Mobius invariant differential operators on Riemann surfaces
by Bjoérn Gustafsson and Jaak Peetrel

0. Introduction and first examples.

In the past seven years or so most of my mathematical activities have in one way or
other been connected with Hankel operators (or forms). As there have been at least two
talks (Arazy, Janson)? at this Summer Schoool devoted to this subject, I have been forced
to pick up things left over...

To begin the discussion recall the definition of the classical Schwarz derivative

M (Fa) = -wWF () = - 3

This third order nonlinear DO plays an important réle in conformal mapping, in uni-
formization, in the theory of Kleinian groups, in the theory of second order linear DO (all
these topics are in fact related!). It has an essentially invariant character, as is manifested
in the following identity due to Cayley:

(2) {F, }——{FC}( )2+{C,z}

where ( = ¢(z) is a change of coordinate. No workable generalization to higher order of
the Schwarz derivative is known. However, if we allow only projective transformations of
coordinates the situation changes drastically and we have plenty of other operators which
display a similar invariant behavior; in this situation {(,z} = 0 so (2) simplifies to

(2 {F, }—-{FC}( )2

In the general case the exponent 2 has to be replaced by some other integer. To get a
global formulation one is led to consider manifolds (either real or complex) equipped with
a projective structure. Thus in the complex case - to which case we focus our attention in
what follows - we are dealing with a Riemann surface with such a structure.

In fact, many examples of such Mobius invariant DOs can be found on the basis of
a general fact, which I have begun to call Bol’s lemma or Bol’s theorem and which has
fascinated me over a period of several years. In a way all that we say here may be viewed
as offshoots of this in itself rather elementary observation:

BoL’s LEMMA. [Bol] If we let the function F transform according to the rule

F(2) = F(é(2))e(2)" ",

1 This compilation, prepared for the Sodankyla Summer School, Aug. 1988, was written by J.P. but as
many of the results announced were obtained in cooperation with B.G. it has been judged appropriate,
following great examples in the past, to include both names in the heading.

2 As the latter could not come because of illness, his address was actually delivered by Robert Wallstén.
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az+b
where ¢(z) = v

have put e(z) = cz+d, p being a given integer 2 0, then its puth derivative F) transforms
according to the rule ‘

(ad — bc = 1) is an arbitrary Mébius transformation and where we

FW(2) = FW(g(2))e(2) ™7

Several proofs of this result are listed in [GP1] (see also the discussion in Sec. 2 of the
present compilation).?
Let us consider in detail some examples, interesting in their own right. :

Egample 1. In [P1], [P2] I suggested the following generalization of the DO in (1):

A=—1 A
3) )T A
dz?*(F(w))aFt

where ) is another integer > 0. If A = 2, u = 1 we clearly get back the Schwarz derivative
(up to a factor). I proposed there (see also [PK]) that nullsolutions of the corresponding DE
might be of some interest in analysis, in particular that linear combinations of nullsolutions
might play a similar role in, say, approximation theory as rational functions. It is easy to
write down the solutions in question: We find that

——-—LA—_;- = P (a polynomial of degree < })
(F(u))m
or
L
whence
1 S Ca ,
F(z)= —d¢ + Q(z) (a polynomial of degree < u).

W=D (P)$

(Check: P and Q together determine A +  independent parameters, which is the order
of the equation.) Such functions are, apparently, related to so-called Picard curves (see
[Hol)).

Subezample 1. p =1, A =2. Then

1 b
(cz 1+ d)? = F(z) =.:jj: ¥ (a fractional linear function).

Fl'(z) =

Ezample 2. A related construction was suggested by Menahem Schiffer [Sc]. This
depends on a "polarized” version of Bol’s lemma [P6]. Let F(21,...;2441) denote the
pth Newton'’s divided difference of the function F(2):

!
F(zl,...,zu.H) = 'H— / (C F(C) dC,

2me - 21)(C - Z#_*.l)

3 A proof not included in [GP1] can be based on the idea to prove it first for the function ¢ = 1/z. Cf.
[Di], p. 187, exc. 1; the appearance of it there suggests that the result may be quite old.
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where we integrate over a suitable ”contour” encircling the points z1,. .., Zu41. Apparently
F(z,...,z) = FM(2).

0

More generally (with D; =
32,

taq! !
a a +1 _ llc.all....al‘.l_l. (n+ )
D§t..Dyh F(z,..,2)= ——————————(# TS ap) F Y (2),

thus in particular (in slightly abusive notation)

Flutl) D D,F = ___LF(;:+2)

) D= (i +1)! ’ (1 +2)!

We have the transformation rule (F transforms as in the lemma):

F(21, 0y 2ur1) = F(8(21), s $(20))e(21)7H - e(2ug1)

Thus if all points z; are equal to z
F(“)(z) — F(”)(¢(z))e(z)“("+1),

which is one of the proofs of Bol’s lemma (theorem) given in [GP1].
Consider now
D1 N D,\ lOg F

which expression, apparently, if A > 1 is changed, under the influence of ¢, into
Di...DylogFo¢=(Dy...DrlogF)o¢-¢'(21)...4"(2x).

Denoting by M (M for Menahem) the restriction to the diagonal, the DO obtained 1s
transformed as

MHMqu-(qS'))‘,

thus as a form of degree A. M is thus a nonlinear homogeneous Mobius invariant DO of
order A + p.
Subezample 2. u =1,A = 2. Then

D F
Dl 117 y
‘ D,D;F DyF-D,F
DiDylog F = 7 72
gives (see (4))
1| FIII 1[ 9 FIII FII 9
M = §TF' -‘(2')( ) gF/_-'— )’




which can be rewritten as

D(

NG
1

9 1 1 FIII -]; ‘ E (F")3
PATF) ™ vy T2 AR

Therefore we get essentially back the Schwarzian.
Subezample §. p=2,A =3. Now

D;D;DsF _ DyDyF:DsF

D1D2D3 logF = ia )
D\DsF -DyF DyD3F-DiF 2DyF-DyF D3 F
S - F? * 3

gives (see again (4))

1_;_6FV % . 2—24-FIVF'" 2(%F”')3
M = yall -3 (Fll)’z + (Fu)3 =

Elﬁ(F")QFV - %F”F"'FIV + 22_7(Fm)3
(F")3 :

This expression, again, can be transformed into

1 112 3 nm—2
(D))

which is readily found by carrying out the last derivation.

The above suggests that the operators in Example 1 and 2 always coincide (up to a
factor). However, continuing the calculation in Subexample 2 and 3 shows that this not
the case. In Sec. 3 we will write down the general form of a (homogeneous) Mobius
invariant DO. Actually, this is already at least implicit in Morikawa [M] in an invariant
theoretic context. We believe however that our presentation (we propose in fact two sligthly
different avenues) is more transparent. We give also an abundance of concrete examples.

All the DOs encountered previously have been homogeneous (in F'). Now we mention
an interesting instance of a nonhomogeneous Mébius invariant DO.

Ezample 8. The following DE was encountered by Jacobi [J2] in the theory of theta
functions

(5) C?D(log C*C™") = /16C3C" + 1

which, apparently, has a Mobius invariant character provided we let C' transform as a form
of degree —1 (the case y = 2 of Bol’s lemma). In [J2] Jacobi shows that (5) is satisfied
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with C = %19;2(0,15), where 9.(0,1), ee = 0, is any ”Thetanullwerth” (theta constant),
and that the general solution is obtained by application of a Mobius transformation. This
example will be analyzed in detail in App. 2. So far, however, Jacobi’s equation (5) stands
out as an isolated special case.

The rest of the present compilation is organized as follows. However, generally speaking,
the paper has no "plan” so that its various subdivisions (including the appendices), even
parts of them, may to some extent be read independently of each other.

In Sec. 1 we briefly recall some salient facts about projective structures on manifolds
and, in particular, their connection to uniformization and to second order linear DO.

Sec. 2 reviews the main contents of the paper [GP1], centering around Bol’s lemma and
related issues, for instance, the notion of transvectant.

In Sec. 3, as we already told above, a description of "all” Mobius invariant operators is
obtained.

In Sec. 4 we show how the transvectant can be exploited in connection with Hankel
theory. We also point out the parallel between Hankel theory and operator calculi (”quan-
tization”), the latter subject being briefly reviewed in Sec. 5.

In Sec. 6 we discuss reproducing and ”coreproducing” kernels in Hilbert spaces of
analytic functions.

Finally, the appendices, six in number, contain auxiliary material more or less loosely
related to the main body of our paper.

1. Complex manifolds with a projective structure.

We collect here some basic facts about complex manifolds equipped with a projective
structure. It is however only out of convenience that we have restricted attention to the
comple*c case only. Projective structures are also of interest in the real case, at least in
dimension one, for instance in the oscillatory theory of second order linear DE, for which
we refer to the book [Bor]. (A brief mention of projective structure can further be found in
the excellent book [A], pp. 42-56, where also (chiefly) nonlinear equations are considered.
Compare further [De].)

So let §2 be a complex manifold of (complex) dimension n. We say that we have a projec-
tive structure on {1 if there is given a covering of  with coordinate neighborhoods {U'} and
corresponding local coordinates {z = (2!,...,2™)} such that the change of coordinates is

mediated by projective (fractional linear) maps: if UNU' # @ then z and 2’ are connected
by a relation of the form

M po Gt bt o gy
ago + ag1z! + ... + agpz™

we can always require that det(a;x) = 1.

