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0. Introduction and notations 

The topic of this paper is so-called quadrature domains and quadrature 
identities for arc-length. A domain Q in the complex plane (or sometimes in the 
Riemann sphere) is called a quadrature domain for arc-length (the phrase "for 
arc-length" will henceforth in this paper usually be understood) if there exist 
finitely many points z , , . . . , zm in Q and complex numbers akJ(0 ^j^nk — \ say, 
1 < /c < m) such that 

for every / in some suitable test class A(Q) of analytic functions in Q. The 
identity (0.1) is then called a quadrature identity (for arc-length). 

Of course, certain assumptions on Q. and A(Q) are needed in order for (0.1) to 
make sense. In this paper the assumptions on Q will generally be that d£l has 
finitely many components each of which is a continuum of finite one-dimensional 
Hausdorff measure (the phrase "Q is bounded by finitely many rectifiable 
continua" will be used). The most natural choice for A(Q) turns out to be the 
Hardy space El(Q.), although it usually will be more convenient to work with the 
corresponding Hilbert space £ 2 (f i) . In these cases (0.1) will be found to make 
sense. (The above things are elaborated in Section 1 of the paper.) 

The principal example of a quadrature domain is any disc in which case 

where a = \ dQ. | (the length of <9Q) and z 0 is the midpoint of Q. (0.2) also holds if 
Q, is the exterior in the Riemann sphere of any disc, in which case z 0 = oo. With 
the a priori assumptions on Q. indicated above no other domains Q satisfy (0.2). 
See [3, Thm 21] and Remarks 3.4 and 6.1 in the present paper. 

(0.1) 

(0.2) 
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One reason for investigating quadrature domains for arc-length in general is 
that they appear as image domains for the solutions of certain extremal problems 
for univalent functions. See [14]. It also turns out that the property of a domain Cl 
of being a quadrature domain has a hydrodynamical interpretation, namely that 
there exists a steady two-dimensional flow of an ideal fluid in Q with certain 
(nonmovable) singularities at the points zx,..., zm in (0.1) such that SCI is a free 
stream-line for the flow. See [14]. There is also an interpretation in two-
dimensional potential theory: if nk = 1 and ak > 0 for all k then (0.1) implies that 
the gravitational field produced by the point masses ak at zk coincides, outside Cl, 
with the gravitational field of a uniform mass distribution on dQ. (Choose 
f(z) = l / ( z - C ) f o r C e C \ £ l i n (0.1).) 

Quadrature identities of the kind (0.1) have earlier been considered in [3] and 
[14]. In [14] the simply connected quadrature domains are described, briefly as 
follows: 

Let g: D — fi be a Riemann mapping function (D the unit disc) and assume 
that Q is a Smirnov domain with rectifiable boundary. Then Q is a quadrature 
domain with the polynomials (or, equivalently in this case, E[(£l)) as test class if 
and only if 

(0.3) g' = R2 

for some rational function R. 
Under the further assumption on Q that dft has a continuously turning 

oriented unit tangent vector T(z) (so that dz = T(z) \ dz | along dQ.) the following 
characterization of the quadrature property is also found: Cl is quadrature 
domain for the test class A(Q) = {functions holomorphic in a neighbourhood of 
Cl) if and only if there is a meromorphic function H(z) in Cl with 

(0.4) H(z) = J\z) on dCl. 

Such a characterization was also obtained in [3], in the multiply connected case. 
Most of the present paper is based on an idea obtained by reinterpreting (0.4) as 

follows. From the definition of T(z) one obtains T(z)2 = dz2/\dz \2 = dzldz so 
that 

for a certain branch of the square-root. Therefore (0.4) can formally be written as 

(0.5) H(z)Vdz = Vdz along dft. 

Let Cl denote the Schottky double of Cl, i.e. the compact Riemann surface 
obtained by completing i l with a back side Cl (a copy of Cl provided with the 
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opposite conformal structure). Thus Cl = Q U dQ U Cl. In terms of Cl (0.5) has the 
following interpretation: the half-order differential \fdz on Q extends over dQ to 
a meromorphic half-order differential on Cl, represented on Cl by H(z)Vdz. The 
concept of a half-order differential is made precise in Section 2. 

The above interpretation of (0.5) gives rise to a generalization of (0.3) to 
multiply connected domains Q: Let IV be a standard domain of desired confor­
mal type, let W = W U dW U Wbe its Schottky double and let g: W — Q be a 
conformal map. Then Q is a quadrature domain (for the test class E2(Q)) if and 
only if y/dg extends to a meromorphic half-order differential on W, i.e. if and 
only if there exists a meromorphic half-order differential on W such that 

(0.6) Vdg = Ry/dz in W 

(cf. (0.3)). This is Theorem 3.2, our most basic result. 
In Section 4 we show that, given W, there always exist univalent functions g on 

W having the property (0.6). Thus there exist quadrature domains of all confor­
mal types under consideration. In Section 5 we show that when a (p + 1)-
connected domain satisfies a quadrature identity (0.1) (for the test class E2(Q)) 
then there is in general a whole /^-parameter family of (p + 1 )-connected domains 
satisfying the same identity (0.1) (i.e. with the functional in the right hand side of 
(0.1) the same). 

In Section 6 we consider quadrature domains in the Riemann sphere contain­
ing the point at infinity, and in Section 7, finally, we treat quadrature domains 
from a completely different point of view. To be specific, it is a simple conse­
quence of (0.1) (with A(Q) = £'(")) that 

(0.7) \ fg\dz\ = 1 ak(f)bk(g) 
-J k-l 
an 

for all f,g€iE2(Q) and for suitable linear functionals a , , . . . , b„ on E2(Q). In 
Section 7 we prove that, conversely, having an identity of the kind (0.7) implies 
that Q is a quadrature domain (for El(Q)). 

It should be remarked that we will usually express the property of being a 
quadrature domain in a slightly different manner compared to (0.1). Let zk and nk 

be as in (0.1) and form the divisor D = 2™_, nk(zk) (formal linear combination). 
Assuming that the zk are distinct we may define, for any linear space A(Q) of 

holomorphic functions in Q, 

A D(Q) = f /E A(Q): / has a zero of order at least nk at zk 

for each k = 1 , . . . , m). 

Then it follows by elementary functional analysis that (0.1) holds for all / E A(Q), 
for some set of coefficients {akJ} if and only if 



APPLICATION OF HALF-ORDER DIFFERENTIALS 57 

(0.8) for all fEAD(Q). 

en 

Thus Q is a quadrature domain for the test class A(Q) iff (0.8) holds for some 
positive divisor D. The identity (0.8) will also, as well as (0.1), be called a 
quadrature identity. 

It should also be remarked that the two test classes A(Q) used in this paper, 
namely E{(£1) and E2(CT), are equivalent under our assumptions on Q. For when 
Q is bounded by finitely many rectifiable continua, -E2(Q) C El(£l). Thus if £2 is a 
quadrature domain for E[(Q) it is so also for £ 2 (Q). On the other hand we prove 
(Corollary 3.1) that if fl is a quadrature domain for E\Q) then Q is bounded by 
analytic curves without local singularities and in this case E2(£l) is dense in 
El(Q). Hence £2 will be a quadrature domain also for El(Q). 

There is a slight overlap of the present paper with [3] (see the end of Section 3 
for some details) but generally speaking the theory in [3] is developed along 
different lines than here. 

I would like to express here any gratitude to Harold S. Shapiro for many 
valuable discussions and suggestions on the material in this paper, in particular 
that in Sections 1 and 7, and also for his help with the translation of Russian 
papers. 

Some notations and terminology used 

D(fl;r) = ( z £ C : \z-a\ <r), 
D = D(0; 1), 
P = C U { x } = the Riemann sphere. 
domain: open connected and non-empty subset of a Riemann surface, 
analytic = holomorphic (about functions etc.). 
conformal map: a map between two Riemann surfaces which is analytic, one-

to-one and onto. 
continuum: a closed connected set consisting of more than one point, 
analytic curve: the image of 3D = ( z £ C : \z | = 1} under a non-constant 

analytic map <p defined in some neighbourhood of 3D (and 
with values in a Riemann surface), 

locally regular analytic curve: as "analytic curve" but with the additional 
requirement that <p' # 0 on 3D. 

regular analytic curve: as "locally regular analytic curve" but with the ad­
ditional requirement that cp shall be one-to-one on 3D 
(and thus univalent in a neighbourhood of 3D). 
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diam E = sup{ \z — C\ : z, £ EE] for E CC. 
If fl is a domain in C or in P 3fl generally denotes the boundary of fl in P. Also 

fl = n U d f l . 

