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Abstract. We prove that any polyhedron in two dimensions admits a type of potential theoretic
skeleton calledmother body. We also show that the mother bodies of any polyhedron in any number
of dimensions are in one-to-one correspondence with certain kinds of decompositions of the poly-
hedron into convex subpolyhedra. A consequence of this is that there can exist at most finitely many
mother bodies of any given polyhedron. The main ingredient in the proof of the first mentioned result
consists of showing that any polyhedron in two dimensions contains a convex subpolyhedron which
sticks toit in the sense that every face of the subpolyhedron has some part in common with a face of
the original polyhedron.

Mathematics Subject Classifications (1991):Primary: 52Bxx; Secondary: 31Bxx.

Key words: polyhedron, polygon, medial axis, symmetric axis, decomposition, face, mother body,
skeleton, ridge, gravitational field, Newtonian potential.

1. Introduction

This paper is part of a larger programme which concerns existence, uniqueness and
structure of a kind of potential theoretic skeletons, calledmother bodies, for heavy
bodies. By a (heavy) body we mean a compact subset ofRN provided with a mass
distribution, typically just Lebesgue measure restricted to the set. A mother body
for it is a more concentrated mass distribution sitting inside the body and producing
the same external gravitational field as the latter.

Several notions of potential theoretic skeletons have been discussed in the liter-
ature. The particular term ‘mother body’ dates back at least to the work of the
Bulgarian geophysicist Dimiter Zidarov in the 1960’s. In his book [Zi] it was
defined in somewhat vague terms, comparing with mathematical standards. Sug-
gestions for precise requirements of a mother body in the spirit of [Zi] were given
in [Gu1], where also a first step in the above mentioned programme was taken
by proving that convex polyhedra always have unique mother bodies in the sense
made precise.

In this paper, we continue the programme by treating general polyhedra. Our
main result is existence of at least one mother body for any polyhedron in two
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2 BJÖRN GUSTAFSSON AND MAKOTO SAKAI

dimensions. For polyhedra in arbitrary dimension, we prove a structure theorem
saying that the mother bodies are in one-to-one correspondence with certain types
of decompositions of the polyhedron into convex subpolyhedra. A consequence of
this is that there can be at most finitely many mother bodies of any polyhedron.
However, the question of existence of mother bodies for arbitrary polyhedra in
higher dimensions is still open.

Our approach to the existence question leads to geometric questions for poly-
hedra of possible independent interest. Indeed, we are led to trying to prove that
any polyhedron contains a convex subpolyhedron whichsticks toit in the sense
that every face of the subpolyhedron has some part in common with some face of
the original polyhedron. We are able to provide such a proof in two dimensions,
and that is the main ingredient in the existence proof for mother bodies. In higher
dimensions we neither have a proof, nor a counterexample, for existence of convex
polyhedra sticking to a general polyhedron.

The organization of the paper is as follows. In Section 2 we give precise defin-
itions of the geometric concepts needed, namely polyhedron, face and sticking of
polyhedra. Section 3, which essentially is a summary of [Gu1], gives the necessary
potential theoretic background and in particular contains the precise definition of a
mother body. The main substance of the paper then is contained in Sections 4 and
5: in Section 4 we prove the above-mentioned structure and finiteness results (in
arbitrary dimension) and in Section 5 we prove, in two dimensions, existence of
convex subpolyhedra sticking to an arbitrary polyhedron. We even prove that the
convex subpolyhedra sticking to the given polyhedron cover the whole boundary
of the latter. On the other hand, we give an example showing that they need not
cover all of the interior.

As indicated, this work is much inspired by the work in geophysical potential
theory by D. Zidarov and his collaborators. It also has strong connections to the
theory of quadrature domains (see [Sa], [Sh] for overviews). Indeed, having a
mother body of a given body means that the integral of harmonic functions over
the body reduces to an integral over the more condensed mother body and thus
to a, possibly effective, ‘quadrature formula’ (for harmonic functions). A different
sort of quadrature formula for polyhedra in two dimensions is discussed in [Da,
Ch. 11]. See also [Gu-Pu].

1.1. SOME GENERAL NOTATION

B(x, r) = {y ∈ RN : |y − x| < r},
intP = the interior inRN of a setP ⊂ RN,
P = the closure inRN of a setP ⊂ RN,
∂P = the boundary inRN of a setP ⊂ RN,
P c = RN\P forP ⊂ RN,
suppµ = the closed support of a measureµ.

More special notations are explained within the text (mainly in Sections 2 and 3).
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ON POTENTIAL THEORETIC SKELETONS OF POLYHEDRA 3

2. Preliminaries on Polyhedra

For a general background on polyhedra, see, e.g., [Gr], [Ro], [Zg]. This paper,
however, is self-contained as concerns questions of polyhedra. We shall use the
following definition.

DEFINITION 2.1. A convex polyhedronin RN is a set of the form

K =
n⋂
i=1

Hi, (2.1)

where theHi are closed half-spaces inRN , and which satisfies

intK 6= ∅, (2.2)

K is compact. (2.3)

A polyhedronis a finite union (disjoint or not) of convex polyhedra as above.

We note the following:

(i) P = intP if P is a polyhedron.
(ii) A polyhedron need not be connected.
(iii) A convex polyhedron is a polyhedron which is convex as a set.
(iv) In the representation (2.1) of a convex polyhedron the family{H1, . . . , Hn} is

unique providedn is taken to be minimal. The representation is then called the
minimal representation.

(v) An equivalent definition of convex polyhedron is that it is a set which is the
convex hull of finitely many points and having nonempty interior. Cf. [Hö,
Def. 2.1.20, Th. 2.1.21].

We next introduce the notion of a face of a polyhedron. Define, for any set
P ⊂ RN ,

∂faceP = {x ∈ RN : there existsr > 0

and a closed half-spaceH ⊂ RN with x ∈ ∂H
such thatP ∩ B(x, r) = H ∩ B(x, r)}. (2.4)

Then∂faceP is a relatively open subset of∂P .

DEFINITION 2.2. A faceof a polyhedronP is a connected component of∂faceP .

Note.This definition of ‘face’ does not agree with the one commonly used in,
e.g., the theory of convex polytopes (see [Zg]).
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4 BJÖRN GUSTAFSSON AND MAKOTO SAKAI

The closed half-spaceH in the definition of∂faceP is clearly the same through-
out a component of∂faceP , i.e. a face ofP , and will be called theassociated
half-spaceof the face.

For convenience we now give a number of equivalent characterizations of poly-
hedra.

PROPOSITION 2.3.LetP ⊂ RN be a nonempty compact set. Then the following
conditions are equivalent.

(i) P is a polyhedron.
(ii) P = intP and there exist finitely many (affine) hyperplanesL1, . . . , Ln such

that ∂P ⊂⋃n
i=1Li.

(iii) There exist finitely many hyperplanesL1, . . . , Ln such thatP is the closure of
the union of a selection of bounded components ofRN\⋃n

i=1Li.
(iv) ∂faceP has only finitely many components and is dense in∂P .

