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0. INTRODUCTION

In [8] (see notably Appendix 1) a general theory of Hankel forms over a domain in
C* (d = 1) was developed. The present paper belongs to a series of papers [11], [12],
[7], where concrete illustrations to this theory are given. In particular, [12] (“Part
One”) was devoted to the case of plane domains (d = 1) of connectivity two. Now
we turn to the case of higher connectivity. Whereas in [12] heavy use could be made
of elliptic functions, the present treatment is less explicit, as no such marvelous tool
is any more available.

Our basic idea is to invoke the Schottky Q of the domain in question, Q. In
particular, we prove that the reproducing kernels of the Hilbert spaces of interest to
us, viz. the Dzhrbashyan (or weighted Bergman) spaces A*?(Q) (« integer = 0),
regarded as differential forms, have meromorphic extensions to Q. This allows us to
prove the weak factorization of the kernels, needed in order to make work the general
scheme in [8]. Our main result is the expected boundedness criterion for Hankel -
forms H, with analytic symbol b in A%*(Q) x A%*(Q):

H, is bounded <> w(z)**?|b(z)| < C

where ds = |dz|/w(z) is the Poincaré metric on Q.
Probably, this result also extends with no great difficulty to the more general case
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of open Riemann surfaces bounded by finitely many analytic curves, not necessarily
conformally equivalent to a bounded domain. But for simplicity we have presently
restricted attention to the planar situation, because then we have also at our disposal
the artifice of Schwarz functions (cf. [1]), making things appear more “global”.

The plan of the paper is roughly the following. Sections 1 and 2 contain preparatory
material about the Schottky double and the Schwarz function. The bulk of the paper
constitutes Section 3 devoted to the aforementioned meromorphic continuation of
the reproducmg kernel (Theorem 1). In Section 4 the weak factorization of the kernel
(Theorem 2) is effectuated. The application to the boundedness of Hankel forms
(Theorem 3) is then given in the short Section 5. Finally, in Section 6 some open
questions are mentioned. For example, the corresponding S,-result (“trace ideal
criterion”) for Hankel form is still unproved.

1. SOME NOTATION

Let Q be a bounded domain in C whose boundary consists of m disjoint closed
analytic curves (1 <m < ).

Remark (on conformal invariance) As the theory we are interested in is
conformally invariant, this assumption could have been relaxed considerably. On the
other hand, various canonical conformal models exist for our domain, for instance,
models where all the bounding curves are circles (see e.g. [5, pp. 481-488]). However,
we have not been able to exploit this possibility in any essential way.

Let Q be the Schottky double of Q. This is a compact Riemann surface of genus
m — 1. Set-theoretically, it is QU dQ U Q, where Q is a copy of Q. We denote by j
the map which to a point z in Q assigns its counterpart in O, often written 3. The
analytic structure is obtained as follows: First, let us agree that Q has the analytic
structure given by its embedding in C and that Q is given the opposite analytic
structure. Let now z, be any point of 0Q. By the analyticity of the boundary 6Q, we
can represent 0Q near z, in the form z = ¢(t) (with t real), where ¢ is an analytic
function defined in a neighbourhood V of the origin 0, symmetric about the real
axis, with z, = ¢(0). We may assume that y(r)eQif te V n U; here and in the sequel
U {te(C Im ¢ > 0} stands for the upper (or Poincaré) halfplane. A local coordinate
# on Q near z, can be defined by putting £(z) =t if z is in Q and @) =1if z=j(z) is
in Q, where in both cases z = ¢(1).

It is clear that the map j extends to an antianalytic involution of Q , j2 =id.

The universal covering surface of Q is isomorphic to U. The Poincaré metric
ds = |dz|/w(z) on Q is thereby induced from the corresponding metric ds = |dt|/2 Im ¢
on U.

Ify: U — Qis any universal covering map then i extends by reflexion to a covering
map

y: U v (an open subset of Ru {c0})u T - Q.

