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Abstract. In many areas of science and engineering it is of interest to find the shape of an
object or region from indirect measurements which can actually be distilled into moments of the
underlying shapes we seek to reconstruct. In this paper, we describe a theoretical framework for the
reconstruction of a class of planar semi-analytic domains from their moments. A part of this class,
known as quadrature domains, can approximate, arbitrarily closely, any bounded domain in the
complex plane, and is therefore of great practical importance. We provide an exact reconstruction
algorithm of quadrature domains. Some numerical demonstrations of the proposed algorithms will
be presented. In addition, relations of the present theory to computer-assisted tomography and a
geophysical inverse problem will be briefly discussed.

1. Introduction

The theoretical subject of this paper is the truncated L problem of moments in two variables
and some of its ramifications. The practical aspects of the paper are centred around the
reconstruction of a planar domain (with possible degrees of shade) from a partial set of data,
such as x-rays taken along some given directions.

The one-variable moment problem with a weight uniformly bounded from below and from
above was considered by A A Markov beginning in 1883 with his proof of the Chebyshev
inequalities and in the consequent derivation of the law of large numbers from them. This
century, the same moment problem, nowadays known as the L problem, was thoroughly
investigated by M G Krein, N I Akhiezer and their collaborators. From our late twentieth
century perspective, we can trace back a good portion of the fundamental results of the theory
of convex sets or early functional analysis to this problem. An excellent account of these
facts is available in the monographs [3, 18]. Moreover, it was M G Krein who related in the
1950s the known solutions and techniques connected with the L problem to the perturbation
theory of quantum mechanical Hamiltonians, more specifically to the theory of the phase shift
of a pair of self-adjoint operators. Later, the same techniques proved to be essential in best
approximation results and key lemmas in the control theory of linear systems, cf [7].

The analogous two-dimensional L problem is much less explored. This dimensional
generalization has to do with the distribution of pairs of random variables [6], or the logarithmic
potential of a planar domain, or the distribution of stress of an elastic membrane, and so on.
Recent works point out some direct applications of this problem to tomography or geophysics,
see [9, 20, 21, 30]. The difficulties are of a different nature, although the basic moment theory
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is essentially unchanged. A parallel correspondence between Krein’s interpretation of the L
problem on the line, via the perturbation theory of self-adjoint operators, was recently proposed
in [24]; this time, the L problem was interpreted as the inverse problem for the principal
function of a pair of self-adjoint operators with trace-class commutator. This dictionary
provides a simple solution to the L problem in the plane, and gives the technical tool (a
formal exponential transform of the moment sequence) in reconstructing a domain from its
moments, see also [12, 13, 23].

A dictionary discovered recently identifies a well-studied class of algebraic planar
domains (known as quadrature domains) with a distinguished part of the extremal solutions
of the truncated L problem of moments. This brings into the field powerful methods of
potential theory, complex analytic functions and even partial differential operators with analytic
coefficients. The class of quadrature domains was introduced by Aharonov and Shapiro [1] and
extensively studied by Sakai [28], Gustafsson [10] and several other mathematicians (for more
details see the monograph [29]). The reconstruction algorithm we propose in the following is
exact on all quadrature domains. Since every planar domain can be approximated by a sequence
of quadrature domains [10] the remaining question is only how well and how constructive this
approximation is from the perspective of moment sequences.

A theoretical continuation of this work is considered in [25], where a connection between
the approximation process involved in this paper, the diagonal Padé approximation in two
complex variables, and some finite-rank approximations of linear Hilbert space operators is
developed.

This paper is organized as follows. The next section briefly recalls the convexity theory
behind the truncated L problem of moments (amply developed in [17]) and some basic
aspects of the theory of quadrature domains. Section 3 deals with a linear parametrization of
quadrature domains; a territory where block Jacobi type matrices, planar quadrature formulae
and elementary operator theory meet. In section 3 we explicitly state and comment on
the reconstruction algorithm for quadrature domains. Section 4 contains the reconstruction
algorithm for simply connected domains with smooth real analytic boundaries, and a proof
of its exponential convergence. In section 5 we briefly comment on some application areas,
specifically in tomography and geophysics, and from the theoretical point of view, in cubature
formulae on quadrature domains. Some numerical examples of the proposed reconstruction
algorithms are appended (in section 6) at the end of the paper. We end with some general
concluding remarks.

The authors are grateful to the three anonymous referees for their criticism and constructive
comments.

2. Domains finitely determined by their moments

This section is a brief overview of some known results, old or new, concerning the L problem
of moments in two dimensions. Let g be a measurable function defined in the complex plane
C, with support contained in a fixed ball BR(0), centred at zero of radius R. Throughout this
paper we assume that 0 � g � 1, almost everywhere. The coordinates in C will be denoted
by z = x + iy and dA will be the Lebesgue area measure. The characteristic function of a
measurable set σ will be denoted by χσ .

The moments of the function g are

amn =
∫

C

zmzng(z) dA (z), m, n ∈ N. (1)
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Fix a positive integer N and denote by aN(g) the partial sequence of moments:

aN(g) = {amn;m, n � N}. (2)

We can regard aN(g) as a vector in C
2N+2. Let

�N = {aN(g); g ∈ L∞(BR(0)), 0 � g � 1}
be the set of all possible moments of such functions. Then an elementary argument shows
that �N is a closed convex subset of C

2N+2. An early result in convexity theory identifies the
extremal elements of this set, as follows.

