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Abstract

The aim of this paper is to give explicit limit expressions, for diffusion equations
involving a small parameter &, describing both nonperiodic homogenization and
reduction of dimension. In other words, we give the limit behaviour, when ¢ tends
to zero, of the diffusion equation in a thin domain, with thickness of order £, when
the coefficients of the equation also depend on € and may present rapid, nonperiodic
oscillations, provided they satisfy a suitable compensated compactness condition.
We consider two kinds of reduction of dimension: the case of thin plates (3D — 2D)
and the case of thin cylinders (3D — 1D). In particular, we give the limit diffusion
equation for laminated plates. This is completely explicit and requires no special
assumption, except stratification. In the case of thin cylinders, the formulae are less
explicit, but we also indicate some simple applications.
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1 Introduction

In this paper, Q¢ is a thin domain in RY, N > 2, representing either an horizontal plate
or a thin vertical cylinder, and one considers the diffusion equation in Qf, with mixed
Dirichlet-Neumann boundary conditions, written in its variational form.



The generic point of RY is denoted by z = (z/,zy5) = (21,...,2y_1,7y). The co-
efficients of the equation, constituting the conductivity matrix A%, depend on & and
x € Q. For convenience, we introduce the matrix A°, defined in a fixed cylinder €2 by
Af(x) = A°(2',exn), for (a',exy) in the plate, or A°(x) = A°(ex’, xy), for (ex’,zxn) in
the thin cylinder.

By classical rescaling from 2° to €2, the diffusion equation reads:

(1.1) u® € H'(Q), u* =0o0n T'p and Vv € H'(Q2), v =0 on ['p,
/[Ag(x)VguE,ng] dx:/fsv dx+/ g%, V) dx—i—/ h*v dy,
Q Q Q 'y

where 02 = I'p UT'y, the Dirichlet and Neumann conditions occuring respectively on I'p
and I'y. In the above equation, [.,.] denotes the scalar product in RY and the operator
V¢ has two different forms:

Vev :(V’v13”> :(3” Ll é‘?”)fortheplate,

e dxn oxr1’ " Y 0rNn_1’ € OxN

Vev = (%V'v Ou ) = (1ﬁ N cLC R ) for the thin cylinder.

) Oz €dr1’ "' 'edxrn_1’ OTN

The task is to pass to the limit in (1.1), when ¢ tends to zero, which combines both
homogenization and reduction of dimension.

It is well known that, with V instead of V¢ in (1.1), which is the case of sole homog-
enization, the limit problem is

(1.2) u€ H(Q), u=0o0nTpand Vv € H'(Q), v=0o0n 'p,
/[AVu,Vv] dx:/fvdx—i-/ lg9, Vv] dx + hv dry,
Q Q Q Iy

under natural convergence assumtions on f¢, ¢¢ and h°, with A the H-limit of A® (see
e.g. [?], [?]). Of course, this H-limit is not explicit in general, except in the periodic case
[?] or if A® has specific dependence upon coordinates [?], or more generally if it satisfies
special compensated compactness type assumptions [?].

On the other hand, if in (1.1) A°* = A does not depend on ¢, which is the case of
sole reduction of dimension, the most natural expression for the limit problem of (1.1) is
written on € and it involves two functions, v and y: v = u(z’) for the plate, u = u(zy) for
the thin cylinder, and in any case y = y(2',zx). More precisely its variational equation
takes the form

(1.3) /Q AV (u, 1), V7 (v, 2)] da = /Q fodz+ /Q 0,V (v, 2)] da + /F ho dv,

N

with the operator V” defined by

» _ dz
V' (v,2) = (V’v, amN> for the plate ,
” _ dv : :
V' (v,2) = (V'z, m) for the thin cylinder.



However it is possible to eliminate y and to write the limit problem in terms of u only,
on the limit domain of Q¢ (the (/N — 1)-dimensional plate w or the thread, represented by
the interval (0,1)). In this reduced limit problem, the bilinear form is

[ [A®V'u, V'v] dz’  for the plate ,

fl A0 du _dv_ g for the thin cylinder,

0 dry dxy

with A% given in terms of A. Then y, which appears as a corrector, is given in terms of
u and of the limits of the data. For reduction of dimension, the reader is refered e.g. to
7], 21, 17, [7], [?], [?] and [?].

If one combines homogenization and reduction of dimension, two kinds of results are
known. The first one is very general (see [?] for plates and [?] for thin cylinders). Briefly
speaking, it says that there exists A, independent of the source and boundary data, such
that the reduced limit problem, written in the limit domain, has conductivity matrix A°.
The second kind of results are explicit expressions of A? in periodic cases (see e.g. [7],
[?], [?] for plates and [?], [?] for thin cylinders).

