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Abstract

This is a selection of facts, old and recent, about quadrature domains. The text, written in the form of a survey, is addressed to non-experts and
covers a variety of phenomena related to quadrature domains, such as: the difference between quadrature domains for subharmonic, harmonic and
respectively complex analytic functions, geometric properties of the boundary, instability in the reverse Hele–Shaw flow, dependence and non-
uniqueness on the quadrature data, interpretation in terms of function theory on Riemann surfaces, a matrix model and a reconstruction algorithm.
Also there are some low degree/order examples where computations can be carried out in detail.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Finite nodes, Gaussian type quadratures are traditionally
constructed for polynomials of a fixed degree. The idea of
studying planar domains which carry a finite node quadrature
formula which is valid for all analytic (integrable) functions
has independently appeared, with different motivations and
almost simultaneously, in the works of Davis [12], Aharonov
and Shapiro [2], and Sakai [62,63]. The mere elaboration of the
concept and the discovery of the basic properties of quadrature
domains for analytic, harmonic, or subharmonic functions
have revealed exciting new territories, paved with an array of
intriguing questions (some of them open still today) and with
ramifications to quite a few topics of classical mathematics.

The golden age of quadrature domains started about thirty
years ago and was marked by the visionary ideas and works
of H. S. Shapiro and his group. As basic references for their
contributions we cite [16,70] and the more recent volume [57].
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Via S. Richardson’s paper [58] connections to Hele–Shaw
flow moving boundary problems (Laplacian growth) were
revealed at an early stage, and the two subjects have then
developed largely in parallel. For example, construction of
quadrature domains using potential theoretic methods [63,
64] and the equivalent theory of weak (variational inequality)
solutions for Hele–Shaw problems [13,17] were obtained
almost simultaneously, and essentially independent, around
1980.

The evolution of the field has not been short of surprising
new turns. A major event was the discovery [52,53] in the early
1990:s that quadrature domains are highly relevant within the
theory of hyponormal operators. The connection is non-trivial
and tools from operator theory, for example the determinantal
function which now bears the name exponential transform, has
virtually revolutionized the theory of quadrature domains.

Another big surprise was the appearance of Laplacian
growth problems, both in deterministic and probabilistic forms,
in a variety of branches of modern physics, like integrable
systems, Toda lattice hierarchies, string theory, 2D quantum
gravity, DLA, random matrices. Examples of relevant articles
in this respect are [78,45,77,40,46,43,1,41,72,32,83]. See also
[11,31]. Other papers in this volume will certainly witness of
this development

We do not aim below at writing a self-contained
mathematical introduction to quadrature domains, the recent
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survey [30] serving better for this scope. Rather, we offer the
reader a quick glimpse at a selection of subjects related to
quadrature domains, with emphasis on some phenomena and
constructs which might be relevant to the group of participants
to the meeting “Growing Interfaces, Los Alamos, 2006”.

2. Subharmonic quadrature domains and moving bound-
aries

If ϕ is a subharmonic function (i.e., ∆ϕ ≥ 0) then the sub-
mean value property

ϕ(a) ≤
1

|B(a, r)|

∫
B(a,r)

ϕdA

holds for any disc B(a, r) ⊂ C contained in the domain of
definition of ϕ. Above, and throughout this article dA stands for
Lebesgue dA. Thus, with Ω = B(a, r), c = |B(a, r)| = πr2

and µ = cδa there holds∫
ϕdµ ≤

∫
Ω

ϕdA (1)

for all subharmonic functions ϕ in Ω . This set of inequalities
says that Ω is a quadrature domain for subharmonic functions
with respect to µ [63], and it expresses that Ω = B(a, r) is
a swept out version of the measure µ = cδa . If c increases
the corresponding expansion of Ω is a simple example of
Hele–Shaw evolution, or Laplacian growth.

The above can be repeated with finitely many points,
i.e., with µ of the form

µ = c1δa1 + · · · + cnδan , (2)

a j ∈ C, c j > 0: there always exists a unique (up to
nullsets) open set Ω ⊂ C such that (1) holds for all ϕ

subharmonic and integrable in Ω . One can think of it as
the union

⋃n
j=1 B(a j , r j ), r j =

√
c j/π , with all multiple

coverings smashed out to a singly covered set, Ω . In particular,⋃n
j=1 B(a j , r j ) ⊂ Ω .
The above sweeping process, µ 7→ Ω , or better µ 7→

χΩ · (dA), called partial balayage [63,27,21,42], applies to
quite general measures µ ≥ 0 and can be defined in terms of a
natural energy minimization: Given µ, ν = χΩ · (dA) will be
the unique solution of

Minimizeν‖µ − ν‖
2
e :

ν ≤ dA,

∫
dν =

∫
dµ.

Here ‖ · ‖e is the energy norm:

‖µ‖
2
e = (µ, µ)e, with

(µ, ν)e =
1

2π

∫
log

1
|z − ζ |

dµ(z)dν(ζ ).

If µ has infinite energy, like in (2), one minimizes −2(µ, ν) +

‖ν‖
2
e instead of ‖µ−ν‖

2
e , which can always be given a meaning.

Cf. [61], for example.
By choosing

ϕ(ζ ) = ± log |z − ζ |
in Eq. (1), the plus sign allowed for all z ∈ C, the minus sign
allowed only for z 6∈ Ω , one gets the following statements for
potentials:{

Uµ
≥ UΩ in all C,

Uµ
= UΩ outside Ω .

(3)

Here

Uµ(z) =
1

2π

∫
log

1
|z − ζ |

dµ(ζ )

denotes the logarithmic potential of the measure µ, and UΩ
=

UχΩ ·dA. In particular, the measures µ and χΩ · (dA) are gravi-
equivalent outside Ω . By an approximation argument, (3) is
actually equivalent to (1).

In order to keep the treatment at an algebraic level we shall
mainly discuss measures µ of the form (2). It can be shown [2]
(see also Section 3 below) that ∂Ω in this case is an algebraic
curve with an equation

Q(z, z) = 0, z ∈ ∂Ω , (4)

where Q(z, w) is a polynomial of degree n in each of z and
w. After a normalization, setting the coefficient of znwn equal
to one, Q is uniquely determined and Hermitian symmetric:
Q(z, w) = Q(w, z). However, Q seems to depend in a rather
transcendental way on the data (a j , c j ), and no general method
is known for efficiently finding Q from these. Only in some
special cases, with symmetries and small values of n, there
are known procedures [18,10]. Note that Q contains much
more data than µ (the numbers of parameters are of orders of
magnitude n2 and n, respectively).

