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0.1. introduction

The purpose of this report is to give a simple and direct
proof of a " Runge approximation theorem" for compact Riemamnn
surfaces:

If 0 1s an open subset of a compact Riemann surface W, then the
meromorphic functions on W with poles. off O are dense in the space

of holomorphic functions on @ (in the topology of uniform convergense
on compact subset of O ).

Although this is a most natural generalization of the classical
Runge theorem ([Rl, Theorem 13.9] for example), I have not been able
to find theorems of this kind (for compact Riemann surfaces) in any
cof the standerd textbocks on Riemann surfaces.

Even in the journal literature it seems very difficult to find simple

and self-contained proofs of the Runge theorem. The most relevant

articles I have found are the following ones:

[Gl] : Here S. Ya Gusman proves a Mergelyan theorem for compact
Riemann surfacesg, using the Runge thecrem as a starting

point. The Runge theorem is quoted from [Sl].

In this paper some Runge-type theorems are stated, but I
must admit that I have not been able to understand the

[s1]

proofs. In any case the proofs are quite different from
the proof given 1in this report.

[Tl] : Here the Runge theorem is proved in the special case that
W-() is simply connected. The approximation of a giwven
funetion is achieved by developing it along a complete
system of "elementary functions", analogously to the.
power geries expansion of a function in the complex plane.
The system of elementary functions is obtained from a
Cauchy kernel, similar to the Cauchy kernel costructed
in this report (see the Remark on p. 6, ),

[c1] s In the Cartan seminars 1951/52 more general and deeper
approximation theorems on complex analytic varietes are
developed. John Wermer has, in private communication with
Prof, Harold S. Shapiro, outlined az proof of the Runge
theorem from these theorems.

Such a proof is included as an Appendiz in this report.




Thus there secems to be a gap to £ill, namely thalt of a simple and

self-contained proof of Runge’s theorem, using only elementary

propertiles of Riemann surfaces. This motivates the present report.

In this connection, it should be mentioned that Runge theorems for
non-compact Riemann surfaces are included in many textbooks, for
example [ BS1, Kap.VI.§6] and | HCl, Anhang 2 § 7 ].

The method of proof used in this paper essentially agrees with
that "functional analysis proof" of the Runge theorem for B {the
Riemann sphere) which, more or less expiicitly, builds upon the duality
between the holomorphic functions on {1 © B and the holomorphic
differentials on P~{l (see [RTl]Lfor these matters and for further
references} . To carry this ocut for a compact Riemann surface W # P
one has Lo construelt a substitute for the "Cauchy kernel" , g%%-,

and this construction is the main part of the paper.



0. 2. List of Notations

W will always denote a compact Riemann surface,
p=genus (W) ,

al,...,ap,ﬁl,...,sp a canonical homology basis on W

as In the figure “__MWMWﬁ\ﬁ“

1., al,,..,ﬁp are a
basis Tor the cycles on
W such that Bkcrosses
Cly once from right <o
left (k=l,...,p), and
such that als---:Bp are’

otherwise digjoint.
H{(Q) , for Qo W open : the space of holomorphic functions on Q
provided with topology of uniform convergence on compachts.
M(Q) :the .meromorphic functions on {1 .

Hdiff(ﬁ):the space of holomorphic differentials on 2 with the

topology of uniform convergence on compacts ,i.e. the topology

defined by the semi-norms

gl | g 5y = 15 el 0y - sgpig-if

for all coordinate-systems (U,z) , z:l — ¢

with U C Q ( U compact ) .

Mdiff(ﬂ) : the meromorphic differentials on (O .

(E) , for an arbitrary subset E S W : the space of functions
holomerphic in some neighbourhood of B , two funetions
being Identified if they agree on some neighbourhoocd of E.

Likewise for M(E) , H (E} and M

diff aier(E) -




df : meromorphic differentials will offten be denoted df,dUses.

even if they are not exact ; l.e. the integrals £, Uj;ses

may be additively multiple-valued .

