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Abstract. We prove that any polyhedron in two dimensions admits a type of potential theoretic
skeleton calleanother bodyWe also show that the mother bodies of any polyhedron in any number
of dimensions are in one-to-one correspondence with certain kinds of decompositions of the poly-
hedron into convex subpolyhedra. A consequence of this is that there can exist at most finitely many
mother bodies of any given polyhedron. The main ingredient in the proof of the first mentioned result
consists of showing that any polyhedron in two dimensions contains a convex subpolyhedron which
sticks tait in the sense that every face of the subpolyhedron has some part in common with a face of
the original polyhedron.
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1. Introduction

This paper is part of a larger programme which concerns existence, uniqueness and
structure of a kind of potential theoretic skeletons, caftexther bodiesfor heavy
bodies. By a (heavy) body we mean a compact subs&t'gbrovided with a mass
distribution, typically just Lebesgue measure restricted to the set. A mother body
for it is a more concentrated mass distribution sitting inside the body and producing
the same external gravitational field as the latter.

Several notions of potential theoretic skeletons have been discussed in the liter-
ature. The particular term ‘mother body’ dates back at least to the work of the
Bulgarian geophysicist Dimiter Zidarov in the 1960’s. In his book [Zi] it was
defined in somewhat vague terms, comparing with mathematical standards. Sug-
gestions for precise requirements of a mother body in the spirit of [Zi] were given
in [Gul], where also a first step in the above mentioned programme was taken
by proving that convex polyhedra always have unique mother bodies in the sense
made precise.

In this paper, we continue the programme by treating general polyhedra. Our
main result is existence of at least one mother body for any polyhedron in two
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2 BJORN GUSTAFSSON AND MAKOTO SAKAI

dimensions. For polyhedra in arbitrary dimension, we prove a structure theorem
saying that the mother bodies are in one-to-one correspondence with certain types
of decompositions of the polyhedron into convex subpolyhedra. A consequence of
this is that there can be at most finitely many mother bodies of any polyhedron.
However, the question of existence of mother bodies for arbitrary polyhedra in
higher dimensions is still open.

Our approach to the existence question leads to geometric questions for poly-
hedra of possible independent interest. Indeed, we are led to trying to prove that
any polyhedron contains a convex subpolyhedron whiatks toit in the sense
that every face of the subpolyhedron has some part in common with some face of
the original polyhedron. We are able to provide such a proof in two dimensions,
and that is the main ingredient in the existence proof for mother bodies. In higher
dimensions we neither have a proof, nor a counterexample, for existence of convex
polyhedra sticking to a general polyhedron.

The organization of the paper is as follows. In Section 2 we give precise defin-
itions of the geometric concepts needed, namely polyhedron, face and sticking of
polyhedra. Section 3, which essentially is a summary of [Gul], gives the necessary
potential theoretic background and in particular contains the precise definition of a
mother body. The main substance of the paper then is contained in Sections 4 and
5: in Section 4 we prove the above-mentioned structure and finiteness results (in
arbitrary dimension) and in Section 5 we prove, in two dimensions, existence of
convex subpolyhedra sticking to an arbitrary polyhedron. We even prove that the
convex subpolyhedra sticking to the given polyhedron cover the whole boundary
of the latter. On the other hand, we give an example showing that they need not
cover all of the interior.

As indicated, this work is much inspired by the work in geophysical potential
theory by D. Zidarov and his collaborators. It also has strong connections to the
theory of quadrature domains (see [Sa], [Sh] for overviews). Indeed, having a
mother body of a given body means that the integral of harmonic functions over
the body reduces to an integral over the more condensed mother body and thus
to a, possibly effective, ‘quadrature formula’ (for harmonic functions). A different
sort of quadrature formula for polyhedra in two dimensions is discussed in [Da,
Ch. 11]. See also [Gu-Pu].

1.1. SOME GENERAL NOTATION
B(x,r) = {)’ERN|)’_X| <r}a

intP? = the interior inRN of a setP c RV,
P = the closure iR of a setP c RY,
opP = the boundary iiR" of a setP c R",
P¢ = RM\PforP Cc RY,

suppu = the closed support of a measure

More special notations are explained within the text (mainly in Sections 2 and 3).
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ON POTENTIAL THEORETIC SKELETONS OF POLYHEDRA 3

2. Preliminaries on Polyhedra

For a general background on polyhedra, see, e.g., [Gr], [Ro], [Zg]. This paper,
however, is self-contained as concerns questions of polyhedra. We shall use the
following definition.

DEFINITION 2.1. Aconvex polyhedroin R” is a set of the form
n
K =(H. (2.1)
i=1

where theH; are closed half-spaces RYY, and which satisfies
intK # @, (2.2)
K is compact (2.3)

A polyhedronis a finite union (disjoint or not) of convex polyhedra as above.
We note the following:

() P =intP if P is a polyhedron.

(i) A polyhedron need not be connected.

(iii) A convex polyhedron is a polyhedron which is convex as a set.

(iv) In the representation (2.1) of a convex polyhedron the faffly, ..., H,} is
unique provided: is taken to be minimal. The representation is then called the
minimal representation

(v) An equivalent definition of convex polyhedron is that it is a set which is the
convex hull of finitely many points and having nonempty interior. Cf. [HO,
Def. 2.1.20, Th. 2.1.21].

We next introduce the notion of a face of a polyhedron. Define, for any set
P CRY,

draceP = {x € R¥:there exists > 0
and a closed half-spade c RY withx € 9H
suchthatP N B(x,r) = H N B(x,r)}. (2.4)

ThendceP is a relatively open subset 6.

DEFINITION 2.2. Afaceof a polyhedronP is a connected component @f.P.

Note.This definition of ‘face’ does not agree with the one commonly used in,
e.g., the theory of convex polytopes (see [Zg]).
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4 BJORN GUSTAFSSON AND MAKOTO SAKAI

The closed half-spacH in the definition ofdoi,ceP is clearly the same through-
out a component obi,ceP, i.e. a face ofP, and will be called theassociated
half-spaceof the face.

For convenience we now give a number of equivalent characterizations of poly-
hedra.

PROPOSITION 2.3Let P c RY be a nonempty compact set. Then the following
conditions are equivalent.

(i) P is apolyhedron.
(i) P = int P and there exist finitely many (affine) hyperplardes. .., L, such
thatoP C | J;_; Li.
(i) There exist finitely many hyperplangs, . .., L, such thatP is the closure of
the union of a selection of bounded componen®’of | J"_, L,.
(iv) dsace P has only finitely many components and is dens®&An

Proof. (i) = (ii): By Definition 2.1 we have

m  ng

P =) Hy

k=1j=1

for suitable closed half-spacés;, with int (72, H; nonempty and bounded for
eachk. Let L4, ..., L, be an enumeration of all theH,;. Then it is clear that
3P c |U!_; L;, and it has already been noticed tifat= int P.

