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ON APPROXIMATION BY HARMONIC VECTOR FIELDS

BJoRN GUSTAFSSON AND DMITRY KHAVINSON*

1. Introduction.

Let € be a finitely connected region in C, bounded by simple analytic
curves. Let A(Q) denote the Banach algebra of functions analytic in © and
continuous in  with the norm

1l oo = 11l = sup [f(2)]
z€Q
The analytic content A\(R?) introduced in [4], [6, 7] is defined by
(1.1) AQ) = inf 12 = ¢lloo -

H. Alexander [1] and the second author [6] have shown that A(Q) can be
estimated in terms of simple geometric quantities V() = the area of { and
P(0Q) = the perimeter of 2. Namely,

(1.2) AQ) < (_V—Srﬂ-—))m and A\(Q) > 2 IY(SQ)-

One of the nice upshots of (1.2) is that it implies the isoperimetric inequality
P? > 47V

(see [4] for further discussion and references). In this paper, we are mak-
ing an attempt to extend some of the two-dimensional results to higher
dimensions. To do this, note that (1.1) can be rewritten in the form

M) = inf ||z — @]l -
() = inf I - 7l
*This work was partly supported by a grant from the National Science Foundation.
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Now a smooth up to the boundary anti-analytic function ¢ = f; +if, can
be identified with the harmonic vector field f = (f1, f2) defined by the

conditions

... _Ofi  Ofs
divf:= B0, + B2y = 0;
(1.3)
._09fs O0h _
curl f: = 50, Ozg 0.

Conversely, every vector field u satisfying (1.3) gives rise to an anti-analytic
function ¢ = fi + ifs (cf. [11, Ch. IIL, §1]). Thus, if we denote by A(Q)
the closure of smooth harmonic vector fields (1.3) with respect to the norm

(14) [l = sup VI @) + f2(2), @ = (21,22)

we arrive at an equivalent definition for A(Q) :

(15 @) = int e fll.

where x denotes the identity vector field z = (x1,z2), (2 = z; + i),

(1.6) Iz = flloo = sup /(21 ~ f1)? + (22 — f2)?
€N

and since (z1 — f1)? + (22 — f2)? is subharmonic in ©, the supremum in
(1.6) can be restricted to the boundary 9.

Note that if Q is simply connected, A(?) coincides with the space
of harmonic gradients B(f2) obtained by completion of {f = (fi,f2) =
grad u: u € H(Q) N C* ()} with respect to the norm (1.4). Here, H(2) =
{u : u is a harmonic in  and continuous in Q}. For multiply-connected €,
B(©) G A(Q).)

Now the definition (1.5) easily extends to higher dimensions and we
set for a smoothly bounded domain Q C RY,

(17 M) = inf e = fll.
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where the space of harmonic vector fields A(?) is defined similarly to (1.3),
(1.4), as consisting of all vector fieldsin Q, f = (fi,..., fn) € CH{INC(Q)
satisfying

(1.8) divf =0 and curl f =0.

This last equation means

2L 2 =0, forall jk=1,...,N.

. . . N 1/2
A(Q) is equipped with the norm [[f]| ., = sup.eq (21 fi(x)z) . Note
that all the components f; of f € A() are harmonic in € (cf. [11]). The
space B(f) of harmonic gradients is defined accordingly. Again, B(Q) &
A(f2) unless Q is simply connected.

Let us outline briefly the contents of the paper. In section 2, we extend
the upper estimate (1.2) of A(Q) to RY, N > 3. Unfortunately, although
we obtain along the way a sharp N-dimensional analogue of the Ahlfors-
Beurling estimate (cf. [3], [4]) of the max “grad uQHOO of the gravitational

potential u? of €2, in higher dimensions this route does not lead to a sharp
estimate for A\(Q2) as it does for N = 2 (cf. [4]). The desired estimate is
stated as Conjecture 2.2.

In section 3, we extend the lower estimate (1.2) to RY, N > 3 and
consider the problem of finding all extremal domains Q for which A(€)
assumes its lower bound (NV(Q)/P(8)-Thm. 3.1). Unfortunately, this
problem remains unsolved even for N = 2. In Theorem 3.2 we formulate
a number of equivalent conditions satisfied by extremal domains extending
the two-dimensional results from [7] and [8]. We conjecture that the only
extremal domains are either balls or spherical shells, and show that the only
extremal domains topologically equivalent to a ball are indeed balls.

