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On the exponential transform of multi-sheeted algebraic

domains

Björn Gustafsson and Vladimir G. Tkachev

Abstract. We introduce multi-sheeted versions of algebraic domains and
quadrature domains, allowing them to be branched covering surfaces over the
Riemann sphere. The two classes of domains turn out to be the same, and the
main result states that the extended exponential transform of such a domain
agrees, apart from some simple factors, with the extended elimination func-
tion for a generating pair of functions. In an example we discuss the algebraic
curves associated to level curves of the Neumann oval, and determine which
of these give rise to multi-sheeted algebraic domains.
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elimination function, Riemann surface, Klein surface, Neumann’s oval.
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1. Introduction

Extending some previous work [24], [25], [26], [16], [17] on the rationality of the
exponential transform we here go on to consider what we believe is the most
general type of domains for which the exponential transform, in an extended
sense, can be expected to have a “core” consisting of a rational function. Around
this core there will then be “satellites” of some rather trivial factors, depending
on the regimes at the locations of the independent variables.

The “domains” we consider will actually be covering surfaces over the Riemann
sphere. The terminology “quadrature Riemann surface” has already been in-
troduced by M. Sakai [30] for the type of domains in question. An alternative
name could be “multi-sheeted algebraic domain”, to extend a terminology used
by A. Varchenko and P. Etingof [36]. In the present work we shall mostly use the
latter terminology because we will not emphasize so much the quadrature prop-
erties, but rather take as a starting point the way the domains are generated,
namely by a pair of meromorphic function on a compact Riemann surface.
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Given a bounded domain Ω ⊂ C, the traditional exponential transform [4], [24],
[25], [26], [15] of Ω is the function of two complex variables defined by

EΩ(z, w) = exp[
1

2πi

∫

Ω

dζ

ζ − z
∧ dζ̄

ζ̄ − w̄
] (z, w ∈ C).

For the unit disk D it is (see [15]):

(1) E(z, w) =



















1− 1
zw̄

(z, w ∈ C \ D),
1− z̄

w̄
(z ∈ D, w ∈ C \ D),

1− w
z

(z ∈ C \ D, w ∈ D,
|z−w|2

1−zw̄
(z, w ∈ D).

Using the Schwarz function [7], [34] for ∂D,

S(z) =
1

z
,

(1) can be written

(2) E(z, w) = (
z̄ − w̄

S(z)− w̄
)ρ(z)(

z − w

z − S(w)
)ρ(w)E(z, w̄),

where E(z, w̄) is the rational function

E(z, w̄) = zw̄ − 1

zw̄

and ρ = χD is the characteristic function of D. The expression (2) reveals the
general structure of the exponential transform of any algebraic domain.

The function E(z, w̄) is an instance of the elimination function, which can be
defined by means of the meromorphic resultant R(f, g) of two meromorphic
functions f and g. The resultant is defined as the multiplicative action of g
on the divisor (f) of f , namely R(f, g) = g((f)), and the elimination function
is Ef,g(z, w̄) = R(f − z, g − w̄). In the case of the unit disk, or any quadra-
ture domain, the relevant elimination function which enters into the exponential
transform is the one with f(ζ) = ζ , g(ζ) = S(ζ). This means that we in the
present example get

E(z, w̄) = R(ζ − z, S(ζ)− w̄) = (S(ζ)− w̄)((ζ − z))

= (S(ζ)− w̄)(1 · (z)− 1 · (∞)) =
S(z)− w̄

S(∞)− w̄
=

zw̄ − 1

zw̄
,

as desired.

The aim of the present paper is to generalize the formula (2) as far as possible.
This will involve an extended exponential transform in four complex variables
and an analogous extended elimination function in four variables, defined in
terms of a conjugate pair of meromorphic functions on a fairly general compact
symmetric Riemann surface.
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The paper is organized as follows. Sections 2 and 3 contain general preliminary
material. In Section 4 we introduce the concepts of multi-sheeted algebraic do-
mains and quadrature Riemann surfaces and prove that they are equivalent. The
main result is stated in Section 5 and proved in Section 6. Section 7, finally, is
devoted to examples, namely the ellipse and Neumann’s oval.

2. The Cauchy and exponential transforms

The Cauchy transform of a bounded density function ρ in C is

Cρ(z) =
1

2πi

∫

ρ(ζ)dζ ∧ dζ̄

ζ − z
.

Typically the functions ρ which will appear in this paper will be like the char-
acteristic function of a domain, or the corresponding integer valued counting
function for a multi-sheeted domain. From Cρ, the density ρ can be recovered
by

(3) ρ(z) =
∂Cρ(z)

∂z̄
,

to be interpreted in the sense of distributions.

If one writes the definition of the Cauchy transform as

Cρ(z) =
1

2πi

∫

ρ(ζ)
dζ

ζ − z
∧ dζ̄

one realizes that it suffers from a certain lack of symmetry. A more balanced
object would be the “double Cauchy transform”,

(4) Cρ(z, w) =
1

2πi

∫

ρ(ζ)
dζ

ζ − z
∧ dζ̄

ζ̄ − w̄
.

In fact, this double transform is much richer than the original transform, and
after exponentiation it gives the by now quite well studied [4], [24], [25], [26], [15]
(etc) exponential transform:

Eρ(z, w) = expCρ(z, w).

The original Cauchy transform can be recovered as

Cρ(z) = res
w=∞

Cρ(z, w) = − lim
w→∞

w̄Cρ(z, w),

at least if ρ vanishes in a neighborhood of infinity. One disadvantage with the
double Cauchy transform is that the formula (3) turns into the more complicated

(5)
∂Cρ(z, w)

∂z̄
=

ρ(z)

z̄ − w̄
.

On the other hand we have the somewhat nicer looking

∂2Cρ(z, w)

∂z̄∂w
= −πρ(z)δ(z − w),
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where δ denotes the Dirac distribution.