This gives rise to a so-called projective structure on Q. Namely, we take as projective
coordinates local inverses of the map . Then changes of coordinates are always
effectuated by projective transformations (i.e. MGbius transformations), which is
exactly what having a projective structure amounts to (cf. [2], [4]).
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Let « be the canonical sheaf on Q, i.e. (local) sections of « are locally of the form
f = f(t) dt, where t is any local coordinate on Q. Similarly, sections of any power k"
of x are of the form f = f(t)(dt)" (forms of degree n or n-forms). Below (Section 2)
we shall see that one can define in a canonical way a “square root” of x, i.e. a
holomorphic line bundle 4 over Q such that 2% = . Then one can also speak of forms
of halfinteger order. Especially (see [4]) one can define for each integer x>0 the
“Bol operator”

Ly A AFe,

mapping “integrals” into “differentials”. If f(¢) is the coefficient of a section f of
AL~# in a projective coordinate ¢ then the corresponding coefficient of L, f in A'*#
is simply f*(t).

Remark As will become clear from the definition of A, the sheaf A and all its
powers are trivial over Q. Therefore, sections defined over Q may be identified with
functions, using the variable z as a local coordinate.

Let o be an integer > 0. We define a metric for analytic functions defined over Q
by putting

(f.)y= 2+ l)j fgo*dx dy/=,

Q

1AUZ = (f e

We also set

(s 9)- =J fgldz|/2m,
aQ

A2 =(f)-1

A®2(Q) (o = — 1) is the Hilbert space of all analytic functions over Q with | f || 2< o0,
known as the weighted Bergman (or Dzhrbazhyan) space if « > 0 and as the Hardy
space if x = —1; A~"2(Q)= H*(Q) in the habitual notation.

Elements in A%2(Q) will be viewed as forms of degree at2

A®?(Q) is the set of all functions f in A%%(Q) which are of the form L,F = f for
some analytic function F (“exact differentials™). It is easy to see that

A Q)= AP Q@ B(Q)

where B(Q), the orthogonal complement of A%*(Q) in A%2(Q), consists of those
elements in A*2(Q) which are restrictions to Q of elements in T'(Q, 0(A**?)), the

A 2
holomorphic forms on  of degree ot

Remark Using the Riemann-Roch theorem, the simple fact that rQ, 0l)=0
(see [3]) and the fact that O(4%) = O(x) has a nowhere-vanishing section when m = 2
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the dimension of B(Q) can easily be computed to be

0 if m=1,

0 if m=2,aodd,
dim B(Q)=< 1 if m=2,aeven,

m-—1 if m=3,a=0,

{0+ D)(m—2) if m=3, a#0
(fa=—1,0,1,...).

2. MORE PRELIMINARIES

In the definition of the analytic structure on Q we can actually do with an “atlas”
consisting of only two coordinate “charts”, of the form (V}, ¢,) and (V,, ¢,), where
¥, is a neighbourhood of QU dQ in Q and ¥, a neighbourhood of &L 4Q in Q.
We set ¢,(z) =2z if zeQ; this map extends analytically to V;, provided V; is
sufficiently small. We then take V, =j(V;) and ¢, = ¢, oj; thus ¢,(F) =Z if Z=(z) is
in Q.
The coordinate transition function

S=¢2°¢fl

is defined and holomorphic in the neighbourhood ¢(V; n V) of (the image of) 0Q
in C, and on 0% it satisfies

(1) Siz)=z (ze 0Q)).
Thus S(z) is the so-called Schwarz function for 0Q [1].

Example If 0Q contains a piece of a circle then near this piece one has

where z, is the center of the circle and r its radius. As a limiting case one obtains
S(iz)=z

for the real axis.

Alternatively we may argue as follows. If f is any analytic function on Q then f
admits an analytic continuation to a neighbourhood of QU dQ in Q iff there exists
an analytic function g defined and continuous in a “one sided” neighbourhood of
dQ such that

) fz)=g(z) for zedQ.

Taking here f(z) =z we clearly obtain (1).
Let T(z), z€ 0Q, denote the unit tangent vector to 0Q at z, oriented so that Q lies
to the left of it. Differentiation of (1) gives

1

(3) S'(z)= @)
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for zedQ. This relation then also gives a holomorphic extension of T(z) to a
neighbourhood of 0Q.