In the same way one defines for instance affine structure. E.g. a complex torus has a
canonical affine structure.

More generally, in the book [Gu3] one considers "structures” associated with any Lie
pseudogroup of differentiable (smooth) transformations of C™.

Let us return to the projective situation and fix attention to the case n = 1. So we have
a Riemann surface with a projective structure. Formula (1) reduces to

az+b

1 "= —bec =
(1) z P (ad — bc = 1).




In particular, let us make clear the relation to uniformization (for more details see [Gul,2]).
Let us start with some particular projective coordinate z defined in the coordinate neigh-
borhood U. Then if U NU' # @ the function z can using (1') be continued analytically to
UUU' and, in general, along any path issuing from U. In this way one gets a map Q- C,
where €0 is the universal cover of § and C the extended complex plane (Riemann sphere,
conformally equivalent to the projective line P'), with the property that germs lying over
the same point of Q are related by projective transformations; it is called the geometric
realization of Q by Gunning [Gul]. Conversely, given any such map we can define a pro-
jective structure on Q by (locally) pulling back to £ the identity function on C. (See also
Tyurin’s lectures [Ty] which came to our attention at a rather late stage while compiling
this report.)

If  is a multiply connected planar domain bounded by finitely many smooth or even
analytic arcs, a “regular” domain in the sense of [AFP], then there are several natural
projective structures on 2 which compete with each other. First, we have the one which
comes from the uniformization theorem (we map €2 onto the unit disk D). Second, we take
for the geometric realization simply a ”circular” model for §2; by a classic theorem (seee.g.
[He], p. 481-488 for a proof) every such domain is conformally equivalent to one bounded
by finitely many (generalized) circles. It is clear that the circular model is unique up to
an arbitrary Mobius transformation (an element of the group PL(2,C)).

Projective structures arise further classically in connection with linear DE.

First, consider the case of second order. Then as a projective coordinate one can (locally)
take the quotient of two independent solutions (the denominator is required not to vanish).
Thus, by a local change of independent variable and multiplying the dependent variable
with a suitable factor any second order linear DE can be reduced to the normal form

d*F

dz?
More computationally: assuming that the equation is already in the form

&2F
— +4(z)F =0

dz?

(this first reduction is easily achieved by introducing a suitable multiplier), the final re-
duction is obtained by solving the third order equation

S{6,2h = (o),

where {, }, as before, stands for the Schwarz derivative.

Historical remark. This was already known to Kummer [Ku] and, at least in a special
case, it can be found in Jacobi [J1]. (A portion of Kummer’s paper is reproduced in German
translation in [Bor], p. 102-103.) The Schwarz derivative appears also, before Schwarz, in
Riemann’s long unpublished lectures as well as in the work of the young Poincaré. More
about the history in [Gr] and, more briefly, e.g. in the marvellous book [Hi], Chap. 10.
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As for higher (uth) order linear DE one easily proves that they can be brought on the
canonical form ‘

(2) F g, o(z)FP™ 4+ .+ ao(2)F =0;

the coordinate systems in which the equation has this form obviously determine a projective
structure on our manifold Q. More about this in Sec. 2.

2. The Bol operator and Green’s formula.

We now review part of the contents of the paper [GP1].

Consider a Riemann surface §) equipped with a projective structure. Let & be the
canonical sheaf on , i.e. (local) sections of « are of the form s = f(z)dz where z is a local
coordinate and f an analytic function (in the overlap of two coordinate neighborhoods U
and V with local coordiantes z and ¢ the corresponding coefficients f and g are related
by an equation g(¢) = f(#(¢))¢'(¢) if z = ¢(()). More generally, sections of powers k"
(forms of integer degree n) are of the form f(z)(dz)", with an analogous transition rule,
If we select a square root of k, i.e. an invertible sheaf A such that A? = k, then one can
also talk of half-integer forms.

It follows now from Bol’s lemma (see Introduction) that for each y > 0 one can define
a linear operator L, from A'™# into M+ if 2 is a projective coordinate on € then the

form F(z)(dz)l:z—“ is mapped onto the form F (")(z)(dz)l%ﬁ. (Notice that formally each
successive derivation accounts for another factor dz!)
Remark. (on Eichler cohomology). We have a short exact sequence

0—-I, 1 — Dl N |

so we can consider the corresponding exact sequence of cohomology groups. It turns out
that the only nontrivial cohomology group is H'(Q,1,_;) (see e.g. [Gul,2]). Eichler
cohomology, introduced by Eichler in [E], plays a great role e.g. in Kleinian groups (see
e.g. [Kr]). Eichler himself viewed his theory as a sort of amplification of the classical
theory of Abelian integrals and Abelian differentials. This is also why we here distinguish
between capital letters, such as F, B, ..., for "integrals” and small ones, such as f,D,.., for
" differentials”.

In [GP1] it is investigated how L, looks in a general coordiante z (not necessarily a
projective one). First of all, it is clear that Lo = id (identity) and further that L, = d
(differential). They are independent of the projective structure. On the other hand, if
F = F(2)(dz)" 7 then Ly F = (F"'(2) + q(z)F(z))(dz)%, and the functions ¢(z), a different
function for each coordinate neighborhood, determine the projective structure. In [GP1]

—p

_ : . . 1
it is shown that if F'(2) is the coefficient of a form F' of degree then the coefficient

1
of L,F, a form of degree s , is of the form

FW(2) 4+ Ay FPD(2) 4+ ... + A, F(2),

where the coeflicients A; = Aﬁ“) (i = 2,...,u) are certain universal polynomials in the
derivatives ¢(z), ¢'(2),. .. ,¢®(2) of q(z) with resepect to z. E.g. we have

LyF = (F" +4¢F' +2'F) (d2)},
LyF = (F' + 10gF" + 10¢'F' + (9¢* + 3¢")F) (dz)*

o 7




and so forth.

Remark. This result can also be formulated as follows. Let Fy, F, be a basis for the
solution of the DE F" + ¢F = 0. Then the functions F = P(Fy, F;), where P runs
through all polynomials homogeneous of degree p —1 satisfy a linear uth order DE, whose
coefficients depend only on g. We were led to this formulation while reading the review
[Sa] of the book [PT] (the case u = 3).

One can further invoke a certain bilinear ”covariant” introduced by Gordan [Go] in clas-
sical invariant theory, known as the transvectant (German: Uberschiebung). This depends
on the following fact:

GORDAN’S LEMMA. Let fi (k = 1,2) transform under Mébius transforms according to the
rule

fr(2) = fi(d(z))e(z)™"* where vy € Z.

Then
(s—1)

Js(z>“-‘i‘§<-1>’""<j>%(52)3-,-’

where s > 0 is any integer such that vy # 0,—1,...,—(s — 1) and, generally speaking,
(z); = z(xz +1)...(z + ¢ — 1), transforms according the rule

Js(2) = Ja(d(2))e(2)7",

where v = vy + v9 + 2s.

For the proof see [GP1] or give your own. There this is used in the following way in
the global situation of a Riemann surface ( endowed with a projective structure. Taking
vy = —(p — 1), va = 2(t — s) where now 0 < s < p — 1, one obtains for each form © of
degree k a linear map

JVF- D Sl S

Then one can define, given forms ©,...,0, of degree 1,...,u respectively, a pth order
linear DO L : A17#* — At given by

L=L,+Ms, + - +M§ .

The point is that this process can be reversed. That is, essentially all uth order linear DOs
arise in this way. In fact, thereby one recaptures the classical Laguerre-Forsyth invariants
(see the remarkable book [Wi], long fallen in oblivion).

In [Bol] a different approach to invariants of higher order linear DO’s is indicated. Sup-
pose the DO is already in the normal form (2) of Sec. 1. Subtract from it the (u — 2)-th

order linear DO
d\*?
Vana@ () Vaua(z)

and continue by induction. From Bol’s lemma (see Introduction) it is clear that this is an
invariant (coordinate independent) procedure. The drawback is of course the ambiguity
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in the definition of the square roots involved. Even worse, near points where a coeflicient
vanishes a branch point is introduced. Nevertheless, it might be worth while to make a
closer comparison of the invariants arising in this way with the Laguerre-Forsyth invariants.

A further noteworthy thing in [GP1] is an integral formula for the Bol operator. As
before, let Q be a Riemann surface with a projective structure and let O be an open set
on € bounded by an analytic curve 0. Assume that we have on O a complete Hermitean
metric of constant curvature, say, (in local coordinates) ds = |dz|/w(z). It is easy to see
that

0?w(z)/07*

w(z)

transforms as the coefficient connected with a projective structure. We assume that this
projective structure on O agrees with the one induced from the given projective structure
on . Then one can show that (if p > 1)

q(z) =

/ L, Fgw* 1dzdz = const / Fg(dz)l%&(dé)%&.
(¢} 80

(The constant depends on g only.) Obviously, this reduces to the ordinary Green'’s for-
mula if 4 = 1. In [GP2] it is used to prove the theorem that the reproducing kernel in
weighted Bergman space A*?(£) (a integer > 0) over a multiply connected plane domain
O in C admits a meromorphic continuation to the Schottky double © of O, and this re-
sult again is used to study Hankel forms over the said space (cf. the discussion in Sec.
4).

