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O. Introduct ion and notat ions  

The topic of  this paper is so-called quadrature domains and quadrature 
identities for arc-length. A domain ft  in the complex plane (or sometimes in the 
Riemann sphere) is called a quadrature domain for arc-length (the phrase "for 
arc-length" will henceforth in this paper usually be understood) if there exist 
finitely many points Zl . . . . .  zm in ft  and complex numbers akj (0 <=j < nk -- 1 say, 
1 < k < m) such that 

f n t -  l 
(0.1) f l d z l  = ~ Y. al,j~J)(z,) 

k=l  j=O 
,90 

for every f in some suitable test class A(D) of analytic functions in D. The 
identity (0.1) is then called a quadrature identity (for arc-length). 

Of course, certain assumptions on f~ and A(f~) are needed in order for (0.1) to 
make sense. In this paper the assumptions on f~ will generally be that 0f~ has 
finitely many components each of  which is a continuum of  finite one-dimensional 
Hausdorff measure (the phrase "f t  is bounded by finitely many rectifiable 
continua" will be used). The most natural choice for A(f~) turns out to be the 
Hardy space El(ft), although it usually will be more convenient to work with the 
corresponding Hilbert space E2(f~). In these cases (0.1) will be found to make 
sense. (The above things are elaborated in Section 1 of  the paper.) 

The principal example of a quadrature domain is any disc ft, in which case 

(0.2) f f l  dz[ = af(zo) for all f E  El(ft), 

os 

where a = 10ft[ (the length of 0[2) and Zo is the midpoint of  D. (0.2) also holds if 
D is the exterior in the Riemann sphere of  any disc, in which case Zo --- oo. With 
the a priori assumptions on D indicated above no other domains D satisfy (0.2). 
See [3, Thm 21 ] and Remarks 3.4 and 6.1 in the present paper. 
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One reason for investigating quadrature domains for arc-length in general is 
that they appear as image domains for the solutions of certain extremal problems 
for univalent functions. See [ 14]. It also turns out that the property of a domain f~ 
of  being a quadrature domain has a hydrodynamical interpretation, namely that 
there exists a steady two-dimensional flow of  an ideal fluid in f l  with certain 
(nonmovable) singularities at the points z~ . . . . .  zm in (0.1) such that O~ is a free 
stream-line for the flow. See [14]. There is also an interpretation in two- 
dimensional potential theory: if nk = 1 and ak > 0 for all k then (0.1) implies that 
the gravitational field produced by the point masses ak at Zk coincides, outside ~,  
with the gravitational field of a uniform mass distribution on Off. (Choose 

f ( z )  = 1/(z - ~) for ( ~ C \ ~  in (0.1).) 
Quadrature identities of the kind (0.1) have earlier been considered in [3] and 

[ 14]. In [ 14] the simply connected quadrature domains are described, briefly as 

follows: 
Let g : D ~ f~ be a Riemann mapping function (D the unit disc) and assume 

that f~ is a Smirnov domain with rectifiable boundary. Then f~ is a quadrature 
domain with the polynomials (or, equivalently in this case, E~(f~)) as test class if 

and only if 

(0.3) g ' = R  2 

for some rational function R. 
Under the further assumption on fl  that 0fl has a continuously turning 

oriented unit tangent vector T(z )  (so that dz = T(z)l dz I along 0fl) the following 
characterization of the quadrature property is also found: f l  is quadrature 
domain for the test class A(fl) = (functions holomorphic in a neighbourhood of 
~} if and only if there is a meromorphic function H ( z )  in fl  with 

(0.4) H ( z )  = T ( z )  on Off. 

Such a characterization was also obtained in [3], in the multiply connected case. 
Most of the present paper is based on an idea obtained by reinterpreting (0.4) as 

follows. From the definition of T(z )  one obtains T(z )  2 = dz2/I dz  12 = dz/dr so 

that 

T(z )  = T-(z) on Of  

for a certain branch of the square-root. Therefore (0.4) can formally be written as 

(0.5) n ( z ) v ' ~ z  = x/~z along 0ft. 

Let ~ denote the Schottky double of  f~, i.e. the compact Riemann surface 
obtained by completing t) with a back side ~ (a copy of f~ provided with the 
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opposite conformal structure). Thus ~ = f~ U 0f~ U t~. In terms o f ~  (0.5) has the 

following interpretation: the half-order differential x ~ z  on fl  extends over Of} to 

a meromorphic half-order differential on ~,  represented on ~) by H ( z ) x ~ z .  The 
concept of  a half-order differential is made precise in Section 2. 

The above interpretation of (0.5) gives rise to a generalization of (0.3) to 
multiply connected domains f2: Let W be a standard domain of desired confor- 
mal type, let I~ = W U 0 W U IS" be its Schottky double and let g : W--* ~ be a 
conformal map. Then fl is a quadrature domain (for the test class E2(fl)) if and 

only if v / ~  extends to a meromorphic half-order differential on I~, i.e. if and 

only if there exists a meromorphic half-order differential R v ~ z  on I~ such that 

(0.6) v ~ g  = Rx/~z in W 

(cf. (0.3)). This is Theorem 3.2, our most basic result. 
In Section 4 we show that, given W, there always exist univalent functions g on 

W having the property (0.6). Thus there exist quadrature domains of all confor- 
mal types under consideration. In Section 5 we show that when a (p + l)- 
connected domain satisfies a quadrature identity (0.1) (for the test class/~2(f~)) 
then there is in general a whole p-parameter family of(p  + 1)-connected domains 
satisfying the same identity (0.1) (i.e. with the functional in the right hand side of 
(0.1) the same). 

In Section 6 we consider quadrature domains in the Riemann sphere contain- 
ing the point at infinity, and in Section 7, finally, we treat quadrature domains 
from a completely different point of  view. To be specific, it is a simple conse- 
quence of (0.1) (with A(f~) = EI(K~)) that 

(0.7) f fg ldz l  = ~ ak(f)bk(g) 
. )  k ~ l  
Oil 

for all f ,  g~E2(f~) and for suitable linear functionals al . . . .  , b, on E2(K~). In 
Section 7 we prove that, conversely, having an identity of  the kind (0.7) implies 
that fl  is a quadrature domain (for El(f~)). 

It should be remarked that we will usually express the property of  being a 
quadrature domain in a slightly different manner compared to (0.1). Let Zk and nk 
be as in (0.1) and form the divisor D = Z~'_ ~ nk(Zk) (formal linear combination). 

Assuming that the Zk are distinct we may define, for any linear space A(f~) of 
holomorphic functions in f~, 

A o(f~) = {f~A(f l )  : f has a zero of order at least n k at Z k 

for eachk = 1 , . . . ,  m}. 

Then it follows by elementary functional analysis that (0.1) holds for a l l fE  A(fl), 
for some set of  coefficients {akj} if  and only if 
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(0.8) f fldzl =0 forall fEAo( f l ) .  

Thus f~ is a quadrature domain for the test class A(D) iff (0.8) holds for some 
positive divisor D. The identity (0.8) will also, as well as (0.1), be called a 
quadrature identity. 

It should also be remarked that the two test classes A(F~) used in this paper, 
namely E~(f~) and E2(f~), are equivalent under our assumptions on fL For when 

is bounded by finitely many rectifiable continua, E2(f2) C E~(f~). Thus i f f l  is a 
quadrature domain for E~(fl) it is so also for E2(f2). On the other hand we prove 
(Corollary 3.1) that if D is a quadrature domain for E2(f2) then f~ is bounded by 
analytic curves without local singularities and in this case E:(f2) is dense in 
E~(f~). Hence [2 will be a quadrature domain also for El(fl). 

There is a slight overlap of the present paper with [3] (see the end of Section 3 
for some details) but generally speaking the theory in [3] is developed along 
different lines than here. 

I would like to express here any gratitude to Harold S. Shapiro for many 
valuable discussions and suggestions on the material in this paper, in particular 
that in Sections l and 7, and also for his help with the translation of Russian 

papers. 

S o m e  n o t a t i o n s  a n d  t e r m i n o l o g y  u s e d  

D(a;r)={zEC: Iz-al < r } ,  
D -- D(0; 1), 
P = C U { oo } = the Riemann sphere. 
domain: open connected and non-empty subset of  a Riemann surface, 
analytic -- holomorphic (about functions etc.). 
conformal map: a map between two Riemann surfaces which is analytic, one- 

to-one and onto. 
continuum: a closed connected set consisting of more than one point. 
analytic curve: t h e  image of d D - - { z ~ C :  Izl =- 1} under a non-constant 

analytic map ~o defined in some neighbourhood of dD (and 
with values in a Riemann surface). 

locally regular analytic curve: as "analytic curve" but with the additional 
requirement that ~' § 0 on 0D. 

regular analytic curve: as "locally regular analytic curve" but with the ad- 
ditional requirement that ~ shall be one-to-one on 0D 
(and thus univalent in a neighbourhood of dD). 
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diam E = sup{ [z - ( [ �9 z, ~ E E }  for E C C. 
Iff~ is a domain in C or in P 0f~ generally denotes the boundary off~ in P. Also 

~ = t ~  u Of 2. 
A divisor D on a Riemann surface ~ is a finite formal linear ombination of the 

kind 

(0.9) D =  ~ nj.(zj) 
jml 

with nj U Z (the integers) and zj ~ l'~. Assuming henceforth that the zj in (0.9) are 
distinct D is positive if nj > 0 for all j .  The set of  divisors in f~ form an Abelian 
group under addition in the obvious way. Di < D2 means that D E -  D, is a 
positive divisor. I f E  is a subset off~ the restriction of  D in (0.9) to E, DE, is the 
divisor obtained from D by deleting those terms nj(zj) in (0.9) for which zj ~ E .  

The degree deg D of the divisor (0.9) is defined by 

deg D = ~ nj. 
jffil 

If f is a meromorphic function in fl  not identically zero we define 

(0.10) D i v f =  Y. nz.(z)  
zE~ 

(formal linear combination), where n~ ~ Z is defined by 

f ( ( )  = a0(( -- z)", + a,((  -- z) ",+l + - . . ,  a0 v~ 0 

for ~ close to z. Similarly for meromorphic differentials etc. In general, Div f 
is not a divisor in our sense since the linear combination in (0.10) may be infinite 
if f~ is not compact. Nevertheless, statements such as D i v f > = D  etc. make 
obvious sense. 

], 2,/~,/5, f ,  2 and other notations related to symmetric Riemann surfaces and 
half-order differentials are defined in Section 2. See in particular the Conventions 
there. 

The spaces EP(~), E~ (f~) are defined in Section 1 and the spaces E(~) ,  Eo(f~) 
both in Section 1 (1.8) and Section 2 (from different points of  view). 