Now, even the double Cauchy transform is not entirely complete. It contains the
Cauchy kernel dζ

ζ−z
, which is a meromorphic differential on the Riemann sphere

with a pole at ζ = z, but it has also a pole at ζ = ∞. It is natural to make
the latter pole visible and movable. That would have the additional advantage
that one can avoid the two Cauchy kernels which appear in the definitions of
the double Cauchy transform and the exponential transform to have coinciding
poles (namely at infinity). Thus we arrive naturally at the extended Cauchy and
exponential transforms:

(6) Cρ(z, w; a, b) =
1

2πi

∫

ρ(ζ)(
dζ

ζ − z
− dζ

ζ − a
) ∧ (

dζ̄

ζ̄ − w̄
− dζ̄

ζ̄ − b̄
),

(7) Eρ(z, w; a, b) = expCρ(z, w; a, b) =
Eρ(z, w)Eρ(a, b)

Eρ(z, b)Eρ(a, w)
.

If the points z, w, a, b are taken to be all distinct, then both transforms are well
defined and finite for any bounded density function ρ on the Riemann sphere.
For example, with ρ ≡ 1, Eρ(z, w; a, b) turns out to be the modulus squared of
the cross-ratio. See [16] for further details.

3. The resultant and the elimination function

Here we shall briefly review the definitions of the meromorphic resultant and
the elimination function, as introduced in [16], referring to that paper for any
details. If f is a meromorphic function on any compact Riemann surface M we
denote by (f) its divisor of zeros and poles, symbolically (f) = f−1(0)−f−1(∞).
If D is any divisor and g is a meromorphic function we denote by g(D) the
multiplicative action of g on D. For example, if D = 1 · (a) + 1 · (b) − 2 · (c),
a, b, c ∈ M , then g(D) = g(a)g(b)

g(c)2
. Now the meromorphic resultant between f and

g is, by definition,
R(f, g) = g((f))

whenever this makes sense.

The elimination function is

Ef,g(z, w) = R(f − z, g − w),

where z, w ∈ C are parameters. It is always a rational function in z and w, more
precisely of the form

(8) Ef,g(z, w) =
Q(z, w)

P (z)R(w)
,

where Q, P and R are polynomials, and it embodies the necessary (since M is
compact) polynomial relationship between f and g:

Ef,g(f(ζ), g(ζ)) = 0 (ζ ∈ M).
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We also have the extended elimination function, defined by

Ef,g(z, w; a, b) = R(
f − z

f − a
,
g − w

g − b
).

To relate the elimination function to the exponential transform one needs integral
formulas for the elimination function. If f is meromorphic onM with divisor (f),
let σf be a 1-chain such that ∂σf = (f) and such that log f has a single-valued
branch, which we denote Log f , in M \ supp σf . Then Log f can be viewed as a
distribution on M , and its exterior differential in the sense of distributions (or
currents) is

(9) dLog f =
df

f
− 2πidHσf

.

Here dHσf
is the 1-form current supported by σf and defined locally, away from

∂σf , as the differential (in the sense of currents) of that function Hσf
which is

+1 on the right-hand side of σf , zero on the left-hand side. Globally dHσf
is not

exact (despite the notation), not even closed. To be precise,

d(dHσf
) =

1

2πi
d(
df

f
) = δ(f)dx ∧ dy,

where δ(f) denotes the finite distribution of point masses (or charges) correspond-
ing to (f). We shall also need the fact that dHσf

has the period reproducing
property

(10)

∫

M

dHσf
∧ τ =

∫

σf

τ,

holding for any smooth 1-form τ .

Now we have (essentially Theorem 2 in [16])

(11) Ef,g(z, w; a, b) = exp[
1

2πi

∫

M

(
df

f − z
− df

f − a
) ∧ dLog

g − w

g − b
].

The integrand is a 2-form current with support on the 1-chains σg−w and σg−b

(because away from these curves the integrand contains dζ ∧ dζ), so the integral
is rather a line integral than an area integral. In fact, the above can also be
written

Ef,g(z, w; a, b) = exp[

∫

σg−w

(
df

f − z
− df

f − a
)−

∫

σg−b

(
df

f − z
− df

f − a
)],

which perhaps clarifies the connection to the definition of the elimination func-
tion.
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4. Multi-sheeted algebraic domains

The boundary of a quadrature domain (algebraic domain) is an algebraic curve,
but by no means every algebraic curve arises in this way. However, the gap
between the two classes of objects can be reduced considerably by extending
the notion of a quadrature domain, allowing it to have several sheets and to
be branched over the Riemann sphere. This will take essentially one half of
all algebraic curves into the framework of quadrature domains and exponential
transforms. One step in this direction was taken in Sakai [30], where a notion
of quadrature Riemann surface was introduced in a special case. Below we shall
take some further steps.

Let M be any symmetric compact (closed) Riemann surface. Slightly more
generally, we shall allow M to be disconnected, namely to be a finite disjoint
union of Riemann surfaces. The symmetry means that M is provided with an
anticonformal involution J : M → M , J ◦ J = identity. If M is disconnected
then J is allowed to map one component of M onto another. Let Γ denote the
set of fixed points of J . Simple examples of symmetric Riemann surfaces are
M = P (the Riemann sphere) with the involution being either J1(ζ) = 1/ζ̄ or
J2(ζ) = −1/ζ̄. In the first case Γ = {ζ : |ζ | = 1} and M \Γ has two components,
in the second case Γ is empty and hence M \ Γ has only one component. One
can also think of identifying the points ζ and J(ζ). The identification spaces
become, in the first case (J = J1) the unit disk together with its boundary, and
in the second case (J = J2) the projective plane, thus a nonorientable surface.

In general, the orbit space N = M/J , obtained by identifying ζ and J(ζ) for any
ζ ∈ M , is a Klein surface, possibly with boundary. A Klein surface [2] is defined
in the same way as a Riemann surface except that it is allowed to be nonorientable
and that both holomorphic and antiholomorphic transition functions between
coordinates are allowed. The possible boundary points of N are those coming
from Γ under the identification. From the Klein surface N , M can be recovered
by a natural doubling procedure, described in Section 2.2 of [31] and in [2],
for example. The latter reference actually describes several types of doubles
(the complex double, the orienting double and the Schottky double), but the
description in [31] will be enough for our purposes. In case N is orientable and
has a boundary the doubling procedure gives what is usually called the Schottky
double, named after the inventor of the idea, F. Schottky [32]. The idea was
later extended to more general surfaces by F. Klein [8].