In this paper, considering special compensated compactness assumptions on A® and
requiring no periodicity, we prove that the limit problem of (1.1) is still (1.2), where now
A is the H-limit of A° and is explicit, in terms of weak*- L limits of suitable combinations
of coefficients of A%. Of course, the limit problem can be formulated in terms of u only, as
above, and then A° is explicit in terms of the H-limit A. Our proof relies on the classical
compensated compactness method, applied to a suitable decomposition of A¢, written
Af = (M 5)*1 P, with two different expressions of the couple (M#, P¢), one for the plate,
one for the thin cylinder. The most striking application concerns thin laminated plates,
in which case the limit problem is fully explicit.

In general it is false that the limit problem has the form (1.3). Here, the compensated
compactness assumption on A® is indeed crucial. In Section 2, we give a counterexample
for that, concerning plates.

In order to help the reader, let us comment on the organization of the paper. The case
of plates is considered in Section 2, while Section 3 deals with thin cylinders. The two
parts can be read independently. The outlines of both sections are very similar: the main
results are presented in the beginning (three theorems each time), the remainder of the
section being devoted to the proofs of these theorems, except for the examples, located in
the last subsection. For completeness, some complements are given in Section 4, forming
an Appendix, but we suspect they are not very original. The reader who is not interested
in the technical details is recommended to skip the proofs and the Appendix, and just
look at the main results and the examples.

The present results were announced in a short note [?] and some nonlinear extensions
are in preparation (see [?]).



2 Nonperiodic homogenization and reduction of di-
mension for plates

2.1 The problem and the main results:

Let w be a bounded domain in RV~', N > 2, and let Q be the cylinder Q = w x (-1, 1).
For ¢ (< 1) running through a sequence of values tending to zero, Q°(C §2) represents
the horizontal plate, that is the flat cylinder Q° = w x (=%, 5), with lateral boundary
Y = 0w x (=%, %)

Let A° : QF — RY*Y be a sequence of (not necessarily symmetric) matrices with L>-
coefficients, such that

(21) 3o, 8,0 < a < B, ae. w € O, VE € RY, [A(2)€,€] > af¢f” and |A*(2)¢] < BIE],

where [.,.] denotes the scalar product in RY and |.| denotes the Euclidian norm. Condition
(2.1) means that the matrices A%, defined in the fixed cylinder Q by A¢(x) = A°(2',exn)
are bounded and coercive, uniformly with respect to ¢ and x in €.

We set
(2.2) Ve ={V € H'(),V = 0 on ¥}

and we consider the variational problem, with given data F*¢ € L*(Q), G° € L?(Q)¥,
he. and B € H™3(w),

(2.3) U € V° and VV € V7,

[A°VU*, VV] do = / FVdz+ | [G°,VV]dx
QE

=

Qe

+/5h§r(x')V(ac',%) dx'—i—/ehi(x')V(ac',—%)dm',

where the generic point in RY is denoted by = = (2/,2n5) = (21,...,2n_1,2y) and e.g.
the first integral over w denotes the duality pairing of €A, in H _%(w), and of the trace
of V on {zx = 5}, which belongs to H 2(w). The factor ¢ before h% and hZ is introduced
for homogeneity reasons.

It is classical that (2.3) admits a unique solution U*, solving (in a weak sense) the
diffusion problem

([ — div (A°VU?) = F* — div G® in QF,
U® =0 on X°,

VU, ex] = [GF en] +¢ht on T = w x {5},

L [A°VU®, en] = [G®,en] —eh® on [ = w X {_% ’

where ey is the unit vector of the vertical axis.



Such problems were considered by A. Damlamian and M. Vogelius in [?], with sym-
metric matrices A°. They proved that, up to extraction of a subsequence, there exists
a symmetric matrix A° : w — RV "D*VN=1 "sych that U®(2',exy) converges weakly in
H'(Q) to the solution U = U(x') of a (N — 1)-dimensional problem defined in terms of
A%, provided the data converge in a natural sense. As is the case for H-convergence, the
limit matrix A° does not depend on the source and boundary data. But of course, A° is
not the H-limit of A¢, since A° has size (N —1) x (N — 1) and is defined in w, while A° is
a N x N-matrix, defined in Q. Moreover, no explicit expression of A° was known, except
if A® is a periodic function depending on 2z’ only (see [?], [?], [?])-

The aim of this section is to prove that A° is explicit in terms of the H-limit A of
Af, under some compensated compactness condition, which requires no periodicity and
generalizes the stratified case A° = A°(xy).

