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Abstract. If Ω is a bounded domain in R
N provided with a mass distribution ρΩ (e.g., Lebesgue

measure restricted to Ω), another mass distribution µ sitting in Ω and producing the same external
Newtonian potential as ρΩ is sometimes called a mother body of Ω, provided it is maximally con-
centrated in some sense. We first discuss the meaning of this and formulate five desirable properties
(“axioms”) of mother bodies. Then we show that convex polyhedra do have unique mother bodies in
that sense made precise in the case that ρΩ is either Lebesgue measure on Ω, hypersurface measure
on ∂Ω, or any mixture of these two.
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1. Introduction. A mother body (or maternal or materic body) in the termi-
nology of the Bulgarian school of geophysics [Zi], [Ko1], [Ko2] is a more concentrated
mass distribution sitting in a given body and producing the same external gravita-
tional field as the latter. For example, one good mother body for a ball with constant
mass density is a point mass (of appropriate strength) at the center of the ball. The
meaning of a mother body being “more concentrated” is quite vague and there is no
general agreement of its exact meaning.

Mother bodies are an important computational tool in geophysics (see, e.g., [Zi],
[Ko2]). For solid polyhedra with constant mass density there are natural candidates
of mother bodies with support on systems of hyperplanes reaching the boundary of
the polyhedron at edges and corners. There is a beautiful example of D. Zidarov
[Zi, Sect. III.6] (see also section 4 in the present paper) showing that mother bodies
of this sort are not unique in general. One purpose of the present paper is to show
that for convex polyhedra we do have uniqueness. (Zidarov’s counterexample is a
square in two dimensions with a smaller square at one corner cut away; hence, it is
nonconvex.) The same result holds if, instead of constant volume density, the mass of
the polyhedron is sitting on its boundary and has constant density there with respect
to surface measure and even for any mixture of these two measures.

This paper however starts with a long discussion of what one should reasonably
require of a mother body. This results in five “axioms” ((1)–(5) below), which we feel
are fairly well motivated. In practice it is usually not possible to satisfy them all, but
they could at least be looked upon as guide lines. The formulation of such a system
of axioms is a secondary purpose of this paper.

Some general notation. If A ⊂ R
N we set

Ac = R
N\A,

Ae = R
N\Ā (Ā = closure of A),

int A = the interior of A,
B(x, r) = {y ∈ R

N : |y − x| < r},
LN = N -dimensional Lebesgue measure,
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HN−1 = (N − 1)-dimensional Hausdorff measure,
LNbΩ, HN−1b∂Ω: the above measures restricted to Ω and ∂Ω, respectively,
supp µ = the closed support of a distribution µ.

E(x) =

{
−c2 log |x| (N = 2),

cN |x|2−N (N ≥ 3)

is the Newtonian kernel so that −∆E = δ, the Dirac measure at the origin.
Uµ = E ∗ µ = the Newtonian potential of µ, if µ is a distribution with compact
support in R

N . Thus −∆Uµ = µ.

2. Discussion of mother bodies. By a “body” we shall mean a bounded
domain Ω ⊂ R

N satisfying Ω = int
(
Ω
)
, HN−1(∂Ω) < ∞, and provided with an

associated mass distribution ρ = ρΩ. Primarily we think of the mass distribution
with density one in the domain and density zero outside; i.e., ρ = LNbΩ. However,
the results in this paper work equally well for the case of hypersurface measure on
the boundary, i.e., ρ = HN−1b∂Ω, or for any mixture of these two.

Thus given any two constants a, b ≥ 0 with a+ b > 0 we associate with any Ω as
above the mass distribution

ρΩ = aHN−1b∂Ω + bLNbΩ.
Then ρΩ is a positive Radon measure, and we denote by UΩ its Newtonian potential

UΩ = UρΩ = E ∗ ρΩ

(a and b will be kept fixed throughout the discussion).
Given a body Ω ⊂ R

N , a mother body for it should be a signed measure µ having
certain properties. The basic requirement is that

(1) Uµ = UΩ in Ωe.

Clearly this implies that supp µ ⊂ Ω̄.
One possible additional requirement is that

(2) Uµ ≥ UΩ in all R
N .