3. Determination of all Mdbius invariant operators.

We make now an assault to find all Mdbius invariant operators of the type appearing in
Examples 1 and 2 in the Introduction. First we apply the Bol operator so the "integral”

F(z)(dz)_'u_;l gets replaced by a ”differential” f(z)(dz)y_;—l, where f(z) = F(®)(z). The
problem is therefore to find all ”covariant” operators of the type

. CYICN,
f(dz)%_ — Z Ak, ..k f—'ﬁ'f—(dz)'\-

By 20, k20
Byt ka=A

These operators form a finite dimensional vector space M. One can also multiply two
such operators so that one has an operation My ® My — Myyxn. In other words,
Z?\lo M, is a commutative graded ring. In what follows we will uncover its structure.

It turns out that the problem is essentially independent of p. If f transforms according
to the rule

fr=(fod)e T,
then the kth derivative transforms as

s (B (R o
f(k) — () H ; ek—J(f(]) 0 ¢) —n—l-2k,
; iJ(w+Dt ’




14" 1
h = —e- ¢ = —— and, as before, e = d=— (ge lizati f Bol’s 1 a
where € e c=g 57 and, as before, e = ¢z + 77 (generalization of Bol's lemma

- the case k = y; see [GP1] or [M] or [Te]). If we set

R n (%)
Dk — (k) — f .
f=1 (p+ k)

this can be written as

DFf s (D+e)ffog-er 172k,
with D and e treated as commuting operators. More generally,
P(D,..D)f— P(D+e...,D+e)f og-e WA=
if
P(zy,...,z\) = z gy kTN LT
with
&klyu'ikk = akl;‘uyk)\ : (kl + #)! R (k)\ + :u')!'

Remark. This may be viewed as a generalization of the transformation rule for the
! ! 1"

bracket {, }1 (cf. [Gu2l, [GP1)), viz. L (F o6+ %(u +1) )9

Thus the condition for covariance comes in the form

P(:c1+1,...,m)\+1)=P(:c1,...,m>\)

or, equivalently, as

or again, in terms of coeflicients, as

T <k1) (l.,,\) { aj,.gy i+ +ia=A
10790 TN R EIRIRE = ip - . .
J1 I 0 ifgi4+-+a<A
In particular, we find
dimM) = p(A) —p(X - 1),
where p()) is the number of partitions of A. This gives the table

A | p(A) |dimM
1 1 0
2 2 1
3 3 1
4 5 2
) 7 2
6| 11 4
71 15 4
8 | 22 7
91 30 8
10 | 42 12
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which, in particular, explains why the operators in the Introduction (Examples 1 and 2)
coincide if p = 3,4 but not in general.

The calculations are facilitated by the remark that the polynomial P can be taken to
be symmetric. Notice also that P(1,1, ...1) = 0. This can be checked at the hand of the
examples below.

Ezample 1. A = 2. Write

P(z,y) = A(z? +y*) + 2Bay.

Then 5P P

so that 9P 9P
—m —_— 9 .
5=+ 5 (A+ B)zy

This gives A = —B and P = A(z — y)?. We thus obtain the DO

I
> N
(p+2)! [ (p+D)P2

t = 1 corresponds to the Schwarzian:

o8
73l

Ezample 2. A = 3. Now

P(e,y, 2) = 24(2° + v + 2°) + B(a’y + 2%z + v’z + v’z + 22w + 2°y) + 6Cyz

and
oP
e 6Ax? + 2Bz(y + z) + B(y® + 2*) + 6Cyzete.
Thus
op OP 0P T
e + ?GZ+ 5 = (64 + 2B)(2 + ¢ + 2%) + 2(2B + 3C)(zy + 7z + y2),

s 2
yielding B = =34, C = ——?;B = 2A. The corresponding DO is

AP ACi
f 2 f?
11
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p = 2 gives the expression we found earlier (see Subexample 3, Introduction):

1 fm 1 fllfl 1 fl3

N 2 .
5457 °343F '°333p

In these two cases, therefore, these operators much coincide with Schiffer’s ”logarithmic”
operator M (see Introduction).

Ezample 8. A = 4. The direct eliminations become so complicated that we limit ourselves
to give the end result. One finds two independent covariant operators:

FIV fir fr £112
NS il

~ ~— + 3=

f f? f?

and . . A
"2 "2 14
N S Sy i
f? A
]En f/2 2
= 7 - F = the square of the operator in the case A = 2.

In this case the operator M is essentially 6; — 60,.

Before continuing this series of examples let us write down the general formula for
computing the coefficents. If P = ZAkwk = ZAkl,---)kkmfl a:’;* is the polynomial
corresponding to a covariant DO holds

Z(li + 1)Aite; =0,

where ¢; = (0,..., _1 .
positiontl
Ezample 4. A = 5. The possible partitions of the number 4 correspond to the vectors

[ = (40000), (31000), (22000), (21100), (11110), yielding the system of equations

..,0).

5As + 444 =0,
4A41 + 2435 + 34311 =0,
2-3A32 + 34211 =0,

3A311 + 2+ 24391 + 242111 =0,
4242111 + A1 = 0,

"superfluous” zeros being omitted (As = Asopoo etc.). There are 5 equations and 7 un-
knowns corresponding to 2 independent solutions, as predicted. Set A5 = 244, A4y =61,
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Asq = 6C, As;q = 4D, Ay = 4E, Aginn = 6F, A = 120G. Then we can write our
system as :

54+ B =0,
9B+ C+ D=0,
3C+E =0,

3D +4E + 3F =0,
9F +5G = 0,

which gives at once (equations 1,3,5) B = =54, E = -3C, G = —iF. fA=B=0
we can express the remaining coefficients in terms of C: D = —C, E = -3C, F = 5C,
G = —2C. Thus one gets the covariant DO

flllfll _ flllflz . 3f”2fl + 5f”(fl)3 . 2(fl)5 = (fll - fl2)(flll — 3fllfl + 2fl3),
here and in the next formula we omit the " in the notation for the derivative. If instead

F = G = 0 one expresses instead the coefficients in terms of A: B = —54, C = 24,
D =8A, E = —6A. The operator now reads:

fo4 _ 5fIVflf3 4+ 2flllfllf3 + 8flllfl‘2f2 _ 6f”2f’f2-
In the same way as above one can also treat multilinear expressions of the type

k k
POLTINN S

yielding an analogous result (P need not any longer be symmetric).
Ezample 5. A = 3. Write '

P =242+ 2A2y3 +2452%+

+Biaz®y + Bisz’z + Baiy’a + Basy’z + Bsy2%z + Bapz?y + 6Cayz.

The conditions for covariance are:
6A;1 + Biz + Biz =0,
6A; + By + By =0,
6As + B31 + B3z =0,
2Bj2 +2Bo1 + 6C =0,
2B3; +2B;3 + 6C =0,

2By3 + 2B3;3 + 6C = 0.
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v 1
If C =0 we get By; = —Bi2 etc., whence Ay = —6(312 — B3;) etc. Thus

f = Bu(h(e® —v) ~ay(z — )+ = gBula =)' +...,

which gives the differential expression
1 1
Bu(5(f"gh - fg"h) = (f"g'h = f'g"1)) + Bar(5(f"hg — Fgh") = (f"gh' = f'gh"))+

+Bral5(f""h = fgh™) = (Fg"W' = fg'K").

Let us return to the "logarithmic” operator M. Let F(z) be the (u + 1)-st integral
of f(2) (F® = f) and let F = F(z1,...,2,) be the pth divided difference of F(z) (see

Introduction). We may write

D] ...D,\lOgF = ZCQI’”',(". DalF...Da,.F,

FT

where the summation is carried over all families @ = {ay,...,a,} of disjoint nonempty

subsets a; of the set {1,...,A} with a; U---Ua; = {1,...,A} and Dq, stands for the

partial derivative with respect to the indices in a;. Taking z; = -+ = 2,41 = 2 We obtain
f(lall) ... flexD

the covariant DO
Z Coq...a,. f‘r

where |o;]| is the number of elements in «;. The coefficients C can be found recursively as
follows:

Case 1. If B is given by {1,...,A+1} =B U---UB, = {A}Ua1 U...a, then

Cp =—rCa.

Case 2. If Bis given by {1,...,A+1} = 1U---UBr = a1U---U(a;U{A+1})U---Ua,
(for some index 7) then

Cp = Cy.
The corresponding polynomial P is obtained recursively according to the scheme

A+1
P(z1,...,Tx) — Z(fﬂl +ootaagr — (A D) Pz, 80y Bag)-

i=1
Ezample 6. P(z,y) = (z —y)* — (z +y — 22)%(z — y)*+ (z + 2z — 2y)*(z — 2)*+
(y+ 2 — 22)(y — 2)*. Writing (z +y — 22)(z —y)* = (e —¢*)(z —y) — 22(a® = 20y +y*) =
z® — 22y — zy? + y® — 2022 + dayz — 2zy? etc., form the sum. One obtains the polynomial

2z +y* + 2%) — 3(zy + ... (6 terms)) + 12zyz,
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corresponding to the covariant DO
f”’f2 _ 3J£nf”'ljf + 2j°3

found earlier.
It seems more difficult to incorporate the operator of the primitive Example 1 of the
Introduction, viz.