Proof. (i) ⇒ (ii): By Definition 2.1 we have

P =
m⋃
k=1

nk⋂
j=1

Hkj

for suitable closed half-spacesHkj , with int
⋂nk
j=1Hkj nonempty and bounded for

eachk. Let L1, . . . , Ln be an enumeration of all the∂Hkj . Then it is clear that
∂P ⊂⋃n

i=1Li, and it has already been noticed thatP = intP .
(ii) ⇒ (iii): With P andLi as in (ii), let ω1, . . . , ωl be the components of

RN\⋃n
i=1 Li. SinceP has no boundary inRN\⋃n

i=1Li it follows that for each
j , P ∩ ωj either is empty or equalsωj . In the latter caseωj is bounded since
P is compact. ThusP \⋃n

i=1Li is a selection of bounded componentsωj , say
P \⋃n

i=1Li =
⋃k
j=1ωj . UsingP = intP it follows that

P = P \
n⋃
i=1

Li =
k⋃
j=1

ωj

as desired.
(iii) ⇒ (i): If ω1, . . . , ωk are the selected components ofRN\⋃n

i=1Li then,

since theωj clearly are convex,P =⋃k
j=1ωj =

⋃k
j=1ωj is a representation ofP

as a union of compact convex polyhedra, proving (i).
(iii) ⇒ (iv): Let L be the subset of

⋃n
i=1Li consisting of those points which lie

on only one of theLi. ThenL is relatively open and dense in
⋃n
i=1Li. Moreover,

(
⋃n
i=1Li)\L, which contains∂P \L, is too small to separate intP from P c, even

locally. Therefore∂P ∩ L is dense in∂P . On the other hand, for anyx ∈ ∂P ∩ L
exactly one of the two components ofRN\(⋃n

i=1Li) havingx on its boundary is
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ON POTENTIAL THEORETIC SKELETONS OF POLYHEDRA 5

contained inP . Thereforex ∈ ∂faceP . Thus∂P ∩ L ⊂ ∂faceP , proving that∂faceP

is dense in∂P .
It also follows from the above that every component of∂faceP contains a com-

ponent ofL. Thus,∂faceP has only finitely many components, finishing the proof
of (iv).

(iv) ⇒ (ii): Let F1, . . . , Fn be the components of∂faceP , letH1, . . . , Hn be the
associated half-spaces and setLi = ∂Hi. ThenFi ⊂ Li, i.e.,

∂faceP ⊂
n⋃
i=1

Li.

We also have, by definition of∂faceP ,

∂faceP ⊂ ∂(intP) ⊂ ∂P.
Hence, if∂faceP = ∂P it follows that∂P ⊂ ⋃n

i=1Li and also that∂(intP) = ∂P ,
i.e., intP = P . This proves (ii). 2

Note.Condition (iii) gives a representation of a polyhedron as a finite union of
convex polyhedra with pairwise disjoint interiors. Other such decompositions will
be considered in Section 4.

DEFINITION 2.4. LetP ,Q be two polyhedra inRN with Q ⊂ P . We say thatQ
sticks toP if

for every faceF ofQ there existsx ∈ F andr > 0

such thatQ ∩ B(x, r) = P ∩ B(x, r). (2.5)

An equivalent, and shorter, way of expressing (2.5) is:

every component of∂faceQ intersects∂faceP.

Clearly every polyhedron sticks to itself. IfP is convex then, as is readily
verified,P itself is actually the only polyhedron which sticks toP . It is a non-
trivial fact that ifP is not convex thenP contains a proper subpolyhedron which
sticks toP . In two dimensions this subpolyhedron can even be taken to be convex
(Theorem 5.1).

3. Preliminaries on Mother Bodies

‘Mother body’ (or maternal or materic body) is a potential theoretic term which
seems to have been coined by a Bulgarian school of geophysical potential theory
around D. Zidarov [Zi], [Ko1], [Ko2]. It is intended to mean a kind of potential
theoretic skeleton for a heavy body. The discussion in [Zi] is largely heuristic,
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6 BJÖRN GUSTAFSSON AND MAKOTO SAKAI

but attempts of formulating precise requirements for a mother body (or for related
notions of potential theoretic skeletons) have been given by various authors, e.g.
[An1], [An2], [Gu1], [Ko1], [Ko2], [Ka-Pi].

In this paper we shall simply adopt the five axioms for a mother body given in
[Gu1] (see also [Gu2]). To describe these we have to introduce some more notation.

If µ is a (signed) Radon measure with compact support inRN we define its
Newtonian potential as

Uµ(x) =


c2

∫
log

1

|x − y| dµ(y) (N = 2),

cN

∫
dµ(y)

|x − y|N−2
(N > 3),

where the constantscN > 0 are chosen so that−1Uµ = µ in the distributional
sense,1 denoting the ordinary Laplace operator.

If K ⊂ RN is a (measurable) bounded set we setUK = UχK , whereχK de-
notes the measure with density one onK, zero outsideK (i.e., Lebesgue measure
restricted toK). ThusUK is the Newtonian potential ofK regarded as a body of
density one.

DEFINITION 3.1. LetK ⊂ RN be a compact set satisfyingK = intK . K is
regarded as a body with volume density one. Amother bodyfor K is a Radon
measureµ satisfying

Uµ = UK in RN\K, (3.1)

Uµ > UK in RN, (3.2)

µ > 0, (3.3)

suppµhas Lebesgue measure zero, (3.4)

for everyx ∈ K\suppµ there exists a curveγ

inRN\suppµ joiningx to some point inKc. (3.5)

Comments.It follows from (3.1) that suppµ ⊂ K. The first three axioms are of
potential theoretic nature, while the last two just are geometric conditions on the
closed set suppµ ⊂ K. (3.4) says that it is small (a nullset) and (3.5) says that
it does not ‘hide’ any components ofK\suppµ. Ample discussions of the above
axioms are given in [Gu1]. (In [Gu1], the axioms were stated for a body in the
form of an open set rather than a closed set as here, but since we are assuming that
K = intK everything can be translated.)
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ON POTENTIAL THEORETIC SKELETONS OF POLYHEDRA 7

Figure 3.1. The ridge, or support of mother body, of a convex polyhedron.

The question lying behind the investigations carried out in this paper is the ques-
tion of existence, uniqueness and structure of mother bodies for general polyhedra.
For convex polyhedra these questions have simple and complete answers, which
were given in [Gu1]. Since it will be needed in the sequel we summarize below the
main result in [Gu1].

Let K ⊂ RN be a convex polyhedron, let (2.1) be its minimal representation
and define forx ∈ RN

δi(x) = dist(x,H c
i ),

δ(x) = min{δ1(x), . . . , δn(x)} = dist(x,Kc),

ui(x) = 1
2δi(x)

2,

u(x) = min{u1(x), . . . , un(x)} = 1
2δ(x)

2,

R = {x ∈ K: δ(x) = δi(x) for at least two differenti}, (3.6)

Di = {x ∈ K\R: δ(x) = δi(x)}
= {x ∈ K: δi(x) < δj (x) for all j 6= i}. (3.7)

The setR will be called theridge of K because of its geometric interpretation: in
the case of two dimensions one may think ofK as the top view of a house covered
with a roof of heightδ(x). ThenR will be the ridge of the roof, cf. Figure 3.1.
Other names forR are ‘medial axis’, ‘symmetric axis’ or simply ‘skeleton’. See
[Ro, Sect. 5.6].

Note that

∂K\R = ∂faceK = F1 ∪ · · · ∪ Fn,
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8 BJÖRN GUSTAFSSON AND MAKOTO SAKAI

where

Fi = ∂K ∩Di, (3.8)

(16 i 6 n) are the faces ofK (Fi ⊂ ∂Hi).
Since the functionUK + u has the behaviour of a potential at infinity (note that

u = 0 outsideK) we can define the measureµ by the requirementUµ −UK = u.
This simply means thatµ = χK − 1u. Then (see [Gu1]) suppµ = R andµ is a
mother body ofK. Moreover, no other signed measure satisfies (3.1), (3.4), (3.5).

