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Abstract. Assume that a bounded domain Q@ ¢ R™ (N > 2) has the property that there exists a
signed measure p with compact support in © such that, for every integrable harmonic function h
inQ, [ hdz = [ hdu (Q isa‘quedrature domain’). The main question studied is whether this
implies that Q has the same property for some positive measure (with in general larger, but still
compact, support). We show that this is the case provided every positive harmonic function in Q
is the pointwise limit of a sequence of integrable positive harmonic functions in 2. Moreover, for
N = 2 we give a complete affirmative answer of the main question. Thisresult is partially based on
apreviousy known explicit description of al quadrature domains in two dimensions.
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1. Introduction

In this paper we investigate the relationship between certain mean value properties
for harmonic functionsin general domainsin RY (N > 2). The inspiration comes
from a question posed by Lisa Goldberg in connection with Teichmuller theory
and a subsequent paper [17] by Burton Randol. In [17] the following (possible)
property of abounded domain Q2 C R was studied

(R) There exists a compact subset K of € such that every integrable harmonic
function 4 in Q attains its mean value (1/|€2]) [, h dz somewhereon K.

Here dz denotes Lebesgue measure in RY and |2| denotes the volume of Q.
Actually, Goldberg and Randol only considered thecase N = 2.

As an example, any ball © has the property (R), with K = {the center},
whereas, as we shall see, (R) admits e.g. no domains having ‘corners on the
boundary (at least not in two dimensions).
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A related property of adomain Q ¢ RY isthe following

(QD) There exists asigned measure i with compact support in €2 such that

/thx:/hd,u (1.1)

for every integrable harmonic function 4 in €.

Let uscall adomain 2 asin (1.1) aquadrature domain for the measure . If (Q D)
holds for some p» we simply say that 2 is a quadrature domain, or, shorter, Q isa
QD. Other definitions of ‘quadrature domain’ are also in use, but for the present
paper we shall stick to the above one.

An apparently stronger property of Q is

(PQD) (1.1) holds for some positive measure . (with compact support in ).

We write Q isaPQD if (PQD) holds.

In this paper we prove that the property (PQD) is equivalent to (R). We also
show that any domain whose boundary consists of finitely many real analytic
hypersurfaces (without singularities) is a PQD. These two results are not hard.

Westrongly expectthat also (D) and (PQ D) areequivaent (i.e. that (Q D) =
(PQD)), but this we have not been able to prove (in full generality). However,
we do have some interesting partial results, e.g. that (QD) = (PQD) holds for
domains which satisfy a weak additional condition, like

(PAI) every positive harmonic function in €2 is the pointwise limit of a sequence
of integrable positive harmonic functions

(or the still weaker condition (2.6) below).

In two dimensions, a complete geometric description (or classification) of all
QD:s has been given by one of the authors [19, 20]. From this one can check off
(PAI) and infer that (QD) = (PQD) indeed holds when N = 2. The above
mentioned classification is a quite hard result, but if one is willing to assume in
advance that €2 is finitely connected (when N = 2) then one can manage with
simpler methods, and in the present paper we give basically complete proofs for
this case. Let us state the complete answer in the simply connected case:

Let Q C R? be a bounded simply connected domain, and let f: B(0,1) —
Q2 be any Riemann mapping function, B(0, 1) denoting the unit disc. Then the
properties (R), (QD), (PQD) for Q are all equivalent to the property that f
extends analytically to some neighbourhood of B(0, 1) (the closed disc).
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Note that the above property allows certain singularities of 92, namely inward
cusps (corresponding to simple zeros of f’ on 9B(0,1)) and double points (f
taking the same value at two different pointson 9B(0, 1)).

2. Basic Results

Throughout the paper 2 denotesabounded domaininRY | N > 2. Let usintroduce
some notation

H(Q) = {h:Q — R, h isharmonic},

HILYQ) = {h € H(Q): hisintegrable with respect
to Lebesgue measure},

HP(Q) ={he€H(Q):h>0}
HPLYQ) = HP(Q) N HLY(R).

In integrals (with respect to Lebesgue measure) Lebesgue measure is denoted
dz, or (intwo dimensions) dA, or isomitted. It is convenient also to have anotation
for the mean value of afunction h € HL(2)

MIh] = ﬁ/ﬁhdx.