Let K = conv supp µ be the convex hull of the support of µ,
i.e., the convex hull of the points a1, . . . , an . As mentioned, Ω
can be thought of as smashed out version of

⋃n
j=1 B(a j , r j ).

The geometry of Ω which this enforces is expressed in the
following sharp result.

Theorem 2.1 ([27–29]). Assume that Ω satisfies (1) for a
measure µ ≥ 0 of the form (2). Then

(i) ∂Ω may have singular points (cusps, double points,
isolated points), but they are all located inside K . Outside
K , ∂Ω is smooth algebraic.
For z ∈ ∂Ω \ K , let Nz denote the inward normal of ∂Ω
at z (well defined by (i)).

(ii) For each z ∈ ∂Ω \ K , Nz intersects K .
(iii) For z, w ∈ ∂Ω \ K , z 6= w, Nz and Nw do not intersect

each other before they reach K . Thus Ω \ K is fibered by
(is the disjoint union of) the inward normals from ∂Ω \ K .

(iv) There exist r(z) > 0 for z ∈ K ∩ Ω such that

Ω =

⋃
z∈K∩Ω

B(z, r(z)).

(Statement (iv) is actually a consequence of (iii).)

Remark 2.2. The theorem remains true for any measure µ ≥ 0
with compact support, with “analytic” in place of “algebraic”
in (i).
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Since Ω is uniquely determined by (a j , c j ) one can steer
Ω by changing the c j (or a j ). Such deformations are of
Hele–Shaw type, as can be seen by the following computation,
which applies in more general situations: Hele–Shaw evolution
Ω(t) corresponding to a point source at a ∈ C (“injection of
fluid” at a) means that Ω(t) changes by ∂Ω(t) moving in the
outward normal direction with speed

−
∂GΩ(t)(·, a)

∂n
.

Here GΩ (z, a) denotes the Green function of the domain Ω .
If ϕ is subharmonic in a neighborhood of Ω(t) then, as a
consequence of GΩ (·, a) ≥ 0, GΩ (·, a) = 0 on ∂Ω and
−∆GΩ (·, a) = δa ,

d
dt

∫
Ω(t)

ϕdA

=

∫
∂Ω(t)

(speed of ∂Ω(t)in normal direction)ϕds

= −

∫
∂Ω(t)

∂GΩ(t)(·, a)

∂n
ϕds

= −

∫
∂Ω(t)

∂ϕ

∂n
GΩ(t)(·, a)ds −

∫
Ω(t)

ϕ∆GΩ(t)(·, a)dA

+

∫
Ω(t)

GΩ(t)(·, a)∆ϕdA ≥ ϕ(a).

Hence, integrating from t = 0 to an arbitrary t > 0,∫
Ω(t)

ϕdA ≥

∫
Ω(0)

ϕdA + tϕ(a),

telling that if Ω(0) is a quadrature domain for µ then Ω(t) is a
quadrature domain for µ + tδa .

We mention (tangentially to this survey) that there is
a variety of unsolved problems pertaining to generalized
quadrature domains, in the sense that the quadrature distribution
is not necessarily supported by a compact subset of the
domain. Physically, the simplest of these problems describes
equilibrium shapes of air bubbles or droplets of conducting
fluids in the presence of an electrostatic fields. These
investigations have started in the ’50s in the works of
Garabedian, Lewy, Schiffer, McCleod and have been recently
continued by Solynin, Vassilev, Khavinson, Beneteau and
others. For an extensive list of related bibliography, see [37,6].

3. Algebraic domains

It does not make sense to allow c j < 0 in (1) and (2),
because ϕ(z) = log |z − a j | is subharmonic and integrable in
any bounded domain, and ϕ(a j ) = −∞, so (1) will never hold
with c j < 0 for some j .

However, if one restricts to harmonic test functions it
makes good sense to allow c j < 0. Alternatively, one may
consider analytic test functions and allow c j ∈ C or, slightly
more generally, allow µ to be an arbitrary complex-valued
distribution with support in finite number of points. This can
still be thought of being represented by (2), incorporating limit
cases when some of the a j coincide. In the above cases the
inequality (1) becomes equality:
∫
ϕdµ =

∫
Ω

ϕdA. (5)

On the other hand, Ω will not always be uniquely determined
by µ. However, ∂Ω remains algebraic, and quadrature domains
as above for analytic functions are in physics literature (starting
with [76]) often referred to as algebraic domains. There are
good reasons for this terminology, as we shall now explain.

Given any µ as in (2) and any open set Ω containing supp µ,
define (as distributions in all C)

u = Uµ
− UΩ ,

S(z) = z − 4
∂u
∂z

.

Then

∆u = χΩ − µ,
∂S
∂z

= 1 − χΩ + µ.

In particular, S(z) is meromorphic in Ω .
It is clear from (3) that Ω is a subharmonic quadrature

domain for µ if and only if u ≥ 0 everywhere and u = 0
outside Ω . Then also ∇u = 0 outside Ω . Similarly, the criterion
for Ω being a quadrature domain for harmonic functions is that
merely u = ∇u = 0 on C\Ω . (The vanishing of the gradient is
a consequence of the vanishing of u, except at certain singular
points on the boundary.) To be a quadrature domain for analytic
functions it is enough that just the gradient vanishes, or better
in the complex-valued case, that ∂u

∂z = 0 on C \ Ω (or just on
∂Ω ).

Thus Ω is a quadrature domain for analytic functions (an
algebraic domain) if and only if

S(z) = z on ∂Ω .

This means that S(z) is the Schwarz function [12,70,65] of
∂Ω . Since S(z) is meromorphic in Ω this relationship can be
interpreted as saying that z and S(z) fit together to form a
meromorphic functions on the Schottky double of Ω , i.e., the
compact symmetric Riemann surface obtained by glueing two
copies of Ω together along ∂Ω , one of the copies (the “back”)
provided with the opposite conformal structure. The symmetry
means that the surface is equipped with an anticonformal
involution, namely the map taking a point on the front side to
the corresponding point on the back, and conversely.