Such a condition is natural if one wishes to think of ρΩ as being the result of applying
some kind of (partial) balayage process to µ (cf. [Zi], [Sa1], [Ko1], [Ko2], [Gu-Sa1],
[Gu-Sg], [Gu2]). Indeed, any balayage (or “sweeping”) process we know of can be
thought of as being composed of elementary steps in which point masses are swept to
measures of the kind ρB for balls B centered at the support of the point masses, and
for each such elementary step the potential of the measure decreases.

Thus in order to have a µ which is as “primitive” as possible with respect to
balayage one should ask Uµ to be as large as possible. For this to be sensible one has
to have a lower bound on µ because otherwise one can always increase a given Uµ.
For example, as is natural, one may ask µ to be positive:

(3) µ ≥ 0.

Since µ = ρΩ itself satisfies (1)–(3) and the supremum of any increasing sequence of
superharmonic functions is superharmonic (or ≡ +∞), it follows that for any given Ω
there exist (plenty of) measures µ satisfying (1)–(3) with Uµ maximal among poten-
tials of such measures. A mother body for Ω should be one of these (cf. Proposition
2.1 at the end of this section).
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In order for µ to be a good mother body it should be concentrated or minimal in
some sense, such as having small support sitting deeply inside Ω. Although this is to
some degree implicit in the desire that Uµ should be as large as possible, we also want
to formulate such conditions in direct geometric terms. One way to be concentrated
is simply to be singular with respect to Lebesgue measure. We shall find the slightly
stronger requirement

(4) LN (supp µ) = 0

convenient to work with.
It is easy to see, however, that (4) does not guarantee a good mother body. For any

Ω there are an abundance of measures µ satisfying all of (1)–(4). It is just to fill Ω with
(infinitely many) disjoint balls so that the remaining set has measure zero, and then
replace the volume part of ρΩ by the sum of the appropriate point masses sitting in the
centers of these balls. In other words, one writes Ω =

⋃∞
j=1 B(xj , rj)∪(null set), where

the B(xj , rj) are disjoint, and then takes µ = aHN−1b∂Ω + b
∑∞

j=1 LN (B(xj , rj))δxj ,

δx denoting the unit point mass at x ∈ R
N .

One way in which a mother body µ constructed as above, by ball-packing, is
not good is that supp µ typically (even if a = 0) contains all of ∂Ω, and therefore
cuts off the exterior of Ω from the interior. This must necessarily be so in general
because when supp µ does not reach ∂Ω then (1) gives a harmonic continuation of UΩ

across ∂Ω into Ω, which is not possible unless ∂Ω is real analytic (roughly speaking).
Nevertheless, whenever possible we desire something like the following to hold.

(5) Each component of R
N\supp µ intersects Ωe.

This simply means that for each x ∈ Ω\supp µ there is a curve in R
N\supp µ joining

x with some point in Ωe.
The requirements (1)–(5) are the “axioms” for a mother body which we propose.

As indicated earlier there is neither existence nor uniqueness of mother bodies sat-
isfying (1)–(5) in general (Zidarov’s counterexample fulfills all of (1)–(5)). Indeed,
the problem of finding a mother body of a given body exhibits all features of an ill-
posed problem: existence and uniqueness of solutions only under special conditions
and sensitive dependence on given data when solutions do exist. Nevertheless, for
certain particular classes of bodies, e.g., various kinds of polyhedra (see sections 3
and 4 below and [Gu-Sa2]) and certain types of algebraic domains [Sav-St-Sv], there
are constructive algorithms for computing (candidates of) mother bodies.

For the rest of this section, we discuss in more detail the roles of the axioms
(1)–(5) and various ways of relaxing or strengthening them. The axioms naturally
fall into three groups: (1); (2) and (3); (4) and (5).

Axiom (1) is the most indispensable one. In the case that Ωe has more than one
component, a possible way to relax it is to require only

∇Uµ = ∇UΩ in Ωe

(equality of the corresponding fields), which is actually more physical. An even weaker
requirement is to ask (1) to hold only in the unbounded component of Ωe.

The role of the conditions (2) and (partly) (3) is to guarantee that ρΩ is the result
of a natural balayage operator applied to µ. When a = 0, b > 0, such an operator
µ 7→ Bal(µ; b) can be defined by declaring that Bal(µ; b) shall be the measure which
is closest to µ in the energy norm among all measures ν which satisfy ν ≤ bLN . This
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makes plain sense and defines Bal(µ; b) uniquely whenever µ ≥ 0 has finite energy.
The definition can then easily be extended to the case of infinite energy. One can
show that if Ω is a body, then Bal(µ; b) = ρΩ holds if and only if both (1) and (2) are
satisfied. In particular, it is possible to reconstruct Ω from µ when (1) and (2) hold,
and both conditions are really necessary for this (there are examples of two different
Ω satisfying (1), (3)–(5) for the same µ).