Z3Ess0.: such letters will oftten stand for both local variables and

points on a Riemann surface .

A'i

: the dual space of a topological vector space A .

st = { € £f: L(f) =0 forall f€5 } if & 1is a subset of A .

zs Bsess : a dot under a variable indicates that it is "bound"
in some sense { for example an inbegration variable when there

are several variables involved ) .

P : the Riemann sphere .
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The generalized Cauchy kernel :

Let W be a compact Riemann surface of genus p ,

Z» EO £ W two fixed points .

Then there exists a kernel (z,£)d8 on W with the

following properties:

For fixed & # z_ t ®(z,8) € M(W) N H(W—{g,go}) s
where the pole at z = & iz of order =1 ,

the pole at

N

= go is of order < 2p~-1 .

if §O is not a Welerstrass point the pole at z = go

may even be taken to be of order < p .

For fixed =z # §O : $(Z,§)d§ € Mdiff(w) M Hdiff(w—{z’zo})’
where the poles are simple poles with Jjres = +1 at £ =z
res = =1 at £ = Z.,

For £ € H{U) , dg € Hyipp
set with rectifilable boundary oU (zo,g0 & ovU) :

(W=U) , where UG W is an open

(1) ;d%{ajqf(?)cp(z,g)dg = £(z) . (mod H(W) ) for =z€U,
J :

(2) 5%; Sg ag(z)P(z,8)df = dg(g) (mod Hy . .(W) ). E6W-T .

( H{W) is just the constants, and Hdiff(W) is the

p-—dimensional space of abelian differentials of the first

kind . )



Remark @

©(z,£)dF is not uniquely determined by the properties

® - @. Infact, if the pole for (z,§) at E_ 1is

required tc be of minimal order , one finds that any two

Cauchy kernels d¢iffer by some differential (with respect
t ) P

o £ ) in Hdiff(w)
There are several ways to normalize ®(z,£)df  so that
it becomes unigquely determined . The kernel constructed
in [ T1 ] is an example o such a normalization . Namely,

Z, is taken to be a non-Welerstrass point , & = Z .,

Qo O
the pole of (z,E) at z = §,.1s taken to be of order p ,

and for & at Z it is required that :

#2808 ~ - T ( ol(g-z )P ) .




12 Congtruction of the Cauchy kernel

In the case W =PF , the kernel will be 3

dtdg
Hg_g -gg_ _ Z-_.,. .
P(z,8)d5 = =2, g~z io(g-tF

In case genus(W) = p > 0 there is a ratural substitute ,

n{z,E)dzdE , for the differential (g%gﬁg‘ , but the integral on the
right-hand side above will not be single-valued with h(t,&)dtdg

in place of %%%%)2 . This trouble is solved by subtractning off
the periods of h{z;&)}dzd€ , and in order to do that , one has to
introduce another singularity in the =z variable , z = go .

The building blocks in the construction of p{z,E)dE will be the
following standard differentials on W ( see Tor example

(W1,88 15-16] or [881, Ch 3] for this material ) :

@D The p normalized abelian differentials of the first kind ,
i.e. the basis u'dul,ﬁf.,dup of Hyspp(W)  with |

1 for k=3 _—
(3) E[jduj_ 6kj“‘{o k%j, k’ J"l.’"‘sp .
k
@ The norwalized abelian differentials of the second kind with

a single pole of order 2 , i.e. the differentials :
(4) h(z,E)dz = e regular terms € M (W)yn= (W-{E})
2! , (E=z)? difs diff

with periods

(5) J n(z,8)dz = 0 5 K=lyeeesD
a
k
du, (§)
[ n{z,8)az = emi dg s KelyeeesD .
Py




The dependence on & is such that

h{z,&)dzdE = d§f§)2+ regular terms

has an invariant meaning and is s meromorphic differential in £

for fixed z + Infact h{z,£)dzdf = n(g,z)dEdz .