Using the involution one actually gets one more meromor-
phic function. If the first one is represented as (z, S(z)) the
other is (S(z), z). Since any two meromorphic functions on a
compact Riemann surface are polynomially related, it follows
that there is a polynomial Q(z, w) such that Q(z, S(z)) = 0
(identically). This gives (4) on the boundary.

We wish to point out that not every domain bounded by an
algebraic curve is an algebraic domain in the above sense. In
general, if a domain Ω ⊂ C is bounded by an algebraic curve
Q(z, z) = 0 (Q a polynomial with Hermitian symmetry), then
one can associate two compact symmetric Riemann surfaces to
it: one is the Schottky double of Ω and the other is the Riemann
surface classically associated to the complex curve Q(z, w) =

0. For the latter the involution is given by (z, w) 7→ (w, z). In
the case of algebraic domains (quadrature domains for analytic
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functions), and only in that case, the two Riemann surfaces
canonically coincide: the lifting

z 7→ (z, S(z))

from Ω to the locus of Q(z, w) = 0 extends to the Schottky
double of Ω and then gives an isomorphism, respecting the
symmetries, between the two Riemann surfaces.

As a simple example, the Schottky double of the simply
connected domain

Ω = {z = x + iy ∈ C : x4
+ y4 < 1}

has genus zero, while the Riemann surface associated to the
curve x4

+ y4
= 1 has genus 3. Hence they cannot be identified,

and in fact Ω is not an algebraic domain.
Other ways of characterizing algebraic domains, by means

of rational embeddings into n dimensional projective space, are
discussed in [24].

4. Signed measures, instability, uniqueness

Consider now quadrature domains (5) for harmonic test
functions and real-valued measures (2). As to the relationship
between the geometry of Ω and the location of supp µ there are
then drastic differences between the cases of having all c j > 0
vs. having no restrictions on the signs of c j . This is clearly
demonstrated in the following theorem due to Sakai [68,69].
The second part of the theorem is discussed (and proved) in
some other forms also in [16,20,4,5,83], for example.

Theorem 4.1. Let r and R be positive numbers, R ≥ 2r .
Consider measures µ of the form (2) with c j real and related to
r and R by

supp µ ⊂ B(0, r), (6)
n∑

j=1

c j = π R2. (7)

(i) If µ ≥ 0, then any quadrature domain Ω for
harmonic functions for µ is also a quadrature domain for
subharmonic functions. Hence Theorem 2.1 applies, and in
addition

B(0, R − r) ⊂ Ω ⊂ B(0, R + r).

(The upper bound is actually a consequence of (iv) of
Theorem 2.1.)

(ii) With µ not necessarily ≥ 0, and with no restrictions on∑n
j=1 |c j | and n, any bounded domain containing B(0, r)

and having area π R2 can be uniformly approximated by
quadrature domains for harmonic functions for measures
µ satisfying (6) and (7).

Remark 4.2. The theorem remains valid (with minor adjust-
ments of the formulation) for arbitrary measures (not necessar-
ily of the form (2)), and also in higher dimension.

With µ a signed measure of the form (2) we still have∑n
j=1 c j = |Ω |, but

∑n
j=1 |c j | may be much larger. In view

of the theorem, the ratio
ρ =

n∑
j=1

c j

n∑
j=1

|c j |

=

∫
dµ∫
|dµ|

(0 < ρ ≤ 1) might give an indication of how strong is the
coupling between the geometry of supp µ and the geometry of
Ω .

As mentioned, a quadrature domain for harmonic functions
is not always uniquely determined by its measure µ. Still there
is uniqueness at the infinitesimal level, in a neighbourhood of a
domain with smooth boundary: if

n∑
j=1

c jϕ(a j ) =

∫
Ω

ϕdA (8)

and (for example) the a j are kept fixed, then one can always
increase the c j and get a unique evolution of Ω (well-posed
Hele–Shaw). This evolution may be continued indefinitely, but
during the evolution Ω may undergo changes of connectivity.
If ∂Ω has no singularities then one can also decrease the c j
slightly and have a unique evolution (backward Hele–Shaw,
which is ill-posed). Therefore it makes sense, in the smooth
case, to write

Ω = Ω(c1, . . . , cn)

for c j in some interval around the original values. Note however
that decreasing the c j makes the ratio ρ decrease, indicating a
loss of control or stability.

In case ∂Ω does contain singular points, several scenarios
are possible: the c j cannot be shrunk at all (e.g., if there are 3/2-
cusps), the c j can be decreased and the evolution of Ω is unique
or the c j can be decreased with several possible evolutions for
Ω (branching). In the latter case Ω is not uniquely determined
by the c j in a neighbourhood of the original domain, and this
occurs when the singular point is a so-called special point (see
Section 10.4) which has arisen as the eventual stage of a hole
which has been filled in an opposite evolution (with increasing
c j ); in that case the branching (in the ill-posed direction)
amounts to the choice between letting the hole appear again or
just ignoring that there has ever been a hole. A specific example
can be distilled from the example in Section 10.4.

For decreasing c j , the evolution Ω(c1, . . . , cn) (unique or
not) always breaks down by singularity development of ∂Ω or
by ∂Ω reaching some of the points a j (see e.g. [35,34,67,31])
before Ω is empty, except in the case that Ω(c1, . . . , cn) is a
quadrature domain for subharmonic functions. In the latter case
the c j (necessarily positive) can be decreased down to zero, and
Ω will be empty in the limit c1 = · · · = cn = 0. However,
it may happen that Ω(c1, . . . , cn) breaks up into components
under the evolution.

In the simply connected case, Ω will be the image of the
unit disc D under a rational conformal map f = f(c1,...,cn) :

D → Ω(c1, . . . , cn). This rational function is simply the
conformal pull-back of the meromorphic function (z, S(z)) on
the Schottky double of Ω to the Schottky double of D, the latter
being identified with the Riemann sphere. It follows that the
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poles of f are the mirror points (with respect to the unit circle)
of the points f −1(a j ). When the c j increase then the | f −1(a j )|

decrease (this follows by an application of Schwarz’ lemma to
f −1
larger c j

◦ foriginal c j ), hence the poles of f move away from the
unit circle. Conversely, the poles of f approach the unit circle
as the c j decrease, also indicating a loss of stability.