Thus the perhaps abstract-looking condition (2) plays a significant role in the
context of balayage. It is probably more important than (3) because it is possible,
to a certain extent, to allow nonpositive measures µ in Bal(µ; b). We refer to [Sa1],
[Gu-Sa1], [Gu2] for details on the above balayage operators.

For a general measure µ, Bal(µ; b) will not necessarily be of the form ρΩ for some
open set Ω, but if µ satisfies (3) and (4), it will. This allows for doing “continuous
balayage,” as follows. Suppose (1)–(4) hold for the pair (Ω, µ), and define for any
t ∈ R the open set Ω(t) by Bal(etµ; b) = ρΩ(t). (This defines Ω(t) only up to a null
set, but one naturally takes the largest possible Ω(t).) Then Ω(s) ⊂ Ω(t) for s < t,
Ω(0) = Ω, and Ω(t) shrinks down to supp µ as t → −∞. Moreover, the pair (Ω(t),
etµ) satisfies (1)–(4) for each t ∈ R

N .

One important point with this family Ω(t) is that its evolution can be described
without reference to µ. Indeed, under some smoothness assumptions the evolution can
be described by a nonlocal, but µ-independent, differential equation for the motion
of ∂Ω(t): the normal velocity of the boundary ∂Ω(t) at any particular point is to be
equal to the normal derivative at that point of the function p = pΩ(t) which solves
the Dirichlet problem ∆p = 1 in Ω(t), p = 0 on ∂Ω(t). This is a Hele–Shaw type
moving boundary problem, and by solving it (backwards) for −∞ < t ≤ 0 with
Ω(0) = Ω as initial domain one should, in principle, get a canonical candidate of a
mother body, namely by taking µ = limt→−∞ e−tρΩ(t). Unfortunately, however, this
moving boundary problem is badly ill-posed and existence of global solutions is not
to be expected in general. Local in time solutions exist if, and basically only if, the
initial domain has a real analytic boundary (see, e.g., [Re-Wo], [Ti]).

It is possible to introduce balayage operators as above and to do continuous
balayage also when a > 0, but everything is more complicated in that case: the
balayage operators are less well behaved and the evolution families are less continuous
(cf. [He], [Gu-Sg]). It is not even true that µ determines Ω uniquely via (1)–(5) [He,
Prop. 6.2]. Axiom (2) does not quite suffice for this, as it does in the case a = 0, and
should therefore ideally be replaced by something stronger.

Returning now to the general case (a, b ≥ 0), another advantage with conditions
(2), (3) is that they guarantee a certain coupling between the geometry of Ω and
of supp µ. One may therefore prove [Gu-Sa1], [Sg], [Gu-Sg] that for any Ω and any
point x ∈ ∂Ω, the inward normal ray of ∂Ω at x intersects the closed convex hull of
the support of any µ satisfying (1)–(3). Without (2), (3) there will be no geometric
coupling whatsoever between Ω and supp µ. For any domain D and any (small)
ball B ⊂ D one can find a domain Ω approximating D arbitrarily well and a signed
measure µ with supp µ ⊂ B such that (1), (4), (5) hold for Ω, µ. See [Gu1], [Sa2] for
the case a = 0.

From what has been said above it should be clear that conditions (2) and (3)
have strong potential theoretic significance. There are however other points of view
for which they seem less urgent. In certain complex variable and PDE approaches, see,
e.g., [Eb], [Kh-Sh], [Sh], [St-Sv], one considers the search for mother bodies mainly
as a problem of analytic continuation (of UΩ), and one is happy if one can find
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a distribution (or even analytic functional) µ which satisfies (1) and some (usually
stronger) form of (4), (5). If supp µ is then sufficiently small there will simply be no
other good candidate for a mother body.

Also for questions of uniqueness of mother bodies conditions (2) and (3) appear
often to be dispensable.