4. General Structure of Mother Bodies of Polyhedra

We do not know whether nonconvex polyhedra in higher dimensions always admit
mother bodies, but in this section we nevertheless prove a structure theorem for
mother bodies when they do exist: every mother body of a polyhedron defines a
decomposition of the polyhedron into convex polyhedra such that the mother body
is the sum of the mother bodies for the pieces. Moreover, there are only finitely
many possibilities of doing this decomposition, hence there are only finitely many
mother bodies.

THEOREM 4.1. Let P ⊂ RN be a polyhedron. Then there are at most finitely
many signed measuresµ satisfying(3.1), (3.4), (3.5) for P . For anyone of these
also(3.2) holds. If moreover(3.3) holds, then there is a decomposition

P = K1 ∪ · · · ∪Km, (4.1)

where theKi are convex polyhedra with pairwise disjoint interiors, such that

µ = µ1+ · · · + µm, (4.2)

µi denoting the unique mother body ofKi .

Remark4.2. The positivity axiom (3.3) is really necessary in order to ensure the
decomposition (4.1): By a procedure due to D. Siegel [Si] (in a slightly different
context) one can construct indecomposable ‘mother bodies’ satisfying (3.1), (3.2),
(3.4), (3.5) (but not generally (3.3)) for polyhedra in two dimensions. Figures 4.1
and 4.2 show, for a simple polyhedronP inR2, two different decomposable mother
bodies (this example is due to D. Zidarov [Zi]) and Figure 4.3 shows Siegel’s
indecomposable one (violating (3.3)).

Proof. (Theorem 4.1). Letµ be a measure satisfying (3.1), (3.4), (3.5) forP .
Pick any componentω of (intP)\suppµ. By (3.5) there is, for anyx ∈ ω, a curve
γ in RN\suppµ from x to some point inP c. We may assume thatγ ∩ ∂P consists
of only one point, call ity, and thaty ∈ ∂faceP . LetH be the associated half-space
of the face aty.
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ON POTENTIAL THEORETIC SKELETONS OF POLYHEDRA 9

Zidarov Zidarov Siegel Axiom (3.3) violated.

µ is negative on this segment.

Figure 4.1. Figure 4.2. Figure 4.3.

Set

u = Uµ − UP in RN, (4.3)

so that1u = χP − µ everywhere andu = 0 outsideP by (3.1). Since1(1
2

dist(x,H c)2) = χH and 1
2 dist(x,H c)2 = 0 onHc it follows that the function

u(x) − 1
2 dist(x,H c)2 is harmonic in a neighbourhood ofy and vanishes outside

P in this neighbourhood. Thus it vanishes in the full neighbourhood, i.e.,u(x) =
1
2 dist(x,H c)2 for x close toy.

Thus, replacingHc with ∂H , we obtain

u(x) = 1
2 dist(x, ∂H)2 (4.4)

for x in P close toy, hence in an open subset ofω. But u(x) − 1
2 dist(x, ∂H)2 is

harmonic in all of(intP)\suppµ, hence it follows that (4.4) holds in all ofω. In
particular, the hyperplane∂H is uniquely determined byω.

LetH1, . . . , Hn be all the associated half-spaces of the faces ofP and let

ui(x) = 1
2 dist(x, ∂Hi)

2 (4.5)

(1 6 i 6 n). We assume thatHi 6= Hj for i 6= j . Then it follows from the
above that on each componentω of (intP)\ suppµu agrees with one of theui . In
particular,

u,∇u ∈ L∞(RN\(suppµ ∪ ∂P )). (4.6)

Next we note thatUµ and∇Uµ are locally integrable functions. This is because
µ is a measure and the Newtonian kernel and its gradient are locally integrable
functions (cf. [Do,§ 26]). Thereforeu and its first order distributional derivatives
belong toL1

loc(RN). By (3.4) and (ii) of Proposition 2.3 suppµ∪ ∂P has Lebesgue
measure zero. It now follows from (4.6) that

u,∇u ∈ L∞(RN) (4.7)
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10 BJÖRN GUSTAFSSON AND MAKOTO SAKAI

in the sense of distributions.
We conclude thatu is a Lipschitz continuous function (i.e. has such a represent-

ative). Thus, for any componentω of (intP)\suppµ we even haveu = ui on all
of ω for somei. Since suppµ and∂P have no interior points, everyx ∈ P is in ω
for someω as above and it follows thatu is everywhere inP equal to someui.

OutsideP , u = 0. Sinceui > 0 everywhere, it follows thatu > 0 everywhere,
proving thatµ satisfies (3.2).

Next, set

R = {x ∈ P : dist(x, ∂Hi) = dist(x, ∂Hj )

for some pairi, j with i 6= j}
= {x ∈ P :ui(x) = uj (x) for some pair withi 6= j}. (4.8)

This is a finite union of (affine) hyperplanes inP . (The presentR is not necessarily
the same as that in (3.6) whenP is convex.) Sinceu is continuousu can, in intP ,
change representative from oneui to another only onR. On ∂P u changes rep-
resentative from one, or several, of theui to zero. More precisely, at each point of
∂P \R only oneui vanishes, showing thatu is of the formu(x) = 1

2 dist(x,H c
i )

2

in a neighbourhood of any point of∂P \R.
SinceP \ R has only finitely many components there are only finitely many

ways of combining theui to a continuous functionu. This proves that there are
only finitely many signed measures satisfying (3.1), (3.4), (3.5). We also conclude
that1u = χP in RN\R and hence that

suppµ ⊂ R. (4.9)

A further consequence of the fact thatu everywhere inP agrees with someui
is that

V ⊂
n⋃
i=1

∂Hi, (4.10)

whereV = {x ∈ P :u(x) = 0}. Moreover, it follows that

∇u = 0 on V. (4.11)

From (4.7) and (4.11) we further deduce thatµ = χP−1u is absolutely continuous
with respect toHN−1 and thatµ = 0 onV .

It is a consequence of (4.10) thatP \V has only finitely many components and
that their closures, call themK1, . . . , Km, are polyhedra. Sinceu everywhere inP
agrees with someui , we haveKi\V = intKi . Henceµ = 0 on∂Ki. Setµi = µ

∣∣
Ki

.
Then it is immediately verified thatµi satisfies (3.4) and (3.5) forKi . Using (4.11)
it follows that (3.1) holds forKi. Applying the above argument toµi we see that
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ON POTENTIAL THEORETIC SKELETONS OF POLYHEDRA 11

(3.2) holds also forKi . Therefore, in order to prove the theorem it only remains to
prove that eachKi is convex under the assumption thatµ > 0.

In order to prove that oneKi is convex we may forget about the other ones.
Equivalently, we may prove thatP itself is convex under the assumption that
P \V = intP and that it has only one component. This is the content of the follow-
ing proposition, which contains all that remains of the proof of Theorem 4.1.2
PROPOSITION 4.3.Letµ be a mother body for a polyhedronP such thatintP is
connected and such that

Uµ > UP in intP.

ThenP is convex.

The proof of Proposition 4.3 will be based on the following geometrical lemma,
which we prove first.

LEMMA 4.4. LetP be a polyhedron such thatintP is connected but not convex.
Then there existsx ∈ ∂P , r > 0 and two distinct half-spacesH1, H2 with x ∈
∂H1 ∩ ∂H2 such that

P ∩ B(x, r) ⊃ (H1 ∪H2) ∩ B(x, r),
∂P ∩ B(x, r) ⊃ ∂(H1 ∪H2) ∩ B(x, r).

This means thatP has a concave edge throughx, possibly with other parts ofP
clustering at the edge.