When Ω is simply connected, the analytic and harmonic
functions are equivalent as test classes for (8). In the limit case
that all the points a j coincide, say a1 = · · · = an = 0, then (8)
corresponds to

n∑
j=1

c jϕ
( j−1)(0) =

∫
Ω

ϕdA (9)

for ϕ analytic. The c j (allowed to be complex) now have
a slightly different meaning than before. In fact, they are
essentially the analytic moments of Ω :

c j =
1

( j − 1)!

∫
Ω

z j−1dA ( j = 1, . . . , n).

The higher order moments vanish, and the conformal map
f = f(c1,...,cn) : D → Ω(c1, . . . , cn) is a polynomial
of degree n. A precise form of the local bijectivity of the
map (c1, . . . , cn) 7→ Ω(c1, . . . , cn) has been established
by Kouznetsova and Tkachev [38,74], who proved an explicit
formula for the (non-zero) Jacobi determinant of the map
from the coefficients of f to the moments (c1, . . . , cn). This
formula was conjectured (and proved in some special cases)
by Ullemar [75].

On the global level, it does not seem to be known whether
(9), or (8), with a given left part, can hold for two different
simply connected domains and all analytic ϕ.

Leaving the realm of quadrature domains, an explicit
example of two different simply connected domains having
the same analytic moments has been given by Sakai [62].
The idea of the example is that a disc and a concentric
annulus of the same area have equal moments. If the disc
and annulus are not concentric, then the union of them (if
disjoint) will have the same moments as the domain obtained by
interchanging their roles. Arranging everything carefully, with
removing and adding some common parts, two different Jordan
domains having equal analytic moments can be obtained.
Similar examples were known earlier by Celmins [9], and
probably even by Novikov. On the positive side, a classical
theorem of Novikov [48] asserts that domains which are star-
shaped with respect to one and the same point are uniquely
determined by their moments. See [84] for further discussions.

Returning now to quadrature domains, there is definitely no
uniqueness for harmonic and analytic test classes if multiply
connected domains are allowed. If Ω has connectivity m +

1 (m ≥ 1), i.e., has m “holes”, then there is generically
an m-parameter family Ω(t1, . . . , tm) of domains such that
Ω(0, . . . , 0) = Ω and

∂

∂t j

∫
Ω(t1,...,tm )

ϕdA = 0 ( j = 1, . . . , m)

for every ϕ analytic in a neighborhood of the domains. (See
Section 10.4 for an example of a one-parameter family.) These
deformations are Hele–Shaw evolutions, driven not by Green
functions but by “harmonic measures”, i.e., regular harmonic
functions which take (different) constant boundary values on
the components of ∂Ω .

It follows that multiply connected quadrature domains for
analytic functions for a given µ occur in continuous families.
It even turns out [19,71] that any two algebraic domains for
the same µ can be deformed into each other through families
as above. Thus there is a kind of uniqueness at a higher level:
given any µ there is at most one connected family of algebraic
domains belonging to it.

For harmonic quadrature domains there are no such
continuous families (choosing ϕ(z) = log |z − a| in (8) with
a ∈ C \ Ω in the holes stops them), but one can still construct
examples with a discrete set of different domains for the same
µ. It is for example possible to imitate the example with a disc
and an annulus with quadrature domains for measures µ of the
form (2), with a j = e2π j/n (n ≥ 3) and c1 = · · · = cn = c > 0
suitably chosen. See [18,10], and Section 10.4 below. However,
it seems very difficult to imitate the full Sakai construction, with
“removing and adding some common parts”, in the context of
quadrature domains. Therefore it is not at all easy to construct
different simply connected quadrature domains for the same µ.

5. Markov’s moment problem

We open this new section with a discussion of a second,
rather independent perspective on quadrature domains.

In his investigations of the limiting values of certain integrals
appearing in probability theory A. A. Markov has isolated a
truncated moment problem with bounds. It was M. G. Krein
who put Markov’s problem into an abstract setting, and raised
it to the level of a simple and very flexible principle of duality
on locally convex spaces [3,39]. It is in this framework that
various finite determinateness phenomena, including among
these the dependence of quadrature domains on a finite set of
their moments, find their natural explanation (see in addition
[36]). We confine ourselves below to a generic form of Krein’s
interpretation of Markov moment problem.

Let (X,Σ , µ) be a measure space, with µ a positive,
finite mass measure. Let f1, . . . , fn ∈ L1(X, µ) be a finite,
linearly independent (over R) system of (real-valued) integrable
functions, such that the level set of any non-trivial linear
combination has zero mass:

µ{x ∈ X; λ1 f1 + · · · + λn fn = γ } = 0, γ ∈ R.

Markov’s moment problem consists of a finite numerical data
(c1, . . . , cn) ∈ Rn and an unknown function g ∈ L∞(X),
subject to the generalized moments and bound conditions:∫

f j gdµ = c j , 1 ≤ j ≤ n; ‖g‖∞ ≤ 1. (10)

The main result can be stated as follows, see for more details
[39].

Theorem 5.1. There exists a function g ∈ L∞(X) satisfying
(10) if and only if
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n∑
j=1

λ j c j ≤

∫ ∣∣∣∣∣ n∑
j=1

λ j f j

∣∣∣∣∣ dµ

for all scalars λ j .
Moreover, the solution g is unique (up to a modification on a

null set) if and only if there are scalars λ̃ j , such that the above
inequality is an equality, and in this case

g = sgn
n∑

j=1

λ̃ j f j .

The proof of the first sentence is an application of
Hahn–Banach Theorem, remarking that the linear functional L
which maps f j into c j has norm at most one if and only if
the inequality in the statement holds. If the inequality is strict,
obviously there are infinitely many solutions of the form g′

=

g + εh where
∫

f j hdµ = 0 for all j and ε is sufficiently small.
Assume that the inequality is an equality:∫ (

n∑
j=1

λ̃ j f j

)
gdµ =

∫ ∣∣∣∣∣ n∑
j=1

λ̃ j f j

∣∣∣∣∣ dµ.