Theorem 2.1. A point a ∈ �N is extremal if and only if there exists a real polynomial p(z, z),
of degree less than or equal to N in each variable, so that a = aN(χ{p>0}).

Moreover, the extremality assumption implies the following uniqueness result.

Corollary 2.2. Given a point a ∈ �N , there exists a unique representing function g, in the
sense a = aN(g), if and only if a is an extremal point of �N .

The reader can find full details about these classical results in [18] or [17]. For the aims of
this paper, it is important to rephrase the above corollary as: a function g ∈ L∞(BR(0)), 0 �
g � 1, is uniquely determined by its moments of order N in each variable if and only if it is
of the form g = χ{p>0}, where p is a real polynomial of degree less than or equal to N in each
variable. Moreover, for any point a ∈ �N , there exists an extremal point b ∈ �N+1 so that
its projection onto the first 2N + 2 coordinates coincides with a. Thus, in many respects, the
investigation of the N -extremal solutions of the moment problem for functions g as above is
the key to understanding the whole moment problem.

In contrast to the one-variable case, so far there is no constructive way of passing from
an extremal point a ∈ �N to its unique representative χ{p>0}, or equivalently to the defining
polynomial p(z, z). In what follows we focus on a particular class of extremal points of �N ,
for which such a construction is possible.

Given a potential sequence of moments a = (amn)
∞
m,n=0, we define formally a new

sequence b = (bmn)
∞
m,n=0 by the following exponential transform:

1 − exp

(
− 1

π

∞∑
m,n=0

amnX
m+1Yn+1

)
=

∞∑
m,n=0

bmnX
m+1Yn+1. (3)

This notation will be consistently maintained throughout the whole paper.
By keeping track of the degrees in the unknowns X, Y , we rapidly remark that the

transformation above is triangular, in the sense that, in the computation of bmn, only the values
of apq, p � m, q � n, are needed. The above transform was suggested by a central object
(the determining function) in the theory of pairs of self-adjoint operators, cf [4]. Actually this
operator theoretic framework solves our moment problem.

First we define a kernel K(p, q; r, s) ∈ C, p, q, r, s ∈ N, by the following inductive
relations:

(a) K(0, 0;p, q) = K(0, p; 0, q) = bpq ,
(b) K(p, q; r, s) = K(r, s;p, q),
(c) K(p + 1, q; r, s) = K(p, q; r, s + 1) +

∑p

k=1 K(p, q; k − 1, 0)br−k,s .
Then the moment problem can be solved in familiar positivity condition terms, see [24]

and the references to earlier works cited there.

Theorem 2.3. Let a = (amn)
∞
m,n=0, a00 > 0, be a given sequence. Then there exists a

function g ∈ L∞(BR(0)), 0 � g � 1, with these moments if and only if the kernels
K(p, q; r, s), R2K(p, q; r, s) − K(p + 1, q; r + 1, s) are non-negatively definite.
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Implicit in the latter theorem is the condition (bmn) � 0, where positivity is understood
as a kernel defined on N × N. Of particular interest is the degenerate case det(bmn)Nm,n=0 = 0.
This not only produces an extremal point of the set of all moments �N , but it imposes on the
defining polynomial p some very rigid conditions, explained in the following paragraphs.

Definition 2.4. A quadrature domain � is a bounded planar domain with the property that
there exists a distribution u of finite support, contained in �, so that∫

�

f dA = u(f ), f ∈ L1
a(�). (4)

The latter is the space of all analytic, integrable functions in �.
This class of domains was singled out in [1]. To give the simplest example, a ball Br(0)

satisfies the quadrature identity∫
Br (0)

f dA = πr2f (0),

for all analytic, integrable functions f defined in Br(0).
In general, a quadrature domain � has a real algebraic boundary, given by a polynomial

equation

� ≡ {z ∈ C; q(z, z) < 0}, (5)

where the relation ≡ means equality modulo a finite set. Moreover, the degree in each variable
separately of the polynomial q is equal to the number N of points (counting also multiplicity)
in the support of the distribution u. The integer N is called the order of the quadrature domain
�. For all these and more details see [10] and [29].

Returning to our particular moment problem, we mention the following identification
established in [23] and some earlier papers.

Theorem 2.5. Let g ∈ L∞(BR(0)), 0 � g � 1, be a function with moments a = (amn)
∞
m,n=0.

Then there exists a positive integer N with the property det(bmn)Nm,n=0 = 0 if and only if g
coincides up to a null set with the characteristic function of a quadrature domain of order less
or equal to N .

Moreover, under the assumptions of the theorem, the respective quadrature domain is
determined by the moments amn,m, n � N . The next section explains the constructive parts
in this determination.

Without going into details, we only mention here that a different spectral problem, for the
basic equations of planar elasticity theory, also distinguishes the class of quadrature domains
among all planar domains, see [26].

3. The moments of quadrature domains

In this section we focus on the structure of the defining polynomial of a quadrature domain
and its close relationship with the L-moment problem.