A few words concerning the notation: Q C RY always stands for a
finitely connected domain with a smooth, even real analytic boundary, con-
sisting of n + 1 pieces I';, dQ = U7 T';. Also, we agree on having I'g to
designate the outer boundary component. V is the Lebesgue measure in
RY. & denotes the Lebesgue measure on 9, and n(ﬁ') is the outer unit
normal vector to Q. Hopefully avoiding ambiguity, we omit the arrow “—”
on the top of vectors in order for the formulae to be more readable, and
try instead to specify each time precisely which quantities we are dealing
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with: scalar or vector. |f| denotes the magnitude of a vector f. For a con-
tinuous vector function f we use the norm ||f]| = ||fllc = suPzean [f(2)]
unless specified otherwise. M (9Q) is the Banach space of all vector-valued
measures ft = (ft1,... , 4N ), regarded as a dual space of the Banach space
of all continuous vector fields f = (f1,..., f.) on Q with the norm || f|
via the obvious pairing

u(f)=/mf-du=i/anfiduf.

2. Upper Estimates for A(Q2).
Theorem 2.1. Let V(Q) denote the volume of ) C RN, N > 2. Then

2N -2

_ 1-1/N
25T ()

NI+L/NT (%) T (2N—1>1"1/N

V(N

(2.1) AQ) <

Proof. For the sake of brevity, we restrict ourselves to the case N > 3. The
vector field z + N grad v (z) is in A(Q), where, as usual,

dV(y)

uQ(x)=C'N 5

|z -y

is the gravitational potential of 2, Cy = 1/(N = 2)wn-1, and wy—1 =
2xN/2 [T(N/2) is the surface area of the unit sphere in RY. (In fact, this
vector field belongs even to B(Q)-cf. §1.) So, Auf = div grad u? =
{_1’ in {2 Recall that (cf. (1.7))
_ . Recall that (cf. (1.
0, mRV\Q

N = ot o= F@l = jnf o= f@)lan,

since |t — f@))? = Z{V(m, — fi(2))? is a subharmonic function in 2, and
therefore attains its maximum on the boundary 62 of Q. Hence, by the
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Hahn-Banach duality we have

A(Q) = sup /.TJ - dp(z)
HEM(89),u LA(R)
flefl<t

= sup {—N/grad u® -d,u,} < Nsup |grad uﬂ‘
weM(89) a0
nLAR), lluli<1
_ NI(N/2) y—z
(2.2) = o Nz max /Qly—:clN dy| -

To justify the last equality note that u® is harmonic in RY \Q continuously
differentiable in R¥, vanishes at infinity, and so Igrad uQ] is subharmonic
and continuous in RN \ . Hence, it assumes 1ts maximum in RY \ Q on
9. On the other hand, components of grad u? are harmonic in 2, and
therefore Igrad uﬂl is subharmonic in € as well. So, in fact

QI _

rgl%x Igrad u”| = max |grad uQ| .

The Ahlfors-Beurling Estimate: The proof now reduces to obtaining the

sharp estimate for
. / YT gy
e ly— |

T(N/2)

2.3
(2.3) 2 N/Z zemN

= max |grad u(z)]

in terms of V() which we shall call the Ahlfors-Beurling estimate (cf. [3],
and the discussion in [4]).

Since (2.3) is invariant under translations and rotations, we can as-
sume without loss of generality that the maximum on 02 is assumed at the
origin and that grad u®(0) = a%lun(()). Thus,

NT(N/2 X
(2.4) AQ) < —27%/2—)5\1’ /Q lle y

where the supremum is taken over all domains ' : V(@) = V(@) := V.
Setting ¢(x) = $1|x|_N, we conclude from (2.4) that the supremum in (2.4)
is attained for

(2.5) Q=0 = {z eRY : p(z) >t}
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where t is chosen so that V(2;) = V. Passing to cylindrical coordinates

(z1,7,w), where

(z9,...,25) =1w, w€ SN2 r >0,

dz = N2 dzydr dw,
we can rewrite (2.5) as
Q={zeR: z; > t(a?+rH)N? we V-2

or, U =D;xS""2  where

Dy = {(z1,r): 0<r < (7Nai!M — )12, 0 <2y <47VVDY

Set
S
s S TE)
(2.6) d(¢) =/ p(z) dz = aN_/ ——M-i— dzy dr.
Q D, (zf + TQ)N/Q
Then
(2.7) V(Q) = oy /D rN=2 dz; dr.