(i) = (iii): With P and L; as in (i), letws, ..., w; be the components of
RV\ J"_; L;. Since P has no boundary ifR"\ | J/_, L, it follows that for each
J» P N w; either is empty or equals;. In the latter case»; is bounded since
P is compact. ThusP\ | J/_; L; is a selection of bounded componenis, say
P\U/_, Li = U_  w;. Using P = int P it follows that

— &
P=P\| L =]
i=1 j=1

as desired.

(i) = (): If w1, ..., o are the selected componentsf\ (J_; L; then,
since thew; clearly are convexp = U';:l wj = U';Zl w; is a representation a?
as a union of compact convex polyhedra, proving (i).

(iii) = (iv): Let L be the subset dfJ/_, L; consisting of those points which lie
on only one of theL,. ThenL is relatively open and dense [ij’_, L;. Moreover,
(Ui_; L)\ L, which containg) P\ L, is too small to separate ift from P¢, even
locally. Therefored P N L is dense irp P. On the other hand, foranye aP N L
exactly one of the two components &\ (|_J!_; L;) havingx on its boundary is
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ON POTENTIAL THEORETIC SKELETONS OF POLYHEDRA 5

contained inP. Thereforex € dtaceP. ThUSOP N L C 05acelP, proving thatdiceP
is dense i P.

It also follows from the above that every componenbgf.P contains a com-
ponent ofL. Thus,dceP has only finitely many components, finishing the proof
of (iv).

(iv) = (ii): Let Fy, ..., F, be the components 6f..P, let Hy, ..., H, be the
associated half-spaces and 5et= 9 H;. ThenF; C L;, i.e.,

n
OtaceP C U L;.
i=1

We also have, by definition @GkaceP,

Hence, ifdtaceP = 9 P it follows thatd P C (J/_, L; and also thad(int P) = 9P,
i.e.,int P = P. This proves (ii). O

Note.Condition (iii) gives a representation of a polyhedron as a finite union of
convex polyhedra with pairwise disjoint interiors. Other such decompositions will
be considered in Section 4.

DEFINITION 2.4. LetP, Q be two polyhedra iR with Q c P. We say thap
sticks toP if
for every faceF of Q there exists € Fandr > 0
suchthaD N B(x,r) = P N B(x, r). (2.5)
An equivalent, and shorter, way of expressing (2.5) is:

every component GfaceQ intersectaceP.

Clearly every polyhedron sticks to itself. I is convex then, as is readily
verified, P itself is actually the only polyhedron which sticks fa It is a non-
trivial fact that if P is not convex therP contains a proper subpolyhedron which
sticks toP. In two dimensions this subpolyhedron can even be taken to be convex
(Theorem 5.1).

3. Preliminaries on Mother Bodies

‘Mother body’ (or maternal or materic body) is a potential theoretic term which
seems to have been coined by a Bulgarian school of geophysical potential theory
around D. Zidarov [Zi], [Ko1], [Ko2]. It is intended to mean a kind of potential
theoretic skeleton for a heavy body. The discussion in [Zi] is largely heuristic,
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6 BJORN GUSTAFSSON AND MAKOTO SAKAI

but attempts of formulating precise requirements for a mother body (or for related
notions of potential theoretic skeletons) have been given by various authors, e.g.
[An1], [An2], [Gul], [Ko1], [Ko2], [Ka-Pi].
In this paper we shall simply adopt the five axioms for a mother body given in
[Gul] (see also [Gu2]). To describe these we have to introduce some more notation.
If 1 is a (signed) Radon measure with compact suppoinwe define its
Newtonian potential as

1
e / log du(y) (N=2),
lx — y

du(y)
|x — y|V=2

Ut(x) =

CN (N>3),

where the constantsy > 0 are chosen so thatAU* = u in the distributional
senseA denoting the ordinary Laplace operator.

If K c R" is a (measurable) bounded set we 8ét = U*x, where xx de-
notes the measure with density one Knzero outsidek (i.e., Lebesgue measure
restricted toK). ThusUX is the Newtonian potential ok regarded as a body of
density one.

DEFINITION 3.1. LetK C RY be a compact set satisfying = intK. K is
regarded as a body with volume density onemather bodyfor K is a Radon
measureu satisfying

Ut =UX in RV\K, (3.1)
Ut >UX in RV, (3.2)
w =0, (3.3)
suppu has Lebesgue measure zero (3.4)

for everyx € K\suppu there exists a curve
in R¥\suppy joining x to some point irk“. (3.5)

Commentslt follows from (3.1) that suppe C K. The first three axioms are of
potential theoretic nature, while the last two just are geometric conditions on the
closed set supp C K. (3.4) says that it is small (a nullset) and (3.5) says that
it does not ‘hide’ any components &f\suppu. Ample discussions of the above
axioms are given in [Gul]. (In [Gul], the axioms were stated for a body in the
form of an open set rather than a closed set as here, but since we are assuming that
K = int K everything can be translated.)
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ON POTENTIAL THEORETIC SKELETONS OF POLYHEDRA 7

Figure 3.1. The ridge, or support of mother body, of a convex polyhedron.

The question lying behind the investigations carried out in this paper is the ques-
tion of existence, uniqueness and structure of mother bodies for general polyhedra.
For convex polyhedra these questions have simple and complete answers, which
were given in [Gul]. Since it will be needed in the sequel we summarize below the
main result in [Gul].

Let K c R" be a convex polyhedron, let (2.1) be its minimal representation
and define for € RY

8:(x) = dist(x, Hf),

§(x) = min{81(x), ..., 8,(x)} = dist(x, K°),
i (x) = 36 (x)%,

u(x) = minfuy(x), ..., u, (x)} = 18(x)%,

R ={x € K:8(x) = §;(x) for at least two different}, (3.6)

Di = {x € K\R:8(x) = & (x)}
= {x € K:6:(x) < 8;(x)forall j #i}. (3.7)

The setR will be called theridge of K because of its geometric interpretation: in
the case of two dimensions one may thinkkbts the top view of a house covered
with a roof of heights(x). Then R will be the ridge of the roof, cf. Figure 3.1.
Other names foR are ‘medial axis’, ‘symmetric axis’ or simply ‘skeleton’. See
[Ro, Sect. 5.6].

Note that

OK\R = OtaceK = F1U---U F,,
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8 BJORN GUSTAFSSON AND MAKOTO SAKAI

where
F,=93K N D;, (3.8)

(1<i < n)arethefaces ok (F; C 9H,).