We can now also give a handy description of certain holomorphic line bundles (or
“invertible” sheafs) over Q. In particular we can, as promised (Section 1), define the
square root A of the canonical bundle (or sheaf) «.

Any nowhere vanishing holomorphic function m(z) defined in a neighbourhood
(in C) of 0Q defines a (holomorphic) line bundle £ on Q. A meromorphic section f
of ¢ is represented by a pair of meromorphic functions f; and f;, f; defined in oV
such that

(4) f1(2) = £2(S(2)ym(z)
in a neighbourhood of Q. For example, m(z)=1 gives the identity (trivial) bundie
& =1, whose sections are functions. Note that in this case (4) essentially reduces to
(2) (cf. (5) below).

m(z) = S'(z)
gives the canonical bundle ¢ = k whose sections are differentials (1-forms). Choosing

m(z) = 7%;)

we get by (3) a bundle ¢ =1 satisfying A2 = k. Sections of 4 will be called i-forms or
half-order differentials. More generally, sections of the bundle A° (z€ Z), corresponding
to m(z) = T(z) %, will be called %—forms.

Since both members of (4) are analytic it is enough that (4) holds on 8Q. This
gives rise to a slightly more convenient way to represent ¢-sections: a meromorphic
E-section corresponds to a pair f and g of meromorphic functions in Q, continuous
up to 0Q and there satisfying (generalizing (2))

&) f(2)=g(z)m(z).
The relation to f; and f, is:

f@)=f1(),

9(2) = >).
In the case ¢ = A* (se Z) the relation (5) can also be written
(6) f(2)=9) T}  (2€0Q),

since T(z) = T(z)"*. A more suggestive way of writing (6) is
f)dz)"? = g(z)(dz)*"* along 0Q.

Remark Note that {(Vy, ¢1), (Va, ¢,)} still is an atlas for Qif e.g. V, is shrinked
to ¥, =Q. Sometimes this kind of non-symmetric atlas is preferable because the
functions m(z) and f,(z) in the representation (4) then do not have to be defined
outside Q (and (4) is required to hold only in a one-sided neighbourhood (namely
in Q) of 0Q).
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3. THE KERNEL FUNCTION

Our study of the reproducing kernel of the space A**(Q) will be based on the following
result, of independent interest.

ProposiTioN 1 Let F and g be holomorphic in Q, smooth up to 0Q. Then the following
Jormula holds for p=1

dw\* 1
Q] J L#Fgco"‘ldzcﬁ:(u—l)!(—1)“‘1J Fg<_> dz
Q 20 62

= (1) i j F(dzy 2" (dz) 2",
a0

1= 1+ > _ — _
Here (dz) Z (dz) 2 shall be interpreted as T~ ! dz = T#|dz| = T#** dz. (7) can also
be written as

1- 1+
(7) (LyF, g),=nli* J Fg(dz) 2'(dz) * /2,
o0
where o =y — 1 and is then formally valid also for p=0 (x= —1).

Proof We first remark that both sides of (7) have an invariant meaning even if
F is not holomorphic; as w transforms as a form of bidegree (=1, —%), we have only
1—

#, 0 }. Therefore we can

to make sure that F transforms as a form of bidegree <

allow F to be smooth on Q U dQ with its support contained in a small neighbourhood
of a boundary point, and then we can work in terms of a projective coordinate .
We then have to verify the formula

o*F -
(7") J o gRImr rdrdt=(p— 1) irt J Fgdt,
y 0t* R
which is easily done by uth fold partial integration. The general case is proved readily
using a partition of unity. a
Remark Another proof of this proposition can be found in [4].
We mention also the following comparison result, which will not be used in this
paper but may be of independent interest.
PROPOSITION 2 Let F and G be holomorphic in Q, smooth up to 0Q. Then the integral
Juy fe
J FGw® dx dy/r = (F, G)),
o
is an analytic function of 0. €C for Reo> —1 and it has a meromorphic extension to
C\{—1, —=2,...} with
— ¢ [ 1- 1+
Res  ((F, G)), =(~:—)J FLG(dz) 2'(dz) 2 /2n  (1=0,1,2,..). H
K Jea

a=—p—1
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We are now ready for the following theorem, which is, maybe, the main result of the
whole paper, not only of this section.