1. P r e l i m i n a r i e s  on  EP-spaces  

L e m m a  1.1. Let g be a univalent (i.e. one-to-one) meromorphic function in 
an arbitrary domain f~ c P. Then there exists a single-valued branch o f  v/-~g ' in ~.  

Proof .  It is easy to check that ~ exists locally everywhere, due to the local 

univalence ofg .  Since ~ = exp(�89 log g') ~ is single-valued in f~ if and only 
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if, for every simple closed oriented curve ? in f~ not passing through oo or the 
possible pole of g, 

f d(logg')E4r~iZ 

7 

(instead of just 2giZ). 
But a simple computation shows that f7 d(log g') = 0 if g preserves the orien- 

tation (in C) of ~,, fr d(log g') -- + 4r~i otherwise. Hence the lemma follows. [] 

R e m a r k  1.1. It is not true that e.g. (g,)~/3 or logg'  exists in general. The 
only powers (g')~ which exist in general are those with 2c~ ~ Z. However, if both ~ 
and D = g(~)  contain the point oo E P  and g(oc) -- oo, or if none of  them contain 
oe and g maps the outer component of 0f~ onto the outer component OD, then 
log g' (and hence all powers ofg ' )  exists. 

Nor is it true that the assumption of univalence for g can be replaced by that of  
local univalence, g(z) = z ~ in f~ = {z ~ C  : 1 < I z I < 2} is a counterexample. [] 

Let ~ c P be an arbitrary domain. There are two standard ways of generalizing 
the Hardy spaces H p of analytic functions in the unit disc to fL The resulting 
spaces of analytic functions in ~ are denoted HP(~) and EP(~) respectively and 
are defined as follows (see [51, [101, [151, [171 for more details). 

f 6 H r ( ~ )  (1 --_< p < oo) if and only if Ifl p has a harmonic majorant in ~.  
f~EP(~)  (1 _-< p < ae) if and only if there exists an increasing sequence of 
domains D, in ~ with {..J D , - - f ~  and with 019, consisting of finitely many 
rectifiable Jordan courves such that 

(1.1) l imsup f I f l '  Idzl < ~ .  

0/). 

(The sequence {D, } may depend upon f.)  
Sometimes (e.g. in [5]) it is required in the definition of EP(f~) that the lengths 

of 0D, shall be uniformly bounded. We shall however work with the definition as 
stated above since this is the simpler one and since it anyway is known [ 15], [ 17] 
that for all domains considered in this paper, namely those in Definition 1.1 
below, the two definitions are equivalent. 

H~(f~) consists of  the bounded analytic functions in s and E| consists of  
the analytic functions in f~ which are bounded in a neighbourhood of 0fL Thus 
H~(f~) = E~O(f~). 

I fD is an arbitrary divisor in P we also have spaces E~ ([2) (f~ C P, 1 < p < co) 
defined in the same way as EP(f~) except for that the condition on f o f  being 
holomorphic in ~ is replaced by that of  being meromorphic in f~ with either f =  0 
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o r f ~ 0  and D i v f _  > - Dn. Thus E~(fl) is a subspace of EP(D) i f D  is a positive 
divisor and E~(f~) = EP(f~) (0 denoting the divisor zero). 

Example: E~.o~(f~ ) = { fEE2(~) : f(oc) = 0 if oo ~ f~}. 

All spaces HP(f~), EP(f~) and EI~ (fl) are complex linear spaces. 
We now list a number of known properties of the spaces HP(f~) and EP(fl) 

(f~ C P, 1 < p < ~ )  that will be needed in the sequel. 

(a) Behaviour under conformal mappings. Suppose ~o : W - -  f~ is a conformal 
map (W, f~ c P). Then f~HP(f~)  if  and only i f fo  ~ ~HP(f~). If W, D c C, and 
{o '~/p exists, (i.e. is single-valued) then fEEP(f~) if and only if (fo{o)r 
EP(W). (~,t,p should be interpreted as 1 i fp  = co.) 

If W and/or f~ contains the point oo E P things become a little more compli- 
cated for EP(f~), unless q~(oo) = oo or p = 1, 2 or ~ .  We shall only be concerned 
with the cases p = 1 and p = 2 and then we have the following statements, valid 
for arbitrary W, f~ c P. 

(i) ~,l,p always exists (Lemma 1.1), 
(ii) f E  E~ l.C~)(fl) if and only if ( f  o 9)r  E El.{~)(W). 

(iii) f~E~.t~)(f~) if  and only i f ( fo  q~)v/-~'~E21.1~(W). 
All assertions above are easily proved by just checking with the definitions. 

(b) If  W c C is bounded and OW consists of finitely many (pairwise) disjoint 
regular analytic curves, then E~(W) = HP(W) (1 < p < oo) [5], [15], [17]. More- 
over, the norms on E~(W) to be defined below (1.4) are equivalent to the standard 
norms [51, [10] on H~(W) in this case. This follows easily e.g. from [10, (3.1.2)]. 

Finally, the functions analytic in a neighbourhood of if" are dense in H~(W) 
and (hence) also in EP(W) [10, Lemma 3.4]. 

(c) If W c C is bounded and OW consists of  finitely many disjoint regular 
analytic curves, then there is a linear map 

~: H~(W)--- L ' (a  W) 

(L~(OW) = L~(OW; arc-length measure), 1 < p < oo) such that everyf~HP(W) 
has nontangential boundary values ? ( f )  almost everywhere on 0 W. Moreover, ~, 
is injective and its range consists of  those f *  ~L~(OW) which satisfy 

f f*(z)ck(z)dz = 0 

~ W  

for every r analytic in a neighbourhood of  W. In particular, the range of  y is a 
closed subspace of  LP(O W). The inverse of  7 (on its range) is given by f *  k-~ f,  
where 
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f ___ f Og(w, z) _ ~ f* (w)dw 1 f * ( w )  I dw I 
f (z)  - 21zi w - z 2zc On 

OW OW 

and g(w, z) denotes the Green's function of W. Finally, i f f ~ H P ( W )  and 7(f) 
vanishes on a set of  positive measure, then f - -  O. See [ 1 O] for the above matters. 

(d) If ~ is bounded by finitely many continua then the domains D, in the 
definition of EP(~) can be taken to be independent of f E E P ( ~ )  and also 
independent o fp  (l ~ p ~ oc). One can e.g. take 

n ,  = { z ~ f l  : g(z,  z0)> ~,} 

where z0~f2 is fixed (though arbitrary) and {5,} is any sequence of positive 
numbers decreasing to zero [ 15], [ 17]. 

(e) Decomposition. Suppose fl  c C is finitely connected, let K~ . . . . .  Km be the 
components of P \ ~ and let f~j = P \ Kj (j = 1 . . . . .  m). Then any function f 
holomorphic in f l  can be written 

(1.2) f =  f~ + "'" +fm (in ~), 

where fj is a function holomorphic in ~j  (j = 1 . . . . .  m). One may e.g. take 

(1.3) fj(z)__ 1__ f f(w___~) dw, z ~ n j ,  
2zri w - z 

r~ 

where ?j = ?j(z) is a contour in f l  approximating Oflj and oriented as 0fl. 
Suppose now that no component of 0f~ degenerates to a point and that di-I is 

rectifiable (see Remark 1.2 below). Then, in any decomposition (1.2) f ~ E P ( f l )  if 
and only iffjEEP(f~j) for all j = 1 . . . .  , m (1 _-< p < oo) [151, [16], [17]. (The 
corresponding theorem for HP(~) is also true [5], [10].) [] 

The following lemma may be viewed as a generalization of [9, Thm 10.11 ]. 

L e m m a  1.2. Let  W c C be a bounded domain, bounded by finitely many 
disjoint regular analytic curves, let f~ c P be a domain conformaUy equivalent to 
W and let ~o: W - ,  ~ be a con formal map. Then, i f  oo q~ ~ ,  the following are 
equivalent: 

(i) (gf~ is rectifiable. 
(ii) Of~ has finite one-dimensional Hausdorff  measure. 
(iii) 1EE~(~) (equivalently 1EEP(f~)for any 1 ~ p < oo). 
(iv) ~' E El (W)  (equivalently ~ ~ E2(I4 )). 

(v) q~ extends to a continuous function on W tO OW with q~ lOW absolutely 
continuous. 
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I f  oo E ~  the same is true i f( iv) is replaced by 
(iv)' ' 1 , 2 = ~o EE_z.(w)(W) (equivalently v~'~E_~.(w)(W)). Here w {o-~(oo). 

R e m a r k  1.2.  As a definition of  " 0 ~  is rectifiable" we take: each of  the 
finitely many components  of  0 ~  is the image of  [0, 1 ] (or 0D) under  a function 

which is cont inuous and of  bounded  variation. 
That O~ has finite one-dimensional Hausdorf f  measure means, by definition: 

there exists a constant M < oo such  that for any e > 0 a ~  can be covered by a 
family {Aj } o f  open discs satisfying diam(Aj) _--< e for all j and Z~ diam(A~) =< M .  

P r o o f .  (i) implies (ii): This is an elementary exercise which we omit. 
(ii) implies (iii): From the definiton o f  "finite one-dimensional  Hausdorf f  

measure" we obtain coverings {A~") }j (n = 1, 2 , . . .  ; AJ") open discs) o f  0 ~  with 
diam(A~")) < 1/n (for all j )  and Y diam(A}")) __< M < ~ ( M  independent  o f  n). It is 

easy to see that 0O is necessarily bounded,  hence compact.  Thus we may assume 

that each covering {A}")}j is finite. N o w  let 

D , = ~ \  U A}"L 

Then {D. } is an exhaustion o f  ~ as in the definition o f  E~(~),  except that it 
may be necessary to pass to a subsequence to obtain D~ c /92  C �9 �9 �9 and to delete 

components  of  D. to get D. connected. Since 

f [dz[ <-_]~ f Idz[ <=ztM 
j ,~ 

OD. oal ") 

it follows that 1EEP(I) )  (1 _--< p < oo). 
(iii) implies (iv): It follows immediate ly  from the behaviour  o f  the EP-spaces 

under  conformal mapping that (iii) and (iv) (or (iv)' i f  oo E ~ )  are equivalent 

statements. 
(iv) implies (v): Decompose  {a according to (1.2), (1.3) so that {a = (p~ + �9 �9 �9 + 

Cm in W, where Cj is holomorphic in Wj = P\  (the j t h  component  of  P \  W). It 

now suffices to show that, for each j -- 1 . . . . .  m,  ~aj extends continuously to 
Wj U 0 Wj D W U 0 Wj with {oj [0 Wj absolutely continuous.  (Observe that, for 

k §  ~Ok is even analytic in a neighbourhood of  W U 0Wj.) 
From {o '~EI(W)  it follows by the decomposi t ion theorem (e) above that 

~o]EE~(Wj), j = 1 , . . . ,  m. Moreover,  if  oo ~ Wj, ~oj(oo) = 0 by (1.3) and hence {o] 

has a zero of  order at least two at oo. Thus ~o]EE,t.(~)(Wj) for a l l j .  
Since Wj is simply connected there is a Riemann mapping function ~ : D--- 

Wj. From ~ojEE~.(| it follows (by (a) (ii) before the lemma) that (~oj o ~9)' = 
(~0j ~ gj)g/]~E~(D). But El(D) = H~(D) = H l (the usual Hardy  space in the unit 

disc) and it is known [5, Thm 3.11] that (~0j o g / ) ' E H  ~ implies that {oj o ~ extends 
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continuously to I) with (~ o ~ )  ]0a absolutely continuous. From this the desired 
conclusion follows because ~,~ extends analytically across O W~ due to the 
analyticity of 0 W~. 