B(a,r) denotesthe open ball with center a € RY and radiusr > 0, §, denotesthe
Dirac measure at the point a € RV, § = 4.

Thespace H () isnaturally equipped with thetopol ogy of uniform convergence
on compact sets. The notion of a QD has a simple interpretation in terms of this
topology.

PROPOSITION 2.1. Q2 isa QD if and only if the functional M : HL'(Q) — Ris
continuous with respect to uniform convergence on compact sets. More precisely,
given a compact K C € the following two assertions are equivalent

(i) there exists a signed measure ;. with suppp, C K such that M[h] = [ hdu
for all h € HLY(Q);
(i) there exists a constant C such that M[h] < C supy || for all h € HLY(9).

Proof. (i)=(ii) is obvious and (ii)=-(i) follows by standard applications of the
Hahn—Banach and the Riesz representation theorems. O

There are also a number of similar characterizations of the property of being a

PQD.

PROPOSITION 2.2. Given a compact K C £ the following assertions are equiv-
alent
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(i) there exists a positive measure p with suppp C K such that M[h] = [ hdu
for all h € HLY(Q);
(i) M[h] < supy || for all h € HLY(R);
(iii) M[h] < supg hfor all h € HLY(Q);
(iv) there exists a constant C such that M[h] < C supy h for all h € HLY(Q);
(v) h>00on K = MI[h] > Ofor h € HLY(Q).

Moreover, the assertion
(vi) every h € HLY(9) attainsits mean value M [h] on K
implies (i)—(v), and if K is connected (i)—(Vv) imply (vi).

Proof. The proof only usesthat M is alinear functional on HL(Q) and that
1€ HLYQ), M1 = 1. We first prove (i) (iii) < (iv), then (v)=(iii)=(i)=(v)
and finally that (vi) implies (iii) and that (iii) implies (vi) if K is connected.

(i)=(iii): Set a = infx h, B = sup, h and apply (ii) to h — (a + B)/2. This
gives M[h — (o + $)/2] < (8 — @)/2, 1.e. M[h] < B.

(iif)=(ii): Obvious.

(iif)=(iv): Obvious.

(iv)=-(iii): Choosing h = +1givesC = 1.

(V)=(iii): Apply (v) to (supx h) — h.

(iii)=(i): (iii) says that the functional M on HL(Q) is majorized by the
sublinear functional p(h) = supg h. It then follows from oneversion [5], Theorem
11.3.10, p. 62 of the Hahn—Banachtheoremthat M extendsto alinear functional L :
C(K) — R also majorized by p. (Strictly speaking, the ‘embedding’ HL(Q) —
C(K) is not always injective, but the Hahn—Banach ‘extension’ works anyway.)
Then L is a positive functional (since L(h) < p(h) < 0if A < 0on K) and an
application of the Riesz representation theorem gives the desired measure i > 0.

(i)=-(v): Obvious.

(vi)=(iii): Obvious.

(iii)=-(vi) if K is connected: Applying (iii) to +h givesinfx h < M[h] <
supy h andsince K isconnected 4 attainsall valuesintheinterval [inf i h, Supy h|
on K. O

NOTE. For any domain 2 and any subset K C Q let Cx (possibly = +o0) denote
the best constant in the estimate

MT[h] < Ck sup |h| foral h e HLY(R).
K

Thenl < Ck < +oo and, by the abovetwo propositions, 2 isaQD iff Cx < 400
for some compact K C 2 and Q2 isaPQD iff C'x = 1 for some compact K C Q.
Clearly C'x decreases(in the nonstrict sense) as K increases, and the main question
for this paper iswhether C'x < +oco for some compact K impliesthat Cx = 1for
some larger, but still compact, K. (Notethat Co = 1.)
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We now give an example (formulated as a proposition) which showsthe drastic
difference beween having a signed, respectively having a positive, measure . in a
quadrature identity (1.1). Basically, the example says that quadrature domains for
signed measures with support in any given small ball B(0,r) are ‘dense’ in the
set of all domains, whereas quadrature domainsfor positive measures with support
in B(0, r) are subject to severe geometrical restrictions. (They are essentially ball
shaped.) It follows that even if a QD is also a PQD, the support of the measure in
general has to be tremendously enlarged in order to get a representation in terms
of a positive measure.