More precisely, we prove the following three theorems.

Theorem 1 Assume (2.1) and define A® = (afj)iqu by A%(z) = A°(2',exy). (Clearly
A¢ also satisfies (2.1), with Q in place of Q¢.) Then, up to extraction of a subsequence,
we may suppose that we have the following weak™® convergences in L*°(£2):

(1 _(_1

ay N ann’

€

SN\ GiN foralli < N,

ay N aNN
(2.4) <
U,?V] N aN; .
. pyeet forall j < N,
€ GNaN; 4iNAN; Ni.i<N
[ G = a5 @i — oo foralld, j <N,

for some matriz A = (aij)ij=1,..n, with L>®-coefficients.
Assume moreover that

Vi,j < N, the following sequences are relatively compact in H™1() :

(2.5) {3%' (“%N)}g’ {% (szljv)}g’ {Zk<Nai$k (‘311:11:1)}5

Jé) e _ %NO%g
and {Z,KN% (aik L K

3
AN N

Then A is coercive with same constant « as A° and A%, and A is the H-limit of A®.

Here, condition (2.5) is crucial and it is a compensated compactness type assumption
(see [?]). In particular it holds true if the coefficients of A¢ have special dependence upon
coordinates (see also [?], [?], [?]). For example it is satisfied for laminated materials, when
A® = A*(zy). In such case it is well known that the convergences (2.4) define the H-limit
A of A® (see e.g. [?]).



Theorem 2 Assume that the sequence of matrices A® satisfies (2.1), (2.5) and let A
be the H-limit of A%, given by (2.4) . Define f¢ and ¢° from F¢ and G* by f*(z) =
Fe(d',exn), ¢°(x) = G (2',exn). Assume moreover that the data converge in the following
sense:

e — f, weakly in L*(Q),
(2.6) g° — g, weakly in L*(Q)",

he — hy and h* — h_, weakly in H™ 2 (w)
and assume also that

(2.7) {SQN } is relatively compact in H ().
TN ).

Let uf(x) = U¢(a',exy), where U is the solution of (2.8) and let V¢ be the operator
defined by Vv = (V’v, L_ov ) = (6” dv_ 1 v ) Then, when e tends to zero,

£ drN Ox1? Oxn_17 € Oz

(u® — u, weakly in H'(Q),

Low O weqkly in L(Q),

(28) < £ 0rN dzN’
!
0f = AVuf ~o=A ( Va—yu ) , weakly in L2(Q)N,
\ BSL‘N

where v = u(x') and (u,y) is the unique solution of the limit variational problem:

11
(2.9) u € Hy(w), y € L? (w; H,ln(—i, 5)) and

11
Vv € Hy(w), Vz € L? (w;H,ln(—i, 5)) :

V'u V' V'v
Ll Ca ) (3 )] o= frrvaes [ (50)] =
+/(h+ +h_)vdr',

H! denoting the subset of functions of H', having mean value zero.

Remark 1 That U® solves (2.3) is equivalent to saying that u® solves (2.20) below, which
1s the variational formulation of

([ — dif (A°VEuf) = f€ — divf ¢° in Q,
u*=0o0n¥=0wx(-1,1),

[A°VEus, en] = [oF, en] +ehs on Ty = w x {3},

| [A°VEur en] = [g°, en] —eh® on T_ =w x {—1},



where div® is defined by

dive = Za¢Z 190y

6:13Z € 0xTN

and where ey s the unit vector of the vertzcal azxis.

Remark 2 Note that Problem (2.9) is well posed on the space Hi (w) x L? ( s HL(—3,3))

m 272

and that H} (— ;, ;) can be replaced by Hl(—i, 5)/R On the contrary, y is not unique if
H} (—3,3) is replaced by H'(—3,3).

Remark 3 Theorem 2 is false in general, if assumption (2.5) does not hold. This is
proved by the following counterexample in dimension 2, where w = (—1,1), ¢ 1 ,n € N

A® s dzagonal with afy = 2, a5y = 2 +sin®, f© =0, % = h2 =0, g = 2:52 cos &

g5 = sinZ (2+4sin2). Then uf = exysin “'”61 — 0, weakly in HI(Q), igg = sin ””51 —

0, weakly in L*(Q), but

Os:Asvsus:gs_\0_:<

(1)#(8)

for any matriz A, in contradiction to (2.8). This is a counterexample, in which the limit
problem is not of the form (2.9).