Let � be a quadrature domain of order N satisfying the quadrature identity:∫
�

f dA =
m∑
k=1

νk−1∑
j=0

ckjf
(j)(ak), f ∈ L1

a(�), (6)

where ak ∈ �, 1 � k � m, and N = ν1 + ν2 + · · · + νm. Returning to the theory of pairs of
self-adjoint operators invoked before, it will be relevant to consider the following exponential
transform of �:

E�(z,w) = exp

(
− 1

π

∫
�

dA (ζ )

(ζ − z)(ζ − w)

)
. (7)
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This is an analytic/anti-analytic function defined for z,w ∈ C \ �. Its Taylor expansion at
infinity provides the formal transform of the moment sequence (3). For our purposes the next
result is crucial. For its proof see [22].

Theorem 3.1. Let � be a bounded planar domain with exponential transform (7). Then � is
a quadrature domain if and only if there exists a polynomial p(z) with the property that the
function q(z,w) = p(z)p(w)E�(z,w) is polynomial at infinity.

In that case, by choosing p(z) of minimal degree, the equation of � is, up to a finite set,
� = {z ∈ C; q(z, z) < 0}.

Moreover, the polynomial p(z) appearing above is precisely

p(z) =
m∏
k=1

(z − ak)
νk ,

hence of degree N , while q(z,w) has degree N in each variable.
Therefore we are led to the following reconstruction algorithm for a quadrature domain�.

Algorithm 1. (The exact reconstruction of a quadrature domain from a part of its moments.)
(1) Suppose that the moments amn,m, n � N − 1, and the quadrature nodes ak , each of

multiplicity νk, 1 � k � m, are given.
(2) Form the product of formal series:

R(z,w) = p(z)p(w) exp

(
− 1

π

N−1∑
i,j=0

aij
1

zi+1

1

wj+1

)
. (8)

(3) Identify q(z,w) as the part of R(z,w) which does not contain negative powers of z or
w:

R(z,w) − q(z,w) ≡ 0 mod (z−1, w−1).

The minimal defining equation of � will, in this case, be q(z, z) < 0.

Note that the exponential expression in equation (8) comes from the power series expansion
of the integrand in formula (7).

The last section will contain some simple illustrations of this algorithm.
Suppose now that the moments amn,m, n � N , are given, with their exponential transform

b satisfying det(bmn)Nm,n=0 = 0, so that the integer N is minimal with this property (i.e.
det(bmn)

N−1
m,n=0 �= 0). Then there are coefficients ck, 0 � k � N − 1, with the property that,

for all 0 � m � N , we have

bNm + cN−1bN−1,m + · · · + c0b0m = 0.

Then the minimal polynomial p(z) vanishing at the quadrature nodes is precisely

p(z) = zN + cN−1z
N−1 + · · · + c0.

At this point the above algorithm is again applicable. For details the reader can
consult [12, 23] where all these results are explicitly or implicitly proved.

Actually, more can be said about the structure of the moment bi-sequence of a quadrature
domain. In total analogy with the connection between Gaussian cubature on the line and
self-adjoint Jacobi matrices we reproduce below from [23] the matrix counterpart of the above
results.

Namely, for a quadrature domain � of order N , with minimal polynomial p(z) and
exponential transform E�, as above, there exists an N × N complex matrix U , such that U ∗

admits a cyclic vector ξ ∈ C
N , with the property

E�(z,w) = 1 − 〈(U ∗ − w)−1ξ, (U ∗ − z)−1ξ〉, |z|, |w| � 0. (9)
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Thus the transformed moment sequence is

bmn = 〈UmU ∗nξ, ξ〉, m, n ∈ N,

and moreover the quadrature identity becomes∫
�

f dA = 〈f (U)ξ, ξ〉, f ∈ L1
a(�).

Consequently, p(z) is the minimal polynomial of the matrixU , while the defining function
of the quadrature domain is � = {z; ‖(U ∗ − z)−1ξ‖2 > 1}. Further details about these results
can be found in [22, 23].

4. General domains

Leaving the territory of quadrature domains, we are faced with a series of conjectures and
partial results. We propose below a reconstruction algorithm and give rigorous proofs only for
a slightly weaker form of it. However, it is worth mentioning that the approximation scheme
we discuss in this section seems to work well numerically on more general convex domains,
cf [14].

Of course, a truncated series of moments does not determine in general the underlying
domain. The best results one can expect are error bounds for approximations of this
domain. Probably the most famous error bound in one variable is Chebyshev’s inequality
in probability theory. Its higher degree analogues, the Chebyshev–Markov inequalities, are
also well known. Higher-dimensional analogues of these inequalities and their relevance to
mathematical statistics are amply commented on in [17].

The following result was proved in [10].

Theorem 4.1. Let � be an arbitrary bounded domain in C. Then there exists a sequence
(�j )

∞
j=0 of quadrature domains which converges in the Hausdorff topology to �.

In particular, for fixed natural numbers m, n, we have

lim
j→∞

∫
�j

zmzn dA (z) =
∫
�

zmzn dA (z).

Although for applications the gap in the Hausdorff distance is the relevant quantity, the
moments are well behaved under much weaker gap distances, such as the area of the symmetric
difference of two domains. We note below a useful estimate in this direction. We denote by
dist (z,�), the Euclidean distance between the point z and the domain �.