A divisor Dona Riemann surface is a finite formal linear ombination of the 
kind 

m 
(0.9) D=lnr(zj) 

with «, £ Z (the integers) and z, G fl. Assuming henceforth that the z, in (0.9) are 
distinct D is positive if « ; i£ 0 for all j . The set of divisors in Q form an Abelian 
group under addition in the obvious way. Dx ^ D2 means that D2 — D{ is a 
positive divisor. If E is a subset of fl the restriction of D in (0.9) to E, DE, is the 
divisor obtained from D by deleting those terms «,(z,) in (0.9) for which z, $.E. 

The degree deg Z) of the divisor (0.9) is defined by 

m 
degZ) = 2 

I f / i s a meromorphic function in Q not identically zero we define 

(0.10) D i v / = 2 «,-(*) 
zen 

(formal linear combination), where nz E Z is defined by 

/(C) = ao(C-z)"'+a 1 (C-2) ' , ' + 1 + * o * 0 

for f close to z. Similarly for meromorphic differentials etc. In general, Div / 
is not a divisor in our sense since the linear combination in (0.10) may be infinite 
if fl is not compact. Nevertheless, statements such as Div f^D etc. make 
obvious sense. 

j,z,E,i),J,X and other notations related to symmetric Riemann surfaces and 
half-order differentials are defined in Section 2. See in particular the Conventions 
there. 

The spaces E"(Q), £j>(fl) are defined in Section 1 and the spaces £(A), £ B(A) 
both in Section 1 (1.8) and Section 2 (from different points of view). 

1. Preliminaries on E"-spaces 

Lemma 1.1. Let gbea univalent (i.e. one-to-one) meromorphic function in 
an arbitrary domain fl C P. Then there exists a single-valued branch of Vg~' in fl. 

Proof. It is easy to check that Vg' exists locally everywhere, due to the local 
univalence of g. Since y/g' = exp(j logg') -/g' is single-valued in fl if and only 
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if, for every simple closed oriented curve y in Q not passing through oo or the 
possible pole of g, 

(instead of just 2niZ). 
But a simple computation shows that j y d(\ogg') = 0 if g preserves the orien­

tation (in C) of y, j y d(\o% g') = ± 4ni otherwise. Hence the lemma follows. • 

Remark 1.1. It is not true that e.g. (g')m or logg' exists in general. The 
only powers (g')a which exist in general are those with 2a E Z. However, if both Q 
and D = g(Q) contain the point oo E P and g(oo) = oo, or if none of them contain 
oo and g maps the outer component of dQ onto the outer component 3D, then 
log g' (and hence all powers of g') exists. 

Nor is it true that the assumption of univalence for g can be replaced by that of 
local univalence. g(z) = z2 in Q = {z EC : 1 < \ z\ < 2} is a counterexample. • 

Let Q C P be an arbitrary domain. There are two standard ways of generalizing 
the Hardy spaces H" of analytic functions in the unit disc to Q. The resulting 
spaces of analytic functions in Q are denoted H"{Q) and E"(Q) respectively and 
are defined as follows (see [5], [10], [15], [17] for more details). 

fE.H"(Q) (1 Si p < oo) if and only if \f\p has a harmonic majorant in Q. 
fGEp(Q) (1 ^ p < oo) if and only if there exists an increasing sequence of 
domains D„ in Q with U Dn = Q and with dDn consisting of finitely many 
rectifiable Jordan courves such that 

(The sequence {Dn} may depend upon/.) 
Sometimes (e.g. in [5]) it is required in the definition of EP(Q) that the lengths 

of dD„ shall be uniformly bounded. We shall however work with the definition as 
stated above since this is the simpler one and since it anyway is known [ 15], [ 17] 
that for all domains considered in this paper, namely those in Definition 1.1 
below, the two definitions are equivalent. 

//°°(Q) consists of the bounded analytic functions in Q and £'C0(Q) consists of 
the analytic functions in Q which are bounded in a neighbourhood of dQ. Thus 
//°°(Q) = £°°(Q). 

If D is an arbitrary divisor in P we also have spaces Ef, (Q) (Q C P, 1 ̂  p ^ oo) 
defined in the same way as /^(Q) except for that the condition on / of being 
holomorphic in Q is replaced by that of being meromorphic in Q with e i ther /= 0 

(1.1) 
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or / seO and Div Dn. Thus ££(£2) is a subspace of EP(Q) if D is a positive 
divisor and E$(Q) = EP(Q) (0 denoting the divisor zero). 

Example: £ 2 . ( x ) ( f i ) = ( / E £ 2 ( Q ) : /(oc) = 0 if oc e f i } . 

All spaces HP(Q), E"(Q) and £#(£2) are complex linear spaces. 
We now list a number of known properties of the spaces / / P (Q) and Ep(£i) 

(Q C P, 1 ̂  p ^ oc) that will be needed in the sequel. 

(a) Behaviour under conformal mappings. Suppose <p: W — Q is a conformal 
map ( l f , f i c P). Then fEH»(Q) if and only i f / « p If 12 C C, and 
<p'Up exists, (i.e. is single-valued) then fEE"(Q) if and only if ( / ° <p)<p'UpE 
^(WO. (9>"/p should be interpreted as 1 if p = oo.) 

If W and/or Q contains the point oo E P things become a little more compli­
cated for EP(Q), unless q>(oo) = oo or p = 1, 2 or oo. We shall only be concerned 
with the cases p = 1 and p = 2 and then we have the following statements, valid 
for arbitrary W,QcP. 

(i) <p'Up always exists (Lemma 1.1), 
(ii) /E£J . ( X ) (Q) if and only if {f» <p)<p'<=ElM(W). 
(hi) / E £ ? . ( X ) ( Q ) if and only if (fo 9y/f EElM(W). 
All assertions above are easily proved by just checking with the definitions. 

(b) If W c C is bounded and d consists of finitely many (pairwise) disjoint 
regular analytic curves, then E"(W) = HP(W) (1 < p ^ oo) [5], [15], [17]. More­
over, the norms on E"( W) to be defined below (1.4) are equivalent to the standard 
norms [5], [10] on HP(W) in this case. This follows easily e.g. from [10, (3.1.2)]. 

Finally, the functions analytic in a neighbourhood of IF are dense in H"(W) 
and (hence) also in E"(W) [10, Lemma 3.4]. 

(c) If W c C is bounded and d W consists of finitely many disjoint regular 
analytic curves, then there is a linear map 

(L"(dW) = L"(dW; arc-length measure), 1 S p < oo) such that every fEHp(W) 
has nontangential boundary values y(f) almost everywhere on dW. Moreover, y 
is injective and its range consists of those f*EL"(dW) which satisfy 

for every 0 analytic in a neighbourhood of W. In particular, the range of y is a 
closed subspace of Lp(dW). The inverse of y (on its range) is given by/*l—• / , 
where 

y.Hp(W)^L"(dW) 
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i f f*(w)dw 1 r dg(w, z) 
/ ( z ) = — = — / * ( * ) — \dw\ 

2ni J w — z In J an 
aw aw 

and g(w, z) denotes the Green's function of W. Finally, iffEH p(W) and y(f) 
vanishes on a set of positive measure, then / = 0. See [ 10] for the above matters. 

(d) If Q is bounded by finitely many continua then the domains D„ in the 
definition of E"(Cl) can be taken to be independent of fEE"(Q) and also 
independent of p (1 ^ p ^ oo). One can e.g. take 

Dn = {zen:g(z,z0)>dn) 

where z 0 E Q is fixed (though arbitrary) and {d„} is any sequence of positive 
numbers decreasing to zero [15], [17]. 

(e) Decomposition. Suppose Q C C is finitely connected, let Ku ..., Km be the 
components of P \ Q and let Qj• = P\Kj (j' = 1 , . . . , m). Then any function / 
holomorphic in Q can be written 

(1.2) f - f i + - • • + / „ ( m i l ) , 

where f is a function holomorphic in Q,(j; = 1 , . . . , m). One may e.g. take 

1 C f(w) 
2m J w — z 

» 
where y, = yy(z) is a contour in Q approximating 5Qy and oriented as dQ. 