The last group of axioms, (4) and (5), are requirements only on the set supp µ.
They imply that supp µ is minimal as a set (see Proposition 2.1 below), and they are
necessary to guarantee any reasonable degree of uniqueness of mother bodies, e.g.,
to exclude occurrence of continuous families of them. A sharper form of (5), which
together with (1) and (4) definitely guarantees uniqueness (see Proposition 2.1), is

(6) supp µ does not disconnect any open set

(i.e., D \ supp µ is connected whenever D is an open connected set). Clearly (6)
implies (5). However, with requirement (6) in place of (5), mother bodies will exist
more rarely (polyhedra will not admit mother bodies, for example). On the other
hand, in cases when one allows distributional mother bodies (5) becomes too weak to
even exclude continuous families of mother bodies and therefore has to be replaced
by something stronger, like (6).

The strongest reasonable requirement in the direction of (4), (5), (6) is to require
supp µ to consist of only finitely many points. This is what one (classically) requires
of a “quadrature domain,” namely that there exists a measure or distribution µ with
finite support and satisfying some form of (1). The word quadrature domain is however
also used in wider senses. See [Sh] for an overview.

In two dimensions, quadrature domains in the above (classical) sense can be
produced as conformal images of the unit disc under rational mapping functions.
(This is for the case a = 0, to which we stick for a moment.) Taking for example
Ω = f(B(0, 1)), where f(z) = z+c2z

2 + · · ·+cnz
n is a univalent polynomial of degree

n ≥ 2 (z = x1 + ix2), (1) will hold with µ a distribution of order n − 1 supported
at the origin. Clearly also (4)–(6) will hold then, but (2) and (3) will fail. By an
argument similar to the proof of Proposition 2.1 (iii), one realizes that there cannot
simultaneously exist measures satisfying (1), (4), and (5).

Thus such a simple and smooth domain as the conformal image of the unit disc
under a quadratic (or higher degree) polynomial does not admit a mother body in
our sense. This is of course disappointing, but one has to keep in mind that the
problem of finding a mother body is ill-posed and that the requirements (1)–(5) taken
all together combine several different aspects of it (balayage, analytic continuation,
minimality, etc.).

Indeed, as the following proposition shows, our axioms for a mother body seem
to be fairly complete in the sense that they contain or imply many of the criteria for
concentration and minimality which have been used previously for similar purposes.
Examples of such criteria are minimality of supp µ as a set, largeness of Uµ (e.g.,
Kounchev [Ko2] maximizes integrallike

∫
Ω
Uµdx among all µ satisfying (1), (3)), and

µ being an extremal point in a suitable convex set [An1],[An2], [Ka-Pi]. Proposition
2.1 shows (in particular) that if (1), (3), (4), (5) hold for a measure µ then, within
the class of measures satisfying (1) and (3), supp µ is minimal, Uµ is maximal, and
µ is an extremal point.
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Proposition 2.1. Let µ be a measure satisfying (1), (4), (5) with respect to a
given body Ω, and let ν, µ1, µ2 be (possibly) other measures.

(i) If ν satisfies (1) and supp ν ⊂ supp µ, then ν = µ.

(ii) If ν satisfies (1), (3) and Uν ≥ Uµ in all R
N , then ν = µ.

(iii) If ν satisfies (1), (4), (6), then ν = µ.

(iv) If µ1, µ2 satisfy (1), (3) and µ = 1
2 (µ1 + µ2), then µ1 = µ2 = µ.

Proof. We first consider statements (i)–(iii). Since Uν , Uµ ∈ L1
loc(R

N ) it is enough
to prove that Uν = Uµ holds almost everywhere (a.e.), or by (4) a.e. in R

N\supp µ.
So let D be a component of R

N\supp µ, set u = Uν − Uµ, and we shall prove that
u = 0 a.e. in D. Note that D meets Ωe by (5) and that u = 0 in D ∩ Ωe.

In case (i) u is harmonic in D; hence, it follows by harmonic continuation that
u = 0 in all D. In case (ii) u is superharmonic and nonnegative in D; hence, it is
either strictly positive in all D or vanishes identically in D. But the first alternative
has already been excluded, and we again get u = 0 in D. In case (iii) u is harmonic
in D\supp ν. Using (6) it follows that u = 0 in D\supp ν, hence, a.e. in D.

Proof of (iv): Since µ1, µ2 ≥ 0 we have supp 1
2 (µ1 + µ2) = supp µ1 ∪ supp µ2.