DX(fF),

in the general picture, as the corresponding polynomials in general are y-dependent.
The derivative of f¢ is given by a formula of the type

A
D f* = [alef T Qi S,

k=0

where [a]; = a(a —1)...(a = (j — 1)) and Q7 is the DO given by the recursion
Qif = FTf+ Q)

Ezample 7. A = 4. Taking o = ”u_i'l" one finds, after some calculations (and omitting
a constant factor),

(1 + Y 5 = a7+ 3727 = 3(5 + 2w/ = 2" F o+ ),

where the second term also may be written as a square ( f12— fr e
Question. Is there a general formula?
Now we proceed to give an entirely different approach to the problem of finding all
Mébius invariant operators of the type considered, which is akin to the procedure in M].
If f is the coefficient of a 3-form (p = 0 is sufficient!) write (near z = 0)

o

f(z) = Z Sizi’

i=0

so that s; = f(9(0), and introduce

0 0 3]
V—So-a's—l'+231—a—s—2+3820—83+...,

one of the Cayley- Aronhold operators (cf. [M]), so that Viso = 0, Vs1 = o, Vs2 = 253, ete.
The operators considered by us are automatically invariant for translation and dilation.
Thus it suffices to consider transformations of the type

z

1+ez

VAR e d
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only. These form, apparently, ‘a group whose infinitesimal generator is up to sign V.
Whence the condition

(+) [P =0}

the polynomial P is now viewed as a function of so, s1,.. ..

Ezample 8. A =2. P = aszs0 + bs2. Then VP = 2ays150 + 2bs180 = 0 yielding a = b.
We obtain the DO f"f — f'2, which of course corresponds to the Schwarzian.

Ezample 9. A = 3. P = as3sj + bsys150 + ¢s3. We find VP = 3asysg + 2bstso + bsys +
3cs?sg = 0 yielding 3a+b=0,2b+3c=0o0r b= —3a,c= —2}p = 2a, corresponding to
the DO flllf2 — 3fnflf + 2f’3.

How does the "log” operator enter into the new picture? Set oy def SES1 — Sk+1S0, SO
that Vo = kog—1. Consider the DOs Ly given by

0 10 10

. k-1 — —— a1t a9
Ly = (adV)""Ln, LIn=g=(1+ 515+ 5152

+...).
Then follows that if P satisfies (*) then also @ = Zk21(—1)k%LkP satisfies (*).
Proof. We obtain '
VO'k

. (28 T
VQ =) (- LiP + TLVP - A (Le, VIP) =

= Z(”l)k(kak:i)gl’kp - Z(‘l)kﬂ %Lk—HP = 0.#

Further, we consider briefly the transition between the two models. If k = (k1,...,kx) 18
a partition of the number A, set

—_ § kq kx
np = mil...miA,

where the summation extends over all different permutations of :c'lcl . ac’;\*; let the number
of such permutations be N. If
0
U= —

then apparently

Ng
Ump =k Mp—ey, + -+
k—-e1

)
which formula has to be juxtaposed to the relation
Vs =kiSg—e, +...,

where sy = S, Sk, - - - Sk, - 1f we consider the map

T:P=Z']\17_k'a"mkHQ=Zak8k’
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we therefore have
TU =VT|

This readily yields the sought relationship.

Let us also say a few words about the (graded) ring V" of invariant DO’s of given
order r. We claim that it is a polynomial ring in so, $4 ! and r — 1 more "unknowns”.
For instance, N2 is generated (apart from the identity operator) by the Schwarz operator
Gy = Go(f) = f'f — f*, N* by Gy and G5 = G3(f) = f"f* = 3f"f'f + 2f", and so
forth.

Proof. Choose, quite generally, G2,G3,Ga,... is such a way that

G.(f) = @) =1 4 operators of lower order;

such operators do exist if v > 2; cf. infra. Let g, be the corresponding polynomial in the

variables sg, 1, $2,.... A little thinking reveals that one can as well make the substitution
sg = 1; this somewhat facilitates the following computations. If
P = Z aks'f‘ L
k=(k1)'-~yk1')
contains a term with k, > 0 write s, = ¢, + polynomial in sy,...,8,—1. Then P equals an

expression which is a polynomial in g,,s1 ..., $,—1. Continue by induction. We see that P
can be written in the form

P=sPQi+sP7'Q2 4+ Qm,
where Q1,Q2,...,Qm are polynomials in g3, ..., g- only. Hence
0=VP=ms"'Q) +(m—1)s""2Qs + ... + 0.

It follows that all Q; vanish except Q.,. Thus P also is a polynomial in gs,...,g,. It is
clear that there are no relations between the latters (and so).#
Here is an ezplicit system of generators. Make the ” Ansatz”

Gn = Sn + Q18n-151 + 25n—28% + + + An_25257 "% + @n-15].
Then
Vgn =nsp—1 +a1((n—1)sp_281 +1-55-1) + az ((n — 2)sp—_387 + 23,,-251) 4
Fan_g(2877 4 (0 —2) - 25257 7%) + ap_insy T,
which yields the recursions

n+a; =0
(n—1)ay + 2a; =0
(n —2)ag + 3az =0
(n —3)as + 4as =0

3a,-3 +(n—2)ap—2 =0
2an_2 +nap— =0
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whenee ax = (=1)F (Z) (k<n=1) 1= (—1)““(<n . 1) -

(Notice that this is in agreement with that the sum of the coefficients has to be 0, as
S reo(—1)F(%) =0.) The corresponding DO is thus

n—1
_ k[T p(n=K)( pryk gn—k—1 _1\n( f\n
G = S0 (1) FR R 4 (2
k=0
A general invariant DO thus comes as a polynomial

> CrfroGh Gy .. .Gl

k=(kg kg, kr)
ko+ka++kr=const

4. The transvectant and (generalized) Hankel operators.

The classical theory of Hankel operators (or forms), see e.g. [N], App. 4, is usually
formulated for operators (or forms) living on the Hardy space H?(T) (an analytic function
f on the unit disk D is in H?(T) iff its trace on T = 9D is in L?(T)). More precisely, if
B is an analytic function in D and if P_ denotes the orthogonal projection in L?('T) onto
the complement H2(T) of H?(T) in that space, the Hankel operator Hp of symbol B is
defined by the formula ‘

(1) - Hpf=P-(Bf).

Of vital importance for further developments of the theory and its ramifications is the
following covariance property

(2) UpHpU;' = Hpoy (¢ € SU(L,1)).

Here U stands for the natural (unitary) action of the Mébius group SU(1,1) on H*(T)
and HZ(T), '

Usf(2) = f(d2)e(2) ™.

The general character of formula (1) suggest many generalizations. In the first place,
what comes to ones mind is replacing H%(T) by a weighted Bergman (or Dzhrbashyan)
space A%?(D) (e > —1): an analytic function f on D is in A%?(D) iff it is square integrable
with respect to the probability measure

dpa(z) = (a +1)(1 = |2|*)*dA(2),
where dA(z) = dzdy/ is the normalized area measure. The action of SU(1,1) is then
given by
Usf(2) = f($2)e(2) ™0+,
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but, due to the usual ambiguity in defining powers of complex numbers, we have only a
projective representation (a genuine representation of a suitable covering group). To be on
the safe side let us fix our attention on the case o = integer = 0,1,.... Now the symbol
too transforms with a weight:

B (Bo ¢)e*t,

and is unique up to a polynomial of degree o + 1. Bol’s lemma suggests that we may
alternatively, instead of B, take b = B (a+2) 35 ”symbol”. This has also several advantages.
For instance, b rather than B is used in the general theory of Hankel forms (on arbitrary
domains, even in higher dimensions) developed in [JPR].

One can furthermore consider generalizations of higher weight. This was first suggested
in [JP]. It is convenient to express things in terms of bilinear forms, rather than linear
operators. Consider as in Sec. 2 the transvectant J,, now with v; = v, = a +2. Then the
(generalized) Hankel form of weight s and symbol b is defined by the integral

Ts(f1,f2) —_—/ BJ3z2a+2dz/27ri.
T

(Equivalently, one could have studied what in the literature are called "little” Hankel
operators.) Notice that the word "weight” here is used in the sense of E. Cartan’s theory.
From the point of view of group representations the Hankel forms of higher weight are of
importance, because they provide the decomposition of the "regular” representation of the
group SU(1,1) on the space of Hilbert-Schmidt operators on A%?2( D).

One can also define ([BJP]), mimicking the primitive definition (1), so-called "big” Han-
kel operators, even in the case of higher weight, operators which map the Hilbert space
A*2(D) into its orthogonal complement (A*?(D))* in L*(D, pto). More precisely, one
considers operators of the form

Tpf(z) = [ K(z,{)A"B(z,()f({)dra(C),
D

where K(z,¢) = (1 — 2{)7(®*?) is the reproducing kernel in A*?(D) and where we have
put

(3) AV B(z,¢) = Z (;T>%(B(k)(z)+(_1)k+lB(k)(<))(z_C)._]‘-

1+k=r—1

In particular,

AW B(z,¢) =B(z) — B({),

A B(z,0) =B'(2) + BI(Q) ~2 2 =2
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For certain reasons (see App. 1) we call A the differential-difference operators of La-
grange. They are related to Newton’s divided differences (cf. Sec. 0) in a simple way:

A(r)B(z,C) =(z=()"B(z,...,2,(...,().

r T

The properties (boundednes, compactness, membership in Schatten classes etc.) of the
operators T} were studied in [AFP] for r = 1 and in [BJP] for r > 1. Ifr=1we
have T} = B — P, B = [B, P,], denoting by P, the orthogonal projection onto A*?(D)in
L*(D, po)- In this case one can also allow non-analytic symbols [AFP]. The decomposition
of L?(D, y1,,) into irreducible subspaces is however not yet fully understood. (The operators
T5 do not do the whole job, as in the case of ”little” Hankel operators, because they
correspond to discrete summands in the decomposition and there must be some continuous
ones t00.)