Suppose now that no component of dQ degenerates to a point and that dQ is 
rectifiable (see Remark 1.2 below). Then, in any decomposition (1.2)/EE P (Q) if 
and only if ^ E ^ Q , ) for all j = 1 , . . . , m (1 ^ p < oo) [15], [16], [17]. (The 
corresponding theorem for Hp(Cl) is also true [5], [10].) • 

The following lemma may be viewed as a generalization of [9, Thm 10.11]. 

L e m m a 1.2. Let W C C be a bounded domain, bounded by finitely many 
disjoint regular analytic curves, let Q C P be a domain conformally equivalent to 
W and let <p: WQ be a conformal map. Then, i/oo^EQ, the following are 
equivalent: 

(i) dQ is rectifiable. 
(ii) dQ has finite one-dimensional Hausdorff measure. 
(iii) 1 E£'(Q) (equivalently 1 E:Ep(Q)for any 1 s p < oo). 
(iv) <p'E:E\W) {equivalently V^'EE\W)). 
(v) q> extends to a continuous function on W U dW with q> \ bW absolutely 

continuous. 
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If oo G Q the same is true ifiiv) is replaced by 
(iv)' <p'EEl2.iw)(W) (equivalently y/f'EEii.(w)(W)). Here w = <p~l(cc). 

Remark 1.2. As a definition of "dQ is rectifiable" we take: each of the 
finitely many components of dQ is the image of [0, 1] (or dD) under a function 
which is continuous and of bounded variation. 

That dQ has finite one-dimensional Hausdorff measure means, by definition: 
there exists a constant M < oo such that for any e > 0 dQ can be covered by a 
family {A,-} of open discs satisfying diam(A /) ^ e for all j and 2 y diam(Ay) ^ M. 

Proof, (i) implies (ii): This is an elementary exercise which we omit. 
(ii) implies (iii): From the definiton of "finite one-dimensional Hausdorff 

measure" we obtain coverings { A f } , (n = 1, 2 , . . . ; Ajn ) open discs) of dQ with 
diam(AjB)) < l/n (for allj) and 2 diam(Af >) ^ M < oo (M independent of «). It is 
easy to see that dQ is necessarily bounded, hence compact. Thus we may assume 
that each covering {A]"' } y is finite. Now let 

Then {/)„} is an exhaustion of Q as in the definition of ^ ( Q ) , except that it 
may be necessary to pass to a subsequence to obtain Z), C D2 C • • • and to delete 
components of D„ to get D„ connected. Since 

it follows that 1 G£'P(Q) (1 < p < oo). 
(iii) implies (iv): It follows immediately from the behaviour of the Zsp-spaces 

under conformal mapping that (iii) and (iv) (or (iv)' if oo G Q) are equivalent 
statements. 

(iv) implies (v): Decompose <p according to (1.2), (1.3) so that g> = q>x + • • • + 
q>m in W, where <pj is holomorphic in Wj = P\ (the jth component of P\ W). It 
now suffices to show that, for each j = 1 , . . . , m, q>j extends continuously to 
Wj U dWj D W U dWj with <pj \dWj absolutely continuous. (Observe that, for 
k ¥=j, cpk is even analytic in a neighbourhood of W U dWj.) 

From tp'E.El(W) it follows by the decomposition theorem (e) above that 
(PjEE'iWjXj = 1 , . . . , m. Moreover, if oo G Wj, <Pj(cc) = 0 by (1.3) and hence (pj 
has a zero of order at least two at oo. Thus q>j €i E2

l.(cc)(Wj) for all j . 
Since W} is simply connected there is a Riemann mapping function y/j•: D -* 

Wj. From ^jEEl^Wj) it follows (by (a) (ii) before the lemma) that (q>j ° y/j)' = 
{(p'j°y/j)y/'jEE\D). But £'(D) = //'(D) = / / ' (the usual Hardy space in the unit 
disc) and it is known [5, Thm 3.11] that (q>j ° y/)'E.Hl implies that (pj ° y/j extends 

Dn = Q \ u Ay>. 
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continuously to D with (cpj ° y/j) | 3 D absolutely continuous. From this the desired 
conclusion follows because ij/fl extends analytically across dWj due to the 
analyticity of dWj. 

The easy modifications of the above arguments needed to prove that (iv)' 
implies (v) in the case oo £ Q are left to the reader. 

(v) implies (i): Since absolutely continuous functions are of bounded variation 
this implication is obvious. • 

For a domain Q c P t o satisfy the hypotheses in Lemma 1.2 for some choice of 
W and q> it is necessary and sufficient that dQ consists of finitely many, and at 
least one, continua. Therefore we shall use the following terminology. 

Definition 1.1. By a domain bounded by finitely many rectifiable continua 
we mean a domain Q c P satisfying the hypotheses (for some choice of Wand q>) 
and equivalent conditions in Lemma 1.2. 

One should notice that if Q C P is bounded by finitely many rectifiable 
continua then either o o E i i or Q is a bounded domain in C. In both cases 
Ex(£l) C E\£l) C £'(Q) (etc.), in particular every function holomorphic in a 
neighbourhood of Q belongs to all E"(Q) (1 ^ p oo). 

In the rest of this section we shall only consider domains £2 bounded by finitely 
many rectifiable continua. 

It is time to put norms on EP(Q). Choose a bounded domain W c C bounded 
by finitely many disjoint regular analytic curves and conformally equivalent to Q 
and choose also a conformal map <p: W — Q. Then (p'E:E\W) by Lemma 1.2. 
We may suppose that W and <p are chosen so that <p'llp exists (cf. Remark 1.1.) 
Then fEE"(Q.) if and only if (f°<p)(p'Vp<EEp(W), and we define 

(1-4) l|/IU<<n> = \\7[(J°<P)<P'1"']\\l^) 

foTfEEp(Q), l^p^oo. Recall that, for g<EEp(W) = HP{W), y(g) denotes the 
boundary function of g on d W. 

It is immediately verified that this definition is independent of the choices of W 
and <p. In particular, || f\\E\a) = || y{f) if d£l is analytic. 

Since the map / h* y[(f° (p)<p'ilpl E"(£l)-* Lp(dW) identifies EP(Q) with a 
closed subspace of Lp(dW) (namely the range of y) the norms (1.4) make E"(£l) 
into a Banach space. It is also clear that whenever q>: Q{ — fi2 is conformal 
and <p'l/p exists the map /I— (f ° <p)<p'Up is an isometric isomorphism of E"(£l2) 
onto Ep(ili). Finally, it is easy to see that the topology on E"(Q) induced by the 
above norms is stronger than the topology of uniform convergence on compact 
subsets of A. In particular, any functional as in the right member of (0.1) is 
continuous on Ep(£l). 
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For p = 2, E"(Q) = E2{Q) becomes a Hilbert space with the inner product 
defined by 

(1.5) (/, g)EHa) = (7[(f° <P)SV% y[(f° V)^'])^ 

(f, gE.E2(Q.)), where W and f{f. W-* Q) are as in the definition of the norm. 
Thus 

(/,SMn>= j y(f)Hg)\dz\ 
an 

if d£l is analytic. (Of course the same branch of is to be chosen at both places 
in (1.5).) 

From now on we delete the subscripts E"(Cl) from the norms and inner 
products above. 

It is clear that the definitions of || • || and (•, •) make sense also for (Q) 
(1 ^ p ^ oo and D an arbitrary divisor) and make them too into Banach spaces. 

Now we are ready to define j g a f\dz| for fGEl(Q) (or fEEp(Q)). Take a 
conformal map <p: W — Q, where W is bounded by finitely many disjoint regular 
analytic curves. Then we have, formally, 

f f\dz\= f f{<p(w))\<p'{w)\ \dw\ = f / ( ^ ) ) f » W . ^ | ^ | . 
J J J <p \w) 
an aw aw 

I f / e ^ ' ( f i ) then f((p{w))(p'{w)E.E\W), hence the boundary function y[(f °f)<p'] 
exists and belongs to L\dW). Since <p'EE\W) and ip'mO y[<p']E.L\dW) and 
y[cp'] ¥= 0 almost everywhere on dW. Therefore | y[(p'\ \ lyW\ exists almost every­
where on dWand belongs to Lx(dW) (and has modulus one). 