The easy modifications of  the above arguments needed to prove that (iv)' 
implies (v) in the case o~ ~ Xq are left to the reader. 

(v) implies (i): Since absolutely continuous functions are of bounded variation 
this implication is obvious. [] 

For a domain fl  C P to satisfy the hypotheses in Lemma 1.2 for some choice of  
W and ~ it is necessary and sufficient that Of~ consists of  finitely many, and at 
least one, continua. Therefore we shall use the following terminology. 

D e f i n i t i o n  1.1. By a domain bounded by finitely many rectifiable continua 
we mean a domain fl  c P satisfying the hypotheses (for some choice of  Wand ~0) 
and equivalent conditions in Lemma 1.2. 

One should notice that if fl  C P is bounded by finitely many rectifiable 

continua then either oo E f~ or fl  is a bounded domain in C. In both cases 
E| c E2(fl)C E~(fl) (etc.), in particular every function holomorphic in a 
neighbourhood o f ~  belongs to all EP(~) (1 < p < ~).  

In the rest of this section we shall only consider domains ~ bounded by finitely 
many rectifiable continua. 

It is time to put norms on EP(f~). Choose a bounded domain W c C bounded 
by finitely many disjoint regular analytic curves and conformally equivalent to f~ 
and choose also a conformal map ~: W ~ f l .  Then r by Lemma 1.2. 

We may suppose that W and ~ are chosen so that tp 't/p exists (cf. Remark 1.1.) 
Then f ~  EP(f~) if and only if ( f  o ~0)~' ~/~ ~ E"(W), and we define 

(1.4) II f IIE, .  = U e [ ( f  ~  )r II,. ow  

forf~EP(f~) ,  1 < p < oo. Recall that, for g EEv(W) = HP(W), ?(g) denotes the 
boundary function o f g  on OW. 

It is immediately verified that this definition is independent of  the choices of  W 

and ~0. In particular, II fll~,r = II 7 ( f )  IIL,r if 0ff is analytic. 
Since the map f ~ ?[0 % ~)~'J/P], EP(f~)~LP(OW) identifies EP(f~) with a 

closed subspace of  LP(O W) (namely the range of  ?) the norms (1.4) make EP(fl) 
into a Banach space. It is also clear that whenever ~0: f~l---f12 is conformal 
and ~0 'I/p exists the map f ~ (fo ~o)~o,~/p is an isometric isomorphism of EP(f~2) 
onto EP(f~). Finally, it is easy to see that the topology on EP(fl) induced by the 
above norms is stronger than the topology of  uniform convergence on compact 
subsets of  f~. In particular, any functional as in the right member of  (0.1) is 
continuous on EP(f~). 
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For p = 2, EP(fl) = E:(fl)  becomes a Hilbert space with the inner product 
defined by 

0.5) 0 r, g)e(.> = (~[0 co ~o)v~'], y[Oro ~)v/f~'l)L,~o.o 

( f ,  g ~ E2(fl)), where W and r (~o: W ~ fl) are as in the definition of  the norm. 
Thus 

(f, g)e'(n) = f 7(f)7(g)ldz I 
o n  

ifOf~ is analytic. (Of course the same branch of,dr~;~ ' is to be chosen at both places 
in (t.5).) 

From now on we delete the subscripts EP(f2) from the norms and inner 
products above. 

It is clear that the definitions of  II �9 II and ( . , . )  make sense also for Eg (t2) 
(1 < p =< oo and D an arbitrary divisor) and make them too into Banach spaces. 

Now we are ready to define fonfldz[ for f~E l ( f~ )  (or f~E~(f~)) .  Take a 
conformal map ~0 : W - - - f l ,  where Wis bounded by finitely many disjoint regular 
analytic curves. Then we have, formally, 

f fldz[ = f f(tp(w))ltp'(w)l Idwl 
an  a w  

I co'(w)l = f S(~(w))~'(w). ~ Idwl. 
o w  

I f f~El ( f~)  thenf(~o(w))~o'(w)~_Et(W), hence the boundary function y[(fo ~)~'] 
exists and belongs to L~(O W); Since ~o'E E~(W) and ~0' ~ 0 y[r ~ L l(O W) and 
7[~0'] § 0 almost everywhere on 0 W. Therefore I Y[r I/~'[~'] exists almost every- 
where on 0 W and belongs to L~(O W) (and has modulus one). 

Thus we may define 

(1.6) 

for f E  E'(fl).  

y fl dz I = y ~'[(fo ~o)~o']. I 7[~']__.~1 I dw I 
r[~,'] 

o~  o w  

It is straightforward to check that this definition is independent of  the choices 
of Wand ~o. Moreover, it is clear that the m a p f - ~  fort fl dz I is a continuous linear 
functional on E~(~). Finally, 

(1.7) y fldzl =(f, l) 

0n 

i f fEE2(f l ) .  (Recall that 1 EE2(~'~) by Lemma 1.2.) 
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It turns out (cf. (a) (iii) before Lemma 1.2) that the space E2.(~)(f~) behaves 
better under conformal mappings than E2(f~). Therefore E~.(~)(~) is the more 
natural space to work with when trying to do things in an invariant way, and we 

shall give E~.(~)(t)) its own name. We define 

(1.8) E(f~) = E2.(~)(f~) 

for an arbitrary domain f~ c P. 
E(fl)  is a Hilbert space with the inner product (1.5). Formally, we can write 

( f , g )  = f fgldzl = f f v ~ z . g v ~  
a~ aD 

(f, g EE(f~)). This indicates that the elements of  E(f~) should be regarded as 
differentials of order one-half if one wants to have the inner product defined in an 
invariant way (i.e. independent of the choice of the coordinate variable z in ~). 

This is what will be done in Section 2. 
The above consideration also explaihs why E(~ )  --- E~.(~)(f~) is more natural 

than E2(f~). For i f f  is holomorphic in f~ and ~ E f~ t h e n f  must have a zero at 

in order that the half-order differential fv/~z shall be holomorphic at ~ ,  because 

v/~z has a pole of  order one at z = ~ (as is seen by expressing v ~ z  in w = 1/z). 
Thus E(f~) = E~.(~)(~) is the space of  functions f (or half-order differentials 

fv/-dzz) which are holomorphic considered as half-order differentials (and have 

the appropriate boundary behaviour). 
I f D  is any divisor in P we define Eo(f~) = E~+~.(~)(~). 

2. Hal f -order  differentials  

Half-order differentials on Riemann surfaces have been considered at length in 
[11 ], [l 2]. They are also implicit or considered in passing in many other works, 
e.g. [8], [6, p. 193 if] and in fact in e.g. every work dealing with Szeg6-kernels 

(since these are naturally regarded as half-order differentials). 
in order to define in a precise fashion, the concept of  a differential of  order one- 

half we shall use the language of  sheaves on Riemann surfaces as presented in [6]. 
Let us briefly review some notations and definitions in [6]. (For more details we 

refer to [6].) 
Let M be an arbitrary Riemann surface and let ~ -- {(Uj, zj)} ( j  ranging over 

some index set) be a holomorphic atlas on M, i.e. (Uj} is an open cover of  M, 
and zj is a conformal map of U~ onto some open subset of  C for everyj .  Let ~, �9 
and ~ denote, respectively, the sheaves of  germs of  holomorphic, nowhere- 

vanishing holomorphic and meromorphic functions in M. If U is an open subset 
of  M,  F(U, �9 denotes the set of  cross-sections of  �9 on U (similarly for ~* and 
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9X). Thus e.g. f ~ F ( U ,  9*) means that f is a nowhere-vanishing holomorphic 
function on U. 

Suppose we have, for every ordered pair (i,j) of indices with Ui n Uj # ~ ,  a 
section ~o~F(Ui n Uj, 9*) such that ~ij~jk~ki ~ - - -  I in Ui n Uj n Uk whenever 
Ui n Uj n Uk :# J~. Then {~j) defines an element ~ of the cohomology group 
H~(M, 9*). The elements of Hi(M, 9*) are called (holomorphic, complex) line 
bundles. Ht(M, 9*) is an Abelian group under multiplication. 

If ~ H t ( M ,  9*) is defined as above and {f}  is a family of holomorphic 
functions defined in the Ui ~ E F(U~, 9)) such that f = ~i~ in Ui n Uj whenever 
Ui n Uj ~ ~ then f defines a holomorphic cross-section f o f  ~. The notation for 
this is f E F ( M ,  ~(~)). Meromorphic cross-sections are defined similarly (with 
f E F(U~, 9)  replaced by f E F(U,  ~)) ;  notation: f U  F(M, ~(~)). Finally, if D is 
any divisor on M,  F(M, ~D(~)) consists of those f~F(M,  3X(~)) for which 
Div fj >_- D~ for all j .  

The two principal examples of line bundles are the identity bundle ~ = l, 
defined by ~0 = 1 for all i, j ,  and the canonical bundle x defined by 

(2.1) xo  _ = ( z j  o z , -  ' )" o z , .  
d z ,  

The cross-sections of~ = 1 are just the functions on M a n d  the cross-sections o fx  
can be identified with the differentials (one-forms) of type (1, 0) (i.e. of order one 
in dz and order zero on dr). 

Any bundle 2 EHL(M, 9*) with 22 = x is called a bundle of half-order differen- 
tials and any sec t ionfE  F(M, 9(2)) a (holomorphic) differential of order one-half. 
If2 can be represented relative to 9~, by {2ij} say, then 2~ = xij, i.e. 2 U is one branch 
of ~/dzj/dz~. That fEF(M,  9(2)) then means that f is represented by (f~}, 
f EF(Ui, �9 w i t h f  = 2 ~  in U~ n U~. Thus, formally, 

f,v/~z~ = f jv~zj  in Ui n Uj, 

which explains the terminology. 
Similarly the elements in F(M, ~(2))  are called meromorphic  differentials of 

order one-half. 
Assume, for a moment ,  that M is compact, of genus p say. For any ~ 

HI(M, 9*) the chern-class of~, c(~), can be defined as the degree of  the divisor of 
any meromorphic  cross-section (not identically zero) of  ~: 

c(~) ---- deg Div f ,  

fEF(M,  ~(~))\  {0}. The structure of  HI(M, D*) as an Abelian group is then 
given by the exact diagram of  groups [6, w 
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0 ~ P ( M )  -~ H1(M,  �9 ~ Z ~ O. 