Since −1 ≤ g ≤ 1 we infer that the function g has only two
values, ±1, and as a matter of fact it coincides with the signum
of
∑n

j=1 λ̃ j f j .
A typical application would require a fixed frame, say a

closed cube ∆ in Rn and a fixed degree d. We consider as test
functions all monomials xα, |α| ≤ d , of degree less than or
equal to d (adopting throughout the multi-index notation). Then
Markov’s problem:∫
∆

g(x)xαdx = cα, |α| ≤ d,

admits a measurable function g : ∆ −→ [−1, 1] as solution
if and only if for all polynomials p(x) =

∑
|α|≤d aαxα , the

inequality:∑
|α|≤d

aαcα ≤

∫
∆

|p(x)|dx,

holds. Quite remarkably, this problem has a unique solution if
and only if there exists a polynomial q of degree less than or
equal to d , such that

cα =

∫
{q(x)>0}∩∆

xαdx −

∫
{q(x)<0}∩∆

xαdx, |α| ≤ d.

Thus, in this extremal case, the recovery of the original “shade”
function q from its moments

{cα; |α| ≤ d} −→ q(x)

is well-posed. However, the constructive aspects of this unique
determination remain unclear in general.

Next we will show that quadrature domains fit into this
scheme and well illustrate a simple and robust recovery
algorithm.

6. The trace formula

A normal operator is modelled via the spectral theorem as
multiplication by the complex variable on a vector-valued
Lebesgue L2-space supported by a planar set. The interplay
between measure theory and the structure of normal operators
is well known and widely used in applications. One step
further, there are by now well understood classes of close to
normal operators; their classification and functional models are
considerably more involved, but not less interesting, see [44,
79]. We record below a few aspects of the theory of semi-
normal operators with trace class self-commutators. They will
be significant for our survey of quadrature domains.

Let H be a separable, complex Hilbert space and let T ∈

L(H) be a linear bounded operator. We assume that the self-
commutator [T ∗, T ] = T ∗T − T T ∗ is trace class. Then for a
pair of polynomials p(z, z), q(z, z) one can choose an ordering
in the functional calculus p(T, T ∗), q(T, T ∗). The functional

(p, q) → trace[p(T, T ∗), q(T, T ∗)]

is then well defined, independent of the ordering in the
functional calculus, and possesses the algebraic identities of
the Jacobian ∂(p,q)

∂(z,z) . Thus, a direct reasoning will imply the
existence of a distribution uT ∈ D′(C) satisfying

trace[p(T, T ∗), q(T, T ∗)] = uT

(
∂(p, q)

∂(z, z)

)
,

see [33]. The distribution uT exists in any number of variables
(that is for tuples of self-adjoint operators subject to a trace
class multi-commutator condition) and it is known as the
Helton–Howe functional.

Dimension two is special because of a theorem of J.
D. Pincus which asserts that uT =

1
π

gT dA, that is uT
is given by an integrable function gT , called the principal
function of the operator T , see [49,8]. In particular, the
moments of the function gT have a simple Hilbert space
interpretation:

mk
∫

zm−1zk−1gT (z)dA = trace[T ∗k, T m
], k, m ≥ 1.

In general, the principal function can be regarded as a
generalized Fredholm index of T : when the left hand side is
well defined, we have

ind(T − λ) = −gT (λ).

Moreover gT enjoys the functoriality properties of the index,
and it is obviously invariant under trace class perturbations of
T .

A simple, yet non-trivial, example can be constructed as
follows. Let Ω be a planar domain bounded by a smooth Jordan
curve Γ . Let H2(Γ ) be the closure of complex polynomials
in the space L2(Γ , ds), where ds stands for the arc length
measure along Γ (the so-called Hardy space attached to Γ ). The
elements of H2(Γ ) extend analytically to Ω . The multiplication
operator by the complex variable, Tz f = z f, f ∈ H2(Γ ), is
obviously linear and bounded. The regularity assumption on Γ
implies that the commutator [Tz, T ∗

z ] is trace class. Moreover,
the associated principal function is the characteristic function
of Ω , so that the trace formula above becomes:

trace[p(Tz, T ∗
z ), q(Tz, T ∗

z )] =
1
π

∫
Ω

(
∂(p, q)

∂(z, z)

)
dA,
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p, q ∈ C[z, z].

See for details [44,79,50,51,80–82].

7. A matrix model for quadrature domains

In general, the principal function does not determine the
original operator. The uniqueness is restored when working
with the specific class of rank-1 self-commutator operators. To
be more specific we assume that T ∈ L(H) is irreducible (i.e. T
is not a direct sum of two operators) and satisfies

[T ∗, T ]h = ξ〈h, ξ〉, h ∈ H,

where the vector ξ is fixed. Then the associated principal
function gT becomes a complete unitary invariant for T .
Moreover, any measurable function of compact support and
having real values between [0, 1] can be the principal function
of such an operator, see [49]. In this case the spectrum σ(T ) of
T is equal to the closed support of gT , and many other refined
spectral properties of T can be read from gT , see again for
details [44,79].

Besides the trace formula, a canonical determinant formula
(going back to the works of Pincus and Brown [49,7]) holds in
this case:

det[(T − z)(T ∗
− z)(T − z)−1(T ∗

− z)−1
]

= 1 − ‖(T ∗
− z)−1ξ‖

2
= exp

[
−1
π

∫
C

gT (w)dA(w)

(w − z)(w − z)

]
,

z 6∈ σ(T ). (11)

In conclusion, we have a constructive correspondence between
all measurable functions of compact support gT : C −→ [0, 1]

and all irreducible operators T with rank-1 self-commutator.
The class of (characteristic functions) of quadrature domains
stands aside in this correspondence.

Theorem 7.1 ([53]). Let T be an irreducible operator with
rank-1 self-commutator [T ∗, T ] = ξ〈·, ξ〉 and principal
function gT . Then gT is the characteristic function of a
quadrature domain for analytic functions Ω if and only if the
linear span

∨
k≥0 T ∗kξ is finite dimensional.