PROPOSITION 2.3. (i) Let N = 2, let » > 0 and ¢ > 0 be arbitrarily small and
let D be any bounded domain containing B(0, ) and with 9D consisting of finitely
many disjoint analytic Jordan curves. Then there exists a univalent function ¢ in
D with |p(z) — z| < e for z € D suchthat Q = (D) is a quadrature domain for
a signed measure with supportin B(0, ).

(ii) Let N > 2 and let 2 be a quadrature domain for a positive measure with
supportin B(0,r). Define R > Oby |2| = |B(0, R)|. Then,if R > 2r thefollowing
holds

B(O,LR—r)cQcC B(O,R+r);

RN\ Q is connected;

00 = (RN \Q) isareal analytic hypersurface;

for any z € 01, theinward normal of 90 at z intersects B(0,r).

Proof of (i). We prove (i) only in the case D is simply connected. The proof in
the multiply connected caseis givenin [8]. Let ¢ : B(0,1) — D be a conformal
map with )(0) = 0 and let p(z) be a polynomial approximating ) uniformly on
B(0,1), sufficiently closely sothat p isinjectiveon B(0, 1), and satisfying p(0) = 0
(» may e.g. beatruncation of ¢:s Taylor seriesat 0). Then Q2 = p(B(0, 1)) hasthe
desired property, with p = poty~1 : D — Q the mapping function in the statement
of (i).

Indeed, if m is the degree of p it is well-known [1, 3, 24] (and easy to check)
that an identity (for suitable a; € C)

m—1
/ fda=3 a;f9(0) (2.1)
Q =0

holdsfor all f analyticin Q and (say) smooth up to 992. If « isharmonic in Q and
smaooth up to 952 then we may apply (2.1) with f = u + iv, where v isaharmonic
conjugate of u. Since f()(0) = 2(d7u/d27)(0) for j > 1, taking real partsof (2.1)
with this f gives

m—1 83u
/Q wdA = agu(0) + 2 le Re(aja—zj(O)> : 2.2)
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(ao is necessarily real). The right member of (2.2) isadistribution, with support at
the origin, acting on «. By moallifying this distribution with a radially symmetric
test function (with support in B(0, 7)) one gets a signed measure ;. supported in
B(0, r) such that

/udA:/ud,u
Q

holds for all u as above, hence, by approximation, for al u € HL(1).

Proof of (ii). It follows from the resultsin [7, 9, 18] that when R > 6r there
exists a unique quadrature domain Q for . > 0 (when suppp € B(0,r) and
Jdu = |B(0, R)|) and that 2 has the three last of the stated properties. Later [14,
15, 22], the constant 6 above was improved to 2 (which is best possible), and also
the first property was proved [22]. O

The following theorem, although quite simple, is our basic result on the impli-
cation (QD) = (PQD).

THEOREM 2.4. Supposethat 2 isa QD and that moreover HP(Q) C L'(Q), or
even that

HP(Q)NHLYQ) c L}(Q), (2.3)

(closurewith respect to the topol ogy of uniform convergence on compactsof H((2)).
Then Q2 isa PQD.

Proof. We shall argue by contradiction. Assume that €2 is not a PQD. Choose
a regular exhaustion {Q,}°°, of Q, i.e. Q, C Qu1,0Q, smooth for all
n,Us>1 2, = Q. Pick apoint a € Q4. By (v) of Proposition 2.2 there exists,
for every n, hy, € HLY(Q) with hy, > 0inQy,, [ by, < 0. Then hy,(a) > 0and we
may assumethat i, (a) = 1.

By Harnack’s principle there existsa subsequence, which wedenoteagain { 1, },
which convergesin H(Q2), say h,, — h. (Strictly speaking, Harnack givesfor each
fixed m asubsequencewhich convergesin H (£2,,), but then one appliesthe Cantor

diagonalization procedure.) Clearly h € HP(2) N HL1(Q2) and h(a) = 1. Thus
0< / h < +00. (2.9
Q
On the other hand (since [, hy, < 0),

im / hyy < 0. 2.5)
Q
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Now, if (2.3) holds, then h € HL*(Q) and if moreover Q is a QD, then by
Proposition 2.1 we have

/h:lim/hn.
Q Q

This contradicts (2.4), (2.5). |

Let us augment Theorem 2.4 alittle by using the following observation.
LEMMA 25. If Q isa QD then HPL(Q) isclosed in H(f).