Here P ( M )  is the Picard-variety of M,  which as a group is isomorphic to 
CP/Z 29 ~ (R/Z) 2p. It follows that 

(2.2) H i ( M ,  �9 ~ (R/Z) 2p �9 Z. 

Because the chern-class of w is an even number, c0c) = 2(p - 1), the isomor- 
phism (2.2) shows that there really exist bundles 2 with 2 2 -- to, in fact exactly 2 29 

such 2. Clearly c(2) = p - 1 for all those 2. 

Suppose, for M an arbitrary Riemann surface, that there exists an anti-analytic 
map j :  M ~ M such that j oj = the identity map. Then the pair (M, j )  is called a 
symmetric  R iemann  surface (cf. [7]). The typical example is the Schottky double 
of  a plane domain: let D be a domain in C bounded by finitely many disjoint 
regular analytic curves. The Schottky double s of  ~ is the compact Riemann 

surface obtained by completing ~ with a "back-side" ~ identical with D as a 
point set but provided with the opposite conformal structure. The resulting 
surface ~ = ~1 U 0 ~  U ~) becomes a Riemann surface in a natural way. If z ~ ~ ,  
let ~ denote the corresponding point on ~ .  Define j : ~ --* g) by 

j ( z ) = 2  for z E ~ ,  
j (2 )  = z 

j ( z )  = z for z E0~ .  

Then (~, j )  is a compact symmetric Riemann surface. 
Any compact symmetric Riemann surface ( M , j )  such that M \ F =  

M \ { ~ E M :j(~) = ( } consists of  two components each of  which is conformally 

equivalent to a plane domain will be called a double o f  a plane domain .  If W and 
I~z are the two components of  M \ F then lg z = j (W),  F = 0 W = 0 Ig z and we will 

usually write W = W U OW U l~'instead o f ( M , j ) ,  the involut ionj  being under- 
stood (Ir = M). 

If  ( M , j )  is a symmetric Riemann surface and f a function on a subset of  
M w e  define 

(2.3) f ( z )  = f(j(z)) .  

Thus f is holomorphic if f is. For points z ~ M,  subsets E c M and divisors 

D = Zk nk(Zk) in M we define 

= j ( z ) ,  

s = j ( E ) ,  

1) = Y~ nk(J(Zk)) = Y~ na(~.k). 
k k 
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Let I~ = W to 0 W to I~ be a double of  a plane domain. If  the connectivity of 
W is p + 1 then the genus of I~ is p. Of the 2 2p bundles 2 on I~ with 2 2 = x 

there is a distinguished one which we now proceed to define. 

Let z be a conformal map of Wonto a plane domain ft. We may suppose that f~ 

is bounded by disjoint regular analytic curves and then z extends to a conformal 

map defined in some neighbourhood U of W tO 0 W in I,V. We assume that U is 

connected. Let 

(2.4) 

(2.5) 

Ul = U, z t = z, 

U2 = 0 = j (U) ,  z2 = 2 = z oj. 

Then 92 = {(Uk, Zk)" k = 1, 2} is a holomorphic atlas on I~. 

Define 

(2.6) S = z2 ~ zff i. 

Then S is a holomorphic function in z~(Ui N U2), which is a neighbourhood of  

0f~ = z(aW) in C. On OW, z2 = ~.  Therefore 

(2.7) S(z)  = $ on 0fL 

This shows that S is the so-called Schwarz function for 0KL See [4]. Differentia- 

tion of (2.7) yields 

(2.8) S' (z)dz  = d2. along 0fs 

Let T(z),  z ~ OD., denote the unit tangent vector along 0f~, oriented so that f~ lies 

to the left. Then T(z)  = dz/I dz [ so that (2.8) shows that 

1 
(2.9) S'(z)  - on Oi). 

T(z)  z 

This also shows that T(z)  extends to a holomorphic function in the neighbour- 

hood z~(U~ • Uz) of  0i), with (2.9) holding identically in that neighbourhood. 
Now we define a line bundle 2 E HI(if ' ,  ~*) by representing it by 

1 
(2.10) 2 1 2 -  in UI tq U2 

T o z l  

relative to 92. (The remaining 2 0 then must be 221--1/212, 211 = 1, 222 = 1.) 
Observe that, by (2.6), the canonical bundle x EHI(14 ", s is represented by 

dz2 
(2.11) xl2-- = S ' o z l .  

dzl 

Therefore, by (2.9), (212) 2 ----/r SO that 2 is a bundle of  half-order differentials: 
22-- - / r  
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It should be remarked that the role of  T above just is to single out a certain 

branch of v / ~  (i.e. of  v~xl2). 

E x a m p l e  2.1. Consider the symmetric Riemann surface of genus p - - 0  
(P,j) ,  where j(z) -- 1/~. It can be viewed as representing I), since P = D U OD U 
I), where I) -- ( z ~ C  U {~} : Izi > 1} and since 0D is the fixed point set o f j .  

We may take the atlas ~ = {(Uk, Zk) : k -- l, 2} on P to be 

U,={z~C: I z l  < r } ,  

U2 = { z E P :  Izl > l /r} ,  

z ~ = z ,  z 2 = l / z  

(r > 1). Then dz2/dz~ = - l / z  2 in U1 n U2 so that ;q2 may be taken to be 

212(z) = i /z  (i = x / - ~ ) .  

A pair {f,, f2} of meromorphic functions in U~ and U2 respectively represents a 
section f in r (P ,  9~(2)) if (and only if) 

f ( z )  = / f2(z) for 1 - < l z l < r .  
Z t 

It is easy to see that such a pair {f ,  f2} necessarily consists of  rational functions, 

and if 

f(z)=R(z) (Izl < r ) ,  

R rational, then 

A ( z )  = - izR(z) 

It follows in particular that 

( I z l  > 1/r). 

When we speak of  a half-order differential '3C(z)v~z "on a subdomain f~ of P we 
will always mean that section in F(~, ~(2))  which is represented b y f ( z )  = f ( z )  

in f l n  U~ and byf2(z) -- - iz f (z)  in f~ n U2. Thus Div f x ~ z  -- Div f -  1- ( ~ )  if 

oo E f~ (otherwise Div f v ~ z  -- Div f ) .  [] 

Returning now to the general case it is straightforward to show that the bundle 
2 ~H~(I~', O*) is independent of the choices made in its definition, namely the 
choice of coordinate map z on W and also the choice of which one of the 
components of I~ \ O W is considered to be W, the "front side". In other words, 2 
is intrinsically associated with the symmetric Riemann surface ( l~, j ) .  

D i v f - -  Div R -- 1 .(oo). 
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Convent ions .  (a) When W = IV u O IV u I~ is the double of a plane do- 
main and nothing else is explicitly stated 2 will always denote the distinguished 
bundle of  half-order differentials on W defined above. 

(b) The expression "half-order differential" will, from now on, always refer to 
sections of ~(2) or ~(2) ,  with 2 as above. 

(c) I f D  is a domain with IV c D c I~ sections in F(D, ~(2))  will sometimes 
be denoted by symbols such a s f v ~ z ,  sometimes just by symbols such as f ,  both 
to be interpreted as follows, z is a coordinate variable on IV, ~ =  
((Uj, zj) : j  = 1, 2} is any atlas on /~ of  the kind (2.4), (2.5) with U~ ~ IV and 
z~ -- z on IV, a n d f v ~ z  (or f )  is that elelment ofF(D,  9~(2)) which is represented 
by ( f ,  f2} relative to 92, w h e r e f  - - f i n  U~ A D and f2 =f/2t2 in U2 tq D. 

(d) If g is a meromorphic function in D (IV c D C I~) then v ~ g ,  if it exists, 
denotes any one of the two sections fv/"d-z EF(D, ~(2))  (interpreted as above) 
satisfying dg/dZl--fie in D N U~ (and then automatically also dg/dz2 = f2 in 
O h  U2). [] 

Let now 92 = ((Uj, zj) : j  = 1, 2) be a fixed atlas on I~ -- IV U 0IV U /~ (a 
double of a plane domain) and 2 ~H~( If,', ~*) represented by ;h2 in terms of  9~ as 
above. On F(W,  ~(2)), the holomorphic cross-sections of ,l defined in some 
neighbourhood of  W, we define an inner product by 

(2.12) (f,g)= f f~glldZ~l= f f~g~2~2dzl, 
o w  o w  

where f ,  gt ~ F( It/, ~) denote the representatives off ,  g C F (  W, ~(2)) relative to 
U~ in92. 

We denote by E(W) the completion of  F(W,  ~(2)) with respect to the inner 
product (2.1 2). Then E(W) is a Hilbert space ofholomorphic  differentials in Wof  
order one-half. Eo(W), where D is any divisor on W, is defined similarly in terms 
o f F ( W ,  OD(2)). 

If W = ~ C P then, as is easily verified, the above definition of  E(IV) agrees 
with the previous definition (1.8) of  E(f2) in the sense that the m a p f  t-- f v ~ z  is 
an isometric isomorphism E(f2)- -E( tV) .  

3. F u n d a m e n t a l  resul ts  on quadrature d o m a i n s  

In this section we derive our main characterization of  quadrature domains,  
namely Theorem 3.2, and a couple of  corollaries of  it. 

Recall that when I~" = W U 0 W U if" is a double of  a plane domain 2 always 
denotes the distinguished bundle 2~H~( I~ ,  s of  half-order differentials 
defined in Section 2. 
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L e m m a  3.1.  With I~ and 2 as above 

Proof .  
have 

71 

r ( # ,  ~(2)) = o. 

Suppose f ~ F ( I ~ ,  ~(2)), represented by {fl, f2} as usual. Then we 

8 W  OW a w  

since f~ f: dz~ is holomorphic in W. Thus f - -  0 since ( . , . )  is a (non-degenerate) 

inner product. [] 

R e m a r k  3.1.  It is not generally true that F(M, ~(2)) = 0 i f M  is a compact 
Riemann surface and 2 EHt(M,  ~3") a bundle with 2 2 = r .  In fact, it turns out 
that the 2 2p (p = genus for M)  bundles with 2 2 = x can be classified into two 

groups: 2~-~(2 p + 1) of  them are even and the remaining 2P-~(2 p - 1) are odd. It 
is shown in [8, Ch. VII that F(M, ~(2)) ~ 0 for all odd 2 while, unless M is a 

so-called exceptional Riemann surface, F(M, ~(2)) = 0 for all even 2. [] 

Next, let D be an arbitrary positive divisor on If'. We wish to compute 

dimc F(ff ' ,  �9 The relevant version of  the Riemann-Roch theorem [6] 

tells us that 

(3.1) d i m F ( f f ' , ~ _ o ( 2 ) ) = d i m F ( l ~ ' , ~ o ( x 2 - t ) ) + c ( 2 ) + d e g D - p +  l. 