Thus we may define 

(1.6) f f\dz\~ f y[(f°<p)<P']-^7T\dw\ 
J J y[<p'] 
an aw 

for / e £'(«). 
It is straightforward to check that this definition is independent of the choices 

of Wand (p. Moreover, it is clear that the map/~*Janf\dz\ is a continuous linear 
functional on El(Cl). Finally, 

(1.7) J f\dz\ =< / , 1) 
an 

i f /G£ 2 (Q) . (Recall that 1 e £ 2 ( Q ) by Lemma 1.2.) 
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It turns out (cf. (a) (iii) before Lemma 1.2) that the space E2.(cc)(Q) behaves 
better under conformal mappings than E2(Q.). Therefore £'1

2. ( o o )(Q) is the more 
natural space to work with when trying to do things in an invariant way, and we 
shall give £'f. ( x )(Q) its own name. We define 

(1.8) E(Q) = E2.ix)(Q) 

for an arbitrary domain Q C P. 
E(Q) is a Hilbert space with the inner product (1.5). Formally, we can write 

(f,g)= f fg\dz\ = J fVaz'gVdz 
an an 

(J, gEE(Q)). This indicates that the elements of E(Q) should be regarded as 
differentials of order one-half if one wants to have the inner product defined in an 
invariant way (i.e. independent of the choice of the coordinate variable z in Q). 
This is what will be done in Section 2. 

The above consideration also explains why E(Q) = 2s,2.(oo)(Q) is more natural 
than E2(Q). For if / is holomorphic in Q and oo G Q then / must have a zero at oo 
in order that the half-order differential fy/dz shall be holomorphic at oo, because 
y/dz has a pole of order one at z = oo (as is seen by expressing Viz in w = \lz). 
Thus E(Q) = E2.(o0)(Q) is the space of functions / (or half-order differentials 
fy/dz) which are holomorphic considered as half-order differentials (and have 
the appropriate boundary behaviour). 

If D is any divisor in P we define ED(Q) = E[> + l.{oo)(£l). 

2 . Half-order differentials 

Half-order differentials on Riemann surfaces have been considered at length in 
[11], [12]. They are also implicit or considered in passing in many other works, 
e.g. [8], [6, p. 193 ff] and in fact in e.g. every work dealing with Szego-kernels 
(since these are naturally regarded as half-order differentials). 

In order to define in a precise fashion, the concept of a differential of order one-
half we shall use the language of sheaves on Riemann surfaces as presented in [6]. 
Let us briefly review some notations and definitions in [6]. (For more details we 
refer to [6].) 

Let M be an arbitrary Riemann surface and let 21 = {(£/}, z,)} (j ranging over 
some index set) be a holomorphic atlas on M , i.e. {Uj} is an open cover of M , 
and Zj is a conformal map of Ut onto some open subset of C for every j . Let £), D* 
and 2ft denote, respectively, the sheaves of germs of holomorphic, nowhere-
vanishing holomorphic and meromorphic functions in M . If U is an open subset 
of M , V(U, £>) denotes the set of cross-sections of O on U (similarly for £>* and 



66 B. GUSTAFSSON 

9ft). Thus e.g. FET(U, £•*) means that / is a nowhere-vanishing holomorphic 
function on U. 

Suppose we have, for every ordered pair of indices with C/; n UJ ¥= 0, a 
section ^Er(t / , n £•*) such that ^ ^ 4 , = 1 in £/,• n £/; n £/* whenever 
I/,- C\ UJ C\ UK 0. Then {£,y} defines an element £ of the cohomology group 
H\M, O*). The elements of H\M, C*) are called (holomorphic, complex) line 
bundles. H\M, £*) is an Abelian group under multiplication. 

If £E//'(Af, £>*) is defined as above and {F} is a family of holomorphic 
functions defined in the UT (FJ E T( [/,•, £•)) such that F = £,FJ in C/(- D I/; whenever 
UJ D UJ ¥= 0 then / defines a holomorphic cross-section F of £. The notation for 
this is /ET(Af, £(£))• Meromorphic cross-sections are defined similarly (with 
F,ER(UI, £ ) replaced by FER(U,, 9ft)); notation: FEF(M, 9ft(0)- Finally, if D is 
any divisor on M, T(M, £)D(0) consists of those FET{M, Sft(O) for which 
Div FJ^DVJ for all;. 

The two principal examples of line bundles are the identity bundle £ = 1, 
defined by = 1 for all i,j, and the canonical bundle k defined by 

(2.1) ^ = ^ = ( Z j o Z r ' y o z , . . 
dZj 

The cross-sections of £ — 1 are just the functions on M and the cross-sections of K 
can be identified with the differentials (one-forms) of type (1,0) (i.e. of order one 
in dz and order zero on dz). 

Any bundle XEH\M, D*) with X1 = k is called a bundle of half-order differen­
tials and any section / E T(Af, D(X)) a (holomorphic) differential of order one-half. 
If A can be represented relative to 21, by {X^} say, then X\ = Ktj, i.e. k t i is one branch 
of Vdzj/dZj. That FET(M, D(X)) then means that / is represented by {F}, 

F,ER(UIT £) , w i t h / = A,̂  in [/, n UR Thus, formally, 

FlSdz~I=F?/dz~1 mUTNUJ, 

which explains the terminology. 
Similarly the elements in r(M, 2ft(A)) are called meromorphic differentials of 

order one-half. 
Assume, for a moment, that M is compact, of genus p say. For any <{;E 

HY(M, £*) the chern-class of £, c(£X can be defined as the degree of the divisor of 
any meromorphic cross-section (not identically zero) of £: 

c ( 0 = degDiv / , 

FET(M, 9ft(£))\{0}. The structure of H\M, £*) as an Abelian group is then 
given by the exact diagram of groups [6, §8] 
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Here T'(Af) is the Picard-variety of M, which as a group is isomorphic to 
C'/Z 2 ' a (R/Z) 2 p . It follows that 

(2.2) O*) s (R/Z)2" 8 Z. 

Because the chern-class of k is an even number, c ( k ) = 2(p — 1), the isomor­
phism (2.2) shows that there really exist bundles X with X2 = k , in fact exactly 2 2 p 

such X. Clearly c(X) = p — 1 for all those X. 
Suppose, for M an arbitrary Riemann surface, that there exists an anti-analytic 

map j:M-*M such that j °j = the identity map. Then the pair {M, j) is called a 
symmetric Riemann surface (cf. [7]). The typical example is the Schottky double 
of a plane domain: let Q be a domain in C bounded by finitely many disjoint 
regular analytic curves. The Schottky double Cl of Cl is the compact Riemann 
surface obtained by completing Q with a "back-side" Q identical with ft as a 
point set but provided with the opposite conformal structure. The resulting 
surface Cl = Q U d£l U Cl becomes a Riemann surface in a natural way. If z e f i , 
let z denote the corresponding point on Cl. Define j : : Cl — Q by 

P) = f forzGQ, 
U(z) = z 

j(z) = z for zEdft. 

Then (Cl,j) is a compact symmetric Riemann surface. 
Any compact symmetric Riemann surface (M,j) such that M\T = 

M\{CGzM: = C} consists of two components each of which is conformally 
equivalent to a plane domain will be called a double of a plane domain. If W and 
Ware the two components of M\T then W =j( W\ r = dW = dWand we will 
usually write W = W U dW u W instead of (M,j), the involution j being under­
stood (W = M). 

If (M,j) is a symmetric Riemann surface and / a function on a subset of 
M we define 

(2.3) /(z)=Km). 

Thus / is holomorphic if / i s . For points zEM, subsets E CM and divisors 
D = 2* «t(z t) in M we define 

E =j(E), 

D = S nk{j(zk)) = £ 
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Let W = W BW \J Wbzdi double of a plane domain. If the connectivity of 
W is p + 1 then the genus of W is p. Of the 22p bundles X on W with X1 = k 
there is a distinguished one which we now proceed to define. 

Let z be a conformal map of Wonto a plane domain Q. We may suppose that Q 
is bounded by disjoint regular analytic curves and then z extends to a conformal 
map defined in some neighbourhood U of W U dW in W. We assume that 1/ is 
connected. Let 

(2.4) t/, = U, z, = z, 

(2.5) t/ 2 = U =j{U), z2 = z = 7 7 j . 

Then 21 = {(£4, z f c) : k = 1, 2} is a holomorphic atlas on JF. 
Define 

(2.6) 5 ! = z 2 oz f 1 . 

Then 5 is a holomorphic function in zx(Ux n U2), which is a neighbourhood of 
dft = z(3W) in C. On z 2 = z,. Therefore 

(2.7) S(z) = z on 3ft. 

This shows that S is the so-called Schwarz function for dQ. See [4]. Differentia­
tion of (2.7) yields 

(2.8) S'(z)dz = dz along dQ. 

Let T(z), z EdQ, denote the unit tangent vector along dQ, oriented so that Q lies 
to the left. Then T(z) = dz/\dz\ so that (2.8) shows that 

(2.9) S'(z) = — l — on dQ. 