= O

) , weakly in L?(Q2)?,

The additional function y appearing at the limit plays the role of a corrector. A
similar function was introduced by F. Murat and A. Sili [?] in the study of thin cylinders.
Problem (2.9), involving u and y, seems to be the most natural limit problem for (2.3),
since it involves the H-limit of A®. However, by eliminating y, u is proved to solve a
reduced limit problem and the above result can be translated into the following one,
closer to [?] (see also [?]).

Theorem 3 The assumptions and notations are those of Theorem 2. Besides, let A" =
(az’j)i’j<N , C = (ain)icn, L= (anj)j<n, 9" = (gi)icn and let B' = (bij)i,j<N be given by

1 NGNS
(2.10) B=A—-—CL,  by=a;— 2NN
aNnN aNN

Then u is the unique solution of the variational problem
(2.11) u € Hy(w) and Yo € Hy(w),
/[B'V'u, Vil de = /fv dx—i—/ [g - —C V'v ] da:+/(h+ + h_)vds!
Q Q w

aNnN
and the above equation reduces to

(2.12) /[AOV’U, V'v] dx':/fovdx'+/ [¢°,V'v] da'

w



where A® =m(B"), f* =m(f) +hy +h_, g° =m(g — 2-C), m standing for the mean
value over (—% %)

Moreover
(2.13) N yga =ynv — [y, V'u],

Jj<N

with yn and y; (j <n) given by

TN
(2.14) yN(ac',xN):/ (', s ds—/ / («',t) dt ds,
0 aNN 1 NN

TN
2.15 i@, zn) = aN] (2, 8)ds — (z',t) dt ds.
j
0o OanN -1 CLNN

It follows from Theorem 3 that, under conditions (2.4) and (2.5), the matrix A° of
[?] is nothing else than m(B'). Let us emphasize that y; (j < n) depend on A only, and
not on the source and boundary data. On the contrary, ynx depends on the source data.
Notice also that (2.14) and (2.15) are respectively equivalent to the following conditions,
fulfilled for a.e. 2’ € w,

Oyn gn
2.1 — q v _
( 6) m(yN) 0 an 8$N anN )
(2.17) m(y;) =0 and 9y; ] ,

Ozy aNnN

< Doy ~ converges weakly in L2(f2) to

so that Theorem 2 says tha

Orn NN

Oy _ 9gv _ PP Ou
J<N aNN 8(13]

Remark that y = 0 and A° = m(A4’) if gy =0 and L =0 (i.e. ay; =0 for j < N).

Except for the last subsection, the remainder of this section is devoted to the proof of
the above three theorems.

2.2  First step of the proof:

For convenience of the reader and for completeness, we briefly recall the classical argu-
ments of reduction of dimension 3D — 2D (see also [?], [?], [?], [?], [?], [?], [?], [?],

[7])-



Rescaling: First, in order to study the limit behaviour of U*®, we rescale the problem
to the fixed domain 2 = w x (-1 2 2) We introduce the general notatlon

(2.18) v(z) =v(z',zy) =V (2 exy) for z = (2, zy) € Q, (2', exn) € QF;

in particular this defines f* and ¢° from the data F* and G*. We also set
(2.19) Veo = (Viv, = —).

(These are the definitions appearing in Theorem 2). Then it is easy to check that problem
(2.3) reads in the fixed domain Q:

(2.20) uweV={ve H(Q),v=00n ¥ = dw x (—%, %)} and Yv € V,
/ [A® () Vu®, Vo] dz = / ffvdx +/ [¢°, Vo] dx
Q Q Q
1
+/hi(x')v(x',§) dx'—i—/hg(x')v(x',——) dz'.

w

A priori estimates: In the following and in the whole paper, we will write ¢ for any

constant, not depending on £. By using (2.1) and by taking u® as test function in (2.20),
we get

a/ (Vue|? do < a/ \Veur 2 da < / [A*VEu®, VEu'] do =
Q Q Q

1 1
/fsusdx+/ [g°, VEu©] dx+/hi(x')u5(:r’,§) dm'+/h5_(x')u5(aj',—§)da€'
Q Q w w
< [IF 2@ w2 @) + (|97l 2@n [ VEus]|2(q)
185 T T

< (by Poincaré inequality and continuity of the trace mapping)

H—g(w || ‘.’EN—l HH2

< {15 Nz + g7l ez |+ 1A oy ) + 1B mg
2 2
« (/ |Vu5\2dx) +</ |V5u5|2dx)
Q Q
< c[[1£711za@) + 19 Lzl |+ 11BN ey o) + 1A% ey |

X (/ |V5u5|2d:v>.
Q