Since 2 2 = x, x2 -l  = 2 and c(2) = p - 1. Thus 

(3.2) dim F(I~', ~-D(2)) = dim F( I~ ,  ~D(2)) + deg D. 

((3.1) and (3.2) are true for arbitrary, i.e. not necessarily positive, divisors D.) 

Since D is positive F( I~, �9 C F( I~, ~(2)), hence dim F(I~', ~D(2)) = 0 by 

Lemma 3.1. Thus 

L e m m a  3.2.  With if" and 2 as above and D a positive divisor on 1~ 

dimcF(l~,  ~_~(2)) = deg D. 

This result means that the locations and principal parts of the poles of  a section 
in F(I~,  ~(2)) can be arbitrarily prescribed and that this determines the section 

uniquely. 

R e m a r k  3.2.  In particular there exists, by Lemma 3.2, a uniquely deter- 

mined section A ~ F(I~, �9 with 

A = At0 = A(z, z0) = + regular 
2n(z - ~o) 
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at a prescribed point ~0E fir, and otherwise regular. The restriction of  A to W is 
the classical Szeg6 kernel for W (if W C C) and the restriction to if" (or perhaps 
the restriction of  A to W) is the so-called adjoint kernel. See e.g. [8] for these 
matters. Az0 is the reproducing kernel for the class E(W), i.e. 

f(zo) = (f, Az0) for all f ~  E(W). [] 

T h e o r e m  3.1. With I~ = W U O W U I~ a d~uble of  a plane domain and D 
a positive divisor in W 

Eo(W) • -- F(I~, ~_~(2)). 

Here Eo(W) • = {gEE(W):  (f, g) = O for all fGEo(W)} .  In other words, given 
g EE(W)  we have (f, g) = O for a l l f~Eo(W)  ifandonly ifg extends to an element 
in F(I~, �9 

Proof .  By Lemma 3.2 dim f'(l,~', ~_~(2 ) )=  d e g / ) - - d e g D .  (Actually, we 
only need d imF(f f / , � 9  which is an immediate 
consequence of  (3.2).) Also, dim ED(W) • --- dim(E(W)/ED(W)) < deg D since 
Eo(W) is defined by degD linear conditions in E(W). Thus dim Eo(W)• 
dimF(f f ' ,~_~(2) ) .  Therefore it is enough to prove that F ( f f / ,~_~(2 ) )C  
ED(W) • 

So take a g~zr'(l~, ~_~(2)). Relative to some atlas 9~ = {(Uj, zj) : j  = 1, 2} of 
the kind (2.4), (2.5) g can be represented by {gt, g2} with gj E/ ' (Uj,  9~), gt = g on 
W, Div gj > - / 9  and gl = 2l~g2 in Ui N U2. 

Observing that 12,21 = 1/I Toz~l = 1 on 0W(since I TI = 1 on z,(OW)), that 
g2 = A  on 0Wand  that D i v A  > - D we obtain, forf~ED(W),  

( f , g ) =  f fgl212dz,= f fg2l;q212dz,= f fg2dZl 

o w  d w  8 w  

(3.3) 

= J fg2dZl = 27ti Y. Rwes f A d z ,  = O. 

o w  

Thus g~Eo (W)  • which proves the theorem. (Strictly speaking, the above 
computation requires that f ex tends  continuously to OW but such f m a k e  up a 
dense subset of  Eo(W) so it is enough to consider such f.)  [] 

T h e o r e m  3.2. Let f~ be a domain in C bounded by finitely many rectifiable 
continua and let D be a positive divisor in ~.  Further, let I~ = W U 0 W U l~ be a 
double of a plane domain with W con formally equivalent to f~, let g : W ~ f~ be a 
conformal map and let D~ -- g-l(D) be the inverse image of  D in W. Then 

(a) v ~ g  exists as an element in F(W, 9(2)). Moreover v ~ g E E ( W ) .  
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(b) 

(3.4) S fl  dz I = 0 for all f ~  Eo(f~) 

o~ 

i f  and only if v/"dg extends to an element in F(I~, ~_~,(2)). More concisely, 
1 ~Eo(f~) • if  and only ifv~gEF(l~',  ~_~,(2)). 

Proof .  The assertions of(a) are easily seen to be just restatements of Lemma 
1.1 and (parts of) Lemma 1.2. 

As to (b) we know that g" W ~  f~ gives rise to an isometric isomorphism 

g*" E(~) ~ E(W), 

namely defined by fv/-~z ~ (fo g )v~g ,  whenever one of the two branches of v ~ g  

is chosen. It is clear that 1 E E(fl)  is mapped onto v ~ g  E E(W). Moreover Eo(f~) 
is mapped onto ED,(W), hence Eo(fl)~ onto Eo,(W)~. Thus 1 ~ Eo (fl)x if and only 
if x~g~Eo,(W) l and since, by Theorem 3.1, ED,(W) • = F ( I ~ ,  ~_~,(2)) this 

proves (b). [] 

R e m a r k  3.3. If W and f~ in Theorem 3.2 are identified (via g) then (b) of  

the theorem can be expressed: fl  is a quadrature domain if and only if v/~z 
extends (as a meromorphic half-order differential) to the double ~ -- fl  U 0f~ U 

~.  Moreover, the pole divisor of v ~ z  equals the conjugate of  the divisor 
appearing in the quadrature identity. [] 

C o r o l l a r y  3.1. I f  ~ (satisfying the hypotheses of Theorem 3.2) is a quadra- 
ture domain, then each component of O~ is a locally regular analytic curve. 

Proof .  Choose I~ and g as in Theorem 3.2. Then it follows from (b) of the 
theorem that g extends analytically across 0 W. In is easy to check that g(O W) = 
0ft. Since fl  is necessarily bounded g does not have any pole on 0 W. Moreover, 
dg cannot have any zero on 0 W because such a zero would have to be of even 

order (since v ~ g  exists), hence of order at least two, and then g could not be 
univalent on W. Since each component of 0Wcan be mapped biholomorphically 
onto OD the corollary now follows. [] 

C o r o l l a r y  3.2. (of Corollary 3.1). If(3.4) holds, with ~ bounded byfinitely 
many rectifiable continua, then also 

f f ldzl  = 0  forallfEE~(~). 

at) 
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Proof .  By Corollary 3.1 f~ actually is bounded by locally regular analytic 
curves, and therefore E2(F~) is dense in E~(F~). (This follows easily from 
(b) before Lemma 1.2) Sincef~-~f0u f l  dzl is a continuous functional on E~ (f~) 
the corollary follows. [] 

C o r o l l a r y  3.3. I f  (3.4) holds, with ~ bounded finitely many rectifiable 
continua, then f~ also satisfies a quadrature identity of  the following kind: 

= akjf(J)(7-k) + ~ bk fdz 
k = l  j z 0  k = l  

f~ Yk 

for all f ~L2(~ ) .  Here LPa(f~) denotes the subspace of  Le(~; area measure) 
consisting of  functions holomorphic in ~,  m, nk E f~ are related to the divisor D in 
(3.4) through D = Z~'=~ nk(Zk) (the zk assumed distinct and nk > I), 71 . . . . .  7r are 
suitable open or closed curves in f~ with all their (possible) end points belonging to 
{zl . . . .  , zm } and akj, bk are suitable complex constants (with ak.2,,-: ~ 0). 

Proof .  Let g and W be as in Theorem 3.2. Then v/dg E F( I~, O_ ~,(2)) by (b) 
of  the theorem. It follows that dg is a meromorphic differential on if 'with divisor 
> - 2/)~ and with no simple poles. Now [7, Thm 3 together with Remark (4) 
following it] shows that a quadrature identity of the kind (3.5) holds for all 
fEL~(f~). Since L2(f~) is known to be dense in L2 (fl) the corollary follows. [] 

E x a m p l e  3.1. In the simply-connected case we can take W to be D and 
represent I~ by P as in Example 2.1. Theorem 3.2 combined with Example 2.1 
then gives the following characterization of simply-connected quadrature 
domains: 

Let g:  D ~ fl  be a conformal map, where f~ c C has rectifiable boundary, and 
let D be a positive divisor in f~, say 

D =  ~ nj(zj), z j ~ ,  nj ~ O. 
j ~ l  

Then 

(3.6) f f l d z l  = 0  

all 

for all f ~ E o ( ~ )  

~ =  ~. nj.(l/v~j), g(wj)=zj. 
j ~ l  

if and only i f g '  -- R 2 for some rational function R with div R >_- - / J ,  + 1. (oo). 
Here 
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This result, essentially, was first established in [ 14, Theorem 2]. In [ 14], however, 
(3.6) was considered with the set of  all polynomials as test class (in place of  E(f~)) 
and they therefore had to restrict their attention to so-called Smirnov domains 
(see [5, Ch. 10.3]). (The polynomials are dense in E(f~) if and only if f2 is a 
Smirnov domain, at least ifaf~ is a Jordan curve. See [5, Thm 10.6].) 

Of course, R has no zeroes in D. The agrument used in the proof of Corollary 
3.1 shows that R also has no zeroes on 0D. This result was also obtained in [ 14]. 

E x a m p l e  3.2. As a special case of  Example 3.1 let D = 1-(z0), z0 E f~ so 
that, for some a ~ C, 

(3.7) f f l  dz I = af(zo) for a l l f E E ( ~ ) ,  

at) 

where I2 c C is simply connected and af2 a rectifiable continuum. We may 
then choose g:D----f2 in Example 3.1 such that g ( 0 ) =  z0. Then D = 1. (z0), 
/~l = 1. (~) .  Thus the rational function R in Example 3.1 is not allowed to have 
any poles and so must be constant (necessarily non-zero). Hence g(z)= 
Az + Zo, A ~ 0 and we obtain: (3.7) holds for some a ~ C  if and only i f ~  is a disc 
with center z0. Clearly a will equal the length of the circumference of the disc. 
Also a = 27rA. 

If (3.7) is required to hold only for all polynomials then s need not be a disc. 
See [ 14, Remark 2, p. 12]. 

Remark  3.4. If ~ C C is not assumed simply-connected but only to be 
bounded by finitely many rectifiable continua then the conclusion that (3.7) 
implies that f~ is a disc (with center z0 and circumference a) still holds (with E(f~) 
as test class). This follows from the facts that (3.7) by Corollary 3.3 implies that 

f a2 (3.8) fdxdy = ~ f(zo) 

t~ 

for all f ~  L2(F2) which have a single-valued integral in ~ and that (3.8) implies 
that f2 is a disc, by [ 1, Theorem 7]. Compare also Remark 6.1 in the present 
paper. 