Introducing a change of variables in the “meridian plane”

2

r
(z1,7) & (r,8) 1 s = m,
so that 5 )
ds dr = 2> dey dr = -2 4o dr,
0z, (a3 +12)
we have

Dy={(r,s):0<s<1, 0<r <t HNDGN-1_ GNyI/CN=-2)1
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We obtain from (2.6)
o(t) = son [p, sV ds dr
= %aN fol s(N—4)/24=1/(N~1) (sN‘l _ SN)I/(QN—z) ds
= %oth—ll(N—l) fol s(N=3)/2(1 — g)1/(2N-2) g

@8 =B (KR ),

where B(p,q) = Flgfgi(q%) = fol sP~1(1 — )97 ds is Euler’s beta function.

Similarly, from (2.7) it follows that
V() = 59N [fp, =1 R 7"2)2 dr ds
— Loy [f, s ~3/2(1 — )~ 1/2pN=1 dr ds
_ %QN fo 3“3/2(1 _ 8)~1/2t—N/(N—1) (SN—-l _ SN)N/(ZN—2) ds

1
= (2N)—1aNt—N/N—1/ sN=3/2(1 _ g)/(2N=2) g4
0

= (QN)‘laNt—N/(N—l)B (N -1 2N - 1)

2 T 2N-2
Therefore,
1/N —1/N
(29) N1 N (Y= 1, 2N -1 VUN,
Oy 2 2N -2
Substituting (2.9) into (2.8) we obtain from (2.4) that
NT(N/2)
@ < XD )

_ NT(NV/2) <fﬂ)l_lm NUNp (N_ 1 2N - 1>1_1/N L YUN
T ogxN/2 2 2 "N -2

2N-2

o N/2[ (M=1)' 1/N1“(2]{,V12)1_1/N

N1+1/Np(%) NWI’F( )1 1/NF(2N-1)1'1/NV1/N
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1-1/N
NI ()

(2.10) (YN,

1-1/N

9p(2N-1)/2NT (zf\rvz—z

Remark. . We do not know whether estimate (2.1) is sharp for N > 3. For
N = 2 though, it is sharp (cf. [1], [4], [6], [7]). (2.1) becomes

(2.11) M) < v/ Area (Q)/7.

Now (cf. (1.1), (1.2)) since A(Q2) = inf{||z — ¢|| oo ; ¥ is antiholomorphic in 0}
= inf{||z — g|| : g € A(Q)}, equality holds here when {2 is a disk (and only
in that case—cf. [4]). The heart of the matter is that for N = 2 (and only
for N = 2) the extremal domain Q, for the Alfors-Beurling estimate (2.4)
is in fact a ball. For N > 3, € is an axially symmetric solid which comes
“tighter” as N — oo (cf. (2.9)) in contact with the {z : z; = 0}-plane
tangent to it. However, we suspect that the inequality in (2.2) is in fact a
strict inequality and that the extremal domain for A(?) (not max ]grad u® D

among domains with a fixed volume is (similarly to the two-dimensional
case) still a ball. Thus, we propose the following:

Conjecture 2.2.
(2.12) AQ) < 7 2ENTENWV )Y = Rya,

where Ryo (the “volume radius”) denotes the radius of the ball with the
same volume V().

Remark. In fact we have proven a stronger statement, namely that A(Q) =
inf fepa) ||# — fllo » Which is obviously not less than A(Q), still satisfies
(2.1). Therefore, one is tempted to conjecture that the extremal domain
for A;(2) is a ball as well. In this regard, it is natural to ask whether for
“general” (1,

AQ) = CaAr(),  where 0 < Cq < 1.

The question for which domains  does A(Q2) = A1(Q2) is also puzzling. In
addition to all simply connected domains, this equality holds for spherical
shells (see §3), which for N = 2 are not simply connected.
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3. Lower estimates for A((2).

Theorem 3.1.

N V(Q)
(3.1) ) > m)‘,

where P(9Q) = [, do denotes the perimeter of Q. (3.1) is sharp, since it
becomes equality for balls.

