ut={zeC:u,(z)>O}
where ut’ being superharmonic in DO by (6.1), is normalized to be lower semicontinuous in
DO (and continuous outside supp/x). Then, for >O,

(i) IfN is a component ofDo, then either NC U or ND Ut-- , and the latter case
can occur only ifN

(ii) D is the union of U and those components ofDO which do not meet Ut.

(iii) IfDO is connected, then Dt- U andD is connected.
Proof of the lemma.
(i) In Do, and in particular in N, u is a superharmonic function. Therefore, since N

is connected and ut_>0, if ut attains the value 0 in N, it must be constantly equal to 0 in
N. Thus either ut>O in N or ut=--O in N. Moreover, it is obvious (from (6.1)) that the
latter case can occur only if N does not meet supp #. This proves (i).

(ii) is an immediate consequence of (i) and the definition (6.3) of Dt.

(iii) Since supp/ cD0, it follows from (i) (with N D0) that DO C Ut. Thus, D Ut.

It remains to show that U is connected. But, since DO is connected and DO C Ut, if U
were not connected, there would be some component V of U such that VDo--
And this is impossible because u is subharmonic outside supp #, in particular outside
Do, ut>O in V and 0 on V. This completes the proof.

Proof of Theorem 9. Let Ut=(zC :ut(z)>O}. Then D0C CDt=DoLJUt shows
that bDo C Ut. This implies that each component of DO intersects Ut, and so, by (ii) of
Lemma 3, Dt-- Ut.

Now let /be a component of 8Dt=U and we shall show that V is an analytic
curve or a point. Let -C U (oo } denote the Riemann sphere. Since U is connected,
there is exactly one component of 2\ 3’ which contains Ut. Let V denote that compo-
nent. Then it is easy to see that bV=3,. Since is connected, this also shows that V is
simply connected.

Put W=D \Do- U\DO C V, and define

Ou
(6.5) S(z)--4
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for zWt3" (O/Oz-1/2(3/Ox-iO/Oy)). Due to the assumption that D is finitely
connected, D.t_is a neighbourhood of 3’ in V (the other components of OD cannot cluster
at 3’). Since DO is a compact subset of D (also by assumption), it follows that also W is
a full neighborhood of 3’ in V.

It follows from (6.1) that u is continuously differentiable outside ft. Hence S(z) is
a continuous function on Wtd3’. On 3’CC\Ut, u attains its minimum (u/=0). There-
fore Out/Oz=O on 3’, so

(6.6) S(z)=e on V-

In WS(z) is holomorphic since, by (6.5) and (6.1),

OS---= 1--Aut- 1--Xo,+Xzo+ t.l.t--O in W.

Now it is known (cf. [1, Lemma 6.1] or [9, p. 152]) that the existence of a function
with the properties of S(z) above gives the desired conclusion for 3’. To be precise, if 3’
just consists of one point, we are done. Otherwise (since V is simply connected and
0V=3’) Vcan be mapped conformally onto [. Let f: [ - Vbe the inverse map.

Then S(f()) is holomorphic in the neighborhood f-(W) of 0D in D and (6.6)
shows that

S(f())-f()--,O as ’0D (’).
It can be seen that this implies that f(’) extends analytically across 3 by defining
f()=S(f(1/)) for " in a neighborhood of 0D in {2\.

Moreover, it is seen that f(0D)=-t. This shows that ’t is an analytic curve and the
theorem is proven.

Remark. Theorem 9 is not quite satisfactory because of its three assumptions a
priori on Dt. The first of these, that D is connected, is however harmless and is
automatically fulfilled if Do is connected (by (iii) of Lemma 3).

The second of the assumptions, that D is finitely connected, I do not know how to
get rid of although I suspect that it is also automatically fulfilled (possibly some weak
assumption on Do is needed).

The third assumption, that Do C CDt, can be replaced by either one of the follow-
ing two assumptions.