Since the functio/ ¥ + u has the behaviour of a potential at infinity (note that
u = 0 outsideK) we can define the measuueby the requirement/* — UX = u.
This simply means that = xx — Au. Then (see [Gul]) supp = R andu is a
mother body ofK. Moreover, no other signed measure satisfies (3.1), (3.4), (3.5).

4. General Structure of Mother Bodies of Polyhedra

We do not know whether nonconvex polyhedra in higher dimensions always admit
mother bodies, but in this section we nevertheless prove a structure theorem for
mother bodies when they do exist: every mother body of a polyhedron defines a
decomposition of the polyhedron into convex polyhedra such that the mother body
is the sum of the mother bodies for the pieces. Moreover, there are only finitely
many possibilities of doing this decomposition, hence there are only finitely many
mother bodies.

THEOREM 4.1. Let P C R" be a polyhedron. Then there are at most finitely
many signed measures satisfying(3.1), (3.4), (3.5) for P. For anyone of these
also (3.2) holds. If moreover3.3) holds, then there is a decomposition

P=KiU---UK,, (4.1)
where theK; are convex polyhedra with pairwise disjoint interiors, such that

w; denoting the unique mother body Kf.

Remarkd.2. The positivity axiom (3.3) is really necessary in order to ensure the
decomposition (4.1): By a procedure due to D. Siegel [Si] (in a slightly different
context) one can construct indecomposable ‘mother bodies’ satisfying (3.1), (3.2),
(3.4), (3.5) (but not generally (3.3)) for polyhedra in two dimensions. Figures 4.1
and 4.2 show, for a simple polyhedrénin R?, two different decomposable mother
bodies (this example is due to D. Zidarov [Zi]) and Figure 4.3 shows Siegel’s
indecomposable one (violating (3.3)).

Proof. (Theorem 4.1). Lejix be a measure satisfying (3.1), (3.4), (3.5) for
Pick any componenb of (int P)\suppu. By (3.5) there is, for any € w, a curve
y in RM\suppu from x to some point inP¢. We may assume thatN o P consists
of only one point, call ity, and thaty € di,ceP. Let H be the associated half-space
of the face aty.
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ON POTENTIAL THEORETIC SKELETONS OF POLYHEDRA 9

Zidarov Zidarov Siegel Axiom (3.3) violated.
1 is negative on this segment.

4
Figure 4.1 Figure 4.2 Figure 4.3
Set
u=U*-U? in RY, (4.3)

so thatAu = xp — u everywhere andi = 0 outsideP by (3.1). SinceA(%
dist(x, H°)?) = yxy and 3 dist(x, H)?> = 0 on H° it follows that the function
u(x) — %dist(x, H¢)? is harmonic in a neighbourhood efand vanishes outside
P in this neighbourhood. Thus it vanishes in the full neighbourhood,ii(e), =
3 dist(x, H¢)? for x close toy.

Thus, replacing? < with 9 H, we obtain

u(x) = 1 dist(x, dH)? (4.4)

for x in P close toy, hence in an open subset®f But u(x) — %dist(x, dH)? is
harmonic in all of(int P)\suppu, hence it follows that (4.4) holds in all @f. In
particular, the hyperplangH is uniquely determined by.

Let Hy, ..., H, be all the associated half-spaces of the faceB ahd let

u;(x) = S dist(x, dH;)? (4.5)
(1 < i < n). We assume thall; # H; for i # j. Then it follows from the

above that on each componendf (int P)\ suppu u agrees with one of the;. In
particular,

u, Vu € L RN\ (suppu U 3 P)). (4.6)

Next we note thal/# andVU* are locally integrable functions. This is because
u is a measure and the Newtonian kernel and its gradient are locally integrable
functions (cf. [Do,8 26]). Therefore and its first order distributional derivatives
belong toL} .(R"). By (3.4) and (ii) of Proposition 2.3 suppU d P has Lebesgue
measure zero. It now follows from (4.6) that

u, Vu € L2R"Y) 4.7)
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10 BJORN GUSTAFSSON AND MAKOTO SAKAI

in the sense of distributions.
We conclude that is a Lipschitz continuous function (i.e. has such a represent-
ative). Thus, for any componeat of (int P)\suppu we even have: = u; on all
of @ for somei. Since suppw anda P have no interior points, evety € P is inw
for somew as above and it follows thatis everywhere inP equal to some;.
OutsideP, u = 0. Sinceu; > 0 everywhere, it follows thai > 0 everywhere,
proving thatu satisfies (3.2).
Next, set

R = {x e P:dist(x, 0H;) = dist(x, dH,)
for some pair, j withi # j}
= {x € P:u;(x) = u;j(x)for some pair with # j}. (4.8)

This is a finite union of (affine) hyperplanes i (The presenr is not necessarily
the same as that in (3.6) whéhis convex.) Since: is continuous: can, in intP,
change representative from ongto another only onk. Ond P u changes rep-
resentative from one, or several, of thieto zero. More precisely, at each point of
dP\R only oneu; vanishes, showing thatis of the formu(x) = 1 dist(x, Hf)?

in a neighbourhood of any point 6fP\ R.

Since P \ R has only finitely many components there are only finitely many
ways of combining the:; to a continuous functiom. This proves that there are
only finitely many signed measures satisfying (3.1), (3.4), (3.5). We also conclude
that Au = xp in RV\ R and hence that

suppu C R. (4.9)

A further consequence of the fact thaeverywhere inP agrees with some;
is that

vcl o, (4.10)
i=1

whereV = {x € P:u(x) = 0}. Moreover, it follows that
Vu=0 onV. (4.11)

From (4.7) and (4.11) we further deduce that xp — Au is absolutely continuous
with respect to#" ! and thaty = O on V..

It is a consequence of (4.10) that V has only finitely many components and
that their closures, call thelk,, ..., K,,, are polyhedra. Since everywhere inP
agrees with some;, we havek;\V = int K;. Henceu = 0ondK;. Setu,; = ”|K,-'
Then it is immediately verified that; satisfies (3.4) and (3.5) fdt;. Using (4.11)
it follows that (3.1) holds foiK;. Applying the above argument o, we see that
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ON POTENTIAL THEORETIC SKELETONS OF POLYHEDRA 11

(3.2) holds also foK;. Therefore, in order to prove the theorem it only remains to
prove that eaclk; is convex under the assumption that= 0.

In order to prove that on&; is convex we may forget about the other ones.
Equivalently, we may prove thaP itself is convex under the assumption that
P\V = int P and that it has only one component. This is the content of the follow-
ing proposition, which contains all that remains of the proof of Theorem 4.t

PROPOSITION 4.3 Let . be a mother body for a polyhedrah such thatint P is
connected and such that

U*>U"? inintP.
ThenP is convex.

The proof of Proposition 4.3 will be based on the following geometrical lemma,
which we prove first.