Remark. In [P3] a generalization of the above definition of the operators Tg in the case
of the unit ball in C¢ is proposed. This involves also a corresponding generalization of the
transvectant.

Until now we have confined our attention to the case when the underlying space is the
unit disk D in the complex plane (except for the above brief allusion to the ball). Now a few
words about "regular” multiply connected planar domains. Hankel forms (or, equivalently,
little Hankel operators) [GP2] and big Hankel operators [AFJP] in the case of lowest weight
are defined as before. However, if we wish to define the corresponding objects of higher
weight, we must first select a projective structure. In the case of big Hankel operators,
however, only the projective structure associated with the ”circular model” (Sec. 1) seems
to work, due to the "global” definition of the operators A" in formula (3).

As for higher dimensions, besides the ball, one can probably do similar considerations
with any symmetric domain, not only with one of rank one. As for ”curved” situations,
what comes to ones mind are in the first place strictly pseudoconvex domains, in some
sense "modeled” on the ball. About the only information known to us in that case are
some observations due to Ewa Ligocka [L].

5. General operator calculi and quantization.

The general character of the relation (2) in the previous Section not only leads, as we
have seen, to various generalization of the classical notion of Hankel operator, but also puts
Hankel operator theory with its various offshoots on equal footing with operator calculi
(the theory of ¥DO). Let us therefore say a few words about this, in particular, about
Unterberger’s program of quantization of symmetric spaces (see e.g. [UU], [Unl], [Un2]).

Let us begin by recalling some salient facts about the Weyl calculus, which has origin
in Herman Weyl’s ideas about quantum mechanics [Wey].

Remark. A different approach to ”quantization”, also of interest in Hankel (and Toeplitz)
theory, was advocated by the late Berezin in a number of publications (see e.g. the survey
[Bere] and further the book [Up], Lecture 10).

As everybody knows, quantization is something which has to do with the interplay
between complex valued functions on a "phase space” (the symbols) and operators in a
Hilbert space. In Weyl’s version the phase space is "flat”, a symplectic vector space,
and the Hilbert space is the one where the ”complex wave representation” of the CCR
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(canonical commutation relations) acts, in other words, Fock space. In the case of two
»degrees of freedom” it is the space F*?(C) of entire functions on C which are square
integrable with respect to the Gaussian measure

dva(z) = ae~ " dA(z),

where a is a positive real number whose inverse (sic/) has the interpretation of ”Planck’s
constant”. If ¢ is any given symbol, then its Weyl transform is the operator Sy defined by
the formula

S, = /C 9()ScdA(0),

where again the operators S¢ are defined by the formula

(1) Scf(z) = F(2¢ — z)e?*e~2 Kl (f € F*2(C)).

The symplectic group Sp(2) (in this case isomorphic to SL(2, R)) or rather a double cover
of it, the metaplectic group Mp(2), has a natural action on F%%(C) via unitary operators
which we denote by Vi (3 € Mp(2)), say, and then, in analogy with formula (2) in Sec. 4,

(2) VpSgV, ' = Sgop (4 € Mp(2)).
{

André Unterberger’s basic observation is now that the operators S are associated with
the spacial symmetries z — 2{ — z of the underlying manifold C (reflexions about the
point ¢). Therefore exactly the same game can be played with any symmetric space, in
particular, with the classical symmetric domains of E. Cartan.

Ezample. In the case of the unit disk D the spatial symmetries are given by

n—z

3¢ = 1—27’

where ¢ has to coincide with the hyperbolic midpoint of the line segment with endpoints
0 and 7. Therefore the analogue of formula (1) is

(1) Scf(2) = Flse(2))(s4(2) .

The Hilbert space is now of course our friend A*?(D). (Paranthetically, we remark that
in Berezin’s interpretation [Bere] it is the quantity -&—_1?5 that plays the role of Planck’s
constant!)

The point we wish to make here is now that the analogy between formula (2) above and
(2) of Sec. 4 forces upon us the view that Hankel operators (or forms) and operator calculi
ought to be looked upon from a unified point of view. A difference is of course that in the
case of calculi one considers linear maps from the Hilbert space into itself, while in the
Hankel case one has maps from one Hilbert space into another, in the case of small Hankel
operators a space which can be identified with the dual (not the anti-dual) of the given
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Hilbert space. This is about the same as the distinction between collineations and corre-
lations in classical geometry. Indeed, in quantum theory states may be viewed as points
of the associated projective space and observables (usually realized by linear operators)
" map projective points into projective points, thus correspond to collineations. So one may
ask the question what correlations do for quantum theory. Another difference is that in
Hankel theory one deals with irreducible families of operators (under the corresponding
group action), not so in the case of calculi. This explains why in the case of calculi one
in general expects only onesided” results (S,-criteria etc.). At any rate, time is still not
mature to say if the analogy established really has any deeper implications or not.

6. Reproducing and coreproducing kernels.

Let Q be any plane domain and p a suitable positive measure on it. We denote by
A%(Q, 1) the Hilbert space of all analytic functions in  which are square integrable with
respect to u. The orthogonal complement (A%(£, 1))+ (in L?(£, ¢)) consists of all functions
of the form D*g with g "vanishing” on the boundary. (We write D or 9 for the Cauchy-

Riemann operator 5 and D or 0 for —.)
Z 2

Determination of D*: Partial integration yields (g is a test function)
of _ 0gA
—gAdA = — —dA.
/9 z7 /Qf 9z %4

ogh 0 |
7 'a—z'g)\— 52-/\-1-9-—.

Now

Hence

. 9
D*=-D - -a—z—(log/\) 3

d ,
(Here A = Zi_% is the Radon-Nikodym derivative and dA = dxdy/7.)
Ezample 1. If p = pqo, = D (weighted Bergman case; see Sec. 4) then

Remark. This operator appears also in [GP1] as a covaraint derivative taking Z-forms

into inz-—forms.

We write
(1) 6§ =K+ D*J,

where 6 is point evaluation (not delta function). This gives

50 = [ RED# e + [ TD5 2 due),

which incidentally solves the d-problem.
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Remark. K is usually called the reproducing kernel. Accordingly, J might be termed
the ”coreproducing” kernel. It is of interest also in Hankel theory (cf. [AFJIP]).
Determination of J (weighted Bergman case).

z

) =K =(1-z()~(*2,

0
(5'2‘—0

1—22z

? Ansatz”: J = %f(zé) if ( =0.

This gives
1., .- z 1,
—E-f (zz)z—-al — —z_-f(zz) =1.
Thus f = f(t) satisfies the DE
S
flo g f=1
or
(1=t f) =1 -1
Integration:

[ 2V — 1 — ¥
(A= 1f =C = g (1=,

f)=0=C=0,

1
fz—a-}-l(l—t)'

From the transformation properties of J (see infra) follows

1 1—2z2z

R S a3

0,1 . e .
Remark. As 5;(-2-) = & (in our normalization of A!) we see that we have the right polar
strength. Moreover, if

1-2(
z=(

G =2log|

| (’rationalized” Green’s function)
then

oG =z + 1 1—zz

TR T Ay el o)

Hence the formula can also be written

- 1 % e a
I\a =4 + maaz(I\a_gaqG) s
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For a = 0 this is well-known [Berg]. One reason for carrying out all these calculations has
been precisely to detect possible generalizations of this formula.

The elements of A%?(D) behave as forms of degree v, where v = 42 Thus, if f is in
A%(D) then Df transforms as a form of bidegree (v,1) and has to be integrated against
forms g of degree v—1. (In general, the A%?-pairing extends to a pairing kP9 x (P
C where p+ q' = ¢+p' = v; here k() stands for the (C'°°) sheaf of the bidigree indicated.
In our case p = v,q = 1,p' = v —1,¢' = 0.) It follows that J transforms likewise in the
variable z and as a form of degree (0,v) in (:

J(z,0) = J(¢z, $C)e(z)&(¢) ™o+

where ¢ = (ccl Z), e(z) =cz+d, e(() =c(+d.
We check the transformation properties of D* = —D + T az —. Let
— 2z

g9(2) = g(¢(2))e(2)™7.
On the one hand: '
D(g($(2))e(2)™) = Dg(¢(2))e(z)™* % — acg($(2))e(z) 71,

on the other hand

01—-_—"2?9(‘15(2))6(2)"“-

The difference involves a factor

et ze(z) _ o(l—22)+ E(cz-}_—_c_l) _ c-czitcezz4 dz _ (2) 1
T—[2P (1 -[¢zl)e(2)e(z) (1= ld(2))e(2)e(z) 1= I1(2) e(z)’
__az+b o =c-{-dé s we fin
s 9() = oy $() = - Th find
D*g() + ~(Da(b() — a2 g d(a)))el)

Limiting case: o — oo, R — oo. For a disk Dg of radius R:

V43

R2 1-—- —EE ezf

J=— 1 Z
(04 z _ —
(1- R;)O‘H(Z - )

pr=-D+—L _ Dtz




We can check directly:

The case of an annulus @ = Qg = {z:1 < |z| < R}: It is better to rewrite equation (D)
as

QEL_ = —AK + usual delta
0z

with u = A\J; ) is assumed to be radial, A = A(r?), r* = |z|*> = 2Z. Set

Mn(r)z/ rf_”)\(rf)drf.
1

Then
o~ ()
K= 2 wm
n=-=—00
We first solve for each n the equation
Oun (u"):f:)’"‘.‘1

A(r?).