(i) is sufficiently large.
(ii) Do is connected and is bounded by finitely many disjoint analytic curves.
As to (i), we actually have D0C CD for sufficiently large. This is seen by

comparing our solution t--,D (corresponding to the measure/ and initial domain Do)
with some suitable known solution t--,Dt’ defined by some measure /’ and initial
domain D. As indicated by Proposition 2 we can assume that # is a continuous
function. Since #0, # must be strictly positive somewhere, say at the origin. Then we
can choose #’ to be a radially symmetric function such that #’ <# and D to be a disc,
centered at the origin, such that DCD0. Then, by the monotonicity properties of D as
a function of # and D0, we have Dt’ CD for all >0. On the other hand Dt’ is a disc (this
follows from radial symmetry and uniqueness of solutions of (6.1)-(6.3)) which grows
beyond all bounds as increases (it follows e.g. by integrating both sides of (6.1) over
R 2 that ID;I--ID61 + t. f d#’). Therefore DO C C Dr’, in particular DO C C Dt, for all suffi-
ciently large t, as we wanted to prove.

To prove that (ii) can replace DOC CD we first note that, in the proof of Theorem
9, we still have D U, by (iii) of Lemma 3. The assumption that ODo is analytic implies
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that there exists a function S0(z), defined and continuous in (DO\K) tJ OD0, where K is
some compact subset of Do, and holomorphic in DO\K such that

So(z)= on aD0.

Now in the proof of Theorem 8 we change the definitions of W and S(z) to W=D \(K
t_J supp/x) and

u
S(z)--4-----z+Xoo(Z).(S0(z)-) for z WtA3,.

Here it is assumed that S0(z) is extended to WLJ y in some way, e.g. by S0(z)= for
z(WtJ’t)\Do. Then S(z) is continuous on Wt_J,, holomorphic in W (since (6.1)
shows that OS/O=O in W\ODo and OD0 is a nice curve) and S(z)= on -/. The rest of
the proof of Theorem 8 works as before and so (ii) is proved.

I am sure that the assumption DO C CD in Theorem 9 can be replaced by some
much weaker assumption on DO than (ii). However some assumption is needed as the
following example shows. Choose DO such that OD0 has positive two-dimensional
Lebesgue measure. DO could e.g. be a square with a lot of slits (of constant length)
along one side, spaced as a Cantor set of positive length. Then it will take a positive
time for D to move through 0D0 (since [Dtl-lDol--t.fdlz) and therefore D0C CD
cannot hold for small t>0. Moreover OD cannot be analytic for these t. This shows
that the conclusion of Theorem 9 is not valid if the hypothesis DO C CD is completely
omitted.

Despite its weaknesses Theorem 9 is strong enough to ensure that classical solu-
tions always are bounded by analytic curves.

THEOREM 10. Let #, and I be as before Definition and let 19 D ,,, be a
classical solution. Then

(i) If 19 D;o, is another classical solution and D;--D, for some ’I then
D{--Dtfor all tl with t>’.

(ii) OD is an analytic curve for every 1.
Proof. We can assume that # is a nice function, by Proposition 1. To prove (i)

assume, without loss of generality since the concept of a classical solution is invariant
with respect to time translations, that z-0I and then apply Theorem with T>_t.
Combined with the unicity statement of Theorem 6 this gives that Dt’ D up to null
sets. But it is easy to see that, in view of the regularity assumptions on OD and ODt’, this
implies that Dt’ D everywhere. This proves (i).

To prove (ii) take zI, z<t. We may assume that z=0. Now we apply Theorem
with T>_t. This shows that t--D is a weak solution in the sense of Definition 2.
According to Theorem 6 (uniqueness part)

(6.7) z t= oU {z e

up to null sets, where u is the function defined by (2.9).
Now using the regularity of D it is not very hard to see that (6.7) actually holds

everywhere. In fact we have Dt={zf:po,(z)>O} for all O<t<_T, and the function

po,(z) increases with t’, and from this it follows that Dt- {z" ut(z)>O} (for 0<t_<
T). Moreover, the regularity of D also implies that -Spo,/n>O on D for all t. In
view of the continuity of 0’/0t XTpn, (Definition 1) this easily implies that Dr, C C Dt2
for t <t2, in particular that D0C CD for t>0. Now it follows from Theorem 9 that OD
is an analytic curve.
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