This also shows that T(z) extends to a holomorphic function in the neighbour­
hood z,(f/, n U2) of dQ, with (2.9) holding identically in that neighbourhood. 

Now we define a line bundle X E.H\W, £)*) by representing it by 

(2.10) ^.2 = —^— in£/ ,n£/ 2 

relative to 21. (The remaining Xtj then must be X2X = 1M12, X n = 1, X22 = 1.) 
Observe that, by (2.6), the canonical bundle kE.H\W, £>*) is represented by 

(2.11) K 1 2 = ^ = 5 ' C Z , . 

dzx 

Therefore, by (2.9), (Xx2)2 = kx2 SO that X is a bundle of half-order differentials: 
X2 = K. 
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It should be remarked that the role of T above just is to single out a certain 
branch of y/S' (i.e. of y/ic^). 

Example 2.1. Consider the symmetric Riemann surface of genus p = 0 
(P,j), where j(z) = 1/z. It can be viewed as representing D, since P = D U 3 D U 
D, where D = { z G C U { o c } : | z | > l } and since 3D is the fixed point set of j . 

We may take the atlas 21 = {(Uk, zk):k = 1, 2} on P to be 

tf,-{zeC: | z | <r}, 

U2={zEP: \z\>\lr), 

zx = z, z 2 = 1/z 

(r > 1). Then dz2ldzx = — 1/z2 in Ux n t/ 2 so that A12 may be taken to be 

A1 2(z) = //z (/ = V ^ T ) . 
A pair {fi,f2} of meromorphic functions in Ux and C/2 respectively represents a 
section / in T(P, 2ft(A)) if (and only if) 

/ ( z ) = - / 2 ( z ) f o r - < | z | < r . 
z r 

It is easy to see that such a pair { / , / } necessarily consists of rational functions, 
and if 

fi(z) = R(z) (\z\<r), 

R rational, then 

/ 2 (z) = - izR(z) ( | z | > l / r ) . 

It follows in particular that 

D i v / = Div/* - l - ( o o ) . 

When we speak of a half-order differential "f(z)Vdz " on a subdomain Q of P we 
will always mean that section in T(Q, Tt(X)) which is represented b y / ( z ) = / (z) 
i n i i n l / , and by/ 2 (z) = - /z/(z) in Q n U2. Thus Div fy/dz = Div / - 1 • (oo) if 
oo G Q (otherwise Div /y/dz = Div / ) . • 

Returning now to the general case it is straightforward to show that the bundle 
AG/ / \W, D*) is independent of the choices made in its definition, namely the 
choice of coordinate map z on W and also the choice of which one of the 
components of W\d Wis considered to be W, the "front side". In other words, A 
is intrinsically associated with the symmetric Riemann surface (W,j). 
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Conventions, (a) When W = W U dW u W is the double of a plane do­
main and nothing else is explicitly stated A will always denote the distinguished 
bundle of half-order differentials on W defined above. 

(b) The expression "half-order differential" will, from now on, always refer to 
sections of C(A) or 9#(A), with X as above. 

(c) If D is a domain with WCD C ^sections i n r ( D , Wl(X)) will sometimes 
be denoted by symbols such as/y/dz, sometimes just by symbols such as / , both 
to be interpreted as follows, z is a coordinate variable on W, 21 = 
{(Uj, zj) :j = 1, 2} is any atlas on W of the kind (2.4), (2.5) with Ux D W and 
z , = z on W, and/y/dz (or/) is that elelment of r(D, Wl(X)) which is represented 
by {fx, f2) relative to 21, where/ = fin UXC\D and/ 2 = f/Xn in U2 n D. 

(d) If g is a meromorphic function in D (W c D C W) then y/dg, if it exists, 
denotes any one of the two sections fy/dzE.T(D, Wl(X)) (interpreted as above) 
satisfying dg/dz{ = f2 in D n Ux (and then automatically also dgldz2 = f2 in 
D n u2). • 

Let now 21 = {(£/ , , z , ) : ; = 1, 2} be a fixed atlas on W = W u 5 W U W (a 
double of a plane domain) and A £ / / ' ( W, C*) represented by A12 in terms of 21 as 
above. On r(W, C(A)), the holomorphic cross-sections of A defined in some 
neighbourhood of W, we define an inner product by 

where f, g{ G T( W, O) denote the representatives of / , g G T( W, 0(A)) relative to 
C/, in 21. 

We denote by E(W) the completion of r(W, D(A)) with respect to the inner 
product (2.12). Then £ ( If) is a Hilbert space of holomorphic differentials in Wof 
order one-half. £ D ( W), where Z) is any divisor on W, is defined similarly in terms 
of r { W, Oc(A)). 

If W = Q C P then, as is easily verified, the above definition of E(W) agrees 
with the previous definition (1.8) of E(Q) in the sense that the map f \~* f y/dz is 
an isometric isomorphism E(Cl) -* E( W). 

3. Fundamental results on quadrature domains 

In this section we derive our main characterization of quadrature domains, 
namely Theorem 3.2, and a couple of corollaries of it. 

Recall that when W = W KJdW \j If is a double of a plane domain A always 
denotes the distinguished bundle XEHl(W, £)*) of half-order differentials 
defined in Section 2. 

(2.12) 
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Remark 3.2. In particular there exists, by Lemma 3.2, a uniquely deter­
mined section AE.T(W, £)(A)) with 

Lemma 3.1. With W and X as above 
r ( w , o(A)) = o. 

Proof. Suppose fE.r(W, D(A)), represented by {fhf2} as usual. Then we 
have 

if,/)- J fJ^ndz,= f flf2dzl= J fJ2dz,=Q 

aw aw aw 

since fx J2 dzx is holomorphic in W. Thus / = 0 since (•, •) is a (non-degenerate) 
inner product. • 

Remark 3.1. It is not generally true that T(M, D(A)) = 0 if M is a compact 
Riemann surface and A EH\M, £>*) a bundle with X2 = k . In fact, it turns out 
that the 22p (p = genus for M) bundles with X2 = k can be classified into two 
groups: 2p~l(2p + 1) of them are even and the remaining 2p~i(2" — 1) are odd. It 
is shown in [8, Ch. VI] that r(M, D(A)) ¥= 0 for all odd X while, unless M is a 
so-called exceptional Riemann surface, r(M, £>(A)) = 0 for all even X. • 

Next, let D be an arbitrary positive divisor on W. We wish to compute 
dimcT(W, D_D(X)). The relevant version of the Riemann-Roch theorem [6] 
tells us that 

(3.1) dim r(W, D_D(A)) = d i m / W , Dd(kX~1)) + c(X) + degD - p + 1. 

Since X2 = k , / d _ 1 = X and c(X) = p — 1. Thus 

(3.2) dim r{W, D_C(A)) = d i m r ( W , DD(X)) + degZX 

((3.1) and (3.2) are true for arbitrary, i.e. not necessarily positive, divisors D.) 
Since D is positive T( W, £>D(X)) C T( JT, D(A)), hence dim T( if, D^A)) = 0 by 

Lemma 3.1. Thus 

Lemma 3.2. With W and X as above and D a positive divisor on W 

dim cr(*F, D_D(X)) = deg D. 

This result means that the locations and principal parts of the poles of a section 
in r(W, D(A)) can be arbitrarily prescribed and that this determines the section 
uniquely. 
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at a prescribed point z 0 E W, and otherwise regular. The restriction of A to Wis 
the classical Szego kernel for W (if W C C) and the restriction to W (or perhaps 
the restriction of A to W) is the so-called adjoint kernel. See e.g. [8] for these 
matters. AZ o is the reproducing kernel for the class E( W), i.e. 

/ (z 0 ) = (/,A Z 0) f o r a l l / e £ ( H / ) . • 

Theorem 3.1. WITH W = W U DW U W a dbuble of a plane domain and D 

a positive divisor in W 

ED(WY = Y(W,D^{K)). 

Here ED{W)1 = {gEE(W): (f, g) = 0for allfEED(W)}. In other words, given 
g E E(W) we have (J, g) = 0 for allfEED(W) if and only ifg extends to an element 
INR{W,Q_6(K)). 

Proof. By Lemma 3.2 dim T( W, = degD = deg D. (Actually, we 
only need dim T(W, £)_p(A)) deg!) = degZ), which is an immediate 
consequence of (3.2).) Also, d i m E D ( W ) L = dim(E(W)/ED(W))^degZ) since 
ED(W) is defined by degZ) linear conditions in E(W). Thus dim ED(W)L^ 

dimr(ff, D_D(A)). Therefore it is enough to prove that T(W, 0_B(A))C 
Z^(W) 1 . 