Thus supp µj ⊂ supp µ, and the conclusion follows immediately from (i).

Note. If, in (i)–(iii) of the proposition, one allows µ and ν to be general distribu-
tions (instead of measures), then one still gets the conclusion that Uν = Uµ outside a
compact set K of measure zero (K = supp µ in cases (i) and (ii), K = supp µ∪supp ν
in case (iii)). This means that µ − ν annihilates all functions which are harmonic in
some neighborhood of K, which is about as close to the conclusion ν = µ as one
may come in the case of distributions. Note that there are distributions with support
at a single point, e.g., the Laplacian of the Dirac measure, whose potential vanishes
identically outside that point.

3. Mother bodies for convex polyhedra. Having formulated precise require-
ments for mother bodies ((1)–(5) above) one naturally wonders which bodies admit
mother bodies in that precise sense and when they are unique. This is a question
which is largely open, but in this section we at least start answering it by proving
that convex polyhedra always have unique mother bodies.

Theorem 3.1. Let Ω ⊂ R
N be a convex bounded open polyhedron provided with

a mass distribution ρΩ as in section 2. Then there exists a measure µ satisfying (1)–
(5). Its support is contained in a finite union of hyperplanes and reaches ∂Ω only
at corners and edges (not at faces), it has no mass on ∂Ω, and Uµ is a Lipschitz
continuous function. Moreover, µ is unique among all signed measures satisfying (1),
(4), (5).

Note. The support of µ coincides with what is sometimes called the “ridge” of Ω
[Ev-Ha], [Ja]. For convex polyhedra this is the set of points in Ω which have at least
two closest neighbors on ∂Ω. See Figure 1 for an example in two dimensions.

Proof. Write Ω =
⋂m
j=1Hj , where Hj are open half spaces and m is minimal. For

any j, set

δj(x) = dist
(
x,Hc

j

)
,

uj(x) = aδj(x) +
b

2
δj(x)2.
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Fig. 1. The mother body of a convex polyhedron.

Then uj > 0 in Hj , uj = 0 on Hc
j , and ∆uj = aHN−1b∂Hj + bLNbHj . Set also

δ(x) = dist (x,Ωc)

= inf{δ1(x), . . . , δm(x)},
u(x) = aδ(x) +

b

2
δ(x)2

= inf{u1(x), . . . , um(x)},
R = {x ∈ Ω : δ(x) = δj(x) for at least two different j},
Dj = {x ∈ Ω\R : δ(x) = δj(x)}

= {x ∈ Ω : δj(x) < δk(x) for all k 6= j}.

Note that u and uj are strictly monotone functions of δ and δj , respectively (on the
range [0,+∞)).

We note that R (the “ridge”) is contained in a finite union of hyperplanes, Ω =
R ∪D1 ∪ · · · ∪Dm, u is Lipschitz continuous, u > 0 in Ω, u = 0 on Ωc. Within Ω we
have ∆uj = b for all j, hence, ∆u ≤ b in Ω, using the principle that the infimum of a
finite family of superharmonic functions (e.g., uj(x)− (b/2N)|x|2) is superharmonic.
The same principle actually gives that ∆u ≤ b +

∑m
j=1 aHN−1b∂Hj in all R

N and

hence (since u = 0 on Ωc) that ∆u ≤ bLNbΩ + aHNb∂Ω = ρΩ. Outside R we have
equality in this formula, as is easily seen. Thus ∆u = ρΩ − µ where µ is a positive
measure with supp µ ⊂ R. Since u vanishes at infinity and ∆u = ∆

(
Uµ − UΩ

)
we

have u = Uµ − UΩ. It now follows that µ satisfies (1)–(4) and that Uµ is Lipschitz
continuous.

The latter property implies that µ is absolutely continuous with respect to HN−1.
Since HN−1

(
R ∩ ∂Ω

)
= 0 it follows that µ(∂Ω) = 0.

To see finally that µ satisfies (5), take any x ∈ Ω and let y ∈ ∂Ω be a closest
point on the boundary. Then y ∈ ∂Hj for a unique j, and it is easy to see that the
whole segment (x, y) is in Dj and that y 6∈ R̄. Thus, if x 6∈ supp µ, the closed segment
[x, y + ε(y − x)] (ε > 0) connects x with Ωe without meeting supp µ, proving (5).