Continuing the discussion of M , J and N , if M is connected but M \ Γ discon-
nected, then M \ Γ has exactly two components, say M+ and M−, and J maps
each of them onto the other. It then follows that (M \ Γ)/J can be identified
with M+ (or M−), and in particular that N is orientable, hence is (after choice of
orientation) an ordinary Riemann surface with boundary. If M \ Γ is connected
then N necessarily is nonorientable.
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It is relevant to allow M to have several components. For example, in Section 7
we will encounter the double of the Riemann sphere, which simply is two Riemann
spheres with the opposite conformal structure and with J mapping one onto the
other.

Now to the definition of “multi-sheeted algebraic domain”. There are two in-
gredients. The first is a compact symmetric Riemann surface (M,J) such that
M is connected and such that M \ Γ has two components, one of which, call it
M+, is to be selected. We could equally well have started with M+, to be any
Riemann surface with boundary (bordered Riemann surface), and then let M be
the double of M+. The second ingredient is a nonconstant meromorphic function
f on M .

Definition 1. Amulti-sheeted algebraic domain is (represented by) a pair (M+, f),
where M+ is a bordered Riemann surface and f is a nonconstant meromorphic
function on the double M of M+. Two pairs, (M+, f) and (M̃+, f̃) are considered
the same if there is a biholomorphic mapping φ : M → M̃ such that φ◦J = J̃ ◦φ
and f = f̃ ◦ φ.

The equivalence simply means that it is the image f(M+), with appropriate
multplicities, which counts. Note that also (M−, f) is a multi-sheeted algebraic
domain, if (M+, f) is. Trivial examples of a multi-sheeted algebraic domain are
obtained by taking M = P and J(ζ) = 1/ζ̄. Then with f any nonconstant
rational function (D, f) will be a multi-sheeted algebraic domain, as well as
(P \ D, f). Some further examples will be discussed in Section 7.

Along with f , meromorphic on M , the symmetry J provides one more meromor-
phic function on M , namely

f ∗ = (f ◦ J).
With Q(z, w) the polynomial in (8) for g = f ∗, the map M ∋ ζ 7→ (f(ζ), f ∗(ζ))
parametrizes the curve Q(z, w̄) = 0 (or, better, its projective counterpart). This
parametrization is one-to-one (except for finitely many points) if and only if f
and f ∗ generate the field of meromorphic functions on M (form a primitive pair
in the terminology of [9]). This will generically be the case if f is chosen “at
random”, but there are certainly many counterexamples. For example, f may
be already symmetric in itself, i.e., f = f ∗, and then f and f ∗ is a primitive pair
only if M is the Riemann sphere and f is a Möbius transformation. If f and f ∗

are not a primitive pair, then the polynomial Q(z, w) in (8) is reducible.

In case M+ is planar (i.e., is topologically equivalent to a planar domain) and f
is univalent on M+ without poles on M+ ∪ Γ, then Ω = f(M+) is an ordinary
algebraic domain, in other words a classical quadrature domain. In this case f
and f ∗ do form a primitive pair (see [13]). The reference to “quadrature” can be
explained in terms of a residue calculation. In the present generality it is natural
to use the spherical metric on the Riemann sphere in place of the customary
Euclidean metric. This will remove some integrability problems, and the point of
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infinity can be treated on the same footing as other points. Quadrature domains
for the spherical measure have been previously discussed, at least in fluid dynamic
contexts, for example in [36] (Hele-Shaw flow), [5] (vortex patches).

Let h be a function holomorphic in a neighborhood of M+ ∪ Γ and assume, for
simplicity, that f has no poles on ∂M+ (such poles will actually cause no problems
anyway). At least away from poles of f we have, by exterior differentiation,

d

(

hf̄df

1 + f f̄

)

=
hdf̄ ∧ df

(1 + f f̄)2
.

Therefore, if f has poles of orders nj at aj ∈ M+ then

1

2πi

∫

M+

hdf̄ ∧ df

(1 + f f̄)2
= lim

ε→0

1

2πi

∫

M+∩{|f |<1/ε}

hdf̄ ∧ df

(1 + f f̄)2
=

=
1

2πi

∫

∂M+

hf̄df

1 + f f̄
− lim

ε→0

1

2πi

∮

|f |=1/ε

hf̄df

1 + f f̄
=

=
1

2πi

∫

∂M+

hf ∗df

1 + ff ∗
+
∑

j

njh(aj) =
∑

M+

res
hf ∗df

1 + ff ∗
+
∑

j

njh(aj).

Here it turns out that the terms
∑

njh(aj) cancel with corresponding terms
(with negative sign) in the residue contribution unless f ∗ happens to have zeros
at the points aj . In any case, with or without cancellations, the right member
above is of the form

L(h) =
m
∑

k=1

nk−1
∑

j=0

ckjh
(j)(bk),

i.e., equals the action on h by a distribution with support in finitely many points.
The quadrature nodes bk are the poles of f∗df

1+ff∗
.

If f is univalent the above identity becomes an ordinary quadrature identity
(although for the spherical measure) of the form

(12)
1

2πi

∫

Ω

g(z)
dz̄ ∧ dz

(1 + |z|2)2 = L̃(g),

holding for all integrable analytic functions g in Ω = f(M+). Here the right

member is given by L̃(g) = L(g ◦ f), which still is the action of a distribution
with finite support.

When f is not univalent one should still think of the quadrature identity in the
same way as in (12), just with the difference that Ω is a region with several
sheets over the Riemann sphere. The test functions should be allowed to take
different values at points lying above one and the same point, but on different
sheets. Thus those of the form g ◦ f (i.e., those which would become g(z) in a
formulation like (12)) are too special. This is most easily expressed by pulling
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everything back to M+, in which case we simply have the originally obtained
identity

(13)
1

2πi

∫

M+

h
df̄ ∧ df

(1 + |f |2)2 = L(h),

for h holomorphic in a neighborhood of M+ ∪Γ, and by approximation for func-

tions h holomorphic and integrable (with respect to 1
2πi

df̄∧df
(1+|f |2)2

) in M+. An

equivalent formulation is that there exists a positive divisor D in M+ such that

(14)
1

2πi

∫

M+

h
df̄ ∧ df

(1 + |f |2)2 = 0

holds for every holomorphic and integrable function h in M+ with (h) ≥ D.