Proof. There exists a pointy ∈ intP and a ballB(z, ε) ⊂ intP such that
part of, and only part of,B(z, ε) can be seen fromy within P . Precisely, setting
W = {w ∈ B(z, ε): ty + (1− t)w ∈ P for all 0 6 t 6 1} bothW andB(z, ε)\W
have nonempty interiors. The existence ofy andB(z, ε) as above follows from the
fact that convexity of connected sets is a local property. More specifically it can be
derived from [Hö, Th. 2.1.27]. (One also has to use thatP = intP .)

Now for w ∈ ∂W ∩ B(z, ε) there is at least one value of 0< t < 1 such that
ty + (1− t)w ∈ ∂P . The set of all sucht is compact for a givenw. Let tw denote
the smallest of these values oft . Then it is not hard to see that generic points of the
set

E = {twy + (1− tw)w ∈ ∂P :w ∈ ∂W ∩ B(z, ε)}
are pointsx of the kind required in the lemma. 2

Proof of Proposition 4.3.The proof is basically a continuation of the proof of
Theorem 4.1, the only difference being that we are now reduced to the casem = 1,
i.e. to the case thatP \V is connected (and, hence,= intP ). Thus we keep all
notations from the proof of Theorem 4.1.
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12 BJÖRN GUSTAFSSON AND MAKOTO SAKAI

We assume thatP is not convex and derive a contradiction. By Lemma 4.4, part
of ∂P is a concave edge. With appropriate numbering of theHi and by choosing the
pointx in Lemma 4.4 generically, namely so that no∂Hi cuts the edge transversally
atx, we get into the following situation at the pointx ∈ ∂P : there is anr > 0 and
an integerk, 26 k 6 n, such that

x ∈ ∂H1 ∩ ∂H2,

P ∩ B(x, r) ⊃ (H1 ∪H2) ∩ B(x, r),
∂P ∩ B(x, r) ⊃ ∂(H1 ∪H2) ∩ B(x, r),
∂H1 ∩ ∂H2 ⊂ ∂Hi for 16 i 6 k,

∂Hi ∩ B(x, r) = ∅ for k + 16 i 6 n.

We may further assume thatx is the origin and that the edge is ‘vertical’, i.e.
∂H1 ∩ ∂H2 = {x ∈ RN : x1 = x2 = 0}. (x = (x1, . . . , xN )). The half-spaces
H1, . . . , Hk are then of the form

Hi = {x ∈ RN : x1 cosθi + x2 sin θi > 0}
(16 i 6 k) with θi the angle to the positivex1-axis of the inward normal vector of
Hi. Letting (r, θ) denote polar coordinates in the(x1, x2)-plane, i.e.,x1 = r cosθ ,
x2 = r sin θ , we have

ui(x) = 1
2 dist(x, ∂Hi)

2

= r2

2
cos2(θ − θi) (4.12)

for 16 i 6 k.
Since 0 6∈ ∂Hi for i > k, ui(0) 6= 0 for thesei. As u is continuous,u(0) =

0 (because 0∈ ∂P ) and everywhere inP equals someui (all by the proof of
Theorem 4.1) it follows that in a neighbourhood of the origin, which we may take
to beB(0, r), u(x) only takes values amongu1(x), . . . , uk(x) and 0. In particular
this shows thatu only depends on(x1, x2). Thus we have a purely two-dimensional
situation inB(0, r), which is easy to analyze. We may work simply in the(x1, x2)-
plane since everything is constant inx3, . . . , xN .

The setR (see (4.8)) on whichu can change representative between two of the
ui is in the(x1, x2)-plane represented by the set of raysθ = constant for which

cos2(θ − θi) = cos2(θ − θj ) (4.13)

for some pairi, j ∈ {1, . . . , k} with i 6= j . Moreover,u changes representative
from u1 to u = 0 on∂H1 and fromu2 to u = 0 on∂H2.
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Now, if u changes representative fromui to uj on one of the four raysθ =
constant= 1

2 (θi + θj )+ π
2 · (integer) determined by (4.13), then either

u = max{ui, uj } (4.14)

or

u = min{ui, uj } (4.15)

in a neighbourhood of the ray. However, and this is the crucial point, the first
possibility (4.14) cannot occur because it would give1u a contribution in form of
a strictly positive(N−1)-dimensional density on the hyperplane inRN determined
by the ray, and this would contradict the assumption thatµ > 0.

Thus (4.15) is the only possible way of changing representative betweenui and
uj . But keepingr fixed, regardingu as a function ofθ and looking at (4.12) we see
that if u does not change representative at all, then it will be strictly positive on an
θ-interval of lengthπ , while if it does change (according to (4.15)) then it can do
it only once and it will be strictly positive only on an interval of length< π .

Thus in any case,u can never be strictly positive on an angular segment of
opening> π . This contradicts our assumption of having a concave edge andu > 0
in intP , and thus finishes the proof of Proposition 4.3. 2

By Theorem 4.1, any mother bodyµ of a polyhedron induces a decomposition
of P into convex polyhedraKj such thatµ|Kj is the mother body ofKj . Next we
wish to discuss the opposite question: let

P = K1 ∪ · · · ∪Km, (4.16)

be a decomposition of a polyhedronP into convex polyhedraKj with pairwise
disjoint interiors and letµj be the mother body ofKj . Under what circumstances
is

µ = µ1+ · · · + µm (4.17)

a mother body forP?
It is immediately verified thatµ defined by (4.17) always satisfies (3.1)–(3.4).

However, (3.5) need not hold. See, e.g., Figure 4.4 where the previously considered
polyhedron in Figures 4.1–4.3 is decomposed into too many convex polyhedra. To
analyze condition (3.5) closer we shall introduce a notion ofgenerationof faces of
theKi for the subdivision (4.16).

Let, as in (3.6)–(3.8),Ri,Dij , Fij (j = 1, . . . , mi say) denote, respectively, the
ridge ofKi , the components ofKi\Ri and the faces ofKi , so thatRi = suppµi ,
Fij = ∂Ki ∩ Dij . Note that the last relation sets up a one-to-one correspondence
between theDij and theFij .
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14 BJÖRN GUSTAFSSON AND MAKOTO SAKAI

Axiom (3.5) violated.

Figure 4.4.

Some of the facesFij have some part in common with a face ofP . These will
be the faces of first generation. The correspondingDij will also be called of first
generation. Thus we define

gen(Fij ) = gen(Dij ) = 1

if and only if Fij ∩ ∂faceP 6= ∅. Next we define

gen(Fij ) = gen(Dij ) = 2

if and only if Fij ∩ ∂faceP = ∅ but there existsFkl with gen(Fkl) = 1 such that
Fij ∩ Fkl 6= ∅. The significance of the last relation is that it ensures the possibility
of passing fromDkl toDij without meeting suppµ.

Proceeding inductively we set gen(Fij ) = gen(Dij ) = n if and only if gen(Fij ) 6=
1,2, . . . , n−1, but there existsFkl with gen(Fkl ) = n−1 such thatFij ∩Fkl 6= ∅.
After finitely many steps we come to an integern such that there are no faces of
generationn, and then there will of course be no faces of any higher generation
n+ 1, n+ 2, . . ..

At this stage there are two possibilities:

(i) there are no facesFij left, i.e. eachFij has been attributed a finite number
gen(Fij ),

(ii) there are facesFij which never appeared in the process.

For the latter faces we simply set gen(Fij ) = gen(Dij ) = +∞. See Figure 4.5 for
an example of a decomposition (4.16) with the generations of theDij marked out.
Now we just observe

PROPOSITION 4.5.Referring to the decomposition(4.16), (4.17), µ is a mother
body ofP if and only if every faceFij of theKi is of finite generation(i.e. case(i)
above occurred). Moreover, a necessary condition that a given faceFij is of finite
generation is that the hyperplane containingFij also contains a face ofP .
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Figure 4.5. Figure 4.6.