LEMMA 4.4. Let P be a polyhedron such thatt P is connected but not convex.
Then there exists € 9P, r > 0 and two distinct half-space#;, H, with x €
9 H1 N 0 H, such that

PN B(x,r) D (H1U Hz) N B(x,r),
oPNB(x,r) DJ(HLUH) N B(x,r).

This means thaP has a concave edge through possibly with other parts of
clustering at the edge.

Proof. There exists a poiny € int P and a ballB(z, &) C int P such that
part of, and only part ofB(z, ¢) can be seen fromp within P. Precisely, setting
W ={w e B(z,e):ty+ (1—1tw e Pforall 0 <¢ < 1} bothW andB(z, e)\W
have nonempty interiors. The existenceyaind B(z, ¢) as above follows from the
fact that convexity of connected sets is a local property. More specifically it can be
derived from [H6, Th. 2.1.27]. (One also has to use that int P.)

Now forw € aW N B(z, ¢) there is at least one value of© ¢ < 1 such that
ty + (1 —t)w € 9 P. The set of all such is compact for a givew. Let ¢, denote
the smallest of these valuesrofThen it is not hard to see that generic points of the
set

E={t,y+1—-t,)wedP:wedWnB(z,e¢)}

are pointsx of the kind required in the lemma. O

Proof of Proposition 4.3The proof is basically a continuation of the proof of
Theorem 4.1, the only difference being that we are now reduced to the:casg,
i.e. to the case thaP\V is connected (and, hence, int P). Thus we keep all
notations from the proof of Theorem 4.1.
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12 BJORN GUSTAFSSON AND MAKOTO SAKAI

We assume thak is not convex and derive a contradiction. By Lemma 4.4, part
of 9 P is a concave edge. With appropriate numbering offhand by choosing the
pointx in Lemma 4.4 generically, namely so thatdd; cuts the edge transversally
atx, we get into the following situation at the pointe 9 P: there is an- > 0 and
an integelk, 2 < k < n, such that

x € 0H, N 0H>,

PNB(x,r) D (HLUH>) NB(x,r),

P N B(x,r) D 3d(HLU Hy) N B(x,r),
oHiNoH, c 0H; for 1<i <k,
oH,NB(x,r) =2 for k+1<i <n.

We may further assume thatis the origin and that the edge is ‘vertical’, i.e.
OH1NdH, = {x € RV:x; = x» = 0}. (x = (x1,..., xy)). The half-spaces
Hi, ..., Hy are then of the form

H; = {x € RY:x1 cos6; + x, sing; > 0}

(1 < i < k) with ; the angle to the positive;-axis of the inward normal vector of
H;. Letting (r, 6) denote polar coordinates in tke;, x,)-plane, i.e.x; = r cos9,
X2 = r Sin 8, we have

u;(x) = idist(x, 9H;)?

’,.2
=3 cos (0 — 6;) (4.12)

forl<i<k.

Since 0¢ 0H; fori > k, u;(0) # 0 for thesei. As u is continuousu(0) =
0 (because 0= dP) and everywhere inP equals some:; (all by the proof of
Theorem 4.1) it follows that in a neighbourhood of the origin, which we may take
to be B(0, r), u(x) only takes values among (x), ..., u,(x) and 0. In particular
this shows that only depends oKix1, x»). Thus we have a purely two-dimensional
situation inB(0, r), which is easy to analyze. We may work simply in the, x,)-
plane since everything is constantds . .., xy.

The setR (see (4.8)) on whiclx can change representative between two of the
u; is in the(x1, xp)-plane represented by the set of rays: constant for which

cog (0 — 6;) = cos (8 — b)) (4.13)

for some pairi, j € {1,...,k} with i # j. Moreover,u changes representative
fromuq, tou = 0 ond Hy and fromu, to u = 0 ond Ho.
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ON POTENTIAL THEORETIC SKELETONS OF POLYHEDRA 13

Now, if u changes representative fram to «; on one of the four rays =
constant= % (0; +6;) + 7 - (integep determined by (4.13), then either

u = ma)({l/ti, l/tj} (414)
or
u = minfu;, u;} (4.15)

in a neighbourhood of the ray. However, and this is the crucial point, the first
possibility (4.14) cannot occur because it would givie a contribution in form of
a strictly positive(N — 1)-dimensional density on the hyperplaneiifi determined
by the ray, and this would contradict the assumption that O.

Thus (4.15) is the only possible way of changing representative betvwesm
u ;. But keeping- fixed, regarding: as a function ob and looking at (4.12) we see
that if u does not change representative at all, then it will be strictly positive on an
p-interval of lengthsr, while if it does change (according to (4.15)) then it can do
it only once and it will be strictly positive only on an interval of lengthr .

Thus in any casey can never be strictly positive on an angular segment of
opening> . This contradicts our assumption of having a concave edge ané
in int P, and thus finishes the proof of Proposition 4.3. O

By Theorem 4.1, any mother bodyof a polyhedron induces a decomposition
of P into convex polyhedr&'; such thafu|k; is the mother body ok ;. Next we
wish to discuss the opposite question: let

P=KiU---UKpn, (4.16)

be a decomposition of a polyhedrahinto convex polyhedr&; with pairwise
disjoint interiors and let.; be the mother body ok ;. Under what circumstances
is

W=+t (4.17)

a mother body foP?

It is immediately verified that defined by (4.17) always satisfies (3.1)—(3.4).
However, (3.5) need not hold. See, e.g., Figure 4.4 where the previously considered
polyhedron in Figures 4.1-4.3 is decomposed into too many convex polyhedra. To
analyze condition (3.5) closer we shall introduce a notiogesferationof faces of
the K; for the subdivision (4.16).

Let, asin (3.6)—~(3.8)R;, D;;, Fij (j = 1, ..., m; say) denote, respectively, the
ridge of K;, the components ok;\ R; and the faces oK;, so thatR; = suppu;,

F;j = 0K, N D;;. Note that the last relation sets up a one-to-one correspondence
between theD;; and theF;;.
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14 BJORN GUSTAFSSON AND MAKOTO SAKAI

Axiom (3.5) violated.

Figure 4.4

Some of the face$;; have some part in common with a face ®f These will
be the faces of first generation. The correspondingwill also be called of first
generation. Thus we define

gen(F;) = genD;;) =1
if and only if F;; N draceP # @. Next we define
gen(fi;) = genD;;) =2

if and only if F;; N 0raceP = @ but there exists,; with gen(Fy;) = 1 such that
F;j N Fy # 2. The significance of the last relation is that it ensures the possibility
of passing fromDy, to D;; without meeting supp.