Definition 2. A quadrature Riemann surface (for the spherical metric) is a
pair (M+, f), where M+ is a bordered Riemann surface and f is a nonconstant

meromorphic function on M+ such that 1
2πi

∫

M+

df̄∧df
(1+|f |2)2

< ∞ and such that (13)

(or (14)) holds for some L (respectively D) and the indicated classes of functions
h.

The notion of equivalence between pairs is the same as in Definition 1. If f is
meromorphic on M then we have

1

2πi

∫

M+

df̄ ∧ df

(1 + |f |2)2 ≤ 1

2πi

∫

M

df̄ ∧ df

(1 + |f |2)2 =
n

2πi

∫

P

dz̄ ∧ dz

(1 + |z|2)2 = n < ∞,

where n is the order of f . Thus we have proved one direction of the following.

Proposition 1. A pair (M+, f) is a multi-sheeted algebraic domain if and only
if it is a quadrature Riemann surface.

Proof. It remains to prove that a quadrature Riemann surface is a multi-sheeted
algebraic domain. In many special cases this has already been done (for the
Euclidean metric), see for example [1], [13], [30]. We shall discuss here the general
case under the simplifying assumption that f is meromorphic in a neighborhood
of M+ ∪ Γ.

It will be convenient to introduce some further notation. With A ⊂ M any subset
and D any divisor on M we denote by OD(A) the set of functions h meromorphic
in a neighborhood of A and with (h) ≥ D. Similarly, O1,0

D (A) denotes the set
of 1-forms ω, meromorphic in a neighborhood of A and satisfying (ω) ≥ D. We
shall also use standard notations for cohomology groups.

Now, returning to the previous residue calculation one realizes that what needs
to be proven is that if

(15)
1

2πi

∫

∂M+

h
f̄df

1 + f f̄
= 0
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holds for all h ∈ OD(M+∪Γ), for some sufficiently large divisor D, then f extends
to a meromorphic function on M . On Γ we have

f̄df

1 + f f̄
=

f ∗df

1 + ff ∗
,

where the right member is holomorphic in a neighborhood of Γ and can be
viewed as representing an element in the cohomology group H1(M,O1,0

−D). When
D is strictly positive this group is trivial since, by Serre duality [33], [10],
H1(M,O1,0

−D)
∼= H0(M,OD)

∗ = OD(M)∗ = 0 (here star ∗ denotes dual space),

hence there exist ω± ∈ O1,0
−D(M± ∪ Γ) such that

f ∗df

1 + ff ∗
= ω+ − ω−

in a neighborhood of Γ.

Clearly
1

2πi

∫

∂M+

hω+ = 0

for h ∈ OD(M+∪Γ) since the integrand is holomorphic inM+, hence (15) reduces
to the statement that

(16)
1

2πi

∫

∂M+

hω− = 0

for h ∈ OD(M+ ∪ Γ). At this point we may use a general duality theorem (also
related to Serre duality) going back to the work of J. Silva [35] and G. Köthe [18],
extended by A. Grothendieck [12] and, in the form we need it, C. Auderset [3].
It states that the bilinear form in h and ω− defined by the left member of (16)
induces (with the path of integration moved slightly into M−) a non-degenerate
pairing

OD(M+ ∪ Γ)/OD(M)×O1,0
−D(M−)/O1,0

−D(M) → C,

which exhibits each of the quotient spaces as the dual space of the other.

In view of this (16) implies that ω− ∈ O1,0
−D(M), in particular that

(17)
f ∗df

1 + ff ∗
= ω+ − ω− ∈ O1,0

−D(M+ ∪ Γ).

Since f is meromorphic in a neighborhood of M+ ∪ Γ, (17) implies that also f ∗

is meromorphic there, hence that f actually is meromorphic on all M , as was to
be proved.

The usage of the general duality theorems above can be replaced by more direct
arguments, like applying (13) to suitable Cauchy kernels. Specifically we may
choose, with ζ ∈ M−,

h(z) = Φ(z, ζ ; z0, ζ0)dζ,
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where the right member is a kernel which in the case of the Riemann sphere is
the usual Cauchy kernel

Φ(z, ζ ; z0, ζ0)dζ =
dζ

ζ − z
− dζ

ζ − z0
,

and which has counterparts with good enough properties on all compact Riemann
surfaces (see [27]). The point ζ0 is needed in higher genus. Actually the duality
theorem discussed above can be proved using this kernel.

5. Statement of the main result

Let M , M+, Γ = ∂M+, f be as in Section 4, more precisely such that (M+, f)
is a multi-sheeted algebraic domain. To account for the multiplicities of f(M+)
as a covering of the Riemann sphere we introduce the integer-valued counting
function, or mapping degree,

ρ(z) = card {ζ ∈ M+ : f(ζ) = z},
pointwise well-defined for z ∈ P\f(Γ). It is understood that points ζ are counted
with the appropriate multiplicities. Set also

(18) S = f ◦ J ◦ f−1 = f ∗ ◦ f−1.

This is a multi-valued algebraic function in the complex plane which contains all
local Schwarz functions of f(Γ), because for z ∈ f(Γ) one of the values of S(z)
is z̄.

We will have to make expressions like (S(z) − w̄))ρ(z) well-defined, i.e., single-
valued, despite S(z) itself being multi-valued. The natural definition is the fol-
lowing:

(S(z)− w̄)ρ(z) = (f ∗ − w̄)((f − z)|M+
).

Here (f−z)|M+
denotes the restriction of the divisor (f−z) to M+ and the right

member then is the multiplicative action of f ∗ − w̄ on (f − z)|M+
. To spell it

out, let
f−1(z) ∩M+ = {ζ1, . . . , ζρ(z)},

with repetitions according to multiplicities. Then

(19) (S(z)− w̄)ρ(z) = (f ∗(ζ1)− w̄) · · · · · (f ∗(ζρ(z))− w̄),

which is a natural definition in view of (18). Clearly (S(z)− w̄)ρ(z) is an analytic
function of z in regions where ρ(z) is constant.