Now we want @(z,8)df  essentially to be the integral of h(z,E)dzdf
with respect to z . Hence we must subtract off the Bk“PePiOdS 2
2ni-duk( E) . Take any fixed point g, € W .Suppose we can find

meromorphic differentials dv ,..a.,dvp with poles only at §O and

1
with periods :

Joav, =0 for all K, = LyeessD
G.k J

li

f dv, = 2mi.d . .,
J kjJ
By

Thenr: the differential

£(z,8)dzdE = h{z,§)dzdE -kgidvk(z)-duk(g) is readily seen to be

exact In 2z for each & . (Observe that g(z,£)dzdf has no residues
in z (nor in & ) , since both h{z,£)dz and dvk(z) have only

one pole each , the residue of which therefore must be = 0 ) .

Hence we can define :

4

P(z,8)dE = [ g(t,5)atag
o]

where Z €W 1is an arbitrary fixed point *
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When z = & a slight modification is needed , since the integrand
then has a pole at the lower bound + = Zo {namely the pole of djk)-

For z_ £ £, We have :

4 D
P(2,8)aE = Jh(t,E)abag - & (v, (z) - v, (2 ))du () .
Z
o]

For zZ, = EO : simply omit the term

¢
B Y(2)(E)




The properties of ©(z,&)df are most easlly exhibited by writing

9(2,8)a8 2 - g - z (2 an(8) + ves
c

where the individual terms are multiple~valued {as functions of z)
but the periods cancel betwsen the terms, the vk(z) have poles at
Z = go and are regular elsewhere and the duk(g) are everywhere
regular. Apart from the statements about the order of the pole at
7 = @O » the asserted properties (i) and (:) of ©(z,8)dE are now
checked by mere inspection .
o check (3) suppose

r e 5

dg € Hgypp
U C W open with rectifiable houndary aU .

(W'U) L)
Then the residue theorem gives , for =z € U

--“J £(E)0(z,E)dE = & res £(E)P(z,E)dE =

ami EEU
_ {fm - £(z) ir =z €U = £(z) (mod H{W))
£(z) z_ € W-T

o]
and , for & € W-U

- f dg(2)p(2)0E = ~=—s | - dg(z)o(z,9)dE =
. 2 )9z

21 i

zel-T X
- res Qgégl__ ag 4"§' res (v, (2)dg(z)) au (§) 1f §_€w-§
- Z= k=1 2=E
- rep _Ei_l_ dg go €U
D -
i dg(g) +k§1 rg:(vkdg) du, (8) i g €u-U
aeg(§) g €U

- dg(8)  (mod H, (W)




{ the fact that the vk(z) are not single-valued does not affect the

residues res(vkdg) since dg is regular in W- U ) .
Thus , to finish the construction we have to settle the existence of

the differentials dv

" sthat is to prove the followlng lemma »

Lemma : Given any point §O € W , there are meromorphic differentials

dvl,...,dvp with poles only at §o and with the periocds

[av, = 0

O ’ .

j‘ k,._]:l.ga-u’p
av, = isd, .

5 A Oy 5

k

Moreover, the orders of the poles at go can always be taken to be < 2p ,
and if §O is not a Weierstrass point the orders can even be taken

tobe <p+ 1.