THEOREM 1 Let o be an integer = —1 and consider any subspace H of A**(Q)
contained in the interval
AP Q)& H = A%(Q),
with the reproducing kernel k(z, () =k(z). Then k(z,{) extends as a meromorphic
+ 2-form in z and an anti-meromorphic ¢ ; 2-form in { to all of Q x Q, with a pole

of order (exactly) o+ 2, the polar division being defined by the equation z = j({).

Proof Set p=a+ 1 and assume first that k(z, {) is smooth up to dQ (in z). Then
by Proposition 1 and the fact that k(z, {) reproduces on A%*(Q)

(8) LF(O)=pl i* f

Q

F(2)k(z, 0) T dz/2n

for every F holomorphic in Q and smooth up to Q. On the other hand, the Cauchy
formula gives for those F

1 1
) LFQ)=> f . F(z)Lu(Z—_—g—) dz.

(The dot indicates the variable on which the operator L, acts; this notation will be
employed in the sequel too.) Subtracting (8) and (9) it follows that the function
g(z) = g(z, {) defined on 0Q by

(10) 0, O = kG, O Tyt — 0 Lu( : )
I z—¢§

satisfies J Fg dz =0 for all F as above and hence extends to a holomorphic function
Q
(in z) in Q. Set

(11) h(z,{)=

— ettt
( ,)::l L”<2i1j>+g(z’ 9]

(z, (e Q). Writing { = y(t), where t is a projective coordinate, we have

R E
n( ) P G ()

z—{ dt* \z — (1)
It follows that h(z, {) is meromorphic in z with the singular part of the form
= ay(£)

k=0 (z— C)H !
where a,({) are functions holomorphic in a neighbourhood of € and
a,({)=—(—i)**" = constant # 0.
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By (10)
(12) hz O =k@z O TR (z€0Q).

Thus h(z, {), the “adjoint kernel” of k(z, {), represents the extension (in z) of k(z, {)
+1

as a meromorphic a -form to the Schottky double Q. We can express this by writing

(-, Del(@Q, 00" — (u+ 1)])  (eQ).

Let us now indicate how the assumption that k(z, {) is smooth up to the boundary
can be removed. It is easy to prove that O(Q), the set of functions holomorphic in a
neighbourhood of Q, is dense in A%2(Q) (when 9Q is analytic). (Cf. [13] for the case
a= —1.) Hence there is a sequence k,(z) = k,(z, {) in O(Q) converging to k(z, ) in
A%%(Q). For each k, Proposition 1 is valid, so that

(L F, k)=l i# f FE,(dz) 2"z 2" 2n.
(%9}

For V' a sufficiently small neighbourhood of Q and Fe®(V) the integral on the
right-hand side above can be written

f F(Z)k—..(z")T(z)“““dz:f F(2)k,(S@)T(z)**V dz
aQ oa

:f F(2)k,(S(2))T(z)"®* V) dz.

-

oV

When zedV then S(z) belongs to a compact subset of Q. It follows that as 1 — o

k,(S(z)) converges uniformly on oV to k(S(z)). Since on the other hand
(L,F,k,),— (L,F, k), we obtain

“

@) L, F()=p!i* j F(2)k(S(2), )T(z)""* V) dz/2m,
ov
valid for all Fe O(V).
Comparing with (9) with 0Q replaced by 9V, it follows that the holomorphic
function g(z) = g(z, {) defined in some neighbourhood of 3V by

(109 g(Z)=k(S—(z_),C)T(Z)‘“‘“’—(_l)uiﬁlLu( : )
! z—¢

satisfies j Fgdz=0 for all Fe (V). This shows that g extends holomorphically
ov

to all ¥ and the extension of k to Q now follows as in the Remark at the end of
Section 2. (Taking the complex conjugate of (10) and using S(z) as independent
variable (10') takes the form (4).)