Proof. Assumeh,, — h,h, € HPLY(Q),h € H(Q). Thenclearly h > 0, and
by Fatou’'slemma and Proposition 2.1

/h< Ii_m/hn<Oli_mwplhn|
Q n—00 .J n—oo K

< Csup |h| < 400,
K

for some K C Q. Henceh € HPL(Q). O

Now, since (by definition) H PLY(Q) ¢ HP(Q)NHLY(Q) C HP(N), therequire-
ment (2.3) isequivalent tothat actually H PLY(Q2) = HP(Q)NH L(2). Therefore,
in order to establish (2.3) when Q isaQD it is, in view of Lemma2.5, enough (and
necessary) to show that

HPLYQ)isdensein HP(Q) N HLY(Q), (2.6)

i.e. that any positive harmonic function which can be approximated, uniformly on
compacts, by integrable harmonic functions can be approximated al so by integrable
positive harmonic functions (uniformly on compacts or, which is equivalent on
HP(Q), pointwise). We do not know of any domain whatsoever not having this
property (2.6).

3. Balayage onto Analytic Hypersurface

Let © denote a bounded domain in RY whose boundary consists of finitely many
real analytic hypersurfaces. No singular points are allowed in 052, so in the neigh-
bourhood of each point y € 992, 92 isthe level surface of areal analytic function
whose gradient does not vanish at y.
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THEOREM 3.1. With Q asabove, let f bereal analytic on a heighbourhood of 92
and real-valued, with f(y) > Ofor y € 0. Let o denote surface measure on 092.
Then the measure fo is the balayage of a bounded positive measure 4, satisfying
supp i C €2, onto 9€2. Equivalently,

[ o = /hd,u, 3.1)

holds for every h € C(£) that is harmonicin Q.

REMARKS. (1) Inview of known approximation theorems (and the regularity of
090), (3.1) isequivalent to the formally weaker requirement that the corresponding
identity holds for 2 harmonic on a neighbourhood of €, or even for A of the form
h(z) = E(z —y),y & Q, where E is the fundamental solution for A. The latter
condition can be restated as: the Newtonian potentials of 1 and f do coincide
outside €.

(2) We emphasize that we use supp 1 to denote support in the sense of Schwartz
distributions, so this set is closed.

(3) Asin Proposition 2.1, Equation (3.1) is equivalent to the estimate

‘/mhfdcr

where K = supp . Some related results, with more explicit estimates and with
emphasis on questions of harmonic duality (i.e., when both f and h are harmonic),
have recently (and independently) been proved by E. L. Stout. See in particular
[26] Theorems 1 and 2.

Proof. By the Cauchy—Kovalevskayatheorem, thereis, in some neighbourhood
N of 99, a(unique) solution to theinitial value problem

< C suplhl,
K

Au=0 on N, (3.2
u=0 on 09, (3.3
Ou =f on 99, (3.4
on

where 9/0n denotes the inward-directed normal derivative. The following is a
simple deduction from (3.2, 3.3, 3.4) whose proof we |leave to the reader (cf. [6],
Lemma?2).

PROPOSITION 3.2. Thereis an open set W C 2 (a neighbourhood of 9€2) and
¢ > 0 such that

(i) w isharmonic and positive on W,
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(ii) 99 C oW,
(iii) u(z) = efor z € I' := (OW)\(092),
(iv) grad « vanishesnowhereon I (so, IV isreal analytic).

REMARK. We can achieve(iv) by changing e to aneighbouring valueif necessary.