This result offers an efficient characterization of quadrature
domains in terms of a finite set of their moments (see the
reconstruction section below) and it opens a new link between
quadrature domains and linear algebra. We only describe a few
results in this direction. For more details see [23,24,53,54].

In the conditions of the above Theorem, let H0 =∨
k≥0 T ∗kξ and let p denote the orthogonal projection of the

Hilbert space H (where T acts) onto H0. Denote C0 = pT p
(the compression of T to the d-dimensional space H0) and
D2

0 = [T ∗, T ]. Then the operator T has a two block-diagonal
structure:

T =


C0 0 0 0 . . .

D1 C1 0 0 . . .

0 D2 C2 0 . . .

0 0 D3 C3 . . .
...

...
. . .

 ,
where the entries are all d × d matrices, recurrently defined by
the system of equations:{
[Ck

∗, Ck] + Dk+1
∗ Dk+1 = Dk Dk

∗

Ck+1
∗ Dk+1 = Dk+1Ck

∗, k ≥ 0.

Note that Dk > 0 for all k. This decomposition has an array of
consequences:
(1) The spectrum of C0 coincides with the quadrature nodes of

Ω ;
(2) Ω = {z; ‖(C∗

0 − z)−1ξ‖ > 1} (up to a finite set);
(3) The quadrature identity becomes∫

Ω
f (z)dA(z) = π〈 f (C0)ξ, ξ〉,

for f analytic in a neighborhood of Ω ;
(4) The Schwarz function of Ω is

S(z) = z − 〈ξ, (C∗

0 − z)−1ξ〉 + 〈ξ, (T ∗
− z)−1ξ〉,

where z ∈ Ω .

To give the simplest and most important example, let Ω =

D be the unit disk (which is a quadrature domain of order
one). Then the associated operator is the unilateral shift T =

Tz acting on the Hardy space H2(∂D). Denoting by zn the
orthonormal basis of this space we have T zn

= zn+1, n ≥ 0,
and [T ∗, T ] = 1〈·, 1〉 is the projection onto the first coordinate
1 = z0. The space H0 is one dimensional and C0 = 0. This will
propagate to Ck = 0 and Dk = 1 for all k. Thus the matricial
decomposition of T becomes the familiar realization of the shift
as an infinite Jordan block.

8. The exponential transform

Let Ω be a bounded planar domain. The above determinantal
formula (11) motivates a closer look at the exponential
transform:

EΩ (z, w) = exp
[
−1
π

∫
Ω

dA(w)

(w − z)(w − z)

]
.

It turns out by simple arguments that EΩ is well defined
and separately continuous everywhere on C2, provided the
convention exp(−∞) = 0 is adopted. This transform can be
regarded as a limit Riesz potential [33,59,60] and it can be
extended canonically to any number of variables [26,56,73].
At the level of distributions, the following remarkable equation
holds:

|z − w|
2 ∂2

∂z∂w
EΩ (z, w) = −E(z, w)χΩ (z)χΩ (w).

This, together with the positive definiteness of the kernel 1 −

EΩ (z, w), provides an alternate route of computing the linear
data (T of the preceding section) associated to Ω and all related
fine invariants, see for details [25]. The exponential transform
was used as a technical tool in the proof of the regularity of
certain two dimensional free boundaries [23].

The following result, a consequence of Theorem 7.1, is
relevant for the present note.

Theorem 8.1 ([53]). The bounded planar domain Ω is a
quadrature domain for analytic functions if and only if the
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germ of EΩ at infinity is rational, of the form EΩ (z, w) =
Q(z,w)

P(z)P(w)
. In this case, choosing an irreducible representation,

Q(z, z) = 0 is the defining equation of ∂Ω and P(z) is the
monic polynomial vanishing at the quadrature nodes of Ω .

For instance, if Ω = D is the unit disk, then

ED(z, w) =
zw − 1

zw
.

In view of the linear algebra realization outlined in the
preceding section we obtain more information about the
defining equation of the quadrature domain. For instance:

Q(z, w)

P(z)P(w)
= 1 − 〈(C∗

0 − w)−1ξ, (C∗

0 − z)−1ξ〉,

which yields

Q(z, z) = |P(z)|2 −

d−1∑
k=0

|Qk(z)|2,

where Qk is a polynomial of degree k in z, see [24].
Assuming that the quadrature nodes {a1, . . . , ad} are simple

we have P(z) = (z−a1) . . . (z−ad) and consequently a simple
fraction decomposition is available:

EΩ (z, w) = 1 −

d∑
j,k=1

h jk

(z − a j )(w − ak)
,

where the matrix

h jk = −
Q(a j , ak)

P ′(a j )P ′(ak)
,

is positive semi-definite.

9. A reconstruction algorithm

At this stage we can return, with more information and better
tools, to Markov’s moment problem.

Let (amn)d
m,n=0 be a finite moment sequence of a measurable

function of compact support g : C −→ [0, 1]:

amn =

∫
C

znzm g(z)dArea(z).

Let us consider its formal exponential transform:

exp

[
−1
π

d∑
m,n=0

amn

zn+1wm+1

]
= 1 −

∞∑
m,n=0

bmn

zn+1wm+1 .

A characterization of all sequences (bmn) which can occur
in this process is readily available from the operator theory
interpretation, see [44]. Moreover, Theorem 7.1 gives a simple
characterization of g = χΩ , where Ω is a quadrature domain
for analytic functions. We put this information into the form of
a recovery algorithm:
(1) Assume that det(bmn)d

m,n=0 = 0 and that d is the minimal
integer with this property, that is det(bmn)d−1

m,n=0 6= 0. Solve
the system:

d∑
m=0

bmncm = 0, 0 ≤ n ≤ d,
with the normalization cd = 1.
(2) Consider the polynomial P(z) = cd zd

+cd−1zd−1
+· · ·+c0

and isolate from the following product the polynomial part
Q:

P(z)P(w)

d∑
m,n=0

bmn

zn+1wm+1 = Q(z, w) + O
(

1
z
,

1
w

)
.

(3) The function g equals, up to a null set, the characteristic
function of the quadrature domain Ω = {z ∈ C; Q(z, z) <

0}.