Proof. SinceP \suppµ = P \⋃m
i=1 Ri ⊂

⋃
i,j Dij and since the only require-

ment for a mother body which needs to be checked is (3.5) it follows that what we
have to prove for the first statement of the proposition is the following:

a pointx ∈ Dij\suppµ can be joined toP c

via a curve inRN\suppµ if and only if gen(Dij ) < +∞. (4.18)

To prove (4.18), suppose first that gen(Dij ) = n < +∞. SinceFij = Dij\
(intDij ) and(intDij )∩ suppµ = ∅, x can be joined to any pointy onFij\suppµ
by a curveγ in Dij\suppµ. If n = 1 then we can choosey ∈ ∂faceP and then
continueγ into P c. If n > 1 then we can choosey ∈ Fkl for some faceFkl with
gen(Fkl) = n− 1. Theny ∈ Dkl\suppµ, hence we are in the same situation as in
the beginning, but with a smallern. By induction this means that we will finally be
able to reachP c, proving one direction of (4.18).

Conversely, if there is a curveγ from x ∈ Dij\suppµ thenγ passes through
finitely manyDkl on its way out and, by definition, the lastDkl is of generation
one and two adjacentDkl differ by at most one unit of generation. HenceDij is of
finite generation.

We also note that the hyperplaneL containing a faceFij = ∂Ki ∩ Dij is the
same for two adjacentDkl through whichγ passes. Hence it is the same for allFij
crossed byγ , hence it is the hyperplane containing the face ofP through whichγ
leavesP . Thus a necessary condition that gen(Fij ) < +∞ is thatFij is contained
in a hyperplane which also contains a face ofP . 2

One special way in which all points ofP \suppµ could be of finite generation
(i.e.µ is a mother body) is that

gen(Dij ) 6 i (4.19)

for all i = 1, . . . , m and allj . This means that every face ofK1 is of first gen-
eration, every face ofK2 of generation at most two etc. Equivalently one can say
that, for everyi = 1, . . . , m, each face ofKi is of first generation in the polyhedron
Pi = Ki∪· · ·∪Km. This can be expressed in the previously introduced terminology
(Definition 2.4) by simply saying thatKi sticks toPi , for eachi = 1, . . . , m.
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16 BJÖRN GUSTAFSSON AND MAKOTO SAKAI

P

0

C

F

Figure 5.1. Initial data:P is a given polyhedron;x = 0 is a given point on∂P ; F is a given
face withx ∈ F̄ ; andC is the largest convex cone inP (nearx) satisfyingF ⊂ ∂C (C equals
the upper half-plane in the present case).

In Section 5 we will show that in two dimensions any polyhedron admits a
convex subpolyhedron which sticks to it. Thus given anyP ⊂ R2 we can find a
decomposition (4.16) satisfying (4.19) by first takingK1 which sticks toP1 = P ,
thenK2 which sticks toP2 = P1\K1, thenK3 which sticks toP3 = P2\K2 etc.
SinceP1, P2,... is a strictly shrinking family of polyhedra with∂Pj ⊂ ⋃n

i=1Li, Li
denoting the hyperplanes containing the faces, we will after finitely many steps
reach the empty set, which means that we have got the desired decomposition
(4.16) satisfying (4.19). Thus it will follow that any polyhedron in two dimensions
has a mother body.

Figure 4.6 is an example of a decomposition not of the type (4.19), but still with
gen(Dij ) < +∞ for all i, j .

5. Two Dimensions

The main result in this section is that any polyhedron in two dimensions admits
a convex polyhedron which sticks to it. As indicated at the end of Section 4 this
shows that any polyhedron in two dimensions has a mother body. The proof below
is illustrated by Figures 5.1–5.5.

THEOREM 5.1. For any polyhedronP ⊂ R2, the union of the convex polyhedra
which stick toP contains a full neighbourhood (inP ) of ∂P . In particular, there
exists at least one convex polyhedron sticking toP (at least two ifP is not convex).

Proof. It is enough to prove the following. Letx be an arbitrary point on∂P
and letF ⊂ ∂P be any face ofP such thatx ∈ F . Let C be the largest closed
convex cone inR2 with vertexx satisfyingF ⊂ ∂C and, forε > 0 sufficiently
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0 F

t*
t2

t1

0

t

Figure 5.2. Upward phase, selection 1 (of 2): shaded area isQ; horizontal lines areS(t);
at t1, E consists of 3 obstruction points (subcase 2b); the left most segment ofS(t1)\E is
selected; att2 there is just one obstruction point, and no choice; termination att∗ through
case 1.

t*

t1

0

t

Figure 5.3. Upward phase, selection 2 (of 2): shaded area isQ; horizontal lines areS(t);
middle segment ofS(t1)\E is selected; termination att∗ through subcase 2a.

small,C ∩ B(x, ε) ⊂ P . Then (to be proved) there exists a convex polyhedron
K ⊂ P which sticks toP and which containsC ∩B(x, ε), for ε > 0 small enough
(perhaps smaller than above).
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18 BJÖRN GUSTAFSSON AND MAKOTO SAKAI

Figure 5.4. Downward phase, with selection 1 in upward phase: shaded area isK ; and
horizontal lines arẽS(t).

Figure 5.5. Downward phase, with selection 2 in upward phase: shaded area isK ; and
horizontal lines arẽS(t).

Note.If the ‘corner’ ofP at x with F as one side has opening< π thenC ∩
B(x, ε) simply is this corner, if it has opening> π (including the case thatx is a
face point,x ∈ F ) thenC is the half-space associated withF .

LetH0 be the (closed) half-space associated withF and letH1, . . . , Hn be the
half-spaces associated with the other faces ofP . We assume thatHi 6= Hj for
i 6= j , so there may be several faces belonging to the sameHi. We may assume that
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ON POTENTIAL THEORETIC SKELETONS OF POLYHEDRA 19

x = 0 and thatH0 = {x ∈ R2: x2 > 0}. ThenF is the set of those(x1,0) ∈ ∂H0

which satisfy a condition of one of the following three forms:

α < x1 < 0; (5.1)

α < x1 < β; (5.2)

0< x1 < β. (5.3)

Hereα < 0< β.
Set

L(t) = {x ∈ R2: x2 = t}.

The construction ofK consists of two phases: one upward phase in whicht in-
creases fromt = 0 to some final valuet∗ > 0 and for each 06 t 6 t∗ a segment
S(t) of P ∩ L(t) is selected, and then a downward phase at which (unique) sub-
segments̃S(t) of S(t) are obtained ast decreases down to zero again. The convex
polyhedronK will be the union of theS̃(t).

The Upward Phase
Choose a point(ξ1,0) ∈ F . For t > 0 small enough we take

S(t) = that component ofP ∩ L(t)which contains the point(ξ1, t).

This set is of the form

S(t) = H` ∩Hr ∩ L(t) (5.4)

for some`, r ∈ {1, . . . , n} with

0 ∈ F ⊂ H` ∩Hr. (5.5)

We use` andr as indices to indicate thatH` delimits S(t) from the left andHr
from the right.