We can now easily complete the proof of Theorem 3.1. As already remarked we
may, in proving (3.1), assume A is harmonic on a neighbourhood of 2. Now,
denating 052 by T" we have, applying Green’s identity to W

ou oh
/W(hAu —ulAh)dz = —/ (ha—n — ua—> do

and the left sideis 0. Hence

ou oh
h—do = —do.
ow  On awuan 7

ou ou oh oh
/Fh%d [ h5ido = [uztdo— [ uGid (3.5)
The first integral on the right vanishes (because of (3.3)) and the second is
e [p/(0h/0n) do which also vanishes, since k is harmonic in the domain bounded
by T”. Thus, from (3.4),

/hf do :/ %0 = [ hdg, (3.6)
r I on

where 1 isthe measure (0u/dn) do on T, Thisis non-negative, and supported on
the compact subset I of Q2. Thetheorem is proved. O

THEOREM 3.3. With Q asabove, |let g be a hon-negative integrable function on a
neighbourhood of €2, which is real-analytic on some neighbourhood of 9. Then,
there is a positive bounded measure i, on 2 with supp . C Q such that

/th dx = /hd,u (3.7

holds for every h € HL*(Q) or, in other terms, 1. is equigravitational with the
measure g dx on €.

Proof. Again, thereisno loss of generality if we prove (3.7) under the assump-
tion that / is harmonic on aneighbourhood of Q. Let v denote the (unique) solution
to the Dirichlet problem

Av =g on €, (3.8)
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v=0 on 9N. 3.9

Since the theorem is trivially true if ¢ vanishesidentically on a neighbourhood of
02, we may assume this is not the case. Then (3.8), (3.9) imply v(z) < 0 for
x € €.

By the analyticity theorem for elliptic equations, v extends real analytically to
some neighbourhood of 9€2. The Hopf maximum principle shows (0v/dn) < 0
on 052. Now, by Green'sidentity, again denoting 052 by T,

/hAvdz—/vAhda:_ /h do +/U—d0 (3.10)
Q

The second integral on the right vanishes because of (3.9), so (3.10) reducesto

/ hgdz = — / h—dcr (3.11)

Now, locally T' has a representation as {y : ¢(y) = 0} for some real-analytic ¢
with non-vanishing gradient. We may choose ¢ to be positive outside €2, so

ov grad
on ~ 0% gragp

which showsthat —(9v/9dn), coincideson I" with afunction f that isreal analytic
on aneighbourhood of T, also it is strictly positive, so Theorem 3.1 is applicable,
and shows the right hand term in (3.11) can be written [ 4 du for some positive
bounded measure with compact support in .

Taking g = 1 in Theorem 3.3 we obtain in particular

COROLLARY 3.4. Any bounded domaininR" whose boundary consistsof finitely
many real analytic hypersurfacesis a PQD. O

4, TheTwo-Dimensional Problem

THEOREM 4.1. Let Q C R? = C be a bounded domain whose boundary consists
of finitely many continua. Then, the following are equivalent

(i) QisaqQD.

(i) © admitsa Schwarzfunction S(z), i.e. there exists S holomorphic and single-
valued outside a compact subset of 2, continuously extendable to 952, with
S(z) =z onoq.

(iii) Let D denote a domain conformally equivalent to €2 and bounded by analytic
Jordan curves (it is a well-known elementary consequence of the Riemann
mapping theorem that such D exist). Then, the conformal map of D on €2
extends analytically to a neighbourhood of D.
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(iv) QisaPQD.

NOTE. By definition, a continuum is a closed connected set consisting of more
than one point.

REMARK. With 9 assumed a priori to be smooth of class C'? and working with
analytic test functions instead of harmonic ones, the equivalence between (i) and
(iii) has also been proved by P. Zorn [28], Theorem IV.3. Actually, Zorn is mainly
concerned with questionsin several complex variablesand he obtains, in particular,
versions of the implications (iii)=-(i) and (i)=-(iii) for pseudoconvex domainsin
CV [28], Theorems|1.14 and IV.7.

Proof. (i)=-(ii) iswell-known[24]. Seealso Lemmab5.1 (below) and the remark
following it.

(it)=-(iii) (also well-known) — here are details. Denote the conformal map by
z = () for € D. Then

S(¢(¢)) =»((), ¢e€dD.

Hence S o ¢ + ¢ isrea on 9D, so by the Schwarz principle of reflection it is
analytically continuable to a neighbourhood of D. Likewise, S o ¢ — ¢ is pure
imaginary and continuable to a neighbourhood of D. Thus, the sameis true of

2p=(Sop+¢)—(Sop—y).