( 8ince ®©(z,E)df contains the differentials dv, 1n integrated Torm,
the order of the pole at §0 in ©(z,8)d% will be < 2p-1

resp, < p. )

Proof : dvl,..,,dvp are going to be suitable linear combinations

of the differentials ( in 2z ) :

31 X . .
1 h(Z,go)dZ = ._rll : h(zlg)dz L] n = O’ 1_, 2,-:» a
o 3E IE.
o)
Here £ ° is a fixed lecal parameter at the point go .
By (4) we have :

1
o hi{z,& )dz = (-1)n(n+1)!-12§. + regular terms
o
and :
n n .
,,J,"*é—nh(z,go)dz = g—h— £ f n{z,€)dz = 0 .
a, °§ JE o ay



Hence the linear combinations

Im In

a
dvk(z).'; 121:0 & e h(z,go)dz

will do if and only if

m n
o
Jav, (z) = T — J h(z,8 Jaz = 27 iv5 .
5, k nzoakn N §O 5. o) kJ
J J

hence , by (5) , if and only if

I n+1

d u
L a 5 (g )25 R El k:j=1:“’:p
10 kri d‘,;1r1+1 o) kj

For fixed m this system of equations can be golved if and only

if the matrix

r dul d2u1 dm+lu1
gg-_(go) dgg (%O) -.--......Egn:?l- (go)
we | I .
ii.l.l.E &%u g™ty
(8 ) —L &)
a d€ o) 'dE;'g go d§m+1 (50)—

has rank = p ( i.e. the columus span (Bp Y .

Consider an m for which the columus of Mm do not span Cp .

Then there is a non-zerc vector (bl""’bp ) such that

dr.lu1 du

blm';l' (go) + sae T+ bp—“‘r%"— (go) = O
i ag

for n= 1, cesym-l

This means that the everywhere regular differential

d'l.1= bdu +ao-+bdu
11 P P

is non-trivial and has a zeroc of order >m + 1 at §O

But it is a classical fact that sn everywhere regulaf differential

on a compact Riemann surface of genus = p has exactly 2p-2 zeroes .



Hence m+ 1 <2p -2 ( if M~ has rank <p ) .

Therefore Mﬁ must have rank = p for every m>= Zp -2,
Thls means that the system of equations can always be solved with

m=2p - 2, and the solution will then yield differentials

2p=2 n
dv (z) =& a__ —— h(z,E )dz
k n=0 ko 5§n °

W;th the poles at §O of order < .2p as ¢laimed .

Finally , the Weierstrass points on W are ( by definition ) the
< (p=1)p(p+l) points §O € W at which Mp—l has rank < p .

Hence , if go is not a Weierstrass point m can be taken = p - 1
s0 that the poles of dvk will be of order < ptl .

This proves the lemma and also finishes the construction of the

Cauchy kernel .



I.3. Bzamples of Cauchy kernels

@O As already remarked , the simpliest choice of 9(z,E)dE
when p=0 (W=2P) is:

P(z,8)a8 = S - &

E-z ~ §—-zo

or , with zo=°°:

Cp(z,é)di = }g%

@ When p=1 , W 1is a torug and can be represented as a
period parallellogram M with vertices 0, w
say (reference : [ Al , ¢ch 7 ]) .

12 we, wl + wg P
The mercomorphic functions on W correspond to the doubly
periodic functions ( elliptie functions ) with respect to
the basis ( wl’wé) . The canonical homology basils (u,R)

on W may be taken to be the one represented by the segments
[o,w1] . [O,we:f on M (see figure) .

U.J; _________ w|+w2‘
/
M 7/
. /!
P 5, y
. /
Z, /
- /
0 o w,
Let :
1 - 1 1
==+ & - ] s
P(z) z w'[(z-w)g w?

where the sum ranges over (wIZ + UUEZ) - {o} ,

be the Welerstrass yD-function with respect to ( w_,w ) and put s

172

qu .
e lpee L i-e

( nl and n, are reiated by ﬂlwa - ﬂgwl =271 ,Legendre’s

relation . ) .

13,




Let Zg s EO € M be the two fixed points in the Cauchy kernel
0(z,§)dE for W . Then one finds that the simplest choice of
©(z,E)dE - becomes ( when Z £ §O ) s

Z

®(2,8)a8 = J [0 (t-8) - 0 (¢-€ )]atae .