Now k(z, {) is defined on Q x Q. By the elementary symmetry

k(z, {)=k(, 2)
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+1

k(z, {) then also extends, as an anti-meromorphic a -form in ¢, to Q@ x Q. The

remaining extension to all of @ x Q follows now automatically from Hartog’s theorem
(see e.g. [6, Thm. 2.3.2]).

In fact, the missing part of Q x Q is just K = (Qu Q) x (3 U Q), which is a
compact subset of ¥V, x ¥, = Q x Q with (V, x V,)\ K connected, and V, x ¥, can be
(holomorphically) identified with an open subset of C? (e.g. the set ¢,(V,) x ¢,(V3)).
By Hartog’s theorem every holomorphic function in (¥, x V,)\K extends
holomorphically to all ¥, x V,. The fact that k(z, {) is anti-analytic instead of analytic
in { of course does not make any difference (just consider the “opposite” analytic
structure on the second component); also, the singular part has to be subtracted off
before applying the theorem, just observing that this singular part itself is
analytic-antianalytic on V, x V. ]

Theorem 1 has the following immediate corollary.

COROLLARY 1 Near 0Q we have

(14) k(z,z) ~ 6(z)~@*2 (zeQ)

(i.e. c;0(z) @D <Kk(z, 2) < 6,0(2) @2, 0<c, <c, <o) where §(z) = dist(z, IQ).
Proof We consider k(z, {) in the neighbourhood ¢,(V;) x ¢,(V;) of (Qu Q) x

(Qu Q) in C%. For z and { close to 6Q k(z, {) has, by Theorem 1, a singularity with
the leading term

c(z)
(S(z) -2
where ¢(z) is holomorphic and non-vanishing.

In fact, ife.g. { e Q then (12) shows that the extension of k(z, {) from Q to ¢, (V;) = C
(in z) is given by

(15)

(16) kz, ) =h(S@), OTE) Y (zed,(M)\Q).

(Note that both members of (16) are holomorphic in z and that (16) reduces to (12)
when ze0Q.) By (11), (16) we get

(—1pirt 1 ,
k(z,{)= L| == T(z)"**Y + function holomorphic in z
! S(z)—0)
T(z) @+
= —jrt! T + lower order terms

(S(z) -+t
for {€Q, z in a neighbourhood of 0Q.
This expression, which necessarily is valid in a full neighbourhood of 9Q x 9Q
gives the exact form of the singularity.
Clearly the corollary follows from (15), since 3(S(z) — z) ~ §(z) near 0Q (observe
that map z — S(z) is the anti-analytic reflection in 0Q). ]
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4. WEAK FACTORIZATION

Let now k and [ be the reproducing kernels in 4%2(Q) and 4%2(Q) respectively, where
B=20+2.

THEOREM 2 Let (€. There exist finitely many holomorphic functions u, and v,
(v=1,...,N) such that

(17 Iz, 0)= 2 u,(z)v,(z)
and, uniformly in {,
N 1
(18) vi/:ll Nyl as2qen 103l anzgy = Ok, 0)= O(m) .

Proof Tt suffices to prove the theorem when ( is sufficiently close to the boundary
0Q. Applying Theorem 1 (with o replaced by f) to the function [ we see that we can

write
p+2 ¢

I(Z, C): v——v:“‘{'r(z)
v; (z =S
where the ¢, are constants and r(z) is a holomorphic function in some neighbourhood
of Q, all uniformly bounded in {. Therefore we obtain formula (17) with N=f +3
if we take, say
1 c

“Seosopm PTeosgpem OTheo it

u,=r, v,=1 (v=p0+3).