It remains to prove the uniqueness part of the theorem. Let µ, u, and uj be as
above, and let ν be any signed measure satisfying (1), (4), (5) (when stated for ν).
Set v = Uν −UΩ. Then v = 0 = uj in He

j and ∆(v− uj) = 0 in int(Hc
j ∪Ω) \ supp ν.

Set
ωj = the unbounded component of int(Hc

j ∪ Ω) \ supp ν.
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It follows that

(7) v = uj in ωj

and also, since ωj is open, that

(8) ∇v = ∇uj in ωj .

Assumption (5) for ν implies that

ω1 ∪ · · · ∪ ωm = R
N\ supp ν.

Since LN (supp ν) = 0 by (4) it follows that
⋃m
j=1 ωj is an open subset of R

N satisfying

(9) LN

R

N\
m⋃
j=1

ωj


 = 0,

(10)

m⋃
j=1

ω̄j = R
N .

By (7), (8) v is continuously differentiable in
⋃m
j=1 ωj with

(11) |∇v(x)| ≤ C <∞
(
x ∈

m⋃
j=1

ωj

)
.

Next we claim that the distributional gradient of v is a locally integrable function.
To see this, note that v = Uν − UΩ = E ∗ (ν − ρΩ); hence,

(12) ∇v = (∇E) ∗ (ν − ρΩ).

Here everything is to be interpreted in the sense of distributions. Now, ∇E is a locally
integrable (vector) function and ν − ρΩ is a signed Radon measure with compact
support. It then follows (cf. [Do, Sect. 26]) from (12) that ∇v is also a locally
integrable (vector) function.

Combining this information with (9), (11) we conclude that the distributional
gradient ∇v is in L∞

(
R
N
)

and hence that v is a Lipschitz continuous function (i.e.,
has such a representative).

By continuity, for the Lipschitz continuous version of v, the relation (7) on ωj
extends to hold on all ω̄j . Thus it follows from (10) that for each x ∈ R

N we have
v(x) = uj(x) for some j.

Now let x ∈ Dj , and let y be the closest point on ∂Hj . Then uj(ξ) < uk(ξ)
for every ξ ∈ [x, y] and for every k |= j. On He

j , v = uj = 0, so by continuity
v(y) = uj(y). Since v is continuous and coincides everywhere with some uk it follows
that v(ξ) = uj(ξ) for all ξ ∈ [x, y], in particular v(x) = uj(x). Thus v = uj = u in
Dj . Since j was arbitrary we conclude that v = u and ν = µ, completing the proof of
the theorem.

Example. Let Ω be a regular polygon in R
2, say centered at the origin and with

n ≥ 3 corners uniformly distributed on the unit circle. Clearly Ω is convex. Let us
compute its mother body µ.
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The support of µ, i.e., the ridge R of Ω, consists of the n radii from the origin to
the corners of Ω. The density of µ with respect to arclength on R equals the jump of
the normal derivative of Uµ across R, or, what is the same, the jump of the normal
derivative of u = Uµ−UΩ. Since, in the notations of the proof above, ∇u = (a+bδ)∇δ
and ∇δ is a constant unit vector in each component of Ω\R, it follows that the density
of µ is proportional to a + b(1 − r) on R, where r = |x|. Indeed, evaluation of the
constant of proportionality gives that

(13) dµ =
2π

n
(a+ b(1− r))dr on R.

As n increases, Ω approaches the unit disc B(0, 1). One might hope then that
µ should approach the unique mother body of the disc, namely 2π(a + b

2 ) times the
Dirac measure at the origin. However, one sees from (13) that, as n → ∞, the
µ converge towards that measure on B(0, 1) which has density a

r + b( 1
r − 1) with

respect to area measure. This certainly is more concentrated than the original mass
distribution ρB(0,1), but less concentrated than the Dirac measure. In particular, the
mother bodies of the regular polyhedra do not converge towards the mother body of
the limiting disc.