The other differentials occurring in the construction of (z,E)dE

will be :

n
n(z,8)dzdE = ((2-8) + = )dzdf

1
a(g) = &
1
dv(z) = (wlgo(z-go) + My )dz

Traditionally , the antiderivative of ga(z) is denoted wg(z) s and
is normalized so that it is odd . In terms of g(z) the Cauchy

kernel thus becomes :

®(z,n)dn = [ -§(z=n) + G(z-n) +§lz=n ) - §(z -n )]an,

where we have replaced the variable & by m and go by Ny °
With an arbitrary constant A in place of the constant ;(z —ﬂo) .

o}
we get the most general Cauchy kernel with the pole at no of minimal

order ( = 1) , at the same time as we account for the case z = §O

©(z,m)an = [ = G(z=m) +5(z ~ m) +§(z=n ) = & Jan .



The Runge gpproximabtion theorem :

Let W be a compact Riemann surface ,
0 C W an open subset
B W~} a set which intersects sach component of We{) .

Then : M(W) N H(W-E) is dense im H{(Q) .
In particular : M{W)} N H(Q) is dense in H(Q) .

Also : Mdiff(W) N Hdiff(W—E) is dense in Hdiff(Q) s

and in particular : (Wyn H (1) 1is dense in H Q) .

Maire airel airel



1T =.

Proof of the Runge theorem :

In order to prove that a certain subspace A 1g dense

in H(Q) it suffices to prove that for L € H(Q)* s
LENM=L=0 .

Hence , take a functional T. &€ H(Q)* . To begin with
we only assume that L € H(W)* ( i.e. that L annihilates

the constants } .

By the definition of the topology on H((}) there is a

compact K C O and a congtant M such thai

IL(f)] <M s%p!f! for all £ € H(Q)

Hence , by the Hahn~-Banach theorem L extends to a
functional I7 on H(K) ( the functions holomorphic

in some neighbourhood of X ) such that the same estimate
holds for all f € H(K) .

Choose a Cauchy kernel ¢(z,5)df on W with z €K<,
¢ €ECU-0 .

For each & € W-X , ®(-,8) € H(K) . Hence L (0(:,E))

iz meaningful and it has the transformation properties

of a differential in £ , so that :

ag(8) = 17 {9(-,8))ae
has an invariant meaning . Since the difference quotients

Cp(z_,?;ﬁ i CP(Z,E;)
g - £ g

E € WK

converge to %g t(z,E) as & — £  uniformly

for = € ¥ , it follows that




d

%E L7 (p(-,E)) exists and equals I/ ( 3¢ ®(*,8)) .

Hence dg(E) is a holomorphic differential for & € W-K

Repeated use of this argument also shows that

n+1

dag

For each open U, KcCUC Uco s OU rectifiable , we
have the formula :

n+l n
d ’, 0
J'(E)ZL (g_ncp(sg)) s N =0,1,2...., E & W-K,

1
21 1

J £(8)p(z,8)dE = £(z)  (mod H(W) )
QU

for z€U , £ €HTD .

The Riemann sums of this
integral converge to the
integral uniformly for =z € K,
It follows that for £ € H(Q) :

L(£) = I (2) =5 I’ (] #ew.5)0) -
5 ﬁ 3 gU £(E)L (9(+,8))dE = 2”;15% £(8)dg(g) .

Having this representation formula for the functionals
L € H(W)* < 85(Q)* it is clear , that in order to prove
that L = 0, it suffices to prove that dg(€) = 0 in
some neighbourhood of W= ( since then we choose U so
that W=U , and hence 2U , 1s included in that
neighbourhood )

In other words , it is enough to prove that the

Taylor expansion

2 g
FE-FE)- igg (5,)- (8=5,) =+ ;—!3—5 (8,) (-5 +...



vanighes for each @1 € W={) , or even that it vanishes for

one §1 in each component of W=(

@& Hence , if L € {(M{W) n HE(W=E))* , the choice

2 o(,z,) € (W) N HGEE) , € EE Ln> 0
9g
gives 3
an ) _QE dp+1
0= H SlE)) = F e =—-~-~-5—d€ml (g,)

so that the Taylor expansion in & wvanishes for each
gl € B , and therefore L =0 .