Note that, by (5.5), we have 0∈ intH` unlessF is of the form (5.3), and
0 ∈ intHr unlessF is of the form (5.1). In the continued process we are going to
choose half-spacesHi, i ∈ {1, . . . , n} which will all satisfy 0∈ Hi, and which will
even satisfy

0 ∈ intHi (5.6)

with exceptions only for the above mentioned cases in the start of the process, and
for the initial face withi = 0.
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For smallt > 0 we now have

H` ∩Hr ∩ L(t) ⊂ P. (5.7)

Moreover, the end points ofH` ∩Hr ∩L(t) are on∂P . As t increases we continue
to defineS(t) by (5.4) as long as (5.7) holds. Then there are two possibilities.

Case1: (5.7) holds for allt > 0. SinceP is compact this must mean that
H` ∩Hr ∩ L(t) is empty for larget . Then set

t∗ = sup{t : H` ∩Hr ∩ L(t) 6= ∅}.
Thus 0< t∗ <∞ andH` ∩Hr ∩ L(t∗) consists of a single point.

In Case 1 we defineS(t) by (5.4) for all 06 t 6 t∗.
Case2: (5.7) does not hold for allt > 0. Then set

t1 = inf{t > 0:H` ∩Hr ∩ L(t) 6⊂ P }. (5.8)

Thus 0< t1 <∞,H` ∩Hr ∩L(t) ⊂ P for 06 t < t1 and even fort = t1 sinceP
is a closed set, butH` ∩Hr ∩ L(t1+ ε) 6⊂ P for smallε > 0.

In Case 2 we defineS(t) by (5.4) for 06 t 6 t1, but for t > t1 we need another
definition. Let

E = lim
ε↘0
(H` ∩Hr ∩ L(t1+ ε))\P

be the ‘obstruction set’ for (5.7). The definition ofE means, more precisely, that
x ∈ E if and only if there exist sequencesεj ↘ 0 andxj ∈ (H`∩Hr∩L(t1+εj ))\P
such thatxj → x. ClearlyE ⊂ S(t1), and sinceP is a polyhedronE must be a
finite union of isolated points and closed segments inS(t1). By definition of Case 2,
E is nonempty.

Subcase2a: IfE contains at least one segment we finish the upward phase here
and sett∗ = t1. Each segment ofE must be part of (the closure of) a face ofP , and
if Hk is the associated half-space of anyone of these faces, thenE ⊂ ∂Hk = L(t1),
0 ∈ intHk.

Subcase2b: If E contains no segments it consists of just finitely many points
and we must continue going upwards.S(t1)\E consists of one or several compon-
ents each of which is an open or half-open segment inL(t1). Choose one point in
the interior of each segment, say(ξ1, t1), . . . , (ξm, t1) whereξ1 < ξ2 < · · · < ξm
andm > 1 is the number of segments.

Forε > 0 smallH` ∩Hr ∩P ∩L(t1+ ε) consists of at leastm closed segments
(cf. Figure 5.2). There is exactly one segment for eachξk, containing(ξk, t1 + ε)
in the interior and containing no other(ξj , t1+ ε), but there may also be segments
containing no(ξk, t1 + ε). We shall chooseS(t1 + ε) to be one of the segments
which contains a point(ξk, t1+ ε).
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Each of thesem candidates forS(t1 + ε) will be of the form

H`k ∩Hrk ∩ L(t1+ ε)
for suitable `k, rk ∈ {1, . . . , n}, where we have chosen the notations so that
(ξk, t1 + ε) ∈ H`k ∩ Hrk andH`k defines the left andHrk the right end point of
the segment.̀1 may be the same as̀(in (5.4)) andrm may be the same asr.

It is easy to see that

0 ∈ H`1,

0 ∈ intHr1 ∪ intH`2,

0 ∈ intHr2 ∪ intH`3,

· · ·
0 ∈ intHrm−1 ∪ intH`m

0 ∈ Hrm.
Here we may also replaceH`1 by intH`1 unless̀ 1 = ` andF is of the form (5.3),
andHrm by intHrm unlessrm = r andF is of the form (5.1).

From the above it follows that

0 ∈ H`k ∩Hrk (5.9)

for at least onek, where also 0∈ intH`k , 0 ∈ intHrk with the above-mentioned
possible exceptions for̀k = ` (k = 1) andrk = r (k = m). Now select ak such
that (5.9) holds and define

S(t1+ ε) = H`k ∩Hrk ∩ L(t1+ ε) (5.10)

for ε > 0 small.
If m = 1, i.e.E just consists of one or both end points ofS(t1), thenS(t)

changes in a continuous way ast passest1:

lim
t↘t1

S(t) = S(t1) = lim
t↗t1

S(t),

while if m > 2 S(t) jumps down to a subsegment ast passest1. In general we
therefore have a kind of semicontinuity att = t1:

lim
t↘t1

S(t) ⊂ S(t1) = lim
t↗t1

S(t). (5.11)

Definition (5.10) will be in force as long as the right member is contained in
P . Settingt = t1 + ε we are then in the same situation as at the beginning of the
upward phase: either

H`k ∩Hrk ∩ L(t) ⊂ P

201256.tex; 21/05/1999; 7:01; p.21



22 BJÖRN GUSTAFSSON AND MAKOTO SAKAI

for all t > t1 (Case 1), in which case there is a lastt = t∗ for which the left member
is nonempty, or (Case 2) an obstruction occurs for somet = t2 > t1. In the latter
case we get subcases as before: in Subcase 2a we are finished and sett∗ = t2, in
Subcase 2b we must change the definition again.

Proceeding in the above way we end up with a sequence of obstruction levels
0< t1 < t2 < · · ·. SinceP is compact this sequence must terminate, which means
that we finally run into Case 1 or Subcase 2a. Lett∗ = tl be the terminating level
and set alsot0 = 0. On each intervaltk−1 < t 6 tk (k = 1, . . . , l) S(t) is defined
by an expression

S(t) = H`k ∩Hrk ∩ L(t) (tk−1 < t 6 tk). (5.12)

(We have here changed the notation for the indices slightly, so thatk now refers to
the level oft . Thus, e.g.,̀ 1 = `, r1 = r with ` andr the indices in (5.4).)

Let

I = {`1, r1, `2, r2, . . . , `l, rl}
be the set of indices used and recall that

0 ∈ Hi for all i ∈ I, (5.13)

and that 0∈ intHi with possible exceptions fori = `1, r1. The result of the upward
phase is the set

Q =
⋃

06t6t∗
S(t).

It is easy to see thatQ is a polyhedron contained inP . Some of its faces are
‘horizontal’ (parallel to thex1-axis), namely the bottomF , possibly the topS(t∗) (if
the upward phase is terminated by Subcase 2a) and possibly also intermediate faces
arising from cases of strict inclusions in semicontinuities (5.11) (fort1, . . . , tl−1).
The associated half-space ofF is H0 = {x ∈ R2: x2 > 0}, the associated half-
spaces of the other horizontal faces are all of the formH = {x ∈ R2: x2 6 tj } for
somej = 1, . . . , l, hence 0∈ intH .

The nonhorizontal faces ofQ are those defined byH`k , Hrk in (5.12), hence
their associated half-spaces are exactly theHi, i ∈ I .

Unfortunately,Q neither is convex nor sticks toP in general. What we have of
convexity properties are the following

Q is convex in thex1-direction;
(5.14)

Q is starshaped with respect to 0.

The first statement just says that eachS(t) is connected (which it is by construction)
and the second statement follows easily from (5.11), (5.12) and (5.13).
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We record here also the semicontinuity property ofQ (see (5.11)): For any
0< t 6 t∗,

lim
ε↘0

Q ∩ L(t + ε) ⊂ Q ∩ L(t) = lim
ε↘0

Q ∩ L(t − ε). (5.15)

As to sticking properties we note that the bottom faceF and, if we finished
through Subcase 2a, the top faceS(t∗) both stick toP . Moreover, all the nonhori-
zontal faces ofQ stick toP because these are defined byHi, i ∈ I as in (5.12) and
each time we made a change of someHi, or when we first choseH`1,Hr1, we made
it by ‘necessity’, namely that a condition like (5.7) forced us to do it. Therefore,
we can even state a little more, as follows.