Proceeding inductively we set g@h;) = genD;;) = nifand only if gen(F;;) #
1,2,...,n—1, butthere exist$}; with gen(Fy;) = n — 1 such thatF;; N Fy; # @.
After finitely many steps we come to an integesuch that there are no faces of
generatiom, and then there will of course be no faces of any higher generation
n+ln+2 ...

At this stage there are two possibilities:

(i) there are no faceg;; left, i.e. eachF;; has been attributed a finite number
gen(F;),
(i) there are faced;; which never appeared in the process.

For the latter faces we simply set géfy) = gen(D;;) = +o00. See Figure 4.5 for
an example of a decomposition (4.16) with the generations abthenarked out.
Now we just observe

PROPOSITION 4.5 Referring to the decompositiqd.16), (4.17), « is a mother
body of P if and only if every facd;; of the K; is of finite generatior(i.e. case(i)
above occurregl Moreover, a necessary condition that a given fageis of finite
generation is that the hyperplane containifig also contains a face a?.
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1 1
1 1 1 1 11 1
| 2 1 12 1
4\ 2 3\ 1
3 ' 1 2
1 oo oo 1 1 1
1 ' 1 1
Figure 4.5 Figure 4.6

Proof. Since P\suppu = P\ J/L; R C U,.; Dij and since the only require-
ment for a mother body which needs to be checked is (3.5) it follows that what we
have to prove for the first statement of the proposition is the following:

a pointx € D;;\suppu can be joined ta*
via a curve inR"\suppy if and only if gen(D;;) < +oo. (4.18)

To prove (4.18), suppose first that geb;;) = n < +o0. SinceF;; = D;;\
(int D;;) and(int D;;) N suppu = &, x can be joined to any pointon F;; \suppu
by a curvey in D;;j\suppu. If n = 1 then we can choosg € dmceP and then
continuey into P¢. If n > 1 then we can choosg € F;, for some faceF); with
gen(Fy) =n — 1. Theny € Dy \suppu, hence we are in the same situation as in
the beginning, but with a smaller By induction this means that we will finally be
able to reachP¢, proving one direction of (4.18).

Conversely, if there is a curve from x € D;;\suppu theny passes through
finitely many Dy; on its way out and, by definition, the laB; is of generation
one and two adjacer®y; differ by at most one unit of generation. Henbg is of
finite generation.

We also note that the hyperplaecontaining a facer;; = 0K; N D;; is the
same for two adjacerndy,; through whichy passes. Hence it is the same forgll
crossed by, hence it is the hyperplane containing the fac&dhrough whichy
leavesP. Thus a necessary condition that géfy) < +oo is thatF;; is contained
in a hyperplane which also contains a facePof O

One special way in which all points d@f\suppu could be of finite generation
(i.e. u is a mother body) is that

genD;;) <i (4.19)

foralli = 1,...,m and all j. This means that every face @f; is of first gen-
eration, every face ok, of generation at most two etc. Equivalently one can say
that, for everyi =1, ..., m, each face ok is of first generation in the polyhedron

P, = K;U---UK,,. This can be expressed in the previously introduced terminology
(Definition 2.4) by simply saying th&; sticks toP;, foreachi = 1,...,m
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16 BJORN GUSTAFSSON AND MAKOTO SAKAI

S, /////////////

0

Figure 5.1. Initial data: P is a given polyhedron; = 0 is a given point od P; F is a given
face withx € F; andC is the largest convex cone i (nearx) satisfyingF c aC (C equals
the upper half-plane in the present case).

In Section 5 we will show that in two dimensions any polyhedron admits a
convex subpolyhedron which sticks to it. Thus given @y R? we can find a
decomposition (4.16) satisfying (4.19) by first takikg which sticks toP, = P,
then K, which sticks toP, = P;\K;, then K3 which sticks toP; = P\ K> etc.
SincePy, P,,... is a strictly shrinking family of polyhedra with?; c (J!_; L;, L;
denoting the hyperplanes containing the faces, we will after finitely many steps
reach the empty set, which means that we have got the desired decomposition
(4.16) satisfying (4.19). Thus it will follow that any polyhedron in two dimensions
has a mother body.

Figure 4.6 is an example of a decomposition not of the type (4.19), but still with
gen(D;;) < +ooforalli, j.

5. Two Dimensions

The main result in this section is that any polyhedron in two dimensions admits

a convex polyhedron which sticks to it. As indicated at the end of Section 4 this

shows that any polyhedron in two dimensions has a mother body. The proof below
is illustrated by Figures 5.1-5.5.

THEOREM 5.1. For any polyhedronP C R?, the union of the convex polyhedra
which stick toP contains a full neighbourhood (i®) of d P. In particular, there
exists at least one convex polyhedron stickin@ t@t least two ifP is not convex).
Proof. It is enough to prove the following. Let be an arbitrary point o P
and letF C 3P be any face ofP such thatc € F. Let C be the largest closed
convex cone ifR? with vertexx satisfying F c dC and, fore > 0 sufficiently
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t

A

Figure 5.2. Upward phase, selection 1 (of 2): shaded are@;shorizontal lines areS();
atr1, E consists of 3 obstruction points (subcase 2b); the left most segmefitOf E is
selected; at, there is just one obstruction point, and no choice; terminatiari &rough
case 1.

[

Figure 5.3. Upward phase, selection 2 (of 2): shaded are@;shorizontal lines areS();
middle segment of (1)\ E is selected; termination at through subcase 2a.

small,C N B(x,&) C P. Then (to be proved) there exists a convex polyhedron
K c P which sticks toP and which containg N B(x, ¢), for ¢ > 0 small enough
(perhaps smaller than above).
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18 BJORN GUSTAFSSON AND MAKOTO SAKAI

Figure 5.4. Downward phase, with selection 1 in upward phase: shaded ar&a &nd
horizontal lines areS (¢).

Figure 5.5. Downward phase, with selection 2 in upward phase: shaded ar&a &nd
horizontal lines areS (¢).

Note.If the ‘corner’ of P atx with F as one side has opening = thenC N
B(x, ) simply is this corner, if it has opening 7 (including the case that is a
face pointx € F) thenC is the half-space associated with

Let Hy be the (closed) half-space associated withnd letHq, ..., H, be the
half-spaces associated with the other face® ofVe assume thatl; # H; for
i # j,sothere may be several faces belonging to the ddmé/e may assume that
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x = 0 and thatHy = {x € R% x, > 0}. ThenF is the set of thoséx;, 0) € dHy
which satisfy a condition of one of the following three forms:

a<x1 <0 (5.1)
a<x<pf; (5.2)
0<x; <8B. (5.3)

Herea < 0 < 8.
Set

L(t) = {x e RZ%x, =1}.
The construction oK consists of two phases: one upward phase in whiih
creases from = 0 to some final value* > 0 and for each G< ¢ < ¢* a segment
S(¢) of P N L(¢) is selected, and then a downward phase at which (unique) sub-
segmentsS(¢) of S(r) are obtained asdecreases down to zero again. The convex
polyhedronk will be the union of theS(r).