The results in Corollaries 3.1 and 3.3, Example 3.2 and Remark 3.4 were also 
obtained in [3]. 

4. E x i s t e n c e  of  quadrature d o m a i n s  o f  arbitrary conformal  type 

In this section we shall use the methods of  Section 3 to prove the following. 

T h e o r e m  4.1. Among the domains in C bounded (in P) by finitely many 
continua there exist quadrature domains of  all conformal types. 
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Proof .  By Theorem 3.2 the quadrature domains we are looking for are 
produced as follows. Take a double of a plane domain I,V = W tA 0 W U I$" such 
that W is of  the desired conformal type and take a half-order differential 

h v ~ z  ~F( I~ ,  ~(2))  with poles only in I~. Then h2dz is a meromorphic differen- 
tial on I~ which is holomorphic in W. 

Suppose we can choose h so that 

f h2dz = 0 (4.1) 

? 

for every closed curve 7 in W. Then 

w 

g(w) = f h~dz (w (4.2) W) 

defines a single-valued 
integration in W). If we moreover can arrange that g is univalent in W then 
(by Theorem 3.2) ~ - - g ( W )  will be a quadrature domain of the desired 
conformal type. 

By Lemma 3.2 there exist half-order differentials hv/-~z~F(l~,  ~(2))  with 
arbitrarily prescribed poles. To prove the theorem we need therefore only show 
that the condition (4.1) and that of  the univalence of g can be satisfied. For 
this we shall make use of the following approximation theorem of Runge type, 
proved in [2]. 

Let M be an arbitrary Riemann surface, U an open proper subset of  M, ~ an 
arbitrary holomorphic line bundle on M. Then 

F(U, ~(~)) N F(M, ~(~))  is dense in F(U, ~(~)) in the 
(4.3) 

topology of uniform convergence on compact subsets of  U. 

Let ~ = {(Uj, zj) : j  = 1, 2} be a holomorphic atlas on lg z of  the usual type 
(as at (2.4), (2.5)). We shall apply the approximation theorem with U = U1 and 

= 2 to approximate ~ in F(U~, �9 by sections h v ~ z ~  F(UI, ~(,~))O 
F( I4", ~(2)).  Then g defined by (4.2) will be close to Zl, so that it has a good chance 
to be univalent (whenever it is single-valued). 

Sections h in F(U~, ~(2))tq F(I~, ~(2) )  are represented by pairs {ht, h2}, 
h~ ~F(U1, s heEF(U2, ~) satisfying 

(4.4) hl = ,~.12h2 in Ui A U2 

(212 defined by (2.10)). So what the theorem says when x/~z~ is approximated is 
that for any compact K C U~ and any e > 0 there is a pair {h~, h2} as above with 

holomorphic function in W (WoE W fixed, path of 
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(4.5) I h, - 11 < e in K.  

Let p be the genus of  If', so that the connectivity of  W is p + 1, and let 

al, �9 �9 �9 ap be closed oriented curves in Wwhich make up a homology basis for W. 
Then the requirements (4.1) can be written 

f h~dzl = 0 for k = (4.6) 1 , . . . ,  p. 

a k  

In the following we shall write just f,,, h 2 for f,,,h2,dz, (similarly for other 

expressions). 
Now apply the approximation theorem with K - W. Then, given e > 0, we get 

some h G F(UI, C(2)) N F(IP, 9X(2)), represented by {h,, h2} satisfying (4.4) and 
(4.5). However we cannot be sure that (4.6) holds. 

Therefore we have to adjust h a little. This we do as follows. We seek 

ft . . . . .  fp E F(Ut, C(2)) N F(I~, 9X(2)) and complex numbers al . . . . .  ap such that 

(4.7) h ~ aj -- 0 for k = I . . . . .  p. 

If  we can find a solution of (4.7) such that 2; ajfj is suflSciently small on W, say 
such that (4.5) holds with h + 2; ai fj in place of  h, then h + 2; aj ~ will have all the 

properties required of  h if merely e > 0 is small enough. In fact, h + Z aj fj E 
F(U~, 9(2)) Cl F(ff / ,~(2))  and g, defined by (4.2) with h + 2; ajfj  in place of h, 
will be single-valued and it is straightforward to check that (4.5) (for h + 2; aj fj) 
implies that g is univalent in W if e > 0 is sufficiently small. 

Thus consider (4.7). It can be written 

f ' f  f (4.8) h 2 + 2  • aj f j h +  • a ,aj  f f j = O .  
j = l  i=1 j - l  .~ 

Ct k ak  ~Xk 

We shall in the following write just z for the parameter z, on U,. z maps Wonto  a 
domain D = z(W) C C of  connectivity p + 1. Pick one point Zk (k = 1 . . . . .  p) in 
each of the p bounded components of  C\ D such that ZK q~ z(UO (this is easily seen 
to be possible). We may assume that the homology basis a , , . . . ,  % on W is 
chosen so that, for each k, Z(ak) has winding number + 1 with respect to ZK and 
winding number zero with respect to all other zj. Thus 

f dz _ 2ni6kj. 
z--zj 

z(~,,) 

Now we first choose rational functions R, . . . . .  Rp in z such that 
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In fact, 

f R f l z  = gkj 

z(ak) 

f RiRjdz  = 0 

z(ak) 

( k , j  = 1 . . . . .  p) ,  

( i , j ,  k = 1 . . . .  , p) .  

1 
Rj(z )  - + (z -- zj)Qj(z)  ( j  = I . . . . .  p) ,  

2ni (z  - zj) 

where Q~ . . . . .  Qp are polynomials satisfying Qi(zk )= - 1 / 2 r t i ( z k -  zj) 2 for all 

k r (so that Rj(zk) = 0 for k # j )  will do that job. 
The functions R i o z ( j  = 1 . . . . .  p) are defined and holomorphic in U1 and 

therefore represent sections in F(UI, ~(2)). We may therefore approximate them, 
uniformly on W h y  sections f . . . . .  fp in F(Ut, ~(2)) r F(I~, 92(2)) ~ approxi- 
mates Rjo z). This is the w a y f  . . . . .  s will be chosen in (4.7). 

With Rj o z substituted f o r f  i in (4.8) it takes the form 

f ' f  (4.9) h2+2ak  + 2  Y~ aj ( R j o z ) . ( h - 1 ) = O  ( k = l  . . . . .  p). 
j = l  

ak ak 

If h approximates 1 sufficiently well this system obviously has a unique solution 

in al . . . . .  ap and this solution moreover tends to zero as h ~ 1. 
I f f j  approximates Rj o z ( j  = 1 . . . . .  p)  as above the coefficients of  {aj} and 

{a,aj} in (4.8) will be close to the corresponding coefficients in (4.9) and it now 
follows from the implicit function theorem that also (4.8) will have a solution in 
at . . . . .  ap, close to that of (4.9) (and unique with this property). In particular 
a j ~ O  ( j =  1 . . . . .  p) as h---1 a n d f j ~ R j o z ( j =  1 . . . . .  p )  and so Z a j f j - . O  

uniformly on W as h ~ 1 and fj ~ Rjo Z. This proves the theorem. [] 

5. N o n - u n i q u e n e s s  o f  mult ip ly  connected  quadrature d o m a i n s  

In this section we shall study the following question: given a functional 

n k -  1 

(5.1) L ( f ) =  ~ 2 akJ fr 
k - I  j = O  

on E(fl), how many different domains fl  of  a fixed connectivity p + 1 are there in 

general (if any) for which 

(5.2) f f l d z l  = L ( f )  
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holds for all f E E ( ~ ) ?  As usual we only consider domains bounded by finitely 

many rectifiable continua. 
Results such as that in Remark 3.4 may raise the conjecture that f~ always is 

uniquely determined by L. This might in fact be true in the case p = 0 (the author 
does not know), but we shall find here that it is defintely false if p > 0. More 
precisely, by counting the number of  parameters available when producing 
quadrature domains by the method of  Theorem 3.2 and comparing it with the 
number of  parameters in the quadrature functions L we shall find that 

(p + 1)-connected quadrature domains for a fixed quadrature functional L 

generically occur in p-parameter families. 
We shall also give a kind of  geometric explanation of this result by characteriz- 

ing the corresponding p-dimensional space of  infinitesimal boundary variations. 
Recall that a quadrature domain f~ satisfying (5.2) for some L is produced as 

follows (Theorem 3.2). Take a double of  a plane domain I~ = W U a W  U l ~ o f  
genus p (if we want f l  to have connectivity p + 1) and a half-order meromorphic 

differential h v/~z on I~ with poles only in if'. Provided that 

f h2dz = 0 (k = 1 , . . . ,  p), (5.3) 

Ct k 

where a l , . . . ,  ap is a homology basis for W as at (4.6), and that the (hence 

well-defined) function 

w 

(5.4) g(w) = f h2dz ( w E  W) 

Wo 

(WoE Wfixed, path of  integration in W) is univalent in W, g maps Wconformally 

onto a domain f~ of  the desired kind. If  h has a pole of order n at ~ E I~ then g 
maps the opposite point w E W to a point z E f l  at which L evaluates derivatives 

up to order n - 1. 
In what follows we will count the number of  real parameters and conditions 

in;Volved in the above construction of f l  and L. (Thus e.g. one complex equation 

is counted as two conditions.) 
It is convenient to represent I~ as the double of a horizontal slit domain 

W C P, i.e. of  the kind 

P 

W = P \  U 
k - 0  

( Wk + trk " -- 1 <= t < 1) 

for suitable W k E C  , r k > 0 .  In this way all conformal equivalence classes of  
connectivity p + 1 are covered. (The fact that many of the above W are 
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conformally equivalent will be taken care of  later.) We see that the choice of  W 
(i.e. of I~) depends on 3(p + 1) parameters. 

Next we choose h v ~ z  EF(I~ ,  ~(2)) ,  with m poles of  orders n l , . . . ,  nm, say. 
Let n = Z~'~ ~ nk. It follows from Lemma 3.2 that the number of  parameters in the 

choice of  h v ~ z  is exactly 2m + 2n. 

Going from h v ~ z  to g gives the 2p conditions (5.3), but also two new free 

parameters, namely the choice of  w0 in (5.4). We know from Section 4 that h v/~z 
can be chosen so that the conditions (5.3) are fulfilled and so that the resulting 
function g is univalent in W, in fact even in a neighbourhood of  W. By 

considering only half-order differentials h v/~z close to a fixed one as above we 
achieve that the resulting functions g will be univalent whenever they are single- 
valued. Thus we do not have to bother about the univalency of  g. 