52 - Mn-l(R)

Put
Up = fn(22)2"

so that 5

Qin 10205 b mfo(52)]

5, [fi(22)2Z + nfa(22)]z" .
Hence (writing ¢ = r?)

, _ u—)‘n—l
tfn + nfn(t) - Mn—-l(R) A(t)

yielding the particular solution (C = 0)

,u’)‘n—l

—_ ¢ -1
fult) = =7 [ 7 s

or
Mn_.l(r) . zn,&)n—l
Mn_l(R) rin

Up — —

On the other hand

dv
3= delta
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is solved by

ot 12

o Z
@ 1 — Lin=0 TuFT (1< |z < |wl)
zZ—Ww -1 z"
n=-—00 ;nn+l

(Jw] < lz| < R)

and the homogeneous equation

o
is solved by any anti-analytic function
(3) h = ianzn.
Summing up ((1)+(2)+(3)) we get
U= i U, +v+h

where we have to adjust the coefficients a, so as to meet the boundary condition. Thus,
finally, we get

Muy(r) z"w"!
a-1(R) 2"

- ) T (ol <l < )

-2 (1 <z} < el

Remark. This technique of finding a fundamental solution via a series development has
a general character and can be applied in many other situations.

Ezample 2. A = 1. Then

1—p72n

SRl g (<l

Eoo (R/r)zn -1 n-—n—1

n=—co Rin_1 ° ¥ (Iz] > |w])

It is easy to express these series in terms of theta functions; cf. the formula for Green's
function given in [CH], S. 335-357.

Several variables. Take 2 = B = unit ball in C™ (equipped with its usual Hermitean
metric || - ||, the corresponding inner product being (,-)) and A = (a +1)(1—||z||*)*>. We
have to solve the equation

L -, OJF o
5_Ix+;(—azk+a1_nzu2.7)
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corresponding to the integral formula

af(z) ,
5 dV(z);

-k

£(0) = /B KO f(2)du(z) + /B S 750
k=1

dV is Euclidean volume measure conveniently normalized.

" Ansatz.” J*¥ = 2* f(||||?) for { = 0.

Then a7k
5o = FUI) + 242 D),
k
%gf =nf(t) +tf'(t) (=",
N zt 0]
2T T

which gives the DE ,
a
tf'®)+(n - =) =1

with the integrating factor ¢"(1 — t)*. Thus we find
¢
(4) f)y=t""1- t)""/ P71 — t1)%dty.
0

In particular f(t) = %(1 —t™T") ifa =0.

Invariance properties of K and J:

K(2,¢) = K(9(2), 5(0))(det ¢! () +/ 04D et g0+ ),

> J’“(z,c)% = JH($(2), B(O))(det ¢! () /D (et §7(Q)) /.
k=1

Here ¢ is any element of the group of biholomorphic automorphisms of B (known to be
isomorphic to the group PSU(n,1)).

We apply this to the fundamental symmetry ¢ interchanging 0 and ¢, i.e. #(0) = ¢,
#(¢) =0, ¢2 = id. We omit the calculatiosn, which are very much similar to thew ones in
[P3], and write only down the end result:

¢
(,0))*t |

J(z,¢) = f(P(Z>C))(1 — ch)(zl—_

Here the function f is as in (4) and the invariant distance between the points 2 and ( is

given by
(1 = =)@ = 1<®)
ll - (Z7C)12 '
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Appendix 1. Lagrange’s proof of the addition theorem for elliptic functions.

In the appendices we take up various issues more or less loosely connected with what
we have discussed in the main body of the paper. We begin with Lagrange’s beautiful
proof of the addition theorem for elliptic functions (due to Euler). It was subsequently
superseded by other, more powerful proofs, for instance the one based on Abel’s theorem
(see e.g. [Web], S. 27-32), so but for a brief mention in Houzel’s masterly survey of the
classical theory of elliptic and Abelian functions ([Hou], p. 9) it seems to be completely
forgotten nowadays (Houzel writes: ”ce qui provoqua, I'admiration d'Euler”).

Consider an elliptic curve given by the equation

¢? = P(z) = Ex* + D2® + Cz? + Bz + A.
(Such an equation is invariant under the transformations

W +b ¢ = 13
cx +d’ (cx +d)?
Therefore it is natural to consider the curve to lie on the projective completion of the
bundle k™1, where & is the canonical sheaf over P!, which is known to be a rational ruled
surface (see [GH], p. 514-520).)
Consider the differentials

dz dy dz

3; —dt,—};: -—-dS,-E' -——dT,
where

t+s+r=0 (=dt+ds+dr=0)

and where we have put

X =+/P(2),Y =+/P(y), Z = \/P(2).

Then P(z) )
(== ) = -P'(z etc.
dX = 2\/@ V/P(z)dt = 2P( Ydt et

and we can write

X-Y\’ X-Y (dX-dY (X-Y)(dz—dy)\ _
M) d(fc-y> =Ty ( z—y (z —y)? )_

_ (X —Y)(P'(z)dt — P'(y)ds) B 2(X —~Y)3(Xdt —Yds)

(z —y)? (z —y)? '

On the other hand, as P is a polynomial of degree at most 4, we have

P'(z) + P'(y) — 2P(xa)::P(y)

y
(z—y)?

=2E(z +y)+ D.
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We can write this as

LK —Y)IX +Y)

P'(z) + P'(y) — —
(2) d(E(z+y)*+D(z+y)) = T Y (Xdt +Yds).
Subtracting (2) from (1) we find
(3) d{(ﬁjj)?—-E@w)?—D(wy)}=
YP'(z)+ XP' X -Y)XY
B = et S L
ﬁ + i_}: — 2X -Y
_sdz  dy z—y -
=2 =y XYdr.

Thus, the Lagrange differential-difference operator appears in two different ways. Formula
(3) is a way of expressing the addition theorem for elliptic functions.
In particular, taking r = const it follows that

dez d

X Y

has a solution y which is an algebraic function of z. Indeed, in integrated form (3) gives

X-Y
T—Y

(3" ( Y = E(z+y)? + D(z+y) +G.

This is how the addition theorem for elliptic functions was formulated by Euler (cf. [Hou]).
Consider the special case when there is no z*-term (E = 0), that is, one of the four
roots of the polynomial P sits at infinity. Then we have virtually the elliptic curve in
Weierstrass’s normal form. In this case one further takes D = 4, C' = 0, thus the curve
has the equation
€ =423+ Bz + A.

Analyzing the behavior of the curve at co one readily sees that G = —4z. Thus (3') takes
the symmetric form

z+y+z=k

where k denotes the slope of the three collinear points (z, ) etc. This is how the addition
theorem is usually stated, along with its geometric interpretation (see again [Web], loc.
cit. or [GH], p. 227).

Appendix 2. Jacobi’s DE.

In this Appendix we reproduce the essentials of the proof of Jacobi’s theorem [J2] in
Example 3 of the Introduction to the effect that the " Thetanullwerthe” (theta constants)
satisfy a third order algebraic DE. This because it is something which, apparently, is little
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known nowadays (in this context it is perhaps amusing to have a peek at Rubel’s paper
[Ru]) and, on the other hand, definitely belongs to our subject. After some thinking it is
not that formidable as it looks at the first sight - we should bear in mind that Jacobi was a
master of DE’s, both O and P, at a time when the theory of DE’s still was finding explicit
solutions.

The proof goes via the theory of complete elliptic integrals and their representation in
terms of the ” Thetanullwerthe”. Recall that the complete elliptic integral of the first kind

is defined as
2r

K(k) =
(+) 1 — k2sin® ¢

the number k is known as the modulus. In terms of theta values one has (cf. e.g. [BBI,
th. 2.1, p. 35)

2
K(k) = ;19(2,0(0,15) where k' = 92,(0,1)/93,(0,t).
Here and in the sequel k' = +/1 — k? is the complementary modulus. The basis of the

method is now the fact that K satisfies a second order linear DE (Legendre’s or the Fuchs-
Picard equation; see e.g. [Cl], p. 58-62) which may be written as

dK
2702
d<k k dk2> 1K
=K

dk?
or with
dk? k2
(1) W:dlogi‘:ﬁ:dz,
again as
K 1 5,0,
(2) dz2 = Zk k IX.

Because of the symmetry it follows that a second solution is K'(k) = K(k').

The first step of the proof is quite general so let us for a while consider the general
equation

d*F
(3) e +q(2)F =0.
We know that a local "uniformizing” parameter can be obtained by putting
- F

where F and F; are any two linearly independent solutions of (3). Also, in view of the

special form of equation (3) (no “middle” term with the first derivative!), the Wronskian
is constant:

(4) [F,F] = FF - F'F, = .
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(In Jacobi’s case, viz. equation (2), one takes F' = %K , Fy = —2K', with z and k related
by (1), and, considering the expansion of these functions for small values of k, one finds

« = 1; this was done by Euler [Eu].) Write then (4) as

Fl ' (04
(”F‘) - '1;'137
that is,
«
or, with
1
C = Vi
again as
5’ dt = aC%d>.
(8"
It follows that
t dF 1 P2 dF
dt o dz
or
d __1dF
dt = adz’

Continuing the differentiation gives
d*C 1 _,d*F 1 1
—_—= F? ——-—F3q=—a20'3q

dtiZ ~  a? dz?  a?

or

cic" = oz—2q A

(6)

In the case of equation (2) (in which case ¢ = —1k%k'?, o = 1) this gives

(7) cic" = -zll-kzkz.