Now, for the main result, we have two functions which we want to relate to each
other: one is the weighted exponential transform

Eρ(z, w; a, b) = exp[
1

2πi

∫

P

ρ(ζ)

(

dζ

ζ − z
− dζ

ζ − a

)

∧
(

dζ̄

ζ̄ − w̄
− dζ̄

ζ̄ − b̄

)

],
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= exp[
1

2πi

∫

M+

(

df

f − z
− df

f − a

)

∧
(

df̄

f̄ − w̄
− df̄

f̄ − b̄

)

],

which can be viewed as a kind of potential of ρ, and the other is the elimination
function, which is defined by algebraic means and always is a rational function,
namely of the form

Ef,f∗(z, w̄; a, b̄) = R(
f − z

f − a
,
f ∗ − w̄

f ∗ − b̄
) =

Q(z, w̄)Q(a, b̄)

Q(z, b̄)Q(a, w̄)
.

The latter expression comes form (8) together with the observation that the one
variable polynomials cancel in the four variable case. The nature of Eρ(z, w, a, b)
depends on the locations of the points z, w, a, b, more precisely on the the values
of ρ at these points. The main result is the following.

Theorem 2. Let (M+, f) be a multi-sheeted algebraic domain. Then, in the
above notations,

Eρ(z, w; a, b) = Ef,f∗(z, w̄; a, b̄)·

·
(

z̄ − w̄

S(z)− w̄

)ρ(z)
(

w − z

S(w)− z

)ρ(w)
(

ā− b̄

S(a)− b̄

)ρ(a)
(

b− a

S(b)− a

)ρ(b)

·

·
(

S(z)− b̄

z̄ − b̄

)ρ(z)
(

S(w)− a

w − a

)ρ(w)
(

S(a)− w̄

ā− w̄

)ρ(a)
(

S(b)− z

b− z

)ρ(b)

.

6. Proof of the main result

Extending (5) to four variables gives

∂Cρ(z, w; a, b)

∂z̄
=

ρ(z)

z̄ − w̄
− ρ(z)

z̄ − b̄
,

which tells that the function

Cρ(z, w; a, b) + ρ(z) log
z̄ − b̄

z̄ − w̄

is analytic in z in regions where ρ(z) is constant, namely in each component of
P \ f(Γ). Hence so is the exponential of it, namely

Eρ(z, w; a, b) · (
z̄ − b̄

z̄ − w̄
)ρ(z).

Augmenting this we have that also the function

F (z) = Eρ(z, w; a, b) ·
(

z̄ − b̄

z̄ − w̄
· S(z)− w̄

S(z)− b̄

)ρ(z)

is analytic in P \ f(Γ), away from poles caused by the presence of S(z). Now we
claim that it is even better than that: F (z) is meromorphic everywhere, hence is
a rational function. To prove this it is enough to prove that F (z) is continuous
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across f(Γ). It is well-known that Eρ(z, w; a, b) is continuous in z (see for example
[15]), so we only have to bother about the other factor. But it is easy to realize
that also this is continuous: spelling out as in (19) and assuming for example
that ρ(z) increases by one unit as f(Γ) is crossed at a certain place we find that
the factor

(

S(z)− w̄

z̄ − w̄

)ρ(z)

changes from
(f ∗(ζ1)− w̄) · · · · · (f ∗(ζρ(z))− w̄)

(f(ζ1)− w̄) · · · · · (f(ζρ(z))− w̄)

to
(f ∗(ζ1)− w̄) · · · · · (f ∗(ζρ(z))− w̄)(f ∗(ζρ(z)+1)− w̄)

(f(ζ1)− w̄) · · · · · (f(ζρ(z))− w̄)(f(ζρ(z)+1)− w̄)
,

which clearly is a continuous change since the new point ζρ(z)+1 starts up on Γ.
Similarly for the factor

(

z̄ − b̄

S(z)− b̄

)ρ(z)

Repeating the above argument for w, a, b it follows that the function

Eρ(z, w; a, b) ·
(

z̄ − b̄

z̄ − w̄
· S(z)− w̄

S(z)− b̄

)ρ(z)

·
(

w − a

w − z
· S(w)− z

S(w)− a

)ρ(w)

·

·
(

ā− w̄

ā− b̄
· S(a)− b̄

S(a)− w̄

)ρ(a)

·
(

b− z

b− a
· S(b)− a

S(b)− z

)ρ(b)

is rational in the variables z w̄, a, b̄. Thus, since also Ef,f∗(z, w̄; a, b̄) is rational
in these variables, it is enough to prove that the formula in the statement of the
theorem holds just locally, somewhere. We may then choose z, w, a, b close to
each other, so that in particular ρ(z) = ρ(w) = ρ(a) = ρ(b). In addition we
may assume that this value is the smallest value of ρ occurring on P. The case
that it is zero can be treated exactly as in the proof of Theorem 6 in [16], which
concerns the special case a = b = ∞.

So let us for example assume that ρ(z) = ρ(w) = ρ(a) = ρ(b) = 1 (the general
case will be similar). Thus f attains the values z, w, a, b exactly once in M+,
and these four points on the Riemann sphere are close to each other. Let γ be an
arc in P from b to w (e.g., the geodesic arc). Then the function z 7→ log z−w

z−b
has

a single-valued branch, call it Log z−w
z−b

, in P\γ, hence Log f−w
f−z

is single-valued in

M \ f−1(γ). We may consider f−1(γ) as a 1-chain, and as such it has the same
role for Log z−w

z−b
as σf has for Log f in (9), so that

dLog
f − w

f − b
=

df

f − w
− df

f − b
− 2πidHf−1(γ).
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If f has degree n, then f−1(γ) consists of n small arcs, one of which is located
on M+. Let σ = f−1(γ) ∩M+ be that arc and let σ̃ = J(σ) be the reflected arc
in M−. In the sequel we shall use f−1 in the restricted sense f−1 = (f |M+

)−1.
Thus

∂σ = f−1(w)− f−1(b) = (
f − w

f − b
)|M+

,

∂σ̃ = f̃−1(w)− f̃−1(b) = (
f ∗ − w̄

f ∗ − b̄
)|M−

.

Using (11), (9) and (10) we now get

Ef,f∗(z, w̄; a, b̄) = exp[
1

2πi

∫

M

(
df

f − z
− df

f − a
) ∧ dLog

f ∗ − w̄

f ∗ − b̄
]

= exp[
1

2πi

∫

M+

(
df

f − z
− df

f − a
) ∧ dLog

f ∗ − w̄

f ∗ − b̄
] · exp[

∫

σ̃

(
df

f − z
− df

f − a
)].