When going from the pair (W, g) to f~ = g(W) some of  the free parameters 
collapse since we can have g~(W~) = g2(W2) for many different pairs (Wj, ~). In 
fact, g~(Wt) = g2(I4:2) if and only if  ~o = g2- ~ ~ g~ maps W~ conformally onto I4:2. 
Keeping (W,,g,) fixed it follows that pairs (W2, g2) mapped onto the same 
f~ = g~(W~) are in bijective correspondence to conformal mappings ~ on W~ such 
that ~o(W1) is also a horizontal slit domain. It is well-known that such maps 

depend on six real parameters. 
Summarizing we have 

(5.5) 3(p + 1 ) + 2 m  + 2 n  - 2 p  + 2 - 6 = 2 ( m  + n ) + p -  1 

parameters at our disposal for producing domains f l  of  connectivity p + 1 
satisfying (5.2) for different functionals L as in (5.1), where m and n are fixed and 
the same in (5.1) as in (5.5). The number of  parameters in those L seems to be 
2(m + n). Actually, however, this number is at most 

(5.6) 2(m + n ) -  1 

because Z~'_j ak0 is necessarily real (and positive) for an L satisfying (5.2), as is 

seen by choosing f =  1 in (5.2). 
Comparing now the numbers (5.5) and (5.6) we see that there is an overflow of 

at least p parameters for ~ .  This means that "generically" domains f~ of  
connectivity p + 1 satisfying (5.2) for a fixed L should occur in at least p-  
parameter families. 

We shall now confirm the above result by finding the infinitesimal variations of  

the boundaries generating the above p-parameter families. Consider a one- 
parameter family {f~t: t E ( -  e, e)} (e > 0 )  of  (p + 1)-connected domains f~t 
(t G R) with smooth boundaries and depending smoothly on t. Interpreting t as 

time, let v = vt = vt(z), z Ea~t, denote the velocity by which af~t moves, mea- 
sured in the direction of  the outward normal of  0f~t for each t. 
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It is clear that if one of  the domains f~, is a quadrature domain, satisfying (5.2) 
for a certain L as in (5.1), then all the other f~, are also quadrature domains 
satisfying (5.2) with the same L if and only if 

(5.7) d f f l d z l  = 0  
dt 

Ot'lr 

for all f analytic in a neighbourhood of ~,  (say) and for all t. We shall analyze 
what the condition (5.7) means for v. 

Writing (temporarily) ds instead of I dz I for the arc-length differential, denot- 
ing the curvature of Of~t by x (x = xt = xt (z), z ~ 0f~,) and the positively oriented 
unit tangent vector along Of~t by T(T  = Tt = Tt(z), z ~O~~t) we obtain, for small 

> 0 (see Fig. 1), 

(1 + r(z)v(z)J)ds z - iT(z)v(z)J 

I 
I v(z)~ 

2 ~ O~~t+~ 

O~t 

Fig. 1. 

Thus 

f fds = f f (z  - iT(z)v(z)O)(l + x(z)v(z)8)ds + 0(8) 

O~t + 8 Ol'lt 

= f If(z) - iTv8f'(z)](ds + ~'vSds) + o(~) 

OQt 
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(5.8) d ff'vTds. f :.s= f 
aft, oft  off, 

Using that Tds = dz along 0f~t and integrating by parts (5.8) can be written as 

(5.9) dt fds = fvxds i vdf  i 

O~z a~  df~ 

f (dv  - ivxds). 

Of it 

Thus (5.7) holds i f  and only i f  fof, f ( d v -  i vxds )= 0 for every f a n a l y t i c  in a 
neighbourhood of  ~ , .  By a well-known theorem the latter condit ion is equivalent 

to that dv - ivxds extends to a holomorphic differential in f~t. The most general 

holomorphic differential in f ,  can be written d(u + i ' u )  = du + i*du, where u is 

a real-valued, but  possibly additively multiple-valued, harmonic  function in f~t 

and *u is its (possibly multiple-valued) harmonic conjugate. Thus (5.7) is 

equivalent to 

(5.10) dv - ivxds = du + i*du along 0f~t 

for some u and *u as above. Identifying the real parts in (5.10) gives that  

(5.11) u = v + constant 

on each component  ofOf~t. In particular it follows that u is actually single-valued 

in fit- 
Now continue v harmonically to f~t. Then (5.11) says that  

(5.12) u = v + w in fit 

for some harmonic  measure w in f t .  By a harmonic measure we mean a harmonic  

function which is constant on each component  of  the boundary.  

The equality between the imaginary parts in (5.10) says that  - vr = Ou/On on 

Oft ,  where O/On denotes the outward normal derivative. By taking normal 

derivatives of  (5.12) we therefore obtain 

Ov aw 
(5.13) - -  + !o, = - - -  on Of~t. 

On On 

Observe that  u is now eliminated and that  we have got a condit ion on v alone: i f  

(5.7) holds then the harmonic extensions to f~t of  v satisfy (5.13) for some 

harmonic measures w in f ,  (depending on t). Conversely, it is easy to see that  we 

can go backwards: if  we have harmonic  functions v = vt in t2t (for all t) which 

satisfy (5.13) for some harmonic measures w then (5.10) holds for u defined by 

(5.12) and hence (5.7) holds. 
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Thus we have characterized the boundary velocities (or the infinitesimal 

generators of the boundary variations) which preserve fan f l  dz I (fanalytic in a 
neighbourhood of  ~ )  as those functions v on 0f~ whose harmonic extensions to f2 

satisfy (5.13). 
The problem of finding v harmonic in f2 and satisfying (5.13) for a given w has a 

unique solution (under suitable smoothness assumptions). (Observe that x 
cannot vanish on a whole component of  Of~ since g2 is bounded.) Since the space 
of  functions appearing in the right member of (5.13) is p-dimensional (the space 
of  harmonic measures is (p + 1)-dimensional, but contains the constants) we see 

that the space of  all boundary velocities v on 0N which preserve fan f l  dz I is 

p-dimensional, as expected. 

E x a m p l e  5.1.  Consider the one-parameter family 

s  ( 0 < t < l )  

of  annuli with constant lengths of the boundaries. Although ~'~t a r e  not quadrature 

domains we have 

dt f l d z l  = 0  

an, 

for everyfanalyt ic  in a neighbourhood of  ~t.  The boundary velocity v = vt of  ~t 
here is identically one on O~t, hence its harmonic extension to ~t  is identically 
one. The curvature xt of  0~t is (1 + t )  -I on the outer component and 
- ( 1 -  t) -I on the inner component. It follows that (5.13) is satisfied with 

w(z) = log I z I (which is a harmonic measure on each f~t). 

6. Quadrature domains  containing the point at infinity 

In this section we shall generalize Theorem 3.2 to cover the case that s C P 
contains ~ E P. Observe that we never can have 1 E E(f~) = E2.<| in this case, 
just 1 E E _  t.r = E2(~-~), namely if s is bounded by finitely many rectifiable 
continua (Lemma 1.2). Therefore Theorems 3.1 and 3.2 need some modifications 

to cover the case ~ ~ f2. 

Theorem 6.1.  Let ;~ = W U OW U ~/ be a double o f  a plane domain, let 
Do and D be divisors in W satisfying Do <= D and let g ~ EDo( W). Then 

( / ,  g)  -- 0 /or all/Ego(w) 

i f  and only i f  g extends to an element in F(l~, ~o0_~(2)). 

Proof. With Eo(W) • = {gEEoo(W):( f ,g)  = 0 for all f E E o ( W ) }  the as- 
sertion of  the theorem is that 
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Eo(W) l = F ( # ,  ~o0-~('~))- 

The inclusion F( ir ~o0_~(2)) C Eo(W) • follows by the computation (3.3) in the 
proof of  Theorem 3.1. Since 

dim F(I~, ~o0_~(2)) > deg(/) - Do) = deg(D - Do) 

by (3.2) and 

dim Eo( W)" -- dim(EDo( W)/ED(W)) < deg(D - Do) 

the above inclusion cannot be proper, proving the theorem. [ ]  

T h e o r e m  6.2.  Let f~ be a domain in C bounded by finitely many continua 
and with o o ~ ,  and let D be a divisor in f~, D > -  1 .(oo). Further, let 
I~ = W tJ 0 W U l~ be a double o f  a plane domain with W conformally equivalent 
to f~, let g : W - ,  ~ be a conformal map and let Dl = g -  I(D), w = g -  ~(oo). Then 

(a) v ~ g  exists as an element in F(W, ~_t.(w)(2)). Moreover v~g~E_l . tw)(W) 

(b) f o n f l d z l  =O f o r a l l f ~ E o ( ~ ) =  2 E~+I .(~)(f~) i f  and only i f  v ~ g  extends to 
an element in F ( # ,  ~_~._ ~.(~)(2)). 

The proof is similar to that of  Theorem 3.2, with Theorem 6.1 used in place of  
Theorem 3.1,  and hence omitted. 

E x a m p l e  6 . 1 .  In the simply connected case we may take if" = P = C U 

{oo} with involution j ( z ) =  1/2 and with W = D  ~ = { z ~ P :  Izl > 1}. (Hence 
if" = D.) Combined with Example 2.1 Theorem 6.2 then gives the following. 

Suppose oo ~ f l  c P, where fl  is simply connected and has rectifiable bound- 
ary, let D be a divisor in f~ such that D > - 1. (oo), say D = Zjml nj(zj), zj E f L  
Further, let g" D e ---, f~ be a conformal map with g(oo) = ~ .  Then 

f f[  I fUEo(f~)  = E ~ + l  .(oo)(~-~) dz 0 for al l  

off 

if and only i fg '  --- R 2 for some rational function R with div R > - / ) 1  - 1. (co)  h- 
I �9 (oo) =/91, where/) l  = ~m yft nj .(1/r0j), g(wj) = zj. 

Taking D -- 0 e.g. we find that 

(6.1) y f l d z l  = 0  

off 

for all f ~ E ( f ~ )  = E2.(oo)(f~) 

if and only i fg '  is constant (since a rational function R with div R _>- 0 necessarily 
in constant), hence if and only i fg (z )  = Az + B for some A, B E C  with A ~ 0, 
hence if and only if ~ is the exterior of  some disc in C. [] 
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Remark 6.1. The statement that (6.1) implies that f~ is the exterior of  a 
disc remains true with the mere assumption on if2 that it is a domain in P 
bounded by finitely many rectifiable continua. In fact, if ~ ~ f2 then 1 E E(f~) and 
(6.1) cannot hold. Thus we may assume that oo ~ f l .  

Choose if" and g : W --- f2 as in Theorem 6.2 with D = 0. "l:hen, if (6.1) holds, 

C~g~F(l~,~_t.(w~(2) ) where w=g-~(oo)EW. This means that, for some 

constant factor c ~: 0, v/dg = c.  A~ where A~ is the Szego kernel (for I~) as in 
Remark 3.2. Further, 

dg=(~g)2~r(W,  ~..~_2.(w)(~2))= F(l/~r, ~,~_2.(w)(ls and f~dg=O 

for every closed curve a in W (or in 1~') since g is single-valued on W. But these 
properties characterize (up to a constant factor) the so-called reduced Bergman 
kernel Ks = Ks(., if) for 1~, i.e. the reproducing kernel for the Hilbert space of 
square-integrable holomorphic differentials in I~" having a single-valued integral 
(in I~). 