Given anyHi, i ∈ I , let tk−1 < t 6 tk (16 k 6 l) be the firstt-interval at which
it was used (e.g.,Hi = H`k = H`k+1 butHi 6= H`k−1). Then the corresponding face
of Q sticks toP on some intervaltk−1 < t < tk−1 + ε (ε > 0). More precisely,
with k = k(i) defined as above we have

for ε > 0 sufficiently small anyx ∈ ∂Hi with
tk−1 < x2 < tk−1+ ε has a neighborhood
B = B(x, r) such thatQ ∩ B = P ∩ B = Hi ∩ B. (5.16)

The nonconvexity and nonsticking properties ofQ will be straightened out in the
downward phase.

The downward phase
This can briefly be described as being the upward phase applied toQ turned upside-
down, but there are less complications so we prefer to give a direct description.

We shall choose segmentsS̃(t) ⊂ S(t) for t decreasing fromt∗ to 0. Fort 6 t∗
close tot∗ we simply take

S̃(t) = S(t) = Q ∩ L(t).
Thus

S̃(t) = H`l ∩Hrl ∩ L(t) (5.17)

for t∗ − ε < t 6 t∗ say. Ast decreases we stick to this definition as long as

H`l ∩Hrl ∩ L(t) ⊂ Q. (5.18)

If an obstruction occurs, att = t̃1 say, we get an obstruction setE = limε↘0

(H`l ∩Hrl ∩L(t̃1− ε))\Q as in the upward phase. Because of the properties ofQ,
namely starshapedness (5.14) or semicontinuity (5.15), the obstruction setE can
in the downward phase only consist of one or both end points ofS̃(t̃1).

Therefore we simply need to take

S̃(t̃1− ε) = H`l ∩Hrl ∩Q ∩ L(t̃1− ε) (5.19)
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for ε > 0 small. This set is of the form

S̃(t̃1− ε) = H` ∩Hr ∩ L(t̃1− ε) (5.20)

for some`, r ∈ I , one of which may be the same as`l or rl.
By (5.15), (5.19)S̃(t) changes in a continuous way ast passes̃t1. Therefore

∂H` ∩ ∂H`l ⊂ L(t̃1) or H` = H`l , and similarly forr andrl. SinceH`, Hr were
introduced in order to restrict̃S(t) it follows that

H` ∩Hr ∩ L(t̃1− ε) ⊂ H`l ∩Hrl ∩ L(t̃1− ε)
for smallε > 0, and even for allε > 0. Therefore we could as well have retained
the first chosen half-spaces in the definition ofS̃, i.e.,

S̃(t) = H`l ∩Hrl ∩H` ∩Hr ∩ L(t) (5.21)

for t̃1 − ε < t < t̃1. For similar reasons (5.21) actually holds also fort̃1 6 t 6 t∗.
Now we continue to definẽS(t) by (5.20) or (5.21) as long ast > 0 and

H` ∩ Hr ∩ L(t) ⊂ Q (t < t̃1), and if obstructions occur we make new modi-
fications according to the same recipe as above. We end up with a finite sequence
of obstruction levelst∗ > t̃1 > t̃2 > · · · > 0 and with havingS̃(t) defined for all
06 t 6 t∗. Define

K =
⋃

06t6t∗
S̃(t).

This will be shown to be a convex polyhedron having the properties stated in the
beginning of the proof.

Let us relabel the indices for the downward phase: set˜̀1 = `l, r̃1 = rl, ˜̀2 = `,
r̃2 = r (`, r the indices in (5.20)) etc., so thatH ˜̀

k
, Hr̃k are the half-spaces used in

the intervalt̃k−1 > t > t̃k (k = 1, . . . , l̃, say, and̃t0 = t∗). Set

Ĩ = { ˜̀1, r̃1, . . . , ˜̀l̃ , r̃l̃}.

ThenĨ ⊂ I .
For t̃k−1 > t > t̃k, S̃(t) is defined by (cf. (5.17))

S̃(t) = H ˜̀
k
∩Hr̃k ∩ L(t), (5.22)

but as indicated at (5.21) we could also cut byH ˜̀
k−1

andHr̃k−1 without changing
anything, and also byH ˜̀

k+1
andHr̃k+1, etc. Therefore we actually have

S̃(t) =
l̃⋂

j=1

(H ˜̀
j
∩Hr̃j ) ∩ L(t) (5.23)
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for t̃k−1 > t > t̃k , and even for allt∗ > t > 0.
From (5.23) it follows thatK is given by

K =
l⋂

j=1

(H ˜̀
j
∩Hr̃j ) ∩H0 ∩H∞

=
⋂
i∈Ĩ
Hi ∩H0 ∩H∞, (5.24)

whereH∞ = {x ∈ R2: x2 6 t∗}, and in particular thatK is a convex polyhed-
ron. The half-spaceH∞ is needed only if the upward phase terminated through
Subcase 2a.

Next we show thatK containsC ∩ B(0, ε) with ε > 0 small andC as in the
beginning of the proof. Assume first thatF is of the form (5.2). ThenC = H0 and
0 ∈ intH`1 ∩ intHr1, hence 0∈ intHi for all i ∈ I . Thus

0 ∈ int

⋂
i∈Ĩ
Hi ∩H∞


which by (5.24) gives thatK containsC ∩B(0, ε) = H0∩B(0, ε) for ε > 0 small.

If F is of the form (5.1) then 0∈ intH`1. It is still possible that 0∈ intHr1,
and in this caseC = H0 and everything works as in the previous case. The other
possibility is that 0∈ ∂Hr1. Then, by the wayHr1 was chosen,C = H0 ∩ Hr1.
By previous remarks (see before and after (5.9)) the origin is in the interior of all
half-spaces in the expression (5.24) forK, exceptH0 andHr1. ThusK contains
C ∩ B(0, ε) = H0 ∩Hr ∩ B(0, ε) for ε > 0 small.

The case thatF is of the form (5.3) is analogous to the above case. HenceK

has the desired property at the origin. Note that it also follows from the above that
K containsF ∩ B(0, ε) for someε > 0 and hence thatK ∩ ∂H0 is in the closure
of a face ofK which sticks to the faceF of P .

We finally prove thatK sticks toP . The bottomK∩∂H0 was treated just above.
In a neighbourhood of∂H∞,K agrees withQ (the downward phase started by not
changing anything) and we have already remarked (after (5.15)) that ifQ ∩ ∂H∞
is a segment, i.e. the closure of a face ofQ, then it sticks to a face ofP . Thus the
same is true forK ∩ ∂H∞.

It remains to treatK ∩∂Hi, i ∈ Ĩ . Giveni ∈ Ĩ , letG be the face ofK satisfying
K ∩ ∂Hi ⊂ G. By constructionK sticks toQ. ThereforeG ∩ G′ 6= ∅ for some
faceG′ of Q. Thus

G ∩G′ ∩ L(t) 6= ∅ (5.25)

for somet > 0. Let t∗ be the infimum of the set oft > 0 for which (5.25) holds.
We distinguish between the following possibilities (exhaustive list).
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(i) t∗ = 0;

(ii) t∗ > 0,G ∩ L(t∗) 6= ∅;

(iii) t∗ > 0,G′ ∩ L(t∗) 6= ∅;

(iv) t∗ > 0, (G ∪G′) ∩ L(t∗) = ∅.