(iii)=-(iv) We shall show there existsa positive measure 1, with compact support
in © such that

/thA: /hdu, 4.1)

forall h € HLY(2), wheredA isareameasure. In view of aknown approximation
theroem of L. I. Hedberg (cf. [25], p. 112) HL>(Q) is dense in HL(Q) (with
respect to the L(£2) topology) under our assumption, so w.l.0.g. we may assume
h bounded in proving (4.1).

Now,

/ hdA = / hie (¢)[2dA 4.2)

and, in view of assumption (iii), |¢'|? is real analytic on a neighbourhood of D.
Therefore, since h o ¢ € HL* (D), by Theorem 3.3 the right side of (4.2) equals
J(h o ) dv for some positive measure v with compact support in D, which also
can be written as [ A d(v o ¢) where 1) is the conformal map inverse to ¢. Since
the support of v o 1) iscompact in 2, we see that (iv) holds.

(iv)=-(i) istrivial, and the theorem is proven. O
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In general, a QD may be infinitely connected. However, the main result of [19,
20] showsthat this can occur only in arather trivial way, namely asin thefollowing
example.

EXAMPLE. LetQy ={z € C:|z| <1},Q={2€C:1<|z| < 2}. ThenQ;
is a quadrature domain for p1 = 7 and €2, is a quadrature domain for a measure
w2 With constant density (with respect to arc length) on the circle |z| = p, for a
suitablel < p < 2. Set u = p1 + po.

Then Q; U Q5 fails to be a quadrature domain just because it is disconnected,
but for any nonempty relatively open subset U of {|z| = 1},

Q=QURUU

isaquadrature domain for p. Clearly 2 may be infinitely connected.

Note, however, that ) always contains a finitely connected quadrature domain
for u, namely D = Q1UQ, U1, where I isany openinterval of {|z| = 1} contained
inU.

Now, in the general case, [20], Theorem 1.7 shows that the following holds.

LEMMA 4.2. Let © C R? be a quadrature domain for a signed measure 1. Then
Q contains a finitely connected quadrature domain for .

An dternative way of establishing the main implication (i)=-(iv) in Theorem 4.1
has been suggested to one of the authors by D. Khavinson. By combining this
approach with Lemma4.2 a proof of (i)=-(iv) without any extra assumptionson 2
is obtained.

THEOREM 4.3. In two dimensions any QD is a PQD.

Proof. Let Q C R? be aquadrature domain for 11, asigned measure. In order to
show that Q2 isaPQD weneed, by Theorem 2.4, only to show that H P(Q) C L(1).

By Lemma 4.2 there exists a finitely connected quadrature domain D C € for
p. Then HP(Q)|p € HP(D) and |2\D| = 0. Thus it is enough to show that
HP(D) c LY(D), and by remarksafter Theorem 2.4 it is even enoughto show that
an approximation statement like (2.6), or the slightly stronger one (PAI) (in Sect.
1), holds for D. Thus, to complete the proof it is enough to prove the following
lemma

LEMMA 4.4. (PAI) holds for any finitely connected, bounded domain in R?.

Proof of Lemma 4.4. Theidea of D. Khavinson is to prove a statement which
is stronger than (P AT), but which is conformally invariant. Let D be the domain
in guestion. We will have to distinguish between those components of 9D which
are continua and those which are singleton sets. We are going to prove that
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(PAB) every h € HP(D) can be approximated (uniformly on compacts) by
functions h,, € HP(D) which are bounded in a neighbourhood of each
continuum component of 9D.

Notethat since afunction which is harmonic and positivein apunctured neighbour-
hood of a point has at most a logarithmic singularity there, al the approximating
functionsh,, aboveareintegrable. Therefore (PAB) implies (P AI). Also notethat
the property of being a singleton component of 9D is preserved under conformal
mappings, so the statement (P AB) isindeed conformally invariant.

By the above discussion we need only to prove (PAB) for domains D such
that each component of 9D is either a regular analytic curve or consists of a
single point. As is well known (cf. [4, 10, 11]) every positive function on any
domainisthe pointwise limit of a sequence, each element of whichisafinitelinear
combination of Martin (or minimal) functions, with positive coefficients. Now,
under the above assumptions on D it is well-known that each Martin function is
analytically continuable across each boundary point, with one exception. Let us
denote a Martin function by v, and the exceptional boundary point by (.