Here we start by rewriting the last factor according to

exp

∫

σ̃

(
df

f − z
− df

f − a
) = [

f − z

f − a
]
˜f−1(w)

f̃−1(b)

=
f ∗(f−1(w))− z

f ∗(f−1(w))− a
· f

∗(f−1(b))− a

f ∗(f−1(b))− z
=

S(w))− z

S(w))− a
· S(w))− a

S(w))− z
.

Note that functions like S(w)− z = (S(w)− z̄)ρ(w) are single-valued in the
present case (cf. (19)).

Next, the first factor can be integrated partially, to become

exp
1

2πi

∫

M+

(
df

f − z
− df

f − a
) ∧ dLog

f ∗ − w̄

f ∗ − b̄

= exp[− 1

2πi

∫

∂M+

(
df

f − z
− df

f − a
) Log

f ∗ − w̄

f ∗ − b̄
]·

· exp 1

2πi

∫

M+

d (
df

f − z
− df

f − a
) Log

f ∗ − w̄

f ∗ − b̄
]

= exp[− 1

2πi

∫

∂M+

(
df

f − z
− df

f − a
) Log

f ∗ − w̄

f ∗ − b̄
]·

· exp[
∫

M+

(δf−1(z) − δf−1(a))dxdy Log
f ∗ − w̄

f ∗ − b̄
]

= exp[− 1

2πi

∫

∂M+

(
df

f − z
− df

f − a
) Log

f ∗ − w̄

f ∗ − b̄
] · S(z)− w̄

S(z)− b̄
· S(a)− b̄

S(a)− w̄
.
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We have to rework all expressions which are not yet in the form appearing in
the statement of the theorem. So we next turn our attention to the first factor
in the last obtained expression. This can be rewritten as

exp[− 1

2πi

∫

∂M+

(
df

f − z
− df

f − a
) Log

f ∗ − w̄

f ∗ − b̄
]

= exp[− 1

2πi

∫

∂M+

(
df

f − z
− df

f − a
) Log

f̄ − w̄

f̄ − b̄
]

= exp[− 1

2πi

∫

M+

d (
df

f − z
− df

f − a
)Log

f̄ − w̄

f̄ − b̄
]·

· exp[ 1

2πi

∫

M+

(
df

f − z
− df

f − a
) dLog

f̄ − w̄

f̄ − b̄
]

= exp[−
∫

M+

(δf−1(z) − δf−1(a))dxdy Log
f̄ − w̄

f̄ − b̄
]·

· exp[ 1

2πi

∫

M+

(

df

f − z
− df

f − a

)

∧
(

df̄

f̄ − w̄
− df̄

f̄ − b̄

)

]·

· exp
∫

M+

(
df

f − z
− df

f − a
)dHσ

=
z̄ − b̄

z̄ − w̄
· ā− w̄

ā− b̄
· exp[ 1

2πi

∫

M+

(

df

f − z
− df

f − a

)

∧
(

df̄

f̄ − w̄
− df̄

f̄ − b̄

)

]·

· exp[−
∫

σ

(
df

f − z
− df

f − a
)]

=
z̄ − b̄

z̄ − w̄
· ā− w̄

ā− b̄
· Eρ(z, w; a, b) ·

w − a

w − z
· b− a

b− z
.

Now putting all the pieces together we obtain the formula in the statement of
the theorem.

7. Examples

7.1. The ellipse. Let D denote the domain inside the ellipse

x2

a2
+

y2

b2
= 1

with semiaxes a > b > 0 and foci ±c = ±
√
a2 − b2. The exterior domain P \D

is known to be a null quadrature domain [28] for the Euclidean metric. For
the spherical metric it is a two point quadrature domain. Indeed, the Schwarz
function for the ellipse is

S(z) =
a2 + b2

c2
z ± 2ab

c

√
z2 − c2,
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and for h holomorphic in P \D and smooth up to the boundary we have

1

2πi

∫

P\D

h(z)
dz̄ ∧ dz

(1 + |z|2)2 =
∑

res
z∈P\D

h(z)
S(z)dz

1 + zS(z)
.

The residues come from the zeros of 1 + zS(z) in the exterior of the ellipse,
and straight-forward computations show that there are exactly two such zeros,
located on the imaginary axis and more precisely given by

z = ±z0 = ± 1

ic

√

a2 + b2 + 2a2b2 + 2ab
√
1 + a2 + b2 + a2b2.

Thus we have a quadrature identity of the form

(20)
1

2πi

∫

P\D

h(z)
dz̄ ∧ dz

(1 + |z|2)2 = c0(h(z0) + h(−z0)),

c0 being the residue of S(z)dz
1+zS(z)

at z = ±z0.

The exterior of the ellipse is the conformal image of the unit disk under the
Joukowski map

f(ζ) =
c2ζ2 + (a+ b)2

2(a+ b)ζ
.

Thus (D, f), or simply (P \ D, z) with z denoting the identity function, is a
(single-sheeted) algebraic domain. The same function f maps the exterior of the
unit disk onto a multi-sheeted algebraic domain, i.e., (P \D, f) is (or represents)
such a domain. It covers D twice and P \D once, in other words the counting
function is

ρ(z) =

{

2 for z ∈ D,

1 for z ∈ P \D.

Since there are several sheets the associated quadrature identity is best expressed
in a form pulled-back to P \ D, i.e., on the form (13). A slightly weaker form is

1

2πi

∫

P

ρ(z)h(z)
dz̄ ∧ dz

(1 + |z|2)2 = c1(h(z1) + h(−z1)),

where

±z1 = ± 1

ic

√

a2 + b2 + 2a2b2 − 2ab
√
1 + a2 + b2 + a2b2

and c1 is the residue of S(z)dz
1+zS(z)

at z = ±z1. This form is weaker because it only

uses test functions h(z) that take the same values on the two sheets over D.
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7.2. Neumann’s oval: classification of level curves. By inversion in the
unit circle and a rotation by 90 degrees (for convenience) the ellipse transforms
into a curve known as Neumann’s oval [22], [23], [34], [19] with equation

(21) a2b2(x2 + y2)2 − a2x2 − b2y2 = 0.