Note thatG ∩ G′ ∩ L(t∗) = ∅ sinceG, G′ are relatively open in∂Hi. Item (ii)
means that, ast decreases,G survives beyondt∗, (iii) means thatG′ survives and
(iv) means that bothG andG′ reach their lower end points att∗.

Now we claim that (iii) cannot occur. This is indeed immediate from the con-
struction of theS̃(t): we did not change the half-spaces in, e.g., (5.22) unless we
were forced to do it in order to keep̃S(t) insideQ, and if, as in case (iii) above,
G′ had survived belowt∗ then there would be no need to change the corresponding
half-space and so alsoGwould survive, becauset∗ > 0 and we have already proved
that the bottom ofK is situated on∂H0.

Thus only (i), (ii), (iv) can occur, which means that, ast decreases, (5.25) re-
mains valid until we reach the levelt∗ of the lower end point ofG′. This level is
t∗ = tk for somek = 0,1, . . . , l − 1 (notations from upward phase). But now, by
remarks at (5.16), the lowest part of a faceG′ of Q always sticks to a face ofP .
Hence, by (5.25), alsoG sticks to a face ofP just above the levelt∗. This finishes
the proof thatK sticks toP , and also finishes the proof of the theorem. 2
COROLLARY 5.2. Any polyhedronP in two dimensions has at least one mother
body. Indeed, there is exactly one mother body if each component ofintP is convex,
at least two if there is a component ofintP which is not convex.

Proof. The proof of existence of at least one mother body was indicated at the
end of Section 4. If each component of intP is convex, then it follows from [Gu1]
(or remarks at the end of Section 3 in the present paper) that the mother body is
unique.

If one component of intP is nonconvex then, by Lemma 4.4,P has a ‘concave
edge’, i.e., a concave corner in the present two-dimensional context, in the sense of
Lemma 4.4. It follows that if we start the construction in the proof of Theorem 5.1
in that concave corner then there will be at least two possibilities to choose the face
F there. Therefore there will exist two different convex polyhedra which stick to
P and which partly overlap near the corner. Thus continuing the process as at the
end of Section 4 the final result will be two different decompositions (4.16), i.e.,
two different mother bodies forP . 2

Next we give an example showing that the theorem is optimal in one sense: the
convex polyhedra sticking to a polyhedronP ⊂ R2 do not cover all ofP in general,
just a neighbourhood of∂P . By making a ‘cylinder’ of this example, e.g. by taking
Q = P × [0,1] ⊂ R3, one also sees easily that the theorem does not generalize to
R3 (or higher dimension): the convex polyhedra sticking to a polyhedronQ ⊂ R3

do not cover all of∂Q in general.
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As to the latter statement, there are even stronger examples: in our, so far un-
successful, attempts to construct polyhedra in higher dimensions having no sticking
convex subpolyhedra whatsoever, we at least have been able to construct a polyhed-
ronQ in R3 and a half-spaceH such thatQ∩H makes up only a small fraction of
Q (measured in volume, e.g.) and such that every convex polyhedron which sticks
to Q is contained inQ ∩ H . Moreover,Q has a face which is entirely outside
Q ∩ H , in fact is separated fromQ ∩ H by a distance close to the diameter ofQ.
(The details of this example will not be given here.)

EXAMPLE 5.3. We shall construct a polyhedronP ⊂ R2 with 0 ∈ intP such that
there is no convex polyhedronK with 0 ∈ K which sticks toP .

The construction depends on two integers,n andk, satisfying

k > 2, n > 2k + 3, n is not divisible byk.

It is easiest to think of the case withk small (say 2 or 3) andn large, and then
P may be chosen so that the convex polyhedra which stick toP cover just a thin
layer around∂P .

n = 16 Shaded area isK1

k = 3

L2

L2'

L1'
L1

z1

0 1
ω

z2

Figure 5.6. Figure 5.7.

The smallest possible choice ofn is n = 7 (with k = 2), and then for all
n > 7 exceptn = 8 andn = 12 there will be at least one possible value ofk.
Figures 5.6–5.7 illustrate the construction below for the casen = 16,k = 3.

We identifyR2 with the complex planeC and setω = e2πi/n ∈ C. Thenth roots
of unity 1, ω, . . . , ωn−1 will be the nonconvex corners ofP . Let L′1 be a straight
line throughω0 = 1 which intersects the unit circle once more betweenωk+1 and
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ωk+2. In the special case thatn = 2k+3, which is the only case in whichωk+2 lies
in the lower half-space, we require more precisely that the latter intersection occurs
betweenωk+1 and−1. Thus, in all casesL′1 will have strictly negative slope. Let
H ′1 be the closed half-space defined by∂H ′1 = L′1, 0 6∈ H ′1.

Next, letL1 be a straight line throughω which intersects the unit circle once
more betweenωk andωk+1 and chosen to have a more negative slope thanL′1.
ThenL1 andL′1 intersect at some pointz1 satisfying Rez1 > 1, Im z1 < 0. LetH1

be the closed half-space defined by∂H1 = L1, 0 ∈ H1.
P will be invariant under rotations by 2π/n, and we denote byLj , L′j ,Hj ,H

′
j ,

zj (j = 1,2, . . . , n) the objects obtained by rotation from the above first chosen
ones. ThenP is defined to be the polyhedron bounded by the lineL′1 from ω0 = 1
to z1, the lineL1 from z1 to ω1 = ω, the lineL′2 from ω to z2, the lineL2 from z2

toω2 etc. Set theoretically we have, settingB = {z ∈ C : |z| < 1} and denoting by
Cj the bounded component of(Hj ∩H ′j )\B,

P = B ∪
n⋃
j=1

Cj .

We extend notations cyclically, so thatzn+j = zj (j = 1,2, . . . , k) etc. Clearly,P
is a polyhedron.

Now we prove that there is no convex polyhedron containing the origin which
sticks toP . Any convex polyhedronK which sticks toP must be of the form

K =
⋂
i∈I
Hi ∩

⋂
j∈J

H ′j

for suitable index setsI , J ⊂ {1, . . . , n}. Since 06∈ H ′j we must actually have

K =
⋂
i∈I
Hi (5.26)

in order to have 0∈ K.
We may assume that 1∈ I , i.e., thatH1 is present in the description (5.26). Then

none of 2, . . . , k can be inI becauseK ⊂ H1 and those parts of∂H2, . . . , ∂Hk
which stick to∂P (namely the segments fromzj to ωj of Lj , j = 2, . . . , k) are
all outsideH1. On the other hand we must havek + 1 ∈ I because otherwise
K would contain a full neighbourhood ofωk+1, contradictingK ⊂ P (note that
ωk+1 ∈ intHj for all j except those with 26 j 6 k + 1). Continuing in the same
way we see thatk+2, . . . ,2k 6∈ I , 2k+1 ∈ I etc. Sincen is not divisible byk we
reach a contradiction when we come back toHn+1 = H1 again. Thus no index set
I works.

We remark without proof that the convex polyhedra which stick toP are exactly
the followingn ones

Kj = H ′j ∩Hj ∩Hj+k, j = 1, . . . , n.

Of course, 06∈ Kj .
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6. Open Questions

We list here two main questions which were left unanswered in this paper.

Open Question1: Does every polyhedron inRN ,N > 3, admit at least one mother
body?

Open Question2: Does every polyhedron inRN , N > 3, contain a convex poly-
hedron which sticks to it?

As shown in Section 4, a positive answer to Question 2 implies a positive answer
to Question 1.
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