If the boundary component to which ¢ belongs consists of just ¢, then v isitself
allowed in the approximation (PAB).

In the opposite case 9D is an analytic curve, with D on just one side, near
¢ € 0D and v simply is a Poisson kernel with singularity at . If we consider the
translated domain D, = D + cw, wherew isthe unit vector directed along theinner
normal to D at ¢, ande > Oissufficiently small, then v isharmonic and bounded on
D, and bounded below there by aconstant —C'(¢), where C'(¢) > 0and C(e) — 0
ase \, 0. Thisisthe same as saying that v.(z) := v(z + ew) + C(g) isharmonic,
bounded and positive on D. Clearly v.(z) — v(z) for z € D. Thus, each Martin
function in D has the property of being approximable, uniformly on compact sets
(in view of Harnack’s theorem), by a sequence of individually bounded positive
harmonic functions, and this implies, in view of the preceeding discussion, that €2
has the property (PAB). O

5. TheHigher Dimensional Case

In thisfinal section we shall find some geometrical conditions on 92 which ensure
HP(Q) C LY(Q) (or (2.6)) when Q isaQD.

Let E(z) denotethe usual Newtoniankernel sothat —AE = § (Dirac measure).
If 1 isasigned measure with compact support its Newtonian potential is

Ut(a) = [ B - y) duly).
If Q@ c RY wewrite

UQ(a:):/QE(x—y)dy.
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Thus —AU* = p, —AU*? = xq.
LetQ c RV beany bounded domain. Thenthe Green'sfunction G (z, y) (z,y €
Q) for © can be defined as

G(z,y) = E(x —y) — H(z,y) (5.1)

where, for fixed y € Q, 2z — H(z,y) isthe largest harmonic function in € which
is< E(x —y) (cf. [4,11]). Then G > 0in 2 x . We write

G'(x) = [ Gla.y) duy)

6a) = [ Glay)dy

G*(z) = G(z,a) = G*(x),
if suppu C Q,a € Q.
LEMMA5.1. Let @ ¢ RN be a bounded domain, ;. a signed measure with
suppp C Q and set w = U# — U2, Then Q is a quadrature domain for 4 if
and only if

u=|gradu| =0 on RV\Q. (5.2)
(Note that « is continuously differentiable outside supp 1+). When this is the case
we also have

u=G' -G in Q.

Proof. The Equation (5.2) is exactly the statement that the quadrature identity
(1.1) holdsfor al functions h(x) = E(x — y) and h(z) = D;E(x — y) (D; any
first order derivative) with y € RV \Q. Note that b € HL(£). Since the linear
span of all these functionsis known [18], Lemma 7.3, to be densein H L(Q) the
first assertion of the lemma follows.

When 2 is aquadrature domain for i we have

[ Ha@w i) = [ Hy)d,

(since H(-,y) € HLY(Q) for any y € Q). Hence G* — G = U* — U* by (5.1),
proving the final assertion. O

REMARK. Thefunction u is (when  is a QD) sometimes called the * (modified)
Schwarz potential’ for €2. It is the unique compactly supported solution to Au =
xa — 4. Intwo dimensionsit isrelated to the Schwarz function S(z) for Q2 (or 992)

by
S(z) = z — 4(0u/0z),
for z € Q\supp .
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LEMMA 5.2. Let O C RN bea bounded domain, a € Q. If
GG < C < 40 (5.3)

in a neighbourhood of 92 in 2, then HP(Q) C LY(9).

Proof. The lemma is naturally connected with the Martin theory for positive
harmonic functions, but we prefer to give a short direct proof.

Choose aregular exhaustion {€2,,}5°; of Q witha € Q4. Forany h € HP(Q),
let h,, be the smallest positive superharmonic function in  which is > h on Q,,

(i.e. h, isthe ‘reduction of 4 over Q,,’ in potential theoretic language [4, 11]).
Then h,, has the representation

ha(w) = [ Glo,y) dmaly) (@ € ), 54
wheren,, = —Ah,, isapositive measure with support on 9€2,,.