The Upward Phase
Choose a point¢y, 0) € F. Fort > 0 small enough we take

S(t) = that component of N L(¢) which contains the poirEy, 1).

This set is of the form

S(t) = H,N H, N L(¢) (5.4)
forsomel, r € {1, ..., n} with
Oe FC H,NH,. (5.5)

We usef andr as indices to indicate that, delimits S(¢) from the left andH.,
from the right.

Note that, by (5.5), we have @ int H, unlessF is of the form (5.3), and
0 € int H, unlessF is of the form (5.1). In the continued process we are going to

choose half-spaced;, i € {1, ..., n} which will all satisfy O H;, and which will
even satisfy
Oe€intH; (5.6)

with exceptions only for the above mentioned cases in the start of the process, and
for the initial face withi = 0.
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20 BJORN GUSTAFSSON AND MAKOTO SAKAI
For smallr > 0 we now have
H,NH.NL@) CP. (5.7)

Moreover, the end points df, N H. N L(¢) are ond P. As ¢ increases we continue
to defineS(¢) by (5.4) as long as (5.7) holds. Then there are two possibilities.

Casel: (5.7) holds for allz > 0. SinceP is compact this must mean that
Hy, N H. N L(t) is empty for large. Then set

t* =supr: H N H. NL(t) # o}

Thus O< * < oo andH, N H, N L(t*) consists of a single point.
In Case 1 we defin§(¢) by (5.4) for all 0< ¢ < ¢*.

Case2: (5.7) does not hold for all > 0. Then set
thh=inf{t > 0:H,NH,NL(t) ¢ P}. (5.8)

ThusO< 1 <oo, HHNH.NL(@#) C Pfor0<t <t and even for = 1 sinceP
is a closed set, bu#l, N H. N L(t; + ¢) ¢ P for smalle > 0.

In Case 2 we defing(z) by (5.4) for 0< ¢ < 11, but fors > ¢, we need another
definition. Let

E =lim(H, N H, N L(t; + &)\ P
e\0

be the ‘obstruction set’ for (5.7). The definition 8f means, more precisely, that
x € Eifand only if there exist sequences ™\ O andx; € (H,NH,NL(t1+€;))\P
such thatr; — x. Clearly E C S(#1), and sinceP is a polyhedronE must be a
finite union of isolated points and closed segment$(ip). By definition of Case 2,
E is nonempty.

Subcasea: If E contains at least one segment we finish the upward phase here
and set* = ;. Each segment af must be part of (the closure of) a face®fand
if Hy is the associated half-space of anyone of these facesithend H, = L(1y),
()Eintfﬂ.

Subcaseb: If E contains no segments it consists of just finitely many points
and we must continue going upwardgz;)\ E consists of one or several compon-
ents each of which is an open or half-open segmeiii(in). Choose one point in
the interior of each segment, sé&, 11), ..., (&, 11) Where&, < & < -+ < &,
andm > 1is the number of segments.

Fore > O smallH,N H. N P N L(t; + &) consists of at leask closed segments
(cf. Figure 5.2). There is exactly one segment for egglrontaining(é;, 1 + ¢)
in the interior and containing no othéf;, t; + ¢), but there may also be segments
containing no(&, r; + ). We shall chooses (11 + ¢) to be one of the segments
which contains a pointg, t; + ¢).
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Each of these: candidates foS (¢, + ¢) will be of the form
Hy, N H, NL(t; + ¢)

for suitable¢;,r, € {1,...,n}, where we have chosen the notations so that
(k.11 +¢) € Hy N H,, and H,, defines the left andd,, the right end point of
the segmentZ; may be the same d<(in (5.4)) andr,, may be the same as

It is easy to see that

Oe Hgl,
OeintH, Uint Hy,,
OecintH,, Uint Hy,,

OcintH,, ,UintH,,
OeH,,.

Here we may also repladd,, by int H,, unlesst; = ¢ and F is of the form (5.3),
andH,, byintH, unless,, =r andF is of the form (5.1).
From the above it follows that

Oc H, NH, (5.9)
k k

for at least one, where also O= int H,,, O € int H,, with the above-mentioned
possible exceptions fai, = ¢ (k = 1) andr, = r (k = m). Now select & such
that (5.9) holds and define

S(ti+ &) = Hy, N H, N Lty + ¢) (5.10)

for ¢ > 0 small.
If m = 1, i.e. E just consists of one or both end points $f), then S(z)
changes in a continuous way mgasses;

lim S() = S(#1) = lim S(¢),
N1 t/1n

while if m > 2 S(¢r) jumps down to a subsegment apasses;. In general we
therefore have a kind of semicontinuityzat t;:

lim S() C S(r) = lim S(@). (5.11)
\1 t/1n

Definition (5.10) will be in force as long as the right member is contained in
P. Settingr = 1, + ¢ we are then in the same situation as at the beginning of the
upward phase: either

Hy, NH, NL({) CP
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forall+ > 1, (Case 1), in which case there is a last ¢* for which the left member
is nonempty, or (Case 2) an obstruction occurs for somer, > 1. In the latter
case we get subcases as before: in Subcase 2a we are finished @né sgtin
Subcase 2b we must change the definition again.

Proceeding in the above way we end up with a sequence of obstruction levels
0<1n <t <---. SinceP is compact this sequence must terminate, which means
that we finally run into Case 1 or Subcase 2a. *et 1, be the terminating level
and setals@y = 0. Oneachinterval,_; <t < (k=1,...,1) S@) is defined
by an expression

St)=H, NH, NL(t) (tro1 <t <tp). (5.12)

(We have here changed the notation for the indices slightly, sa thetv refers to
the level ofz. Thus, e.g.£1 = ¢, r, = r with £ andr the indices in (5.4).)
Let

I ={l1,r1,82,12,...,4, 11}
be the set of indices used and recall that
OeH; foralliel, (5.13)

and that O int H; with possible exceptions fér= ¢4, r1. The result of the upward
phase is the set

o= [J so.

o<r<r*

It is easy to see thaP is a polyhedron contained iR. Some of its faces are
‘horizontal’ (parallel to thex;-axis), namely the bottorf, possibly the togs (¢*) (if
the upward phase is terminated by Subcase 2a) and possibly also intermediate faces
arising from cases of strict inclusions in semicontinuities (5.11) #for. ., z;_1).
The associated half-space Bfis Hy = {x € R?x, > 0}, the associated half-
spaces of the other horizontal faces are all of the féfma: {x € R% x, < tj} for
somej =1,...,1,hence Oz int H.