This failure of convergence should not be surprising since, as was discussed in
section 2, the search for mother bodies is an ill-posed problem with no continuous
dependence on initial data, even when unique solutions do exist. The mother bodies
for the approximating polyhedra may actually be more useful and more realistic in
practical problems than the mother body for the disc itself. Consider, e.g., the case
a = 0, b = 1 and think of the ill-posed Hele–Shaw model briefly discussed in section
2. In experiments with Hele–Shaw flows one never sees an initially circular blob
shrinking down to a point. The predominant phenomenon always is that shrinking
occurs by development of fingers of the exterior domain penetrating into the fluid
(see, e.g., [Ho]). What eventually remains of the fluid domain is not a pointlike blob,
but rather a kind of skeleton, which is somewhat reminiscent of the mother body of
the approximating polygon Ω for a suitable n.

Thus there is a possibility that mother bodies of polyhedra could be a useful tool
for handling ill-posed Hele–Shaw problems: one approximates a given initial fluid
domain by a polygon, computes its mother body (uniquely determined and easily
computed in the convex case), and then the whole evolution in time is obtained by
balayage (section 2). The initial approximation with a polygon of course contains a
degree of arbitrariness, but it is also known, for real Hele–Shaw flows, that the onset
of the finger development contains a stochastic element.

4. General polyhedra and Zidarov’s counterexample. By a (general) poly-
hedron we mean a domain which is the interior of a finite union of compact convex
polyhedra. Mother bodies for general polyhedra will be treated in subsequent papers,
e.g., [Gu-Sa2]. The situation in higher dimensions is not completely clear at present,
but let us summarize what is known in the two-dimensional case.

When hypersurface measure is present in ρΩ, i.e., when a > 0, b ≥ 0, nonconvex
polyhedra do not admit mother bodies satisfying all of (1)–(5). Indeed, if Ω is a
nonconvex polyhedron in R

2, then Ω must have a nonconvex corner and it is well
known that classical balayage of any positive measure µ in Ω onto ∂Ω will then be
a measure on ∂Ω whose density with respect to H1 tends to infinity at the corner.
When b = 0, requirement (1) means that ρΩ will have to coincide with this balayage
measure; hence, a mother body µ cannot exist in this case. This argument extends
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to the case a > 0, b > 0.

On the other hand, extending previous work of G. Choquet and I. Deny [Ch-De]
concerning regular polyhedra, D. Siegel [Si] has constructed, in the pure hypersurface
case (a > 0, b = 0), mother bodies (or skeletons, as he calls them) for general
polyhedra which satisfy (1)–(2), (4)–(5). The construction actually works for general
a, b ≥ 0. Moreover the construction is canonical (involves no choices) and the shape
of the mother body reflects that of the original body. Hence we feel that it is a
satisfactory mother body, although the positivity requirement (3) is violated in the
nonconvex case.

Fig. 2. Two mother bodies for a nonconvex polyhedron in the case a = 0 (Zidarov’s example).

In the case of pure volume measure (a = 0, b > 0) the function Ω 7→ ρΩ is additive
under disjoint unions (even after “removal of slits,” i.e., after taking the interior of
the closure). Therefore a possible way to construct a mother body for a polyhedron
Ω is to decompose it into finitely many subpolyhedra, e.g., convex ones, each of which
has a mother body satisfying (1)–(5). By adding these up one gets a measure µ
which automatically satisfies (1)–(4) for Ω. Requirement (5) is more troublesome,
but at least in the two-dimensional case it can be met by choosing the decomposition
properly [Gu-Sa2].

In conclusion, mother bodies satisfying all of (1)–(5) do exist for arbitrary poly-
hedra when N = 2 and a = 0. However, as Zidarov discovered, there is no uniqueness
of mother bodies for nonconvex polyhedra. Zidarov’s example is a square in R

2 with
a smaller square at one corner removed, say Ω = (−1, 1)2\(−1, 0]2. This can be de-
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Fig. 3. Siegel’s mother body (with (3) violated) for the same nonconvex polyhedron (a, b ≥ 0).

composed into three squares (with side length one) in a natural way. Adding up the
mother bodies for these, one gets a measure not satisfying (5). But, if Ω is instead
decomposed into a rectangle (with side lengths one and two) and a square, the sum
of the mother bodies for these will satisfy all of (1)–(5). This decomposition can be
made in two different ways, and the result will be two different mother bodies.

These are depicted in Figure 2. Figure 3 shows the mother body obtained by
Siegel’s procedure for the same Ω. The latter does not satisfy (3), but it has other
advantages, namely that supp µ meets ∂Ω only at corners not at smooth points of
∂Ω, that it shares the symmetry properties of Ω, and that it is indecomposable in a
certain sense.
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