Proof. Let f € A(Q). Applying the divergence theorem, we have from (1.8)

o= Ml 2 355 [, 1o= 10> g5 | [ @ 1) -nao
_ 1! o _ NV(Q)
(3.2) - Fom ‘ /Q divia = f) V| = Frpad:

Taking the infimum over all f € A(f2), we obtain (3.1). If Q is a ball of
radius R, say centeied at the origin, then taking f = 0 it is seen that both
sides in (3.1) equal R so the estimate (3.1) is indeed the best possible. [

The question arises whether balls are the only solids for which the
equality (3.1) is attained. As we see shortly, this is not the case; equality
in (3.1) also holds for spherical shells. The following theorem characterizes
the extremal domains for (3.1). For N = 2, a similar characterization has
been obtained in [2].

Theorem 3.2. The following are equivalent:
(i) M) = NV(Q)/P(59)
(ii) There exists g* € B(R) such that

z — An(z) = ¢g*(z) on 09,

where A = ||z — ¢*|| . -

(iii) For any harmonic function v in ) satisfying 2 do = 0 for all com-
pact smooth oriented hypersurfaces S in S the following quadrature
identity holds

1 / 1
— | vdV = ——— vdo.
V() Jo P(0%) Jaq
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(iv) There exists u in C*({2) such that

Au =1 in €
52% = const  on 0%,
u = const  on each component of 9).

For N = 2, the equivalence of (i) - (iii) and (iv) has been independently
observed by I. Marrero [8, 9].

Proof. (i) = (ii). The major step is to establish the existence of g*. For
that purpose, pose a similar extremal problem in the context of the Hilbert
space L?(c). Namely, define

(3.3)  Ax(Q) = inf |l&—glpa, = inf (/aQ[m—ngda)

gEA(Q) geEA(R)

Then, a standard convergence argument shows that there exists a vector
field g* € L?(o) on 9Q such that

A(Q) = ||z — Q*HLZ(G)
and whose harmonic extension to {2 (i.e., a vector field whose components

are harmonic extensions by means, say, of the Poisson integral of compo-
nents of g*) is a harmonic vector field in Q. Also, it is obvious that

(3.4) As() < N(Q)/P(O%).

Applying Jensen’s inequality and the divergence theorem to a given g in
A(Q) we have, similarly to (3.2), (P = P(df2)) that

_ 2 do 12 1/2
=gl = ([ le-olF) P2
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and hence,

NV(Q)
. Ao(Q) > s
(3 6) 2( ) = [P(BQ)]UZ

Now if A(Q2) = 1};2;3)), it follows then from (3.4) that we must have equality

n (3.6). This implies that for g* := the extremal vector field in (3.3) we
must have equality everywhere in (3.5), i.e.,

(3.7 z —g" = An a.e. on 0.

Although a priori g* is only assumed to belong to the L?-closure of A(f)
on 0%, (3.7) together with the smoothness hypothesis imposed on 9 im-
ply that g* is in fact continuous in €2, and (3.7) holds everywhere on ).
Moreover, since for any closed smooth curve v on 99, denoting by 7 the
unit tangent vector to v and by ds the arclength on v, we have by (3.7)

/Y(g*-T)d&‘:L($“An)'TdS=fyx-Td5:0

(cc = 1grad [m!zl) , it follows that g* is in fact a gradient field. This proves
(ii). (Je —g*| =Aon 99, so ||z —g*||.c = A.)
(ii) = (i). Assuming (ii) and writing ¢* = grad ¢*, we have z-n— A =

%’ff on 0f). Therefore, using the divergence theorem, we obtain

= do = / (z - n)do — AP(0) = NV(Q) — AP(0Q).
an

So A = NV(Q)/P(09), and since A = ||z — ¢*||, > AM(Q) > NV(Q)/P(dQ)
(cf. Thm. 3.1), it follows that A = A(Q2), i.e., (i) holds.

Now to show (ii) (iii), fix a function v satisfying the hypothesis
in (iii). Set u = 12—1{,—, Au = 1 and, as above, let ¥* € H(2) N C(Q) be
the harmonic function such that grad ¢¥* = ¢g* in (ii). By applying Green’s
formula we have

38)/vdV /vAu—uAvdV /vAu——) (u— 2] av
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_ d(u —y*/N) v

B /ag[v on (u - N %] dor.
(ii) implies that

O(u—y*/N) P* L,z gF A
(3.9) ————(,.)n——grad(u—-ﬁ) n_(ﬁ—ﬁ)'n_ﬁ'
Since grad (u — *)IaQ = 4n, it follows that u — %’7* is locally a constant
on 99, ie., u~— —,1“ = ¢;. Hence,
(3.10) / (u— ¢_ @ida ZCJ/ —do =0
a9
for all v satisfying the hypothesis in (iii). From (3.8) - (3.10) we obtain that
(3.11) /vdV A vdo'
. A =~ :

Substituting v = 1 into (3.11), we have

NV(Q)
P(O%)

(3.12) A=

(3.11) and (3.12) imply (iii).