To proceed further we must invoke the inverse function, say, @ to ¢. Differentiating the

relation z = Q(q) and using (5') and (6) one finally finds
C3 c"

)|

(8) aC —
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It remains to determine @ and Q' in the case of equation (2). As k* — k* —4q =0 we

find
—log 20— 1og LF VT 100
el T N Y (i
yielding

—( 1 + 1 ) 16dg dlogg
T 1y /I+16g 1—1+16¢ 2y/T+16¢g T+16¢
Thus (6) (or (7)) gives

dz

(12% log(C*C") = V1 +16C3C"

as in Example 1 of the Introduction. (This for the principal theta ¥ = J¢o; the calculations
for the remaining thetas are similar.) If we, following Jacobi, put C' = y 2
some ”simplifications”

one gets after

(yZyIII _ 15yylyll + 3Oy/3)2 + 32(yy” _ 3y12)3 — yl()(yyll . 3y12)2,

which does not seem to be very illuminating. This DE is thus satisfied by theta series.
The rest of Jacobi’s proof is devoted to exhibiting the general solution, but we have not
examined this part in detail. Perhaps there is a general principle saying that the solutions
of a Mébius third order DE can be generated from a single particular solution? At least a
naive count of parameters supports such a belief.

We conjecture that theta series in two variables can be treated in a similar fashion. This
is also suggested by the parallel between the arithmetic-geometric means of Gauss and
Borchardt (see [P4]).

Appendix 3. A transformation theory for the heat equation.

We know that the second order linear DO has an interesting transformation theory,
connected with names such as Jacobi, Kummer, Riemann, Schwarz, etc. (cf. Sec. 1). It is

perhaps less known that the heat equation is susceptible to a similar treatment, to which
we know approach.

Let us make in the equation

ou 10%u
%0 = 592 T (¢ = q(a,c))

the substitution
v=u(p,P)m (wherep = p(a),? = ¥(a,c),m = m(a,c)).
(The perhaps change looking choice of the letters a and c¢ for the independent variables

is in accordance with [P5].) When does it go over into an equation of the same type”
Derivation yields

0 _10% .
Oa 2 0c? .
_ Ou , 10%u ,0¢ Ou Oy 10%) oY Om om 10°m
= o-p'm— s o (g ) mt oo (Gem = 3 5a ™ 5 50 T UG T3 ™)
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Thus one gets the following conditions:

1)%*( V

yielding

b=petr| (r=r(a)).

2) % __1_@ 6‘/’6"’—0
da 20c? dc dc

0 1 " o2
which, if we take into account that — 1/) =3 j__ c+r', —éc—zf- =0, _3_1/)0_ = /', gives
" !
-};('—0—62 + - c

m=Ne ¢ V¢ | (N=N(a).

Our transformation is thus determined by the data ¢,r, N. Moreover, one obtains the
following relation between ¢ and ¢:

) Bm__lt'izm_~ o
da 2 0c? gm = —gpm.

Thus holds:
dv  10% _~v_(6u__ 1% w
3a 202 1"='5. 202 "1 .
Inserting of the two boxed formulae D into 3) gives

1 90" r !
Gy e () e

11¢ 2 1¢
e Bl — N ~ -
Write: ] .
qg—qp = -2-13’c2 +Qc+ R (P = P(a)etc.).
c?-coefficient: 1 o 1 o )
Py 2Py
&y - 35 =3P
or

c-coefficient:




or

"

r B T,SO,I _ Q
YRGS

It will be convenient to set

" B o _ ((p")2 R o" o ’
r-s\/_r—s2\/_+s\/c,—o—r (2\/_ 4(\/;9_,)3)4—2 2\/_ N

yielding
n

" ()"

11)2
S
20 A(p')?

n

1‘70 (‘P”)Z S
Wy e <p+ "0 S =
or

1
s slpal+"=Q

or again, taking account of the expression for P,

"4+ Ps=Q|
c®-coefficient: ( ,)2 o
1(r
N' = N
5 o + 499 — + R)

or in terms of s

"

_(1 s%( ”) 1Zss+ ~(s")? + l——,-—}—R)N.

From the last boxed formulae D it follows that P, @, R essentially determine ¢, r, N. But

the formula for N can be put in a more clearly visible? (convincing?) form. Write

b =(cts)

with as before r = /p's. We thus may view our transformation as a composition, a
"translation” followed by a ”dilation”. In an analogous way we can reform the expression

for m:
11

1y 1
m= Nexp(zi;—,(c—l— 8)? +s'c— 2%32). |
1 (,0"
It is natural to absorb the c-independent term ——Z——,-SZ in the factor N. Thus let us write
4 ¢

"

1
N=N* exp(z%sz)
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so that

1 (P"
m= N* exp(Z-;'—(c +35)* +s'c) |

The DE for N* now becomes

N 1", 19" , L'y, 19" 1 g 1
(- X g = (- - -t X 4R
N*+4(<p')5+2¢'” 8(¢')S+2¢'33+2(3)+4¢'+
or N*I 1 9 1 9 199" 1(‘0"
*:I —
N*z—z{cp,a}s +§b +ZJ+R_Z;’-+L+R,

where L = 1[(s")? — Ps?] may be viewed as a Lagrangian. Integration gives

N* = (Lp')%exp(/ Lda + /Rda) '

where [ Lda again may be interpreted as an action.
In the examples below we take ¢ =0,Q = R = 0.

0 10?
Ezample 1. P = 0. —B—Z- = -2-5;—121 (heat equation). Take
1. 1 2 o 2
— — 1 ' —— — " IS e— —— T .
p(a) = = (implyinge il i T -)

and
s(a) = —d = constant (implying s' = 0, L = 0).

Taking u = 1 gives then (the fundamental solution of the heat equation)

1 (c — d)?
v= -;%—exp(— 5 )
. v 10% . )
Ezample 2 (generalization of example 1). P = —1. % =332 Y (Gibb’s equation
c
for the harmonic oscillator). Take
. . 1 2cosha "
a) = cotha (implyingy' = — , " = I_ = —2coth
p(a) (implying ¢' = ——-—, ¢" = ——=5 = cotha)
and
s(a) = —dcosha
(implying

‘ 2
s' = —dsinha, L = -;—d2((cosh a)? + (sinha)?) = %(620' + e,
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2

d’ se_ 2 d 1 s -
Lda = -—8—(6 ¢ —e ) = Zsmh2a = §d cosh a sinh a).

We find the fundamental solution (Mehler’s formula)

Y = 1 ox (_cosha(c2 +d?) - 26d)
~ (sinha)? P 2sinha (

Question. Are there any other interesting examples?

Appendix 4. Wave packets versus Gauss-Weierstrass functions.*

In this appendix we will compare wave packets in the sense of Cordoba and Fefferman
[CF] with the Gauss-Weierstrass functions (cf. [P5], [JPW]). For the sake of simplicity we
shall confine our attention to the one dimensional case. Alternative names for the same
objects: Gabor wavelet, (canonical) coherent state, Gaussian density etc.

We consider the Fock space F12(C) of entire functions in C with the metric

17 = 2 [ 1#)e14 daay.

Thus, compared to Sec. 5, "Planck’s constant” 1/a is (out of convenience) taken to be 1.
Make the substitution '

1,2
f(z) = fi(z)ez* .
Using the identity 2% = 22 — y? + 2izy the metric then takes the form

1502 = = [ [ 1P dudy,

which in view of Parseval’s theorem and Fubini can be written as

- /R(il; /R |Fi(©e ¥ Pde)e ™ dy =

- f —29¢—2y° ™ . 2
= gz [ IO e = 5 [ oS e

So finally setting
A1) = (@

we get the metric

12 = /R (6P e,

Summing up, we have deduced (I hope, in a comprehensive way) the well-known Bargmann
transform. It connects the Bargmann-Segal and Schrodinger representations of the Heisen-
berg group.

4The following is the outcome of a discussion that the writer had with A. Cordoba, to whom he expresses
his sincere thanks for his patience.
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Next, take (Gauss- Weierstrass function [P5])

f=¢€qe= eraz’+tes (Ja| < 1).

Then

Lgs? —-1,2 Lig— 2
fl__ezaz ez — 3z _62(a 1)z +cz;

fl(f) = /ReXp(—ilvé + é—(a —1z? 4 cz)de =

1 z'§——c2 l(zf—c)2 o 2w 1(:€ —c)?
=/Rexp(—-§(1—-a) [$+ 1-—a] —)dz = ""_anP("—"_T)~

2 1-a 1-

1 1(25—c)2 &, 1 1l14a 1
fa(§) = \/—GXP( g RV T TIT=a¢ T Toa 3o

This has to be compared with the wave packet

brancoan(©) = exp (ima(€ =€) + 5o(6 — €0)).

where g, & are real quantities and Img > 0 (cf. [CF]; notice that compared to that paper
here the Latin and Greek letters happen to have the opposite meaning.) This suggests to
put
il+4a _
g=37-51 9o~ To=1—_.

The first relation is the Cayley transform, while the second relation expresses, in classical

parlance, that £y, —zo are the characteristics of the complex number . Look now at

—a
the constant exponentials. On the one hand one has

62

1-a’

N =

on the other hand 1
§ig€g — ixop.
How to explain this discrepancy?