So take a ? 6 f ( W , D_o(A)). Relative to some atlas 21 = {(Uj, Zj) :j=\, 2} of 
the kind (2.4), (2.5) g can be represented by g2] with gj ETIUJ, ffl), g{ = gon 
W, Div ft• s - D and g, = A12g2 in UX n C/2. 

Observing that |A12| = 1/| 7 ^ 1 = l on D W (since | T\ = 1 on z ^ W ) ) , that 
& = 82 on 3 H 7 and that Div g2 ^ — D we obtain, for / E £ ' D ( W7), 

(f,g)= J fg^ndzl= J fg2\^2\2dzi= J fg2dz{ 

aw aw aw 

= / ? 2 ^ i = 27i/ 2 Res fg2dz{ = 0. 
(3.3) 

aw 

Thus gE£ ' D (W / ) i , which proves the theorem. (Strictly speaking, the above 
computation requires that f extends continuously to d W but such / make up a 
dense subset of ED(W) so it is enough to consider such/.) • 

Theorem 3.2. Let Q.be a domain in C bounded by finitely many rectifiable 
continua and let Dbea positive divisor in Q. Further, let W = W u dW U Wbea 
double of a plane domain with W conformally equivalent toCl, let g: W^-Clbea 
conformal map and let D, = g~ \D) be the inverse image of D in W. Then 

(a) y/dg exists as an element in T(W, D(A)). Moreover y/dg EE (W). 
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(b) 

(3.4) for all f<EED{Q.) 

an 

if and only ify/dg extends to an element in T(W, D_^,(A)). More concisely, 
1 (EEoiQ)1 if and only ifVdg<ET(W, D.^A)). 

Proof. The assertions of (a) are easily seen to be just restatements of Lemma 
1.1 and (parts of) Lemma 1.2. 

As to (b) we know that g: IV-* fi gives rise to an isometric isomorphism 

g*:E(n)^E(W), 

namely defined by fy/dz HH> (f ° g)y/dg, whenever one of the two branches of y/dg 
is chosen. It is clear that 1EE{£1) is mapped onto y/dg EE( W). Moreover ED(Q) 
is mapped onto EDl( W), hence E^Q)1 onto EDl( IV)1. Thus 1 EZs^Q) 1 if and only 
if y/dgEE^W)1 and since, by Theorem 3.1, E^W)1 = T(W,£)_6(<k)) this 
proves (b). • 

Remark 3.3. If Wand Q in Theorem 3.2 are identified (via g) then (b) of 
the theorem can be expressed: Q is a quadrature domain if and only if y/dz 
extends (as a meromorphic half-order differential) to the double Cl = Q U 3Q U 
Q. Moreover, the pole divisor of y/dz equals the conjugate of the divisor 
appearing in the quadrature identity. • 

Corollary 3.1. IfQ (satisfying the hypotheses of Theorem 3.2) is a quadra­
ture domain, then each component ofdQ, is a locally regular analytic curve. 

Proof. Choose W and g as in Theorem 3.2. Then it follows from (b) of the 
theorem that g extends analytically across d W. In is easy to check that g(dW) = 
dQ. Since Q is necessarily bounded g does not have any pole on d W. Moreover, 
dg cannot have any zero on 3 W because such a zero would have to be of even 
order (since y/dg exists), hence of order at least two, and then g could not be 
univalent on W. Since each component of 3 W can be mapped biholomorphically 
onto 3D the corollary now follows. • 

Corollary 3.2. (of Corollary 3.1). //(3.4) holds, with Q bounded by finitely 
many rectifiable continua, then also 

f f\dz\=0 for all f<E £ i (Q) . 

an 
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Proof. By Corollary 3.1 fl actually is bounded by locally regular analytic 
curves, and therefore E},(£1) is dense in Eb(Q). (This follows easily from 
(b) before Lemma 1.2) Since / W / d n / | r f z | is a continuous functional on isj>(fl) 
the corollary follows. • 

Corollary 3.3. / / (3.4) holds, with fl bounded finitely many rectifiable 
continua, then fl also satisfies a quadrature identity of the following kind: 

fdxdy= I I akjf^(zk) + I bk fdz 
k-l j-0 k-l -J 

ft 

for all / E L j ( f l ) . Here Lg(Q) denotes the subspace of LP(Q.\ area measure) 
consisting of functions holomorphic in A, m, n t £ i l are related to the divisor D in 
(3.4) through D = Zf_, nk(zk) (the zk assumed distinct and nk ^ 1), y 1 ; . . . , yr are 
suitable open or closed curves in fl with all their (possible) end points belonging to 
{ z , , . . . ,zm) and akj, bk are suitable complex constants (with aktln^2 ^ 0). 

Proof. Letgand W-'be as in Theorem 3.2. Then \/dgE.T(W, D_^(A))by (b) 
of the theorem. It follows that dg is a meromorphic differential on IF with divisor 
^ — 2D, and with no simple poles. Now [7, Thm 3 together with Remark (4) 
following it] shows that a quadrature identity of the kind (3.5) holds for all 
fEL2(Q). Since L\(Q) is known to be dense in L\ (fl) the corollary follows. • 

Example 3.1. In the simply-connected case we can take W to be D and 
represent W by P as in Example 2.1. Theorem 3.2 combined with Example 2.1 
then gives the following characterization of simply-connected quadrature 
domains: 

Let g: D — fl be a conformal map, where fl C C has rectifiable boundary, and 
let D be a positive divisor in fl, say 

m 
D = I n^), z , e f l , n , > 0 . 

Then 

(3.6) J f\dz\=0 for all fEED(Q) 

if and only if g' = R2 for some rational function R with div R ^ — D1 + 1 - (oo). 
Here 

m 
A = £ Hj-(VWj), g(Wj) = Zj. 
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This result, essentially, was first established in [14, Theorem 2]. In [14], however, 
(3.6) was considered with the set of all polynomials as test class (in place of E(Cl)) 
and they therefore had to restrict their attention to so-called Smirnov domains Cl 
(see [5, Ch. 10.3]). (The polynomials are dense in E(Cl) if and only if Cl is a 
Smirnov domain, at least if dCl is a Jordan curve. See [5, Thm 10.6].) 

Of course, R has no zeroes in D. The agrument used in the proof of Corollary 
3.1 shows that R also has no zeroes on 3D. This result was also obtained in [14]. 

Example 3.2. As a special case of Example 3.1 let D = 1 - ( z 0 ) , z 0 Gfi so 
that, for some a EC, 

where Cl C C is simply connected and dCl a rectifiable continuum. We may 
then choose g: D —Q in Example 3.1 such that g(0) = Zo- Then D = 1 - ( z 0 ) , 

£>! = 1 - (°o)- Thus the rational function R in Example 3.1 is not allowed to have 
any poles and so must be constant (necessarily non-zero). Hence g(z) = 
Az + z0,A ¥=0 and we obtain: (3.7) holds for some a EC if and only if Cl is a disc 
with center z 0 . Clearly a will equal the length of the circumference of the disc. 
Also a = 27iA. 

If (3.7) is required to hold only for all polynomials then Cl need not be a disc. 
See [14, Remark 2, p. 12]. 

Remark 3.4. If Cl C C is not assumed simply-connected but only to be 
bounded by finitely many rectifiable continua then the conclusion that (3.7) 
implies that Cl is a disc (with center z 0 and circumference a) still holds (with E(Cl) 
as test class). This follows from the facts that (3.7) by Corollary 3.3 implies that 

for all fELl(Cl) which have a single-valued integral in Cl and that (3.8) implies 
that Cl is a disc, by [1, Theorem 7]. Compare also Remark 6.1 in the present 
paper. 

The results in Corollaries 3.1 and 3.3, Example 3.2 and Remark 3.4 were also 
obtained in [3]. 

4. Existence of quadrature domains of arbitrary conformal type 

In this section we shall use the methods of Section 3 to prove the following. 

Theorem 4.1. Among the domains in C bounded (in P) by finitely many 
continua there exist quadrature domains of all conformal types. 

(3.8) 
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Proof. By Theorem 3.2 the quadrature domains we are looking for are 
produced as follows. Take a double of a plane domain W = W U bW U Wsuch 
that W is of the desired conformal type and take a half-order differential 
hr/dz ELT{W, 2JJ(A)) with poles only in W. Then h2dz is a meromorphic differen­
tial on W which is holomorphic in W. 