Lemma 4.2. Let � be a domain contained in the ball centred at zero, of radius r . Then the
exponential transform of �, with coefficients (bmn)∞m,n=0, satisfies

|E�(z,w) − 1| � Area(�)

πdist(z,�)dist(w,�)
, z,w ∈ C \ �, (10)

and

|bmn| � Area(�)rm+n

π
, m, n � 0. (11)

Proof. Let T be the irreducible hyponormal operator of rank-one self-commutator [T ∗, T ] =
ξ ⊗ ξ with principal function equal to the characteristic function of �. As is well known, then

E�(z,w) = 1 − 〈(T ∗ − w)−1ξ, (T ∗ − z)−1ξ〉, z, w ∈ C \ �.
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Since ‖ξ‖2 = Area(�)
π

and, due to the hyponormality of T ,

‖(T ∗ − z)−1ξ‖ � ‖(T − z)−1ξ‖ � ‖ξ‖
dist(z,�)

,

the first estimate follows.
For the second estimate we remark that

bmn = 〈T ∗nξ, T ∗mξ〉
and again by the hyponormality of T , the spectral radius equals the norm, so that ‖T ‖ � r .

For details about hyponormal operators we refer the reader to [19]. �
From the perturbation (presence of noise) point of view, lemma 4.2 has the following

simple but important consequence: in spite of their nonlinear nature, the coefficients of the
exponential transform of the moment sequence depend linearly on the symmetric difference
of the domain and its perturbation.

Corollary 4.3. Let �1 ⊂ �2 be two domains which are relatively compact in the unit disc.
There exists a constant C = C(�2) with the property that the Taylor coefficients of the
respective exponential transforms satisfy

|bmn(�1) − bmn(�2)| < CArea(�2 \ �1), m, n � 0. (12)

Proof. Let r < 1 be so that�2 is contained in the disc of centre 0 and radius r . Let� = �2\�1.
Since

E�1 − E�2 = E�1(1 − E�),

we can apply lemma 4.2. Note that, for all m, n � 0, |bmn(�1)| � rm+n. Thus the constant C
has the form

C = max
m,n�0

(m + 1)(n + 1)rm+n

π
.

�
Next we focus on a particular class of domains, well suited for an application of certain

classical facts from rational approximation theory. Namely, we assume that � is a bounded
domain with real analytic smooth boundary. In this situation we know that the exponential
transform extends analytically across the boundary, in each variable, up to an inner subset K ,
compact in �, see [11]. We will assume, without requiring a minimality condition, that K has
a piecewise smooth boundary.

Let us recall the notion of logarithmic capacity of a compact set K of the complex plane.
If I (σ ) = ∫

log |z − w| dσ (z) dσ(w) is the energy of the equilibrium measure σ of K , then
the capacity of K is the number

c(K) = eI (σ ),

with the convention that e−∞ = 0. The capacity of a compact set K can be computed, for
instance, from the Green function of the unbounded connected component of K , or from the
conformal map of the disc onto the same component, etc. For details about capacity the reader
can consult, for instance, chapter 5 of [27].

For a set A and a radius r we define

Ar = {z ∈ C; dist(z, A) < r}.
We will state our main result in two stages, corresponding to two rather different choices of

the approximation nodes. As we shall see, not unrelated to the Padé approximation techniques
in the complex plane, the choice of these nodes is the main point in the proofs.
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Theorem 4.4. Let� be a bounded domain with smooth real analytic boundary and letK ⊂ �

be a compact subset with capacity 0 < c(K) < dist(K, ∂�). Assume that the exponential
transformE� extends analytically in each variable from the complement of� to the complement
of K , to a function still denoted by E�.

For every positive integer n there is a monic polynomial pn(z) with zeroes in K with the
following approximation property. Let the polynomial qn(z,w) be determined by

qn(z,w) ≡ pn(z)pn(w)E�(z,w) mod

(
1

z
,

1

w

)
. (13)

Then for every R, 1 < R < δ
c
, there exists a constant C = CR , with the property that, for

all z ∈ C \ Kδ and all n � 1, we have∣∣∣∣E�(z, z) − qn(z, z)

|pn(z)|2
∣∣∣∣ � CR−n. (14)

The proof will show that the sequence of rational fractions qn(z,w)

pn(z)pn(w)
converges uniformly

to E� in compact subsets of (C \ K)2. Since E�(z, z) is a defining function for ∂�, the
domains

Un = {z ∈ C \ K; qn(z, z) < 0}
will approximate � \ K .

In the more restrictive case of simply connected domains, some other choice of the
polynomials pn is available. Actually in this situation we will be able to fix the nodes,
identified with the zeros of a polynomial p, and simply increase their multiplicity, specifically
pn(z) = p(z)n.

Theorem 4.5. Let � be a simply connected domain with smooth real analytic boundary.
Choose a polynomial p(z) and a constant c < 1, so that |p(z)| � 1, z ∈ C \ �,
and so that the exponential kernel E� extends analytically to the complement of the set
K = {z ∈ �; |p(z)| � c}.

For every δ < dist(K, ∂�), there are constants C,R > 1, so that pn(z) = p(z)n and the
polynomials qn determined by (13) satisfy∣∣∣∣E�(z, z) − qn(z, z)

|pn(z)|2
∣∣∣∣ � CR−n (15)

for all z ∈ C \ Kδ .