It is easy to check that

1 2
R ~ STk
(z—SQO) ARHQ)
and using Corollary 1 (18) now follows. (Observe that o({)~ 6({) near the
boundary.) a

Remark At an early stage of this investigation we throught that one could here
(as in the case m=2 [12]) do with factors u, and v, which, considered as forms,
extend to meromorphic objects in the whole Schottky double Q of Q, not only a
small neighbourhood of Qu dQ, this utilizing the standard facts (Riemann—-Roch
theorem etc.) about compact Riemann surfaces. However, we have not been able to
prove this except in some additional assumptions. Nor do we know what the deeper
implications, if any, of such an improved factorization might be.

Remark Let us remark that Ewa Ligocka has established, on one of the authors’
request [10], the weak factorization of the corresponding kernel in the case of strictly
pseudoconvex domain in C% This follows from standard facts about the Bergman
kernel for such domain (Boutet de Monvel-Sjostrand etc.) combined with the
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so-called Rudin—Forelli construction, which with the aid of an ascent in dimension
allows one to reduce to the case of the Bergman kernel (o = 0) (see e.g. [14, Chap. 7]).

5. APPLICATION TO HANKEL FORMS

Finally we are ready to give the standard application to boundedness of Hankel forms.
By the Hankel form T, over A%#(Q) with symbol b, an analytic function, we mean
the bilinear form

L/, 9)= J b(2)f (2)g(2)w(z) dx dy/x.

Q
(B=20+2, f,ge A%*(Q).)

TueoreM 3 T, is bounded iff b(z)= O(w(z)™**?).

Proof This is entirely standard from Theorem 2, so we omit the details referring
instead to [12] or, in fuller generality, [8], especiall Appendix 1. B

6. SOME OPEN QUESTIONS

We conclude by stating some open questions, more or less lightly connected with
the topics of this paper; some of them have already been alluded to in the text.

1. The S,-theory. To obtain an §-criterion, rather than a mere boundedness result
(Theorem 3), for Hankel forms one requires (cf. [8, Appendix 1]) an estimate for
the inverse of the linear operator whose kernel is (k(z, {))* is requested. Perhaps
our weak factorization (Theorem 2) could be helpful in this context, because it
also single out a leading term in (k(z, {))* corresponding to an invertible operator
(= the identity).

2. The case when o is not an integer. In this case we expect k to have an essential
singularity of the type (z—{)~©*? on the Schottky double (and hence will not
be single-valued).

3. Already in Section 4 we mentioned the question whether it was not possible to
have a weak factorization Iz, {) =) u,(z)v,(z) where all the factors u, and v, are
meromorphic on the double, not only in a neighbourhood of the boundary.

4. The extension to open Riemann surfaces bounded by finitely many analytic curves.
This we alluded to already in the Introduction.

5. Extending Pekarskii’s theory of best rational approximation (see e.g. [9]). In the
present context it is natural to try to approximate analytic functions f(z) in a

domain Q by finite linear combinations Y, a,k(z,{,) ({,€Q) of reproducing
v=1
kernels. We conjecture that one has results analogous to Pekarskil’s (Q = unit
disk) in this case too.
6. The theory of Hankel forms (operators) has formal analogies with “quantization”
(operator calculi). In particular, this suggests that there is perhaps a possibility
to construct a kind of analogue of the operator calculus of 4 and S. Unterberger
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(see e.g. [15] and the references given there) in the present context of multiply
connected domains.

7. Comparison with the case m =2 where an explicit computation is possible (cf.
[12]) suggests that if m > 2 the reproducing kernel in a A**Q), say k, = k,(z, {),
can be written in the form

ke(z, 0)=L,Z(z,{)

where Z = Z(z, () is a function holomorphic (in z) over Q which (for { fixed) has
a meromorphic continuation across the boundary 0Q; Z may thus be viewed as
an analogue of the Weierstrass {-function in the theory of elliptic functions. But
as it has a single pole at  the continuation cannot in general be single-valued on
Q. Therefore Z should rather be considered on a suitable covering surface of Q.
Can Z be characterized in a more intrinsic way?

8. Observe that (14) also can be written

(14') k(z, z) ~ w(z) @D

and then has an invariant meaning (hence holds without the assumption of
analyticity of dQ). Is there a more direct proof of (14’) which works for more
general weight functions w(z) (and in particular for non-integer values of «)?
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