Suppose we can choose h so that 

(4.1) J h2dz = 0 

y 

for every closed curve y in W. Then 
w 

(4.2) g(w)= J h2dz (wSW) 
wo 

defines a single-valued holomorphic function in W (w 0G W fixed, path of 
integration in W). If we moreover can arrange that g is univalent in W then 
(by Theorem 3.2) Q = g(W) will be a quadrature domain of the desired 
conformal type. 

By Lemma 3.2 there exist half-order differentials hy/dzET(W, 2fl(A)) with 
arbitrarily prescribed poles. To prove the theorem we need therefore only show 
that the condition (4.1) and that of the univalence of g can be satisfied. For 
this we shall make use of the following approximation theorem of Runge type, 
proved in [2]. 

Let M be an arbitrary Riemann surface, U an open proper subset of M, £, an 
arbitrary holomorphic line bundle on M. Then 

T(U, D(£)) n Y{M, S K O is dense in T(U, D(f)) in the 
(4 3) 

topology of uniform convergence on compact subsets of U. 

Let 21 = {(Uj, Zj) :j = l, 2} be a holomorphic atlas on W of the usual type 
(as at (2.4), (2.5)). We shall apply the approximation theorem with U =UX and 
^ = X to approximate y/dz[ in r(t/,, D(A)) by sections h y/dzxE.T(Ux, D(A)) n 
T( W, M(X)). Then g defined by (4.2) will be close to z,, so that it has a good chance 
to be univalent (whenever it is single-valued). 

Sections h in T(Ui, ©(A)) n T(W, M(X)) are represented by pairs {hu h2), 
/j,er(t/„ D), h2ET(U2,5K) satisfying 

(4.4) hi = Xl2h2 in (7, n U2 

(A,2 defined by (2.10)). So what the theorem says when is approximated is 
that for any compact K dUx and any e > 0 there is a pair {/?[, h2} as above with 
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( 4 . 5 ) | A , - l | < e inK. 

Let p b e t h e g e n u s o f W, s o that t h e c o n n e c t i v i t y o f W i s p + 1, a n d let 

a , , . . . , ap b e c l o s e d o r i e n t e d c u r v e s in W w h i c h m a k e u p a h o m o l o g y b a s i s for W. 

T h e n t h e r e q u i r e m e n t s ( 4 . 1 ) c a n b e w r i t t e n 

( 4 . 6 ) J hx

2dzx = 0 fork = \ , . . . , p . 

a» 

I n t h e f o l l o w i n g w e shal l wr i t e j u s t j a t h 2 for fakhx

2dzx ( s imi lar ly for o t h e r 

e x p r e s s i o n s ) . 

N o w a p p l y t h e a p p r o x i m a t i o n t h e o r e m w i t h K = W. T h e n , g i v e n e > 0, w e get 

s o m e hET(Ux, 0(A)) n T(ir, 3R(A)), r e p r e s e n t e d b y {hx, A2} sa t i s fy ing ( 4 . 4 ) a n d 

( 4 . 5 ) . H o w e v e r w e c a n n o t b e sure that ( 4 . 6 ) h o l d s . 

T h e r e f o r e w e h a v e t o adjus t h a l i t t le . T h i s w e d o as f o l l o w s . W e seek 

fx,..., / p £ r ( [ / b 0(A)) n T(W, 9W(A)) a n d c o m p l e x n u m b e r s a x , . . . , a p s u c h that 

(4.7) j (h + _ t a,/])* = 0 for k = 1 , . . . , p . 

I f w e c a n find a s o l u t i o n o f (4.7) s u c h that Z a, / i s suff iciently s m a l l o n W, say 

s u c h that ( 4 . 5 ) h o l d s w i t h h + Z a,,fj in p l a c e o f A, t h e n h + 2 aj fj w i l l h a v e all t h e 

p r o p e r t i e s r e q u i r e d o f h i f m e r e l y e > 0 i s s m a l l e n o u g h . I n fact , h + 'ZajfjE 

r(t/„ 0(A)) n r(W,m(k)) a n d s, d e f i n e d b y ( 4 . 2 ) w i t h h + Z, a, fj i n p l a c e o f h, 

wil l b e s i n g l e - v a l u e d a n d it i s s tra ight forward t o c h e c k that ( 4 . 5 ) ( for h + Z ajf) 

i m p l i e s that g i s u n i v a l e n t i n W i f e > 0 i s suff ic iently smal l . 

T h u s c o n s i d e r (4.7). It c a n b e w r i t t e n 

( 4 . 8 ) f h 2 + 2 t aj [ fjh+t t aflj f ffj = 0. 

"t <*k a t 

W e shall in t h e f o l l o w i n g wr i t e j u s t z for t h e p a r a m e t e r z , o n Ut. z m a p s W o n t o a 

d o m a i n D = z(W) c C of c o n n e c t i v i t y p + 1. P i c k o n e p o i n t zk (k = 1 , . . . , /?) in 

e a c h o f t h e p b o u n d e d c o m p o n e n t s o f C\D s u c h that zk g z{yx) ( th i s i s eas i ly s e e n 

t o b e p o s s i b l e ) . W e m a y a s s u m e that t h e h o m o l o g y b a s i s a x , . . . , ap o n I f i s 

c h o s e n s o that , for e a c h k, z(ak) h a s w i n d i n g n u m b e r + 1 w i t h respec t t o zk a n d 

w i n d i n g n u m b e r z e r o w i t h respec t t o all o t h e r z 7 . T h u s 

z(at) 

dz 
= 2niSkJ. 

Z — Zj 

N o w w e first c h o o s e ra t iona l f u n c t i o n s RX,...,RP i n z s u c h that 



78 B. GUSTAFSSON 

j Rjdz=dkJ (k,j = 1 , . . . , p), 

J RiRJdz = 0 (i,j,k = \,...,p). 

In fact, 

Rj(z) = — — + (z - Zj)Qj(z) (j = \,...,p), 
2m(z — Zj) 

where Q x , . . . , Qp are polynomials satisfying Qj(zk) = — \l2ni(zk — Zj)2 for all 
k ¥=j (so that Rj(zk) = 0 for k ¥= j) will do that job. 

The functions Rj °z (j = 1 , . . . , p) are defined and holomorphic in Ut and 
therefore represent sections in T(UU 0(A)). We may therefore approximate them, 
uniformly on W b̂y s e c t i o n s / , . . . , fp in r(l/,, 0(A)) n T(W, M(X)) (f approxi­
mates Rj«:). This is the w a y / j , . . . , fp will be chosen in (4.7). 

With Rj o z substituted for fj in (4.8) it takes the form 

(4.9) J h2 + 2 ^ + 2 2 aj J ( i ? y ° z ) . ( / j - l ) = 0 (k = 1 , . . . , p). 

If /? approximates 1 sufficiently well this system obviously has a unique solution 
in a i , . . . , ap and this solution moreover tends to zero as h -* 1. 

If f approximates Rj °z (j = 1 , . . . , / ? ) as above the coefficients of {a,} and 
{a,ay} in (4.8) will be close to the corresponding coefficients in (4.9) and it now 
follows from the implicit function theorem that also (4.8) will have a solution in 
a ap, close to that of (4.9) (and unique with this property). In particular 
fly —0 (j' = 1 , . . . , p) as h — 1 and fj — Rj °z (j = 1 , . . . , p) and so Z a ; / - * 0 
uniformly on Was /? -* 1 and fj-^Rj°z. This proves the theorem. • 

5. Non-uniqueness of multiply connected quadrature domains 

In this section we shall study the following question: given a functional 

(5.1) L(f)= I I akjf^(zk) 
k-l J-o 

on E(Q), how many different domains ft of a fixed connectivity p + 1 are there in 
general (if any) for which 

(5.2) jf\dz\=L(f) 
en 
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holds for all fEE(Q)l As usual we only consider domains bounded by finitely 
many rectifiable continua. 

Results such as that in Remark 3.4 may raise the conjecture that Q always is 
uniquely determined by L. This might in fact be true in the case p = 0 (the author 
does not know), but we shall find here that it is defintely false if p > 0. More 
precisely, by counting the number of parameters available when producing 
quadrature domains by the method of Theorem 3.2 and comparing it with the 
number of parameters in the quadrature functions L we shall find that 
(p + l)-connected quadrature domains for a fixed quadrature functional L 
generically occur in p -parameter families. 