(iii) = (iv). Let ¢ € H(Q) be harmonic in a neighborhood of .
Denote by wy the “harmonic measure” of “inner” components I'y of the
boundary 9, i.e., Awr =0in Q, wp =1 on 'y and wy =0 on Q;,k # 5 :
k=1,...,n;7=0,1,...,n. Then we can choose o}, € R, k =1,...n, such
that the function v

(3.13) vi=p+ Z W
k=1

satisfies (iii). For this, we have to solve a linear system of equations

9 - Ouwy, .
— d —do = =1,...
/1“j o a+kz=;ak‘/l‘,~ 5 dr=0,j=1,...,n
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for ay,...,a,. This can be done, since the matrix of coefficients here is
well-known to be nonsingular. Denote by wug the solution of the Dirichlet
problem

{ Aug=1 in§
ug =90 on 01,

and let u = u0+2?=1 Ajw;j, where A; € R are to be specified later. Applying
(iii) and Green’s formula to v in (3.13), we obtain

V() / - / 1%
—_r do + o do } = — vdo
P(BQ){ 00" ,;1 “Jr, P Joq
du ov
/vdV /vAu—uAU] dv = [va—n— %]da
/ v—do Z)\ da—/ v@da
o0 an a0 on
:/agcpan da+Zak/ ——da

= [ o3 da-{—Zak/ _da+zak§p/ X o

or,
(3.14)

vV  Ou Ow V  ou

5= o) do = A\ Jd../ V_duwY 1
/asz(p( n) 9 Za’“{z / k(P an ) ©
Once again, since the coefficient matrix is nonsingular we can choose A(,... , A,

(uniquely) so that

8&)] _ vV auo N
Z/\/ do /k<P-—a-;)do—,k_1,...,n

For this choice of A; we have

Au=1 in Q
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u=Ajonl;, 7=1,...,n, u=0o0nTIy

1% 8u>
——— ] do=0
/3980<P on

for all € H(). Hence 2* = ¥ on 99, and (iv) is proved.
(iv) = (ii). Let u satisfy (iv). From (iv) and Green’s formula we
obtain

and

const P(0Q) = ou do = / dav =V(Q),
an On )

ie, 3t = % on 98. The condition that u is a local constant on {2 can be
rewritten as

=

grad u = %n on 9.

Define 4* = 1 |z|> — Nu. Then ¢* is in H(Q) and
x - —Jyl—j}-{n = grad ¥* on 0N2.

That is (ii) holds. The proof of the theorem is now complete. O

Remarks. (i) The class of harmonic functions v in Q satisfying

ov
(3.15) /S 5 do=0

for every closed oriented hypersurface S in 2 is somewhat mysterious. For
N = 2, it is easily seen to coincide with the space of real parts of functions
analytic in €2, i.e., consists of components of all harmonic vector fields in
Q. In higher dimensions it still includes the components of harmonic vector
fields. Indeed, let ¢ = (g1,...,9,) be a harmonic vector field, i.e., (cf.

(1.8)):

= g; dgr  0Og; -
. i . d =25 24 .
(3.16) B2, 0 an 2 . 0 for all 5,k

=1
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Now if v is a component of g, say v = g;, let us show that for any closed
oriented smooth hypersurface S in Q, (3.15) holds. Indeed, from (3.16) and
Stokes’ theorem we have

dv N dyg
— = —_ J_l_l » .../\M.‘. '
Sanda /SE (-1) axjdal dej---dey
j=1

g1 1 95 o .
= Samldmz d.’LN-I-Z )-7 / =—dz; ---dzj---dey

d
agidxz d1N+Z 1)7- l/d(ng12 ----- dzy)

Z (-1)i- 1/ 1)5%61@---@:0.