If (5.3) holdsand if n is sufficiently large, integration of (5.4) gives (using also
(5.4)forz =a)

[ ntorde = [ [ G Gay) da()

< [ Glay) dnay)
= Chy(a) = Ch(a) < +o0.
Thush € LY(Q) by Fatou’'slemma. O

COROLLARY 5.3. Let © be a QD for a signed measure 1 and let v = U# — U
asinLemmab.l. If

>C > —o0, (5.5)

for z € Q in a neighbourhood of 92, then HP(Q) ¢ L'(Q) (and hence Q isa
PQD by Theorem 2.4).

Proof. By Lemma 5.2 it is enough to prove that G/G® is bounded in a
neighbourhood of 0. But (Lemma5.1)

GQ_G” n
e

and it is easy to see (cf. [4], 1.VI1.3c) that G*/G* is bounded in a neighbourhood
of 99). O
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The normal case, when Q isa QD, isthat the function u = U* — U*? becomes
positive inside (2, at least near 9. (Note that u = |gradu| = 0 on RV \Q and
that Au = g in aneighbourhood of 9€2.) In this case (5.5) is trivialy satisfied.
However, there are examples of QD:s having singular points on the boundary
behind which « becomes negative. The only example of this sort known to usis
when N = 2 and 952 hasa‘generic’ inward pointing cusp. See[21, 23].

In any case, the fact that v = |gradu| = 0 on RV \(, Au is bounded in a
neighbourhood of 952, givesrise to the estimate

()| < Co(x)? '0‘%)

(z € Q closeto 99), when  isa QD. Here §(z) = dist(z, RV \Q). Inserting this
into (5.5) gives

COROLLARY 5.4. Let €2 be a QD and assume that

Gla,z) > Co(x)? Iogri),

for 2 € Q closeto 9Q. Then HP(Q) c LY(Q2) and Q isa PQD.

REMARK. Inview of (2.6), in order to show that HP(2) ¢ L(2) when Q isa
QD itisenoughto show that every Martin function isintegrable (or eventhat every
such function can be approximated by functions in HPL(Q)). It is known [11]
(cf. aso the proof of Lemma 5.2 above) that every Martin function is the limit of
G(z,zy)/G(a, z,) for somesequence{z,} C Q tendingto 9. (Then {z,, } tends
to a‘Martin boundary point’). Therefore, when Q isaQD, (5.3) in Lemma5.2 can
be replaced by the weaker statement that for each sequence {xz,,} C Q tendingto a
Martin boundary point, G*(z,,)/G®(x,) is bounded from above (with the bound
allowed to depend on {z,, }).

Itfollowsthat in Corollaries 5.3 and 5.4 the bounds can bereplaced by individual
bounds for each sequence {z,} tending to a Martin boundary point, with the
constant C' depending on the sequence.

Even with this remark taken into account it seems that the assumption, in
Corollary 5.4, that Q is a QD is not efficiently exploited. Let us for example
consider domains such that © and 992 are locally given by a Lipschitz function
with Lipschitz constant at most k. Let o = «(1)) denote the so-called maximal
order of barriers [12, 16]. This means that « is the order of homogeneity of any
function harmonic in a circular cone with (half) aperture 1) and vanishing on the
boundary of the cone. It is known that «(v)) is a strictly decreasing function of
¢ for 0 < ¢ < m with limy_,0a(¢p) = +o0, limy_,- a(yp) = 0 (if N > 3) and
a(r/2) = 1. For N = 2, a(y) = w/(2¢).
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According to [2, 13] (cf. also [27]), we have for any Lipschitz domain as above
G(z,a) > Ci(x)?,

with o = « (arctan(1/k)). Thus Corollary 5.4 appliesif «(arctan(1/k)) < 2.

On the other hand it is shown in [2] that without assuming that Q is a QD,
HP(Q) c LY(Q) holds when a(arctan(1/k)) < 2. Thus the assumption that
isa QD does not give us anything extra in this case. Note by the way that in two
dimensions, the condition «(arctan(1/k)) < 2 becomes k£ < 1, which basically
means that corners with interior angle > /2 are allowed.
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