We shall also give a kind of geometric explanation of this result by characteriz­
ing the corresponding p -dimensional space of infinitesimal boundary variations. 

Recall that a quadrature domain Q satisfying (5.2) for some L is produced as 
follows (Theorem 3.2). Take a double of a plane domain W = Wu dW U W of 
genus p (if we want fi to have connectivity p + 1) and a half-order meromorphic 
differential hVdz on W with poles only in W. Provided that 

(5.3) f h2dz=0 (k = l,...,p), 

where au ..., ap is a homology basis for W as at (4.6), and that the (hence 
well-defined) function 

w 

(5.4) g(w)= j h2dz (wEW) 

(w 0 E W fixed, path of integration in W) is univalent in W, gmaps ffconformally 
onto a domain Q of the desired kind. If h has a pole of order n at w E W then g 
maps the opposite point wE Wto a point z G f i a t whichL evaluates derivatives 
up to order n — 1. 

In what follows we will count the number of real parameters and conditions 
involved in the above construction of Q and L. (Thus e.g. one complex equation 
is counted as two conditions.) 

It is convenient to represent W as the double of a horizontal slit domain 
WcP, i.e. of the kind 

W = P\ U {wk + trk; - l < f ^ 1 } 
k-0 

for suitable wk EC, rk > 0. In this way all conformal equivalence classes of 
connectivity p + 1 are covered. (The fact that many of the above W are 
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conformally equivalent will be taken care of later.) We see that the choice of W 
(i.e. of W) depends on 3(p + 1) parameters. 

Next we choose hy/dzE.Y(W, Wl(k)), with m poles of orders nu ... ,nm, say. 
Let n = 2 ™_, nk.h follows from Lemma 3.2 that the number of parameters in the 
choice of h y/dz is exactly 2m + 2n. 

Going from h y/dz to g gives the 2p conditions (5.3), but also two new free 
parameters, namely the choice of w0 in (5.4). We know from Section 4 that h y/dz 
can be chosen so that the conditions (5.3) are fulfilled and so that the resulting 
function g is univalent in W, in fact even in a neighbourhood of W. By 
considering only half-order differentials hy/dz close to a fixed one as above we 
achieve that the resulting functions g will be univalent whenever they are single-
valued. Thus we do not have to bother about the univalency of g. 

When going from the pair (W,g) to Sl = g(W) some of the free parameters 
collapse since we can have gx(W{) = g2(W2) for many different pairs {Wh gj). In 
fact, g\(Wx) = g2(W2) if and only if <p = g2~1 °gi maps Wx conformally onto W2. 
Keeping (Wugx) fixed it follows that pairs (W2,g2) mapped onto the same 
Cl = g\(Wl) are in bijective correspondence to conformal mappings <p on Wx such 
that (p(Wx) is also a horizontal slit domain. It is well-known that such maps 
depend on six real parameters. 

Summarizing we have 

(5.5) 3(p + 1) + 2m + 2n - 2p + 2 - 6 = 2(m + n) + p - 1 

parameters at our disposal for producing domains Q of connectivity p + 1 
satisfying (5.2) for different functionals L as in (5.1), where m and n are fixed and 
the same in (5.1) as in (5.5). The number of parameters in those L seems to be 
2(m + n). Actually, however, this number is at most 

(5.6) 2(m + n)-l 

because 2™_, ak0 is necessarily real (and positive) for an L satisfying (5.2), as is 
seen by choos ing /= 1 in (5.2). 

Comparing now the numbers (5.5) and (5.6) we see that there is an overflow of 
at least p parameters for Q. This means that "generically" domains £2 of 
connectivity p + 1 satisfying (5.2) for a fixed L should occur in at least p-
parameter families. 

We shall now confirm the above result by finding the infinitesimal variations of 
the boundaries generating the above p -parameter families. Consider a one-
parameter family {ft,: t G( — e,e)} ( e > 0 ) of (p + l)-connected domains ft, 
(t GR) with smooth boundaries and depending smoothly on t. Interpreting / as 
time, let v = v, = v,(z), zEdft, , denote the velocity by which 3ft, moves, mea­
sured in the direction of the outward normal of 3ft, for each /. 
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It is clear that if one of the domains f2, is a quadrature domain, satisfying (5.2) 
for a certain L as in (5.1), then all the other CI, are also quadrature domains 
satisfying (5.2) with the same L if and only if 

for all / analytic in a neighbourhood of Cl, (say) and for all t. We shall analyze 
what the condition (5.7) means for v. 

Writing (temporarily) DS instead of | DZ | for the arc-length differential, denot­
ing the curvature of DCL, by k (k = k, = k,(z), z EDCL,) and the positively oriented 
unit tangent vector along DCL, by T(T = 7, = T,(Z), Z EDQ,) we obtain, for small 
<5>0(seeFig. 1), 

(5.7) 

{l + K(2)v(z)6)ds z - iT(z)v(z)8 

—T 

\ 

ds z 

FIG. 1. 

FDS= F(Z - IT(Z)V(Z)6)(L + K(Z)V(Z)6)DS + O(6) 

aa, 

FDS-ID TVF'DS-TS JvKds + O(6). 

aa, aa, aa, 

Thus 
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(5.8) j J fds = J fvKds - i Jf'vTds. 
an, an, an, 

Using that Tds = d z along dCl, and integrating by parts (5.8) can be written as 

(5.9) j j fds = j Jvicds - i j vdf= i J f(dv - ivxds). 

an, an, an, an, 

Thus (5.7) holds if and only if Jdn,f(dv — ivKds) = 0 for every /analytic in a 
neighbourhood of Cl,. By a well-known theorem the latter condition is equivalent 
to that dv — ivKds extends to a holomorphic differential in Cl,. The most general 
holomorphic differential in Cl, can be written d(u + i*u) = du + i*du, where u is 
a real-valued, but possibly additively multiple-valued, harmonic function in Cl, 
and *u is its (possibly multiple-valued) harmonic conjugate. Thus (5.7) is 
equivalent to 

(5.10) dv — ivxds = du + i*du along dCl, 

for some u and *u as above. Identifying the real parts in (5.10) gives that 

(5.11) u = v 4- constant 

on each component of dCl,. In particular it follows that u is actually single-valued 
in Cl,. 

Now continue v harmonically to Cl,. Then (5.11) says that 

(5.12) u = v + w inCl, 

for some harmonic measure w in Q,. By a harmonic measure we mean a harmonic 
function which is constant on each component of the boundary. 

The equality between the imaginary parts in (5.10) says that — vk = du/dn on 
dCl,, where d/dn denotes the outward normal derivative. By taking normal 
derivatives of (5.12) we therefore obtain 

dv dw „^ 
(5.13) — + k v = ondQ,. 

dn dn 

Observe that u is now eliminated and that we have got a condition on v alone: if 
(5.7) holds then the harmonic extensions to Cl, of v satisfy (5.13) for some 
harmonic measures w in Cl, (depending on t). Conversely, it is easy to see that we 
can go backwards: if we have harmonic functions v = v, in Cl, (for all t) which 
satisfy (5.13) for some harmonic measures w then (5.10) holds for u defined by 
(5.12) and hence (5.7) holds. 
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Thus we have characterized the boundary velocities (or the infinitesimal 
generators of the boundary variations) which preserve janfldz | (fanalytic in a 
neighbourhood of Q ) as those functions v on d Q whose harmonic extensions to Cl 
satisfy (5.13). 

The problem of finding v harmonic in Q and satisfying (5.13) for a given w has a 
unique solution (under suitable smoothness assumptions). (Observe that k 
cannot vanish on a whole component of d Q since Q is bounded.) Since the space 
of functions appearing in the right member of (5.13) is p-dimensional (the space 
of harmonic measures is (p + 1 )-dimensional, but contains the constants) we see 
that the space of all boundary velocities v on d Q which preserve f a n f\ dz | is 
p-dimensional, as expected. 

Example 5.1. Consider the one-parameter family 

Q, = { z E C : 1 -t<\z\<1 + / } ( 0 < f < l ) 

of annuli with constant lengths of the boundaries. Although Q, are not quadrature 
domains we have 

for every /analytic in a neighbourhood of Q , . The boundary velocity v = v, of Q, 
here is identically one on d Q , , hence its harmonic extension to Q, is identically 
one. The curvature k, of d Q , is ( 1 - M ) - 1 on the outer component and 
— (1 — t)~l on the inner component. It follows that (5.13) is satisfied with 
w(z) = log