Note that for any domain � with smooth real analytic boundary, a subdomain K , as in
the statement, always exists, see [11]. Indeed, by approximating by polynomials a conformal
map of � onto the unit disc one finds a polynomial p(z) with infz∈C\� |p(z)| = 1, while the
set K is as close to � as is needed for the analytic continuation requirement of E�. Even
for a prescribed subdomain K , one can find similarly a polynomial p whose sub-level sets
{z ∈ C; |p(z)| < const} separate K from ∂�. See also the Hilbert Lemniscate theorem
in [27], theorem 5.5.8.

The proofs will rely on known facts from rational approximation theory, plus specific
features of the exponential kernel, as exposed in [11].

We say after [8], section 2.2, that a sequence of monic polynomials pn of degree n has
equidistributed zeros in K , see [8], section 2.2, if

lim
n→∞(sup

z∈K
|pn(z)|) 1

n+1 = c(K). (16)
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This limit is the minimum value among all sequences of monic polynomials. By taking the
logarithm of (16) one sees that the zeros of pn(z), each charged with the weight 1

(n+1) , should
approximate the equilibrium measure σ .

Classical results due to Féjer and Fekete indicate that there are a couple of natural choices
of such polynomials pn, cf [8] theorems 2.2.3 and 2.2.4.

The next result is an independent one-complex variable approximation lemma for Cauchy
integrals. Without aiming at the most general form, we state it as a necessary step in the
proofs of the above theorems. Although slightly changed by the adaptation to the one-variable
framework, the notation below is similar to that of theorems 4.4 and 4.5. We hope this will
produce no confusion in the reader.

Proposition 4.6. Under the assumptions of theorem 4.4, let ν be a complex measure supported
by K and let pn be a sequence of monic polynomials satisfying condition (16). For any
1 < R < δ

c(K)
we have, for n large enough:∣∣∣∣
∫
K

dν (u)

u − z
− qn(z)

pn(z)

∣∣∣∣ � ‖ν‖R−n−1, z ∈ C \ Kδ, (17)

where ‖ν‖ is the total variation of ν and the rational function qn
pn

is determined by the algebraic
condition

pn(z)

∫
K

dν (u)

u − z
≡ qn(z) mod

(
1

z

)
. (18)

Proof. Fix z ∈ C \ Kδ . We start by remarking that

pn(z)

∫
K

dν (u)

u − z
=

∫
K

(pn(z) − pn(u)) dν (u)

u − z
+

∫
K

pn(u) dν (u)

u − z
,

and the latter integral can be expressed by a convergent power series at infinity in 1
z
. Hence

qn(z) equals the first integral above. Thus, we are led to estimate the expression∫
K

pn(u) dν (u)

pn(z)(u − z)
.

Choose c < δ1 < δ and take R = δ
δ1

. According to relation (16), there exists n0 with the
property that, for all n � n0, we have

|pn(u)| � δ1
n+1, u ∈ K.

On the other hand, since pn is a monic polynomial,

|pn(z)| � dist(z,K)n � δn.

These two estimates give the desired bound in the error integral above. �

At this point we return to the exponential kernel of �, using as a main reference the
notations and facts from [11]. In addition to E� we consider the kernel

H�(z,w) = − ∂2

∂z∂w
exp

(
− 1

π

∫
�

dA (ζ )

(ζ − z)(ζ − w)

)
, z, w ∈ �,

which is analytic in z and w. Whenever the domain � possesses a smooth real analytic
boundary, the exponential transformE� extends analytically in each variable from the exterior
of� across its boundary. In this respect we recall the following result, contained in [11], which
explicitly describes such an analytic extension.
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Proposition 4.7. Let � be a bounded domain and assume that there exists a signed measure
µ, supported by a compact subset K of �, with the property that the Cauchy transforms χ̂�
and µ̂ coincide on C \ �.

Then the exponential transformE� extends analytically/anti-analytically in each variable
from C \ � to C \ K and the extension E is given by the integral formula

E(z,w) = 1 − 1

π2

∫
K

∫
K

H�(u, v) dµ (u) dµ (v)

(u − z)(v − w)
, z,w ∈ C \ K. (19)

Proof of theorem 4.4. With the notation above we can write

E(z,w) = 1 − 1

π2

∫
K

∫
K

H�(u, v) dµ (u) dµ (v)

(u − z)(v − w)
, z,w ∈ C \ K.

By choosing the polynomial pn as in proposition 4.6, we remark that the polynomial
qn(z,w) is precisely

qn(z,w) = pn(z)pn(w)

− 1

π2

∫
K

∫
K

H�(u, v)(pn(z) − pn(u))(pn(w) − pn(v)) dµ (u) dµ (v)

(u − z)(v − w)
.

Indeed, each factor of the form pn(z)−pn(u)

u−z
is polynomial in both variables (u, z). Thus

qn(z,w) above is an explicit form of the polynomial qn defined in the statement of theorem 4.4.
By leaving the constants aside, and denoting for simplicity complex conjugation by a = a∗

and p = pn, we have to estimate the difference∫
K×K

H(u, v∗) dµ (u) dµ (v)∗

(u − z)(v − w)∗

−
∫
K×K

H(u, v∗)(p(z) − p(u))(p(w) − p(v))∗ dµ (u) dµ (v)∗

p(z)(u − z)p(w)∗(v − w)∗

=
∫
K×K

H(u, v∗)
(u − z)(v − w)∗

[
p(u)

p(z)
+
p(v)∗

p(w)∗
− p(u)p(v)∗

p(z)p(w)∗

]
dµ (u) dµ (v)∗.