It will be expedient to pass via the transformation theory of the heat equation (cf. App.
3). Consider quite generally the PDE

Q_If’_ 1 O*F
da 202’
The substitution

1
\/1-—awhereg_Z t+a r= —o

Glg,2) = Fla, ) exp 57— 21-a’"  1-a
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gives the equation
oG i 0*G
dg 2022

this is the ”Cayley transformed” heat equation. Next set

¢ = G(g,96 — :v)exp(i‘,;dgﬁ2 — ixf).

Then
(81 fe0) v
2 2 )
ot (5 raieg - £6) exp (- jot* +ixt).

Thus, taking the difference, we end up with the ”Schrédinger equation”

o i

5—5— 20z2 |

which occurs in [CF]. The exponential factors are the same as above. We have thus
adequately established the essential identity of the two concepts, wave packets and Gauss-
Weierstrass functions.

Appendix 5. The cross ratio of four nearby points on a line.

Let = = z(t) be the coordinate of a moving point on a projective line (or on a Riemann
surface equipped with a projective structure).

The crossratio of any four of the points is

S =i =) | GO

,2
,4

Ilt

Near ¢ = 0 we have the expansion

o(t:) — o(tk) = (4 — tx)2’ (0)+ 5 m"(0)+

1t2—t 2"(0) | 143 —#}2"(0) 1 ¢} —t;2V(0)

=t~ O +3 @(0) 6t —tk —tk 70 T EL 0 T

= (t; - tk):v'(O)[l +a*f +ak +alt 4.0,

where we have put
t1‘+l _ t7‘+1
k

t; — tr

tLd‘f

=&
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with
g 1 2D(0)

SEETFD 2 (0)

We therefore find

(1) log D(z(t1),...,z(ts)) : D(t1,...,ts) =

i=1,2
k=3,4

Let us further introduce the notation

def ;
ToPE (g — 1)t —t5) = D (—1)"FFeef.

i==1,2
k=3,4

Notice that
T*° =0,T° = 0.

We find

Z(_l)i+kaik — Z(_l)i+k(t;~ + tz‘—-ltk +... Z){r(Tr—l’l + Tr—2:2 4

Yo (—D)FRaitagt = 3 (1R T e ) AT

— (0 + TT+3—-1,1 + Tr+s-—-2,2 4ot Tr,s+
+Tr+s—1,1 + Tr+s—-2,2 + Tr+.9-—3,3 + ... Tr-—l,s+l 4ot
+Ts,r + Ts—l,r+1 + Ts-—2,-r+2 + ... 0)61‘63 —

. ) : 1, ; ik 1 ;
Z(—l)"“C {(a'lk+a’2k+...)——2-(a;k+a’2"+...)2+§(a;k+a;’°+...

_ (2Tr+s—1,l + 3T"+3“2a2 44 3T2’r+3_2 + 2T1’T+3~1)£r§s =

r+s—1
= ( Z (14 min(n,r,s,7 + s —n))T"T ™™, L.

n=1

Keeping terms up to order 2 in (1) this gives
vk, ik _ Lo
(-1 (aft ~ (el =
—_ Tl 1(62 _ —261) . Tl 1(62 ) Tl 1(_ HI(O) 1 TH(O)

Z(0)  “27(0)

_ , SB’"(O) _;)3 JJ”(O) 9 1
=57 (:z:’(O) 5 '(0))) 6

where S stands for the Schwarzian.

—T1152(0),
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Let y be a function of z. Thus, kinematically speaking, we consider a relative motion.

Then
log D(:L'D(ziz, -'17(;4)) (t — tz)(t:} — t4)S;17(O) + . (neart = 0),
log D(yl():zclc)1 ,ySu)) (:1:1 — @3)(x3 — 24)Sy((0)) + ... (near x = z(t)).
Thus we find
ongwggi-’ﬁf“”> Hatr) = a(t2))(a(ts) — 2(t0)) Sy(2(0))+

+-16(t1 —t2)(t3 —t4)Sz(0) + ...

Passing to the limit we thus get as an application Cayley’s formula mentioned in the
Introduction (rewritten in the present notation)

(S(y 0 2))(8)(d)? = (Sy)(z(t))(dz(t)) + (Sz)(t)(dt)" |

Remark. This connection between the cross ratio and the Schwarzian is of course classical
(see e.g. [Ca]). The point is that we are also interested also in the higher order terms.

The sums of higher order products of factors a'* can be treated in analogous way as
above in the case of just one or two factors, and it is easy to write down a recursion for
the coefficients involved. It suffices to consider the case of three factors. Thus consider the

expression
r4s4v—1

Z( 1)z+ka (l a Z Dn 3Ty 8, vTr+s+v nnéré-ﬁé.v

where

Dn,r,s,v = Z 1.
atbtec=n

0<a<r,0<5<8,0<c<Ly

To find a closed expression for D, , 5, we consider the identity

(1= am™1)(1 = " +)(1 —a™t)

A+z+-+z")(l+z+--+2°)(1+z+--+2°) = .
(1—2a)

Now
(n +1)(n +2)

(1—-2)%= Z Dpz"™ whereD, 5 ,

n=0

so the r.h.s. can be written

o
ZDnmn . (1 _ mr—l—l _ $s+l _ xv—l—l + $r+s+2 + xr+v+2 + ms+v+2 . $r+s+v+3)'

n=0
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It follows that (D, = 0 if n < 0)
Dn,r,s,v =

= Dn - Dn—r—l - Dn—s-l - Dn—v-—l +Dn—r-—s—2 + Dn-r—v—-2 + Dn—s—v——2 - Dn——r—s-v—3-

Consider now the third order terms in (1), viz.
Z(—l)i+k(a —afay + % (a;k) )=

1
= (T + T')g — (2T + 2176 + 5 (3T 43TVt =

IV
= (T +T")(& — 266 + &) = (T" + TV 2)(—‘3?“ -2 %

2 12"
)

B

n

1 z! ' z' 1
— (T2 4 T2 ___3 — (T21 1,2y, & ]
as :
wlll
-2 3y,
4% ", .n " m " " IV n,.n
T " 3 2" =z z" -z T "z 3
§ = G - T = T e e
Th
us D 1

Tl 1 T2 1 T1,2 !
log — 5= 5 S+ 5 4( )S' +

We have also considered fourth order terms and by similar calculations as those just
done we have found that now there appears the additional term

(T3 ,1 + T2 2 T1,3)(Su + ?]3‘_52) _ —1—T2’252

120 72

in the corresponding formula.

We conjecture that in general the coefficient of T*# is a polynomial in S, 5, 5",...,S ()
where v = a + f, but this we have not proved. Another question: how does Cayley’s
formula generalize? Apparently, results of this kind can be obtained using the method we
just used (see ultra) in the case of that formula.

Appendix 6. A Bol’s lemma for the ”poly-heat” equation.®

Bojarski has in [Boj] obtained an interesting result about the transformation of the poly-
harmonic equation under the Mobius (conformal) group in any number of dimensions. In
the case of two (real) variables it essentially reduces to our Bol’s lemma (see Introduction).
We now state a counterpart of this result for the iterated heat operator, which seems to
be new. Introduce the notation

50Qutcome of a discussion with Bogdan Bojarski on the occasion of a hike to the Pyhatunturi mountain.
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Then one has the formula

1 cx?

o | (et dyn—te 2et ¥yt 2

cd+d ct+d

)

1 cz? .
= -m-%, 2ct+dH™ at+5 _*
(et +d) ¢ " u(ct+d’ct+d)
Here (Z Z) is any unimodular matrix (ad — bc = 1) and m = 1,2,.... The case m =1

is well-known and, of course, implicit in our App. 3, where the variables were denoted
a,c. The general case follows easily from it by induction. Notice that this result agrees
with the fundamental solution of the ”poly-heat” equation which is easy to write down

2

z

N Vet
and which generalizes the classical fundamental solution —e 2t in the case of the heat
T

equation. (Each iteration produces a new factor t.)
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Abstract

The classical Schwarz derivative, which is a nonlinear differential operator of the third
order, plays an important role in conformal mapping and in the theory of second order
linear differential equations. No workable generalization to higher order is known. But
if we restrict to Riemann surfaces equipped with a projective structure we have an am-
ple supply of candidates. In fact, we give a description of the most general (in a sense)
Mobius invariant operator. As for linear operators, for any integer x > 0 and a Riemann
surface equipped with a projective structure, one can define the Bol operator, which in a
projective coordinate system just amounts to taking the uth derivative. We have (else-
where) expressed the Bol operator in terms of general coordinates. We have further proved
a Green’s formula for the Bol operator. With the aid of it we can study certain kernel
functions and this again leads to applications to (small) Hankel operators. The report
further discusses issues such as the (formal) relation of Hankel theory to operator calculi
(”quantization” in the sense of Weyl, Berezin and Unterberger).

Classification: 30F30, 30C40, 47B35, 58H05.

Keywords: Schwarz derivative, Riemann surface, projective structure, Mobius invari-
ance, Bol’s lemma, Bol operator, reproducing kernel, Hankel operator, symbolic calculus,
quantization, elliptic functions, theta constants.

Authors’ addresses

Bjorn Gustafsson
Matematiska institutionen

KTH
S-100 44 Stockholm
Sweden

Jaak Peetre

Matematiska institutionen
Stockholms universitet
Box 6701

S-113 85 STOCKHOLM

Sweden

46