The nonhorizontal faces a are those defined b¥,,, H, in (5.12), hence
their associated half-spaces are exactlyfiheg € 1.

Unfortunately,Q neither is convex nor sticks t8 in general. What we have of
convexity properties are the following

Qis convex in thec;-direction

Q is starshaped with respect to 0 (5.14)

The first statement just says that each) is connected (which it is by construction)
and the second statement follows easily from (5.11), (5.12) and (5.13).
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We record here also the semicontinuity property@f(see (5.11)): For any
0<r <™,

ImMONLEt+e)Cc QNL@E) =IlimQNL(t—e¢). (5.15)
e\0 e\0

As to sticking properties we note that the bottom fdteand, if we finished
through Subcase 2a, the top fa®@*) both stick toP. Moreover, all the nonhori-
zontal faces o) stick to P because these are definedBy i € I asin (5.12) and
each time we made a change of soMeor when we first chos#,,, H,,, we made
it by ‘necessity’, namely that a condition like (5.7) forced us to do it. Therefore,
we can even state a little more, as follows.

GivenanyH;,i € I,lett,_1 <t <t (1 < k < 1) be the first-interval at which
itwas used (e.9H; = H, = Hy_, but H; # H,_,). Then the corresponding face
of Q sticks toP on some interval,_1 < ¢ < f,_1 + ¢ (¢ > 0). More precisely,
with k = k(i) defined as above we have

for ¢ > O sufficiently small any € d H; with
t_1 < x < ty_1 + € has a neighborhood
B = B(x,r)suchthatQ N B=PNB = H;NB. (5.16)

The nonconvexity and nonsticking properties@fwill be straightened out in the
downward phase.

The downward phase

This can briefly be described as being the upward phase applk@tutmed upside-

down, but there are less complications so we prefer to give a direct description.
We shall choose segmerfg) c S(¢) for ¢ decreasing from* to 0. Forr < ¢*

close tor* we simply take

S = S@t) = QN L®).
Thus
S(t) = Hy, N H,, N L(z) (5.17)
fort* — e <t < t* say. Ast decreases we stick to this definition as long as
H, NH,NL() C Q. (5.18)

If an obstruction occurs, at = 7; say, we get an obstruction sgt = lim.
(H,, N H, N L(f; —¢))\Q as in the upward phase. Because of the propertigs, of
namely starshapedness (5.14) or semicontinuity (5.15), the obstructidh ceat
in the downward phase only consist of one or both end poins&f.

Therefore we simply need to take

S(fy—&) = Hy, N H, N QNL({H —¢) (5.19)
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for ¢ > 0 small. This set is of the form
S(hh—e)=H,NH NL({H —¢) (5.20)

for somet, r € I, one of which may be the same @r ;.

By (5.15), (5.19)S(r) changes in a continuous way apasses;. Therefore
dH, N dH, C L(f;) or H, = H,, and similarly forr andr,. SinceH,, H, were
introduced in order to restric(¢) it follows that

H,NH NL(iy—¢&) C H, NH,NL(; —¢)

for smalle > 0, and even for alt > 0. Therejore we could as well have retained
the first chosen half-spaces in the definitiorsof.e.,

S(t) = Hy, N H,, N Hy N H, N L(t) (5.21)

for#; — e < t < f1. For similar reasons (5.21) actually holds alsoffoK ¢ < t*.

Now we continue to definé() by (5.20) or (5.21) as long as > 0 and
H,NH NL(k C Q (t < 1), and if obstructions occur we make new modi-
fications according to the same recipe as above. We end up with a finite sequence
of obstruction levels* > 7, > 7, > --- > 0 and with havingS(r) defined for all
0 <t < t*. Define

k= J So.

o<r<r*

This will be shown to be a convex polyhedron having the properties stated in the
beginning of the proof.

Let us relabel the indices for the downward phasei@et 4, Fr=r, =21,
72 = r (¢, r the indices in (5.20)) etc., so thak; , H;, are the half-spaces used in

the intervali,_1 >t > 7, (k = 1, ..., 1, say, andy = t*). Set
[ =1, 71, ..., 0, 77).

Thenl c I. i
Forfy_1 >t >, S(t) is defined by (cf. (5.17))

S(t) = H;, N H; N L(1), (5.22)

but as indicated at (5.21) we could also cutMy_, and H;,_, without changing
anything, and also byf; , andH;,,, etc. Therefore we actually have

k+1?

!
Sty = ("\(H;, N Hz) N L) (5.23)

j=1
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forf,_1 >t >, and even for alt* >t > 0.
From (5.23) it follows thaX is given by

1
K = ﬂ(ng N H;,) N Ho N Heo
j=1

= ﬂ H; N HoN Ho, (5.24)
iel

where H,, = {x € R%x, < t*}, and in particular thak is a convex polyhed-
ron. The half-spacéi,, is needed only if the upward phase terminated through
Subcase 2a.

Next we show thak containsC N B(0, ¢) with ¢ > 0 small andC as in the
beginning of the proof. Assume first thatis of the form (5.2). Ther = Hy and
OeintHy, Nint H,,, hence G int H; foralli € 1. Thus

Oe int mHiﬂHoo

iel

which by (5.24) gives thak containsC N B(0, &) = HyN B(0, ¢) for ¢ > 0 small.

If F is of the form (5.1) then G int H,,. It is still possible that Oc int H,,,
and in this cas&€ = Hy and everything works as in the previous case. The other
possibility is that Oc 9 H,,. Then, by the wayH,, was chosenC = Hy N H,,.

By previous remarks (see before and after (5.9)) the origin is in the interior of all
half-spaces in the expression (5.24) for exceptHy and H,,. ThusK contains
CNB(0,8) = HyN H. N B(0, &) for ¢ > 0 small.

The case thar is of the form (5.3) is analogous to the above case. Heénce
has the desired property at the origin. Note that it also follows from the above that
K containsF N B(0, ¢) for somes > 0 and hence thak N 3 Hy is in the closure
of a face ofK which sticks to the facé of P.

We finally prove thai sticks toP. The bottomK Na Hy was treated just above.

In a neighbourhood of H,,, K agrees withQ (the downward phase started by not
changing anything) and we have already remarked (after (5.15)) tioanib H,,

is a segment, i.e. the closure of a face(qfthen it sticks to a face aP. Thus the
same is true foK N 0 H,.

It remains to treak N9 H;,i € I. Giveni € I, letG be the face oK satisfying
K N3H; c G. By constructionk sticks toQ. ThereforeG N G’ # @ for some
faceG’ of Q. Thus

GNG NL({t) #@ (5.25)

for somer > 0. Letz, be the infimum of the set af > 0 for which (5.25) holds.
We distinguish between the following possibilities (exhaustive list).
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() t. =0;
(i) ., >0,GNL() #;
(i) 7. > 0,G’' N L(t,) # 2,
(iv) ., > 0,(GUGYNL(t,) = 2.