Thus a repeated use of the proof of proposition 4.6 yields the estimate (14).

The proof of theorem 4.5 is entirely similar. With the notation in the statement it suffices
to remark that the estimate

|p(u)|
|p(z)| � c

(c + ε)
, u ∈ K, dist(z,K) > δ,

holds, with ε = infz∈�\Kδ
|p(z)| − c > 0. However, as we have pointed out before, the choice

of the polynomial p is, in this case, not constructive.

Remarks. (a) The proofs above show that the capacity condition in theorem 4.4 can be replaced
by

diam(K) < dist(K, ∂�). (20)

And in this case any choice of a polynomial pn(z) with zeros in K is good.
(b) Assuming that � and K are convex, a natural choice for pn would, in this case, be

the orthogonal polynomial of degree n, with respect to the area measure on K . Indeed, if
K is convex, then by Fejér’s theorem the zeros of such pn are contained in the K , see [8],
theorem 1.1.

(c) Variations on the proof of theorem 4.5 give good estimates as in formula (15) on smooth
real analytic arcs of the boundary of �, even if the domain has singularities in other parts of
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the boundary. The polynomial p(z) will, in this case, be chosen with respect to such a local
focus on ∂�. We do not expand on these details here.

As a partial conclusion of the above facts, we state below a reconstruction algorithm based
on remark (b).

Algorithm 2. (Approximate reconstruction of a class of convex domains with real smooth
analytic boundary from a part of their moments.)

Start with the known sequence (akl)
N
k,l=0 of moments. Centre the moments to

a1,0 = a0,1 = 0.
(1) Compute recurrently the coefficients bpq, p � N, q � N , of the exponential transform

of the moment sequence (cf formula (3)).
(2) Fix a constant ρ < 1. Find the monic orthogonal polynomial p(z) = zN +cN−1z

N−1 +
· · · + c0 whose coefficients satisfy the linear system

−ρN+kaN,k = cN−1ρ
N+k−1aN−1,k + · · · + c0ρ

ka0,k 0 � k < N.

(3) Identify q(z,w) as the part of

R(z,w) = p(z)p(w)

N−1∑
i,j=0

bij
1

zi+1wj+1

which does not contain negative powers of z or w.
Then � ≈ {z ∈ C; q(z, z) < 0}.
In view of theorem 4.4 and the remark above, the algorithm converges exponentially as

soon as the ‘balayage inward’ process of ∂� can be pushed enough to be contained in the
homothetic set ρ� and the latter satisfies ρ diam � < dist(ρ�, ∂�). By ‘balayage inward’
of a domain � with real analytic boundary, we mean the possibility of analytically extending
its Cauchy transform, from outside, up to an inner closed set K ⊂ �, as in proposition 4.7
above.

An example in this respect is a family of confocal ellipses, see [5]. For geophysical
applications this can be translated into the fact that the boundary of the respective domain (in
the inverse source problem) is far enough from the source.

Remark. Step (2) in the preceding algorithm can be replaced by other choices of the polynomial
p. A natural candidate would be a solution of the variational problem

m = min
N∑

i,j=0

dibij dj =
N∑

i,j=0

cibij cj ,

the minimum being considered over all systems (dj ), 0 � j < N , of complex numbers, with
the normalization dN = cN = 1.

In this way algorithm 2 becomes exact on all quadrature domains. Indeed, first note that
the matrix (bij ) is always non-negative definite, and second, � is a quadrature domain of order
N if and only if the above minimum is zero. Then the only choice of p(z) is the solution of
the above variational problem, cf section 3 of this paper. As a matter of fact, the minimum m

above has a simple Hilbert space interpretation:

m = dist(T ∗Nξ,∨d<NT
∗dξ),

where T is the unique hyponormal operator of rank one self-commutator, [T ∗, T ] = ξ ⊗ ξ ,
with principal function equal to the characteristic function of the set �. Or equivalently, m is
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the norm of the monic orthogonal polynomial of degree N , with respect to a scalar product
given by the kernel H�. For details see [11, 23].

This particular choice of the polynomials pn can be related to a diagonal Padé
approximation of the exponential transform E�, and further to a canonical approximation
of the hyponormal operator T which appears in the factorization of E� (such as in the proof
of lemma 4.2). These aspects will be expanded in a separate paper [25].

5. Applications

Numerous applications of the problem of shape-from-moments exist in diverse areas such as
probability and statistics [6], computed tomography [20], and inverse potential theory [9,21]. In
statistical applications, timeseries data may be used to estimate the moments of the underlying
density, from which an estimate of this probability density may be sought. In computed
tomography, the x-rays of an object can be used to estimate the moments of the underlying mass
distribution, and from these the shape of the object being imaged may be estimated [16, 20].
Also, in geophysical applications, the measurements of the exterior gravitational field of a
region can be readily converted into moment information, and from these, the (polygonal)
shape of the region may be determined [9]. In this section we briefly discuss the tomographic
and geophysical reconstruction problems in light of the above results. More details about the
connection between moment reconstruction and tomography can be found in [16] and [20].
We use the notation of the latter reference.