=2 J
In general, however, these two classes of harmonic functions need not co-
incide. Yet, in [5] it was shown that for “reasonable” {2 the linear combi-
nations of components of harmonic vector fields are dense with respect to
L'-norms in the space of harmonic functions satisfying (3.15).
(ii) Ezample of an extremal domain for (3.1). Let Q = {r < |z| < R}
be a spherical shell. We want to show that

NV RN — N

A = P~ RN-1{N-1°
Sincen=Fonlyp:={z:|z]=R}andn=—-2onTl :={z:|z] =
r}, we have
z V-1 z RN=1N-Y(R+47)
T = An = R(RN1 +7,N—1)’(R+ r)= RN Rr-ig N1 O T

and

N-1 . N—-1,N-1

:U—/\nsz (R+r) = R 'r (R+7) on T,.

r(rN-1 4 pN-1y © rN  Rn-1 4 pN-1




90 GUSTAFSSON AND KHAVINSON
Denoting by

., RN R4r) o

pN=lp N=L(R 4 7) 1
g = (RN—l +,.N-1) |a;'|

(2 . N)(RN—I + 7.N—1) |$IN—2

~ = grad

we see that condition (i) of Theorem. 3.2 is satisfied, and hence €2 is indeed
an extremal domain for (3.1).

(iii) It is worth mentioning (cf. Remark at the end of §2) that the
extremal domains, in regard to the lower bound, for A(f) (defined with
respect to A(Q)) and A{(Q2) (defined with respect to B(Q2)) do in fact co-
incide. Indeed, since the vector field g* in (ii) of theorem 3.2 belongs to
B(Q) (not merely to A(Q)), the inequality that occurs in the proof of (ii)
= (i) can be sharpened to yield A = ||z — g*|| ., > A1 () > NV(Q)/P(0).
Therefore, (ii) actually implies that A;(2) = NV(Q)/P(9) and so A1(Q2)
attains this lower bound if and only if A(€2) does.

Conditions (ii) and (iv) of theorem 3.2 suggest that extremal domains
for (3.1) are quite rare. In fact, if we impose an additional hypothesis on {2
and assume it to be homeomorphic to o ball, we have the following

Corollary 3.3. If A\(Q) = ZVP—(‘%%))Z and Q) is homeomorphic to a ball, then,
in fact, Q) must be a ball of radius A.

For the proof, it suffices to notice that under our additional hypothesis
the overdetermined boundary value problem (iv) in theorem 3.2 becomes

1 inQ
%=% on 0N}
u=0 on O0f}.

The celebrated theorem of Serrin (see [10], [12]) states then, that Q must
be a ball. In view of this, it is natural to formulate the following

Conjecture 3.4. If A(Q?) = %g)), then Q is either a ball or a spherical

shell.

Even for N = 2, this problem is still open (cf. [6, 7] and references
cited there). As in case N = 2 (cf. [7]), assuming that the boundary of an
extremal domain contains a piece of a spherical surface implies that Q must
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either be a ball or a spherical shell. Indeed, suppose 92 contains a piece
I’ of a sphere of radius R centered at the origin. From (ii) of Thm. 3.2 it
follows that

g (x)=a - /\ﬁ—| =c grad (|z|*™"), where
— 1 N N-1
(3.17) c= 5 N(R ARY ™).

Since g* = grad ¥*, ¢* is harmonic in €2, Then by the uniqueness of the so-
lution of the Cauchy problem (Cauchy-Kovalevskaya theorem), (3.17) holds
everywhere in Q. If c =0, then ¢g* =0 and [z] = A =R on 9Q, ie,Qisa
ball of radius R centered at the origin. If ¢ # 0, then we have from Thm.
3.2 (ii) and (3.17) that everywhere on 92 the normal vector n is parallel to
the vector z. Hence, every boundary component of the boundary 9€2 must
be a sphere centered at the origin. So, {2 is a spherical shell.

Finally, let us mention the regularity problem for the free boundary
of an extremal domain {2 satisfying (i)-(iv) of Thm. 3.2. Everywhere we
assumed 02 to be smooth, even analytic. However, having assumed 95 to
be merely rectifiable, it seems plausible that either the quadrature identity
(iii) or condition (ii) holding almost everywhere on 9Q alone imply that
90 is (a) locally real analytic and (b) consists of at most two connected
components. Perhaps, one might try to approach this regularity question
by considering first a case when the free boundary 9 is assumed to be
homeomorphic to a sphere. (For results in that direction the reader may
consult the important paper [2], where a problem similar to the one in (iv),
Theorem. 3.2 is treated.)
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