The exterior of the ellipse transforms into a bounded domain Ω, and since in-
versions and rotations are rigid transformations with respect to the spherical
measure, also Ω will be a two point quadrature domain for the spherical mea-
sure. The formula is immediately obtained by inversion and rotation of (20). The
domain Ω also satisfies a quadrature identity for the Euclidean measure (indeed,
both types of quadrature identities are equivalent to S(z) being meromorphic in
Ω). The latter quadrature identity is somewhat simpler, namely

1

2πi

∫

Ω

hdz̄dz =
a2 + b2

4a2b2
(h(− c

2ab
) + h(

c

2ab
)).

It turns out to be a quite rewarding task to investigate the algebraic curves
corresponding to the level curves of the left member in (21), and in particular to
determine which of them correspond to multi-sheeted algebraic domains. Most
types of phenomena which could possibly show up really do show up among these
curves. This task is what we are going to undertake for the remainder of this
section.

In order to simplify a little we first scale so that the quadrature nodes above
become ±1. This means that 2ab = c. Then we need only one parameter (in
place of the two, a and b), which we take to be

r =

√
a2 + b2

c
> 1.

The quadrature identity now becomes

(22)

∫

Ω

hdxdy = πr2(h(−1) + h(1)),

holding for all integrable analytic functions h in Ω. Set

Q(z, w) = z2w2 − z2 − w2 − 2r2zw,

which is the polarized version ((z, z̄) polarizes into (z, w)) of the left member
in (21). There are exactly two open sets for which the quadrature identity (22)
holds, namely

Ω = {z ∈ C : Q(z, z̄) < 0}
and

[Ω] = {z ∈ C : Q(z, z̄) < 0} ∪ {0}.
The latter is just the completion of the former with respect to one missing point.
The domain Ω (or [Ω]) can be viewed as two disks glued together, or “smashed”,
or “added”, and has been studied by many authors, for example [6], [19], [20].
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To analyse the level curves of Q(z, z̄) we set, for any α ∈ R,

(23) Qα(z, w) = z2w2 − z2 − w2 − 2r2zw − α.

Let
Qα(t, z, w) = z2w2 − z2t2 − w2t2 − 2r2zwt2 − αt4

be the corresponding homogenous polynomial. We shall keep r > 1 fixed and
just vary α. The real locus of Qα in C is

locR Qα = {z ∈ C : Q(z, z̄) = α}.
It represents the intersection with {w = z̄} (“the real”) of the complex locus in
C2,

locC Qα = {(z, w) ∈ C2 : Q(z, w) = α},
which has a natural completion in the projective space P2(C) as

locQα = locP2(C)Qα = {(t : z : w) ∈ P2(C) : Qα(t, z, w) = 0}.
Here C2 is embedded in P2(C) so that (z, w) corresponds to (1 : z : w). By
real points in C2 we mean points (z, w) satisfying w = z̄, and these are the
fixed points of the involution J : (z, w) 7→ (w̄, z̄). In projective coordinates the
involution is J : (t : z : w) 7→ (t̄ : w̄ : z̄). In addition to the anticonformal
involution J , the curve locC Qα has the conformal symmetries (z, w) 7→ (w, z)
and (z, w) 7→ (−z,−w).

Let (Mα, Jα) be the compact symmetric Riemann surface corresponding to (locQα, J).
As point sets they are identical except for a few singular points on locQα, which
are resolved on Mα. The real locus of Qα corresponds to the fixed point set Γα

of Jα.

A first observation is that the function z 7→ Q(z, z̄) has five stationary points in
the complex plane. There are two global minima, on the level α = −(r2 + 1)2,
there are two saddle points on the level α = −(r2 − 1)2 and there is one local
maximum (at the origin), on the level α = 0. These three values of α will
correspond to changes of regime for the algebraic curve Qα(z, w) = 0.

Solving the equation Qα(z, w) = 0 for w as a function of z gives the Schwarz
functions for the curves in the real locus. The result is

(24) w = Sα(z) =
1

z2 − 1
(r2z ±

√

z4 + (r4 − 1 + α)z2 − α).

We see that Sα(z) in general has four branch points. The levels α at which Q(z, z̄)
has stationary points are exactly those values of α for which some or all of these
branch points resolve: for α = −(r2±1)2 the square root resolve completely into
second order polynomials, and for α = 0 one pair of branch points resolves.

Let p = p(α) denote the genus of Mα, or equivalently of locQα. The degree of
Qα is four, hence the genus formula in algebraic geometry [11], [21] tells that

p+ s =
(4− 1) · (4− 2)

2
= 3,
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where s ≥ 0 is a certain number related to the singular points. An analysis,
carried out in detail in [14], shows that locQα passes through the points (0 :
1 : 0) and (0 : 0 : 1) and that it at each of these points has two simple cusps
of multiplicity one with distinct tangent directions. In particular, the points
(0 : 1 : 0) and (0 : 0 : 1) are singular, and it turns out that each of them gives the
contribution +1 to s. Except for the above two points of infinity, locQα stays in
C2. Thus, what remains of the genus formula is

(25) p+ e = 1,

where e denotes the contribution to s which comes from finite singular points.
By (25), e ≤ 1, so there is at most one finite singular point, and this must be
visible in the real because nonreal singular points necessarily come in pairs.

The above analysis preassumes that the curve locQα, or polynomial Qα, is irre-
ducible. This is the case for most values of α, but there are two exceptions:

(i) For α = −(r2 − 1)2, Qα factors as

Qα(z, w) = ((z + 1)(w + 1)− r2)((z − 1)(w − 1)− r2).

Each factor defines its own algebraic curve and Riemann surface. These have
genus zero and are moreover symmetric: the zero locus of each factor is preserved
under the involution (z, w) 7→ (w̄, z̄). The real locus locR Qα is the union of two
intersecting circles, those of radius r and centers ±1. The intersection points,
z = ±

√
r2 − 1 are saddle points for the function z 7→ Q(z, z̄).

(ii) For α = −(r2 + 1)2, Qα factors as

Qα(z, w) = ((z + 1)(w − 1)− r2)((z − 1)(w + 1)− r2),

where again each factor defines its own algebraic curve and Riemann surface of
genus zero. However, in the present case they are not symmetric, instead the
involution maps each of these Riemann surfaces onto the other. The real locus
consists only of the two points ±r. This can easily be understood by observing
that the value α = −(r2 + 1)2 is the global infimum of Q(z, z̄).