5.1.

In this section we work with real variables x, y, so that z = x +iy and the transition to complex
variables z, z is simple. We denote by δ Dirac’s distribution of a point or of a submanifold.
Let � be a bounded planar domain and let

µmn =
∫
�

xmyn dx dy,

be its moment sequence. Let t be a positive integer and let θ ∈ [0, π). The Radon transform
of the domain � is the function

g�(t, θ) =
∫
�

δ(t − x cos θ − y sin θ) dx dy.

We interpret g� as the projection of � at the angle θ . Let T be a positive constant and let
F ∈ L2([−T , T ], dt). Accordingly, the definition of g� yields∫ T

−T

g�(t, θ)F (t) dt =
∫
�

F(x cos θ + y sin θ) dx dy.

By taking F(t) = tn and expanding the second integral by the binomial formula we obtain∫ T

−T

g�(t, θ)t
n dt =

∑
k+l=n

(
n

k

)
cosk(θ) sinl(θ)µkl.

Thus, knowing the projection g� at the angle θ , and hence its moments, one knows the
above linear combinations among the moments µkl . Since the determinant of these linear
combinations for different angles θ is non-zero, the following observation holds (as noted
in [20], proposition 3): given line integral projections of the domain � at d + 1 distinct angles,
one can determine all the moments µk,l of order k + l � d. As a consequence, taken with our
earlier results and proposed algorithms, we have:
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Theorem 5.1. Let� be a quadrature domain of order d. The line integral projections g�(t, θj )
at 2d + 1 distinct angles θj , 0 � j � 2d, uniquely determines �.

This also gives a simple way of deciding from tomographic data when a domain � is a
quadrature domain of order d .

Thus (as is well known) a disc of uniform mass is determined by exactly three line integral
projections; more interestingly, a cardioid or a lemniscate (which are quadrature domains of
order 2) need five projections, etc.

For a theoretical discussion of the convergence of the reconstruction process from finitely
many projections, within the framework of the theory of the Radon transform, the reader can
also consult [15].

5.2.

Of related interest is the inverse problem for the logarithmic potential, or the Cauchy transform,
of a planar domain, see for instance [21]. We do not touch this vast territory here, but simply
mention that, knowing the Cauchy transform F(z) of a bounded domain � ⊂ C:

F(z) = − 1

π

∫
�

dA (w)

w − z
, z ∈ C \ �,

a part of the exponential transform E�, see (7), is known. More precisely,

F(z) = lim
w→∞w(1 − E�(z,w)).

Thus, knowing F(z) for z large, gives important information about E�, and consequently
about �. In particular, such an instance, when analytic continuation properties of F(z) were
exploited for proving the regularity of the boundary of �, is analysed in [11].

On the other hand there are simple examples of continuous families of quadrature domains
with the same Cauchy transform at infinity, see for instance [10]. For a general perspective on
the inverse problem for the Cauchy transform, see [30].

5.3.

As a theoretical application of section 3 above, we can reverse algorithm 1 and obtain fast
cubature formulae on quadrature domains, in the case when their defining equation is known.
More details in this direction can be found in [12].

To be more specific, start with a quadrature domain � of order d whose boundary is given
by the irreducible polynomial equation q(z, z) = 0, normalized so that the highest degree term
in each variable separately is zdzd . The coefficient of zd in q is then exactly the polynomial p
vanishing at the nodes of the quadrature identity (6). Then we can recover the moments amn
of � from the identity

∞∑
m,n=0

amn

zm+1zn+1 = −π log
q(z, z)

|p(z)|2 . (21)

Note that the cubature process is exact, and consists entirely of formal series manipulations.
A simple example will be discussed in example 6.1 below.

6. Numerical experiments

This section contains a few simple illustrations of the algorithms described above. More details
in this direction will appear in [14].
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Figure 1. Left: r = 1.1; Middle: r = 1.3; Right: r = 1.5.

Example 6.1. Exact cubatures on a quadrature domain of order two.
Let us consider the quadrature domain � defined by the polynomial

q(z, z̄) = (|z − 1|2 − r2)(|z + 1|2 − r2) − (1 − r2)2,

where r > 1. The nodes of � are simple and they are located at ±1. By reversing the
exponential transform, we want to compute exactly the moments amn of � in small degrees:
m + n � 2.

We will work with formal series in 1
z
, 1
z
, and we are interested only in equality modulo

polynomials of total degree greater than two, denoted below by ‘≡’. According to formula (21),
we obtain ∑

m+n�2

amn

zm+1zn+1 ≡ −π log
q(z, z)

|z2 − 1|2

≡ −π log

[
1 − r2

|z − 1|2 − r2

|z + 1|2 +
2r2 − 1

|z − 1|2|z + 1|2
]

≡ −π log

[
1 − 2r2

|z|2 − 2r2

z3z
− 2r2

zz3 − 1

|z|4
]

≡ 2πr2

|z|2 +
2πr2

z3z
+

2πr2

zz3 + π
2r4 + 1

|z|4 .