In the case of more general domains, but still finitely many
moment data, one replaces the second step by a variational
problem:

Find complex numbers (c0 = 1, c1, . . . , cd) which minimize
the Hermitian form

d∑
m=0

bmncmcn .

Then the equation Q(z, z) < 0 (with the polynomial Q
determined at Step (2)) approximates Ω .

Step three of the algorithm is a two dimensional analogue
of a diagonal Padé approximation scheme, see for details [55].
An analysis of the convergence of the algorithm is contained
in [22], while some applications to image processing are
discussed in [22,15]. It is worth mentioning that standard
tomographic data can be translated into finitely many moments,
and vice versa, see [14,15,47].

10. Examples

10.1. Reconstruction of a disk

Start with the data:

a00 = πr2, a01 = a10 = πar2,

a11 = π |a|
2r2

+ πr4,

where r > 0 and a ∈ C. Its exponential transform is:

exp
[
−

r2

zz
−

ar2

z2z
−

ar2

zz2 −
|a|

2r2
+ r4

z2z2

]
= 1 −

r2

zz
−

ar2

z2z
−

ar2

zz2 −
|a|

2r2
+ r4/2

z2z2 +
1
2

z4

z2z2 + · · · ,

so that

b00 = r2, b01 = b10 = ar2, b11 = |a|
2r2.

The determinant of the associated matrix vanishes:

det(bi j )
1
i, j=0 = |a|

2r4
− |a|

2r4
= 0

and the vector (−a, 1)T is annihilated by this matrix. Therefore

P(z) = z − a,

and

(z − a)(w − a)

[
1 −

r2

zz
−

ar2

z2z
−

ar2

zz2 −
|a|

2r2

z2z2 + · · ·

]
= (z − a)(w − a) − r2

+ O
(

1
z
,

1
w

)
.
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Thus the domain with the prescribed moments is the disk of
equation |z − a|

2
− r2 < 0.

10.2. Quadrature domains with a double node

Let z = w2
+ bw be the conformal mapping of the disk

|w| < 1, where b ≥ 2. Then z describes a quadrature domain
Ω of order 2, whose boundary has the equation:

Q(z, z) = |z|4 − (2 + b2)|z|2 − b2z − b2z + 1 − b2
= 0.

The Schwarz function of Ω has a double pole at z = 0, whence
the associated 2 × 2-matrix C0 (see Section 7) is nilpotent.
Moreover, we know that:

|z|4‖(C∗

0 − z)−1ξ‖
2

= |z|4 − P(z, z).

Therefore

‖(C∗

0 + z)ξ‖
2

= (2 + b2)|z|2 + b2z + b2z + b2
− 1,

or equivalently: ‖ξ‖
2

= 2 + b2, 〈C∗

0ξ, ξ〉 = b2 and ‖C∗

0ξ‖
2

=

b2
− 1.

Consequently the linear data of the quadrature domain Ω
are:

C∗

0 =

0
b2

− 1
(b2 − 2)1/2

0 0

 , ξ =


b2

(b2 − 1)1/2(
b2

− 2
b2 − 1

)1/2

 .

10.3. Quadrature domains with two distinct nodes

Assume that the nodes are fixed at ±1. Hence P(z) = z2
−1.

The defining equation of the quadrature domain Ω of order two
with these nodes is:

Q(z, z) = (|z + 1|
2
− r2)(|z − 1|

2
− r2) − c,

where r is a positive constant and c ≥ 0 is chosen so that either
Ω is a union of two disjoint open disks (in which case c = 0),
or Q(0, 0) = 0, see [18]. A short computation yields:

Q(z, z) = z2z2
− 2r zz − z2

− z2
+ α(r),

where

α(r) =

{
(1 − r2)2, r < 1
0, r ≥ 1.

One step further, we can identify the linear data from the
identity:

|P(z)|2(1 − ‖(C∗

0 − z)−1ξ‖
2) = Q(z, z). (12)

Consequently,

ξ =

(√
2r
0

)
, C∗

0 =

 0

√
2r

√
1 − α(r)√

1 − α(r)
√

2r
0

 .

This simple computation illustrates the fact that, although the
process is affine in r , the linear data of the growing domains
have discontinuous derivatives at the exact moment when the
connectivity changes.
10.4. Three points, non-simply connected quadrature domains
and the non-uniqueness phenomenon

Quadrature domains (for analytic functions) with at most
two nodes, as in the above examples, are uniquely determined
by their quadrature data and are simply connected. For three
nodes and more it is no longer so. The following example, taken
from [18], with three nodes and symmetry under rotations by
2π/3, illustrates the general situation quite well. More details
on the present example are given in [18], and similar examples
with more nodes are studied in [10].

Let the quadrature nodes and weights be a j = ω j and
c j = πr2 respectively ( j = 1, 2, 3), where ω = e2π i/3 and
where r > 0 is a parameter. Considering first the strongest form
of quadrature property, namely for subharmonic functions, as in
(1) and (2), the situation is in principle easy: Ω is for any given
r > 0 uniquely determined up to nullsets and can be viewed as a
swept out version of the quadrature measure µ =

∑3
j=1 c jδa j

or as the union of the discs B(a j , r) with (possible) multiple
coverings smashed out.

For 0 < r ≤

√
3

2 the above discs are disjoint, hence Ω =

∪
3
j=1 B(a j , r). For r larger than

√
3

2 but smaller than a certain
critical value r0 (which seems to be difficult to determine
explicitly) Ω is doubly connected with a hole containing the
origin, while for r ≥ r0 the hole will be filled in so that Ω
is a simply connected domain. The above quadrature domains
(or open sets) are actually uniquely determined even within
nullsets, except in the case r = r0 when both Ω and Ω \ {0}

satisfy (1).
Consider next the general class of quadrature domains for

analytic functions (algebraic domains). For 0 < r ≤

√
3

2 only

the disjoint discs qualify, as before. However, for any r >
√

3
2

there is a whole one-parameter family of domains Ω satisfying
(5) for analytic ϕ. These are defined by the polynomials

Q(z, z) = z3z3
− z3

− z3
− 3r2z2z2

− 3τ(τ 3
− 2r2τ + 1)zz + τ 3(2τ 3

− 3r2τ + 1), (13)

where τ > 0 is a free parameter, independent of the quadrature
data. When completed as to nullsets, the quadrature domains in
question are more precisely

Ω(r, τ ) = intclos{z ∈ C : Q(z, z) < 0}.