Thus if (6. l) holds we have Ks = cA 2 for some constant c (which then must be 
4n). However, it is known that such a relation holds only if l~has genus zero, i.e. 
if W is simply connected. See [8], in particular Section XII. Thus we are back in 
the case of Example 6.1 and f~ is the exterior of  a disc, as claimed. 

The above arguments may also be used to give an alternative proof of the 
assertion in Remark 3.4. [] 

7. Other aspects of  quadrature identit ies  

The following theorem contains some further aspects of quadrature identities. 
It has partly been suggested by Harold S. Shapiro and Jaak Peetre. For example, 
the condition (iii) in it is the counterpart in our context to that the so-called 
Friedrichs operator has finite rank (in the context of  quadrature identities for 
area measure). See [ 13]. The idea to consider conditions of the kind (iv) is due to 
Jaak Peetre. 

Theorem 7.1. Let f2 C C be a domain bounded by finitely many rectifiable 
continua and let 

I = { f E E ( ~ ) :  f fgldzl = 0  

all 

for all g ~E(f~)} .  

Then the following conditions are equivalent. 
(i) f~ is a quadrature domain, i.e. there exists a (positive) divisor D in ~ such 

that 
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y f ldz l  = 0  

Of~ 

for all f E  Eu (D). 

(ii) There exists a divisor D in D such that 

Eo(f~) C I. 

(iii) codim I < ~ .  
(iv) There exist continuous linear functionals a~ . . . . .  am, b~ . . . . .  bm on E(D) 

such that 

fgldzl  = ~ ak(f)bk(g) 
k = l  

OD 

for all f ,  g ~E(D). 

Proo f .  (i) implies (ii): I f f~Eo(D)  and g ~ E ( D ) ,  then, as is easily seen, 
fg~E~(D). By Corollary 3.2 (i) therefore implies that faafgldzl =0 for 
f~Eo(f~), g ~E(D). But this is exactly the assertion of (ii) (with the D in (i)). 

(ii) implies (iii): This is obvious, since codim Eo(D) < oo. 
(iii) implies (iv): Assume (iii) and consider the continuous bilinear map 

B'E(D)  • 

n ( f , g )  = f fg ldzl .  

OD 

By the definition of  I, B can be factorized: 

(7.1) E(D) X E ( D ) ~  E(f~)/I X E(D)/I ---, C. 

Since I is a closed subspace of finite codimension I is the kernel of some 
continuous linear map a : E(~'2)-~C m, f ~ (al(f) . . . . .  am(f)) say, where m = 
codim I. Hence 

E(D)/I ~ C m, [ f ]  ~ (al(f) . . . . .  am(f)) 

and inserting this isomorphism into (7.1) and using that the general bilinear map 
C m • C m ---C is of  the form ((Zk), (W~))~-+ Z AkjZkWj the desired form of B results 
(with ak as above and bk(g) = Z~=l Akjaj(g)). 

(iv) implies (iii): This is obvious, since e.g. 

(~ ker(ak) C I. 
k = l  
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(iii) implies (i): Assume (iii). Then I must contain some polynomial p, not 
identically zero. Write p = qr where q and r are polynomials with zeroes only 
in f~ and ~c respectively. By the definition of I we have 

f qrfldz[ = 0  for all (7.2) f e E ( ~ ) .  

OL'I 

Since q is bounded away from zero on Off~ it follows from (7.2) that 

f rfldz[ = 0  forall feE~(g~), (7.3) 

0fl 

where D is the divisor of q (in ~). 
Now we must get rid of the factor r in (7.3). To this end we shall prove the 

following. 
Suppose that 0 fis ~ .  Then 

(7.4) zE(~) is dense in E(fl). 

Suppose (7.4) is proven. Then, for each linear factor rk in r, rkE(ff~) will he dense 
in E(fl). It is easy to see that this implies that rE(~) = rl. �9 �9 raE(~) is dense in 
E (~ )  (d = the degree of r) and also, e.g. using that En(~) = qE(~), that rED(~) is 
dense in ED(~). Therefore (7.4) implies that 

f f l  dz = 0 for all f E E o ( ~ ) ,  I 
af~ 

which is the desired conclusion. 
It remains to prove (7.4). Let KI . . . . .  Kz be the components of  P \ ~ ,  with 

0~K1, say, and put flj = P \Kj .  Let f E E ( ~ )  = EE(&q) (~  c C) be the function to 
be approximated by functions in zE(~). By the decomposition theorem (1.2) we 

may write 

(7.5) f = f, + . . .  + f,, 

where fj EE2(flj). This time we however do not choose~ as in (1.3), but rather 

(7.6) fj(z) = 1 f ( w l  l )  2~i f(w) - z dw (z e ~j), 
Oaj 

SO that fj(O) = 0 fo r j  ---- 2 . . . . .  m. 
Sincefj(O) = 0 ( j  >_- 2) we can write (7.5) as 

(7.7) f ( z ) =  f ( z )  + z(g2(z) + . . . + gm(Z)) ( z E ~ )  
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where gj(z) = fj(z)/z (1 > 2). It is clear that gj ~ E2(f~j) C E2(f~) since f~ ~ E~(f~y) 
and l/z is bounded outside a neighbourhood of  z = 0. Hence the second term in 
(7.7) belongs to zE2(f~). 

Thus it only remains to prove that f~ ~E~(f~)  in (7.7) can be approximated, in 
the E~(f~)-norm, by functions in zE~(f~). What we shall do is to prove the stronger 

statement that f~ can be approximated in the E~(f~0-norm by functions in 
ZEl~.<~)(f~0. Observe that the restriction operator E2(f~)---- E~([2) is well-defined 
and continuous, due to the fact that 0f2 \ af~ is rectifiable and compact in f2~, so 
the latter approximation is really stronger. More precisely, we shall prove that 

(7.8) zE~.t~)(f~) is dense in E2(fl~). 

Let g : D ---- f~t be a conformal map. We first consider the case that ~ ~ f~t. Then 
is holomorphic and bounded in D and ~ ' E H  ~ (since 1 ~El(f~,); see Lemma 1.2). 

It follows that the m a p f  ~ ( f o  ~)x/~ '  is an isometric isomorphism from E2(121) 
onto H 2. The statement (7.8) to be proved now takes the form: q~H 2 is dense in H 2. 

But this is well-known to be true because every univalent functions in D without 
zeroes (such as ~) is an outer function ([5, Thm 3.17] e.g.) and then even the 
polynomial multiples of  ~ are dense in H 2. 

Now suppose that ~ ~f2~. Then r has a pole, which we may take to be at the 

origin (~(0) = ~) .  By (a)(iii) in Section 1 we now get an isometric isomorphism 

f ~-- (fo ~0)x/~o' from E~.<~)(f~l) onto H 2. This isomorphism also maps E2(f~,) 
(isometrically) onto 

H-i.<0)= a,,z": ~ l a n l 2 < ~  . 
n 1 

Thus (7.8) takes the form: q~H 2 is dense in H ~ _ 1.<0), or, equivalently, z~(z)H 2 is 
dense in z .  H2_ ~.<0~ = H 2. 

Thus it is enough to prove that z~p(z) is an outer function in H:  (observe 
that z~(z) is holomorphic and even bounded in D so that really zr 
But now 1/~(z) is univalent and holomorphic in D. Hence, by [5, Thm 3.16-17] 

1/~ ~ H  p for all p < �89 and l/~o has no singular inner factor. Therefore the inner 
factor of  1/~o(z) is just z, so that 1/zr is an outer function (in H p, p < �89 But 
this implies that also z~(z) is an outer function (in H:  e.g.). This completes the 
proof of  (iii) ~ (i). [] 

REFERENCES 

1. D. Aharonov and H. S. Shapiro, Domains on which analytic functions satisfy quadrature 
identities, J. Analyse Math. 30 (1976), 39-73. 

2. C. Auderset, Sur le th~or~me d'approximation de Runge, Enseign. Math. 26 (1980), 219-224. 
3. Y. Avci, Quadrature identities and the Schwarz function, Doctoral Dissertation, Stanford 

University, 1977. 



APPLICATION OF HALF-ORDER DIFFERENTIALS 89 

4. PI. J. Davis, The Schwarz Function and its Applications, The Carus Mathematical Mono- 
graphs 17, The Mathematical Association of America, 1974. 

5. P. Duren, Theory ofH ~ Spaces, Academic Press, New York, 1970. 
6. R. C. Gunning, Lectures on Riemann Surfaces, Princeton University Press, Princeton, 1966. 
7. B. Gustafsson, Quadrature identities and the Schottky double, Acta Appl. Math. 1 (1983), 

209-240. 
8. D. Hejhal, Theta Functions, Kernel Functions, and Abelian Integrals, Memoirs Am. Math. 

Soc. no. 129, Stanford, 1972. 
9. C. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Grttingen, 1975. 
10. W. Rudin, Analytic functions of class H o, Trans. Am. Math. Soc. 78 (1955), 46-66. 
11. M. Schiffer, Half-order differentials on Riemann surfaces, SIAM J. Appl. Math. 14 (1966), 

922-934. 
12. M. Schiffer and N. S. Hawley, Half-order differentials on Riemann surfaces, Acta Math. 115 

(1966), 199-236. 
13. H. S. Shapiro, Domains allowing exact quadrature identities for harmonic functions n an 

approach based on PDE, in Anniversary Volume on Approximation Theory and Functional Analysis, 
P. L. Butzer, R. L. Stens and B. Sz.-Nagy (ed.), ISNM 65, Birkhiiuser-Vedag, Basel, Boston, Stuttgart, 
1984. 

14. H. S. Shapiro and C. Ullemar, Con formal mappings satisfying certain extremal properties, 
and associated quadrature identities, Royal Institute of Technology research report TRITAmMAT- 
1981-6, Stockholm, 1981. 

15. G. Toumarkine and S. Havinson, On the definition of analytic functions of  class Ep in multiply 
connected domains, Uspehi Mat. Nauk 13 (1958), 201-206 (in Russian). 

16. G. Toumarkine and S. Havinson, On the decomposition theorem for analytic functions of 
class Ep in multiply connected domains, Uspehi Mat. Nauk 13 (1958), 223-228 (in Russian). 

17. G. Toumarkine and S. Havinson, Classes de fonctions analytiques dans des domains 
multiplement connexes, in Fonctions d'une variables complexe, Probldmes contemporains, A. I. 
Markouchevitch (red.), Gauthiers-Viilars, Paris, 1962, pp. 37-71. 

(Received December 3, 1985) 