From all these simple computations we read the moments

a00 = a20 = a02 = 2πr2, a01 = a10 = 0, a11 = π(2r4 + 1).

The same procedure works for higher degree moments.
The shapes of the domains for different values of r are shown in figure 1.

Example 6.2. Reconstruction of a square by algorithm 2.
We pretend that the unknown body is a square of size 2 × 2, centred at the origin. The

beginning of the moment sequence is easily computable and this is our only known data. By
choosing the homothety factor ρ = 1, we use a symbolic manipulator (Maple in this case) to
implement algorithm 2 for different degrees N . For example, when N = 12, we obtain the
polynomial p(z) = z12 + 2.8641z8 + 1.2301z4 + 0.0130. The results of the reconstructions are
displayed in figures 2 and 3.

In the case considered in this experiment, the exponential transform E� of the square �
can be analytically/anti-analytically continued up to the union K of the two diagonals. By
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Figure 2. Left: N = 4; right: N = 8.
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Figure 3. Left: N = 12; right: N = 16.

following the proof of proposition 4.6, we see that an upper bound for the error is, up to a
constant,

supu∈K |pn(u)|
|pn(z)| ,

where pn is a monic polynomial of degree n (chosen in this case to be the complex orthogonal
polynomial with respect to the area measure of the square �) and the point z is far from the
set K .

Since the logarithmic capacity of the union of diagonals K is c(K) =
√

2
22/4 = 1, cf, for

instance, [27], we infer that, properly choosing the polynomials pn, the process converges
exponentially in the region

{z ∈ C; d(z,K) > 1},
which is closest to the midpoints of the four sides of �, but relatively far from the vertices.
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Figure 4. Left: N = 3; right: N = 4.

–1

1

y

–1 1x

–1

1

y

–1 1x

Figure 5. Left: N = 5; right: N = 6.

This might explain the deviation of the approximative domains in the pictures from �, in the
neighbourhoods of the four vertices.

On the other hand, some ad hoc computations (which we do not include here) of the error
integral appearing in the proof of theorem 4.4 give more information about the error bound.

In the case of the square �, we can also adapt theorem 4.5, by choosing a polynomial
p(z) whose level sets separate the diagonals K from the midpoints of the four sides. Then the
same exponential decay of the approximation process follows, by choosing pn(z) = p(z)n.

Example 6.3. Reconstruction of an ellipse by algorithm 2.
This is a totally parallel experiment to example 6.2, this time starting from the known

moments of an ellipse. The case of the ellipse � is more fortunate, due to the existence of a
generalized quadrature formula of the type∫

�

p(z) dA (z) = const
∫ c

−c

p(x)
√
c2 − x2 dx,
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where p(z) is a complex polynomial, and ±c are the two (real) foci of �, see, for instance, [5]
or [29]. Thus, in this case one can take K = [−c, c], and the capacity of this interval is known
to be c(K) = c

2 , see [27]. Therefore, in view of theorem 4.4, the approximation process
converges for points z situated at a distance >c

2 from K . Thus, the smaller the eccentricity of
� is, the more points of ∂� fall into the convergence region. Similarly, we can invoke here
theorem 4.5.

In the experiments shown in figures 4 and 5 two semi-axes of the ellipse, being
reconstructed with different values of N , have length 1, 1

2 , hence c =
√

3
2 and the domain{

z ∈ C; d(z, [−c, c]) >

√
3

4

}

covers mid parts of ∂�, symmetric with respect to the points ± i
2 .

7. Final comments

We can draw several conclusions from the above sections.
Let � be a bounded planar domain. The diagonal exponential transform E�(z, z) has a

power series expansion at infinity which depends only on the moment sequence of �. This
function gives a natural defining equation of each real analytic part of the boundary of �.

Hence, a suitably chosen rational approximation at infinity of the power series ofE�(z, z)

will have a zero set close to the boundary of �.
This process of series approximation (originally in two independent variables) can actually

be reduced to a single complex variable situation (cf proposition 4.6). Then classical
rational approximation methods (such as the Padé approximation, orthogonal polynomials
or equidistribution of points in potential theory) can be applied.

For a quadrature domain of order d, a standard algorithmic choice of denominators
in the rational approximation scheme leads to exact reconstruction of the domain (via its
irreducible defining equation) in precisely d steps. By reversing this process one can compute
(algorithmically) all power moments of a quadrature domain from the coefficients of its defining
equation.

By no means do the problems arising in this paper have a definite solution, nor even a final
form. The difficulties encountered in the convergence proofs proposed above are of the same
nature as the basic (rather delicate) problems of rational approximation theory. We hope that
the continuation of this work will further exploit this connection. The note [25] is a first step
in this direction.

From another point of view, in comparison and contrast to the classical theory of the Radon
transform, see [15], we have used a Riesz potential at the critical exponent 2 (in real dimension
2): ∫

�

dA (ζ )

|ζ − z|2 ,

which diverges at boundary points of �. However, the negative exponential

E�(z, z) = exp

(
− 1

π

∫
�

dA (ζ )

|ζ − z|2
)

renormalizes the divergence of the potential, and it turns out to vanish at the first order along
the real analytic arcs of the boundary of�. This observation was also useful in some regularity
problems (of free boundaries) in fluid mechanics, see [11].
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