This proves the part of the theorem which is about the
space H(Q) .

The proof of the part cocerning H Q) is quite

diff(
gimilar . The modifications needed are :

One considers functionals T € Hdiff(w)i S () .

diff

The estimate becomes ;

|L{dg)| < M.max - sup | %%— | , ag €H
SE '

diff(Q)

where (Vl,zl),...,(Vﬁ,zm)¢are a finite number of coordinate
systems ( i.e. z, conformal Vj——-@ ) with

K = Vi U...U Vﬁ — (3 compact .

Now I. extends to a funectional I1° on H {K) such

diff
that the estimate holds for all dg € 1 (K) .

diff

The Cauchy kernel is chosen with %O cRKCQO,

Z €EEC W= . One defines :
£(2) = T (9(z,5)aE)

and £ becomes holomorphic in W-K with



n n

g’._f(Z) — L’( Oia
gz oz

The representation formula becomes

L(de) = = 55— g’Udg(z)f(z) s dg €H.(0) .

To conclude that L =0 it is enough that the Taylor

expansion 3
af 1 4aif 2
£{z) = f(zl) + (zl) (z—zl) * 53 dZ2 (zl)-(z-zl) + v

vanishes for each z1 S

n

Since é—n cp(zl,g)dg €M WynHsd (W=~E)

Ry
3z diff

aift

for Z; €E , n>0, this is the case if

@(z,?)d@) s N =0,1,....92 €W-K

=Y Y4 .
L € (Mdiff(w) N Hdiff(w ) by the formila in (3) .

This finishes the proof .
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Comment g

The Runge theorem can be generallzed in several directions .
One can Tor instance allow {Q CW to be any subset (not
necessarily open )} of W , and introduce on H{(Q) (resp.

Hijppe()) the so called mull topology ([x 1 § 19, 27]) ,

and the Runge theorem remains trUe word for word .

Another generalization is along the lines in [R"Fl] H
Replace the seft E in the theorem by a seguence Zz{zl,zg,,.,}
of points in W , where the same point may occur more than
once (finitely or infinitely many times } . Define MZ(W)
to be the set of meromorphic functions on W , allowed %o
have a pole of order n at the point =z € W if and only if
z occurs in the sequence 72 at least n times .

Then, a minor modification of the argument used in parts
(:)-_, (:) of the prcof of the Runge theorem gives

If the sequence 7 has at least one limit point in each
component of W={l , then MZ(W) is dense in H(Q)

diff,Z(w) dense in Hdiff(Q)) .

The Runge theorem can be put in a ancther light by means of
the duality between H(U) and Hdiff(W-U) mentioned in
the introduction . This duality is defined by the bilinear

pairing

B(f,dg) = 5—1-,-”-—1 gU £(z)de{z)

for £ &€uU) , dg€H W-U)

diff( o
For simplicity , assume that U 1is open . This means that dg
is holomorphic in some neighbourhcod of W=-U , and the

integral f is understood to be along a path moved a
ol ,
little Luto U ( for details about this bilinear pairing

in the case W=F and UCW is an arbitrary subset ,

see | G2 ] .




It is easily seen that if dg € H then B(f,dg) = 0

azeet™)
for 21l £ € H(U) , and if £ € H{W) (i.e. £ ig constant)

then B(f,dg) = 0 for all dg € Hdiff(W-U) .
Now , the peint is that the converses of these statements are

true , Or even more

if  B(f,dg)= 0 for all £ € =5(U) n Mw)
W ]
then dg € Hdiff( ) resp
i - W) N
if B{f,dg) = O for all dg € Hdiff( U) Mdiff(w)

then £ € H(W) .