Note thatG N G’ N L(t,) = @ sinceG, G’ are relatively open i H;. Item (ii)
means that, asdecreases; survives beyond,, (iii) means thatG’ survives and
(iv) means that botlé; andG’ reach their lower end points at

Now we claim that (iii) cannot occur. This is indeed immediate from the con-
struction of theS(r): we did not change the half-spaces in, e.g., (5.22) unless we
were forced to do it in order to keefxr) inside Q, and if, as in case (iii) above,
G’ had survived below, then there would be no need to change the corresponding
half-space and so als® would survive, becausg > 0 and we have already proved
that the bottom oK is situated ord Hy.

Thus only (i), (i), (iv) can occur, which means that, radecreases, (5.25) re-
mains valid until we reach the level of the lower end point of;’. This level is
t, = t, forsomek = 0,1, ...,/ — 1 (notations from upward phase). But now, by
remarks at (5.16), the lowest part of a faGeof Q always sticks to a face af.
Hence, by (5.25), als@ sticks to a face oP just above the level.. This finishes
the proof thatk sticks toP, and also finishes the proof of the theorem. O

COROLLARY 5.2. Any polyhedronP in two dimensions has at least one mother
body. Indeed, there is exactly one mother body if each componiemtrofs convex,
at least two if there is a componentiaf P which is not convex.

Proof. The proof of existence of at least one mother body was indicated at the
end of Section 4. If each component of his convex, then it follows from [Gul]

(or remarks at the end of Section 3 in the present paper) that the mother body is
unique.

If one component of inP is nonconvex then, by Lemma 4.2,has a ‘concave
edge’, i.e., a concave corner in the present two-dimensional context, in the sense of
Lemma 4.4. It follows that if we start the construction in the proof of Theorem 5.1
in that concave corner then there will be at least two possibilities to choose the face
F there. Therefore there will exist two different convex polyhedra which stick to
P and which partly overlap near the corner. Thus continuing the process as at the
end of Section 4 the final result will be two different decompositions (4.16), i.e.,
two different mother bodies faP. O

Next we give an example showing that the theorem is optimal in one sense: the
convex polyhedra sticking to a polyhedrénc R? do not cover all ofP in general,
just a neighbourhood @fP. By making a ‘cylinder’ of this example, e.g. by taking
0 = P x [0, 1] c R, one also sees easily that the theorem does not generalize to
IR? (or higher dimension): the convex polyhedra sticking to a polyhedrap R®
do not cover all ob Q in general.
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As to the latter statement, there are even stronger examples: in our, so far un-
successful, attempts to construct polyhedra in higher dimensions having no sticking
convex subpolyhedra whatsoever, we at least have been able to construct a polyhed-
ron Q in R® and a half-spacél such thatQ N H makes up only a small fraction of
Q (measured in volume, e.g.) and such that every convex polyhedron which sticks
to Q is contained inQ N H. Moreover, Q has a face which is entirely outside
Q N H, in fact is separated from® N H by a distance close to the diameter®@f
(The detalils of this example will not be given here.)

EXAMPLE 5.3. We shall construct a polyhedréhc R? with O € int P such that
there is no convex polyhedraki with 0 € K which sticks toP.
The construction depends on two integersndk, satisfying

k> 2, n>2k+3, nisnotdivisible byk.

It is easiest to think of the case withsmall (say 2 or 3) and large, and then
P may be chosen so that the convex polyhedra which stidk tmver just a thin
layer around P.

n=16 Shaded area &1

Figure 5.6 Figure 5.7

The smallest possible choice afisn = 7 (with k = 2), and then for all
n > 7 exceptn = 8 andn = 12 there will be at least one possible valuekof
Figures 5.6-5.7 illustrate the construction below for the easel6,k = 3.

We identify R? with the complex plan& and set» = /" ¢ C. Thenth roots
of unity 1, w, ..., »" " will be the nonconvex corners df. Let L7 be a straight
line throughw® = 1 which intersects the unit circle once more betweéh! and
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»**2. In the special case that= 2k + 3, which is the only case in whiab**? lies

in the lower half-space, we require more precisely that the latter intersection occurs
betweenw**! and—1. Thus, in all cases will have strictly negative slope. Let

H] be the closed half-space definedddy; = L), 0 ¢ Hj.

Next, let L, be a straight line througly which intersects the unit circle once
more betweeno* and v**! and chosen to have a more negative slope thian
ThenL,; andL] intersect at some poinf satisfying Rez; > 1, Imz; < 0. LetH;
be the closed half-space definedd¥; = L,, 0 € H;.

P will be invariant under rotations by n, and we denote by, ;, L, H;, H:,
zj (j = 1,2,...,n) the objects obtained by rotation from the above first chosen
ones. TherP is defined to be the polyhedron bounded by the ligdrom «° = 1
to z3, the lineL; from z; to ! = w, the line L), from w to z,, the line L, from z,
to w? etc. Set theoretically we have, settiBg= {z € C:|z| < 1} and denoting by
C; the bounded component oH; N H)\B,

P:BUCJCJ'.
=1

We extend notations cyclically, so that,; = z; (j = 1,2, ..., k) etc. Clearly,P
is a polyhedron.

Now we prove that there is no convex polyhedron containing the origin which
sticks toP. Any convex polyhedrork which sticks toP must be of the form

iel jeJ
for suitable index sets, J C {1, ..., n}. Since O¢ H} we must actually have
K =\ H (5.26)

iel
in order to have &t K.

We may assume thatd 1, i.e., thatH; is present in the description (5.26). Then
none of 2...,k can be inl becauseX C H; and those parts ofHy, ..., dH;
which stick tod P (namely the segments frop) to w’ of L;, j = 2,...,k) are
all outside H;. On the other hand we must hake+ 1 € I because otherwise
K would contain a full neighbourhood af‘*!, contradictingk C P (note that
"1 e int H; for all j except those with Z j < k + 1). Continuing in the same
way we seethat+2,...,2k € I,2k+ 1 e I etc. Sincez is not divisible byk we
reach a contradiction when we come baclto ; = H; again. Thus no index set
I works.

We remark without proof that the convex polyhedra which stick @re exactly
the followingn ones

Kj:H,;,‘mHijHk’ j:l,...,n.
Of course, O£ K ;.
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6. Open Questions

We list here two main questions which were left unanswered in this paper.

Open Questiod: Does every polyhedron iRY, N > 3, admit at least one mother
body?

Open Questior2: Does every polyhedron iRY, N > 3, contain a convex poly-
hedron which sticks to it?

As shown in Section 4, a positive answer to Question 2 implies a positive answer
to Question 1.
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