The interpretation of the parameter τ is that on each radius
{z = tω j+ 1

2 : t > 0}, j = 1, 2, 3, there is exactly one singular
point of the algebraic curve Q(z, z) = 0, and τ = |z| for that
point. This singular point is either a cusp on ∂Ω or an isolated
point of Q(z, z) = 0, a so-called special point. Special points
are those points a ∈ Ω for which the quadrature identity (5)
admits the (integrable) meromorphic function ϕ(z) =

1
z−a .

Equivalently, Ω \ {a} remains to be a quadrature domain for
integrable analytic functions.

For
√

3
2 < r < 2−

1
6 the quadrature domains for analytic

functions are exactly the domains Ω(r, τ ) (with possible
removal of special points) for τ in an interval τ1(r) ≤ τ ≤

τ2(r), where τ1(r), τ2(r) satisfy 0 < τ1(r) < 1
2 < τ2(r),
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and more precisely can be defined as the positive zeros of the
polynomial 4τ 3

− 4r2τ + 1. (see [18] for further explanations
and proofs). The domains Ω(r, τ ) are doubly connected with a
hole containing the origin. When τ increases the hole shrinks
and both boundary components move towards the origin. For
τ = τ2(r) there are three cusps on the outer boundary
component which stop further shrinking of the hole, and for
τ = τ1(r) there are three cusps on the inner boundary
component which stop the expansion of the hole.

For exactly one parameter value, τ = τsubh(r), Ω(r, τ ) is a
quadrature domain for subharmonic functions (and so also for
harmonic functions). This τsubh(r) can be determined implicitly
by evaluating the quadrature identity (5) for ϕ(z) = log |z|,
which gives the equation∫
Ω(r,τsubh(r))

log |z|dA(z) = 0.

For r =

√
3

2 , τ1(r) = τ2(r) =
1
2 , and as r increases, τ1(r)

decreases and τ2(r) increases. What happens when r = 2−
1
6 is

that for Ω(r, τ2(r)), i.e., for the domain with cusps on the outer
component, the hole has shrunk to a point (the origin). Hence,
for r = 2−

1
6 , Ω(r, τ2(r)) is simply connected, while Ω(r, τ ) for

τ1(r) ≤ τ < τ2(r) remain doubly connected.

For all
√

3
2 < r ≤ 2−

1
6 , τ1(r) < τsubh(r) < τ2(r) because a

subharmonic quadrature domain cannot have the type of cusps
which appear for τ = τ1(r), τ2(r) (see [66,67]). It follows that
the critical value r = r0, when Ω(r, τsubh(r)) becomes simply
connected, is larger that 2−

1
6 .

For r ≥ 2−
1
6 the quadrature domains for analytic functions

are the domains Ω(r, τ ) (with possible deletion of special
points), with τ in an interval τ1(r) ≤ τ ≤ τ3(r). Here τ1(r)

is the same as before (i.e., corresponds to cusps on the inner
boundary), while τ3(r) is the value of τ for which the hole at the
origin degenerates to just the origin itself (which for r > 2−

1
6

occurs before cusps have developed on the outer boundary).
The origin then is a special point, and one concludes from (13)
that τ = τ3(r) is the smallest positive zero of the polynomial
2τ 3

− 3r2τ + 1. For r = 2−
1
6 , τ3(r) = τ2(r) = 2−

2
3 .

For 2−
1
6 ≤ r < r0 we have τ1(r) < τsubh(r) < τ3(r),

while for r ≥ r0, τsubh(r) = τ3(r). Since Ω(r, τ3(r)) is simply
connected and is a quadrature domain for analytic functions it
is also a quadrature domain for harmonic functions. It follows
that in the interval 2−

1
6 ≤ r < r0 there are (for each

r ) two different quadrature domains for harmonic functions,
namely Ω(r, τsubh(r)) and Ω(r, τ3(r)) (doubly respectively
simply connected).

In summary, we have for each r >
√

3
2 a one-parameter

family of algebraic domains Ω(r, τ ), for exactly one parameter
value (τ = τsubh(r)) this is a quadrature domain for
subharmonic functions, and for each r in a certain interval
(2−

1
6 ≤ r < r0) there are two different quadrature domains

for harmonic functions (Ω(r, τsubh(r)) and Ω(r, τ3(r))).
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[71] T. Sjödin, Quadrature identities and deformation of quadrature domains,
pp. 239–255 in [57].

[72] R. Teodorescu, E. Bettelheim, O. Agam, A. Zabrodin, P. Wiegmann,
Normal random matrix ensemble as a growth problem, Nuclear Phys. B
704 (2005) 407–444. arXiv:hep-th/0401165.

[73] V. Tkachev, Subharmonicity of higher dimensional exponential trans-
forms, pp. 257–277 in [57].

[74] V. Tkachev, Ullemar’s formula for the moment map. II, Linear Algebra
Appl. 404 (2005) 380–388.

[75] C. Ullemar, A uniqueness theorem for domains satisfying a quadrature
identity for analytic functions, Research bulletin TRITA-MAT-1980-37,
Royal Institute of Technology, 59 pp.

[76] A.N. Varchenko, P.I. Etingof, Why the Boundary of a Round Drop
Becomes a Curve of Order Four, in: American Mathematical Society
AMS University Lecture Series, vol. 3, Providence, Rhode Island, 1992.

[77] P.B. Wiegmann, Aharonov–Bohm effect in the quantum Hall regime and
Laplacian growth problems, in: Statistical Field Theories (Como. 2001),
in: NATO Sci. Ser. II Math. Phys. Chem., vol. 73, Kluwer Acad. Publ.,
Dordrecht, 2002, pp. 337–349.

[78] P.B. Wiegmann, A. Zabrodin, Conformal maps and integrable structures,
Comm. Math. Phys. 213 (2000) 523–538. arXiv:hep-th/9909147.

[79] D. Xia, Spectral Theory of Hyponormal Operators, Birkhäuser, Basel,
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