In fact , this is essentially parts Q@ - @D in the proof of

the Runge theorem .

In particular this means :

if B(f;dg) = 0 for all £EH A MW |,

then B(f,dg)

I

0 for all £ € H(U)

{ and similarly for the other half ) .

Therefore , in view of the Hahn-Banach theorem :

H(U) N M{W) is dense in H(U) for any topology on H(U)

compatible with the duvality between H(U) and HdifF(W'U)
defined by B , i.e. for any topology on H(U) for which
y*

(W=U) represents the dual space H(U via B .

Haser
Now , ( and finally ) , the essence of parts () - B in the
proof of the Runge theorem is that the usual topology on H(U)

is such a topology ( in fact the strongest one ) .




Iri. APPENDTY

As John Wermer has pointed cut , the Runge theorem also
follows from more general approximalbion theorems on complex
analytic varietes . A proof along those lines will be given

below .

For simplicity , we prove the part of the Runge theorem
gtating that M{W) N H(Q) is dense in H(Q) , where W 1is g
compact Riemann surface and O & W is open .

Qur starting-point will be the following theorem , proved in the

Cartan seminars 1951/52 (Théorém 4 in seminar no.9 )

Let E be a complex analytic variety , and suppose T is an
algebra of holomorphic functions on E satisfying the following

condititons :

1) Every compact K C E has a neighbourhood V such that
K,Fﬂ V is compact . Here

K_=1x€eB : I#(x) < sup [£(7)] for all f€F}
F : ;=
NASHS
2) “¥ separates points on E .

3) ¥ furnishes local coordinates at each point on E .

Then ’; is dense in the algebra of holomorphic functions
on B ( in the topology of uniform convergence on compact

subsets on E ) .
We want to apply this theorem with E = Q ( which certainly is
a complex analytic variety ) and ¥ = M(W) N H(Q) . The conclusion

of the theorem is then Jjust the Runge theorem we want to prove .

Thus it only remains to check the properties 1) - 3)for ,



2)

3)

»a

To check 1) , let K< Q be compact .
For each point =z € W-0 there is a function £ € M(W) n H(Q)
with a pole at z { by the Riemann-Roch theorem ) .

Let U be a neighbourhocd
of zo such that

'£(z)] > sup ff(g)] +1

‘ EEX

for z€UN0O,

Then W-{} can be covered

by finitely many such

neighbourhoods Ul,.,.,Uﬁs
and it follows that
V= Q= (UJL U...UUm)
is a nelghbourhood of K which also contains K"F .
Hence K‘S’ nNVv= K'F is compact .

L] f
Let 2,2, €, z, + z, We must prove that f(zl) £z
Tor some £ € M{W) n H{Q) .
Choose a funetion g € M{(W) N E(Q) with a zero of order > 1

o)

at z and a zero of order N > 2p at z, ( p=genus of W) .

Such a function exists according to the Riemann-Roch theorem
(unless O =W , in which case the Runge theorem is trivial ) .
Tt is well=known (] ASL , V 28 ¢ |) that there also exists
a function & € M(W) with a .pole of order N {exactly) at

z and having no other poles ( here we made use of N> 2p ) .

2
The function f = g-h then belongs to MW) n H(Q) ,

il

equals zero at Zl and is non=zero at 22 .

This proves 2) .

Tet Z € (0 +» Proceeding similarly as in 2) , we choose a
function g € M(W) N H(Q) with a zero of order N > 2p+l

at z_  and a function h € M(W) with a pole of order N-1

( exactly ) at z, and having no other poles . Then
f=gh€¢MW)nN Z(Q) has 2 zero of order 1 {exactly) at z -

Thus f’(zo) + 0, s0 that f serves as a local coordinate

at 25 » This finishes the verifilcations of 1}-3) , and the

Runge theorem follows .
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