In both of the reducible cases Bezout’s theorem says that there should be four
points of intersection between the two curves (since these have degree two). These
intersection points are the two points of infinity (0 : 1 : 0) and (0 : 0 : 1) plus, in
the first case the intersection points of the two circles (in the real), and in the
second case the two points ±r.

Besides the above two special values of α, also the quadrature value α = 0 is
exceptional. This is a local maximum value for Q(z, z̄). The local maximum is
attained at z = 0, and the corresponding point (0, 0) on the algebraic curve is a
singular point (since both partial derivatives of Q vanish there). Thus e = 1 in
the genus formula (25), hence p = 0.

We now embark the full classification. Pictures for the case r =
√
2 with α =

3,−0.5,−1,−1.5 are shown in figures 1 and 2, where the shaded areas are the
sets where Qα(z, z̄) < 0.
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• For α > 0, Γα has one component and there are no singular points visible
in the real. Therefore, by (25) and the remark following it Mα has genus
one. This means that the symmetry line Γα is not able to separate Mα

into two halves (see more precisely discussions in Section 2.2 in [31]). Thus
Mα \ Γα has only one component, and it will not generate any algebraic
domain (even multi-sheeted), despite the nice picture in the real, with a
smooth algebraic curve bounding a simply connected region (figure 1, left).
Mα can be viewed as the double of a Möbius band.

• At α = 0 the genus of Mα collapses to zero, Γα has still only one compo-
nent even though locR Qα has gotten an additional point, (0, 0), which is
a singular point of locQα (resolved on Mα). It follows that Mα \ Γα has
two components, one of which, say M+, is mapped conformally onto the
quadrature domain [Ω] by the analytic function f which corresponds to the
projection (z, w) 7→ z on locQα.

• For −(r2 − 1)2 < α < 0 the genus of Mα is again one, and the singular
point (0, 0) in the previous case has now grown up to a curve, hence Γα has
two components. Also Mα \ Γα has two components, say M±, and Mα can
be viewed as the double of M+ (or M−), which topologically is an annulus.

The meromorphic function f : Mα → P which corresponds to (z, w) 7→ z
on locQα is however no longer univalent (not even locally univalent) on
what corresponds to M+ in the previous case. Therefore this gives a now
only multi-sheeted algebraic domain, with f(M+) consisting of a main piece
which contains the points ±1 and the origin (the dashed area in figure 1,
right) plus a smaller piece around the origin (the bounded undashed region).
The latter piece thus is covered twice, and the two sheets are connected via
two branch points of the Schwarz function.

• For α = −(r2 − 1)2 the curve is reducible, hence Mα is the union of two
independent Riemann surfaces, both of genus zero and symmetric under
Jα. In the real locus locR Qα we simply have two intersecting circles, those
centered at ±1 and having radius r (figure 2, left). Explicitly:

Qα(z, z̄) = (|z − 1|2 − r2)(|z + 1|2 − r2).

Mα is the union of two Riemann spheres and can be viewed as the double
of two disks.

• For −(r2 +1)2 < α < −(r2 − 1)2 we are back to the case of genus one with
Γα and Mα \ Γα both having two components. However, the situation has
changed in the sense that the involution goes the other way (like z 7→ −z̄
in place of z 7→ z̄ in a right-angled period parallelogram), it may be more
natural in this case to think of Mα as the double of a cylinder than as
the double of an annulus (even though these two types of domains are
topologically equivalent). The real locus consists of two closed curves, one
enclosing two branch points close to z = 1, the other enclosing two branch
points close to z = −1, and with f : Mα → P as before, f maps M+ (say)
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onto the dashed region to the right in figure 2 (right) covered twice and the
(unbounded) undashed region covered once.

• When α = −(r2+1)2 the two closed curves in the real locus of the previous
case have shrunk to two points, the minimum points z = ±1 of Q(z, z̄).
The curve is reducible and Mα hence is the disjoint union of two Riemann
surfaces (of genus zero), but these are not symmetric under J . Instead
the involution J maps each of them onto the other. The algebraic curve
locRQα consists of two pieces, which meet each other in two points of
tangency. This is what is seen in the real locus. Thus Mα can be viewed
as the double of the Riemann sphere, and Jα has no fixed points.

• When α < −(r2 + 1)2 finally, there is no real locus at all. The genus is
one, but now J has no fixed points at all (Γα is empty). Therefore no
algebraic domain (even multisheeted) can be associated to this case. Mα

can be viewed as the double of Klein’s bottle (see again [2], and also [31]
for doubles of nonorientable surfaces).

We summarize the discussions as follows.

Proposition 3. The surface Mα (possibly disconnected) can be viewed as the
double of the Klein surface Nα = Mα/Jα, which in the different regimes of α ∈ R

is of the following topological type.

• For α > 0: a Möbius band
• For α = 0: a disk.
• For −(r2 − 1) < α < 0: an annulus.
• For α = −(r2 − 1)2: two disjoint disks.
• For −(r2 + 1)2 < α < −(r2 − 1)2: a cylinder.
• For α = −(r2 + 1)2: a sphere.
• For α < −(r2 + 1)2: a Klein’s bottle.

The pair (M+, f) defines a single-sheeted algebraic domain for α = 0 and a multi-
sheeted algebraic domain for −(r2−1)2 < α < 0 and −(r2+1)2 < α < −(r2−1)2.
For α = −(r2−1)2 it defines two single-sheeted algebraic domains (which intersect
in the complex plane).

The exponential transform of the above multi-sheeted algebraic domains is given
by Theorem 2, where the elimination function is

Ef,f∗(z, w̄; a, b̄) =
Qα(z, w̄)Qα(a, b̄)

Qα(z, b̄)Qα(a, w̄)

with Qα as in (23) and the Schwarz function is given by (24).
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Figure 1. The level set Γα for r =
√
2 and for α = 3 and α = −0.5

Figure 2. The level set Γα for α = −1 and α = −1.5
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phys. Klasse der Königl. Sächs. Gesellsch. der Wiss. zu Leibzig 59 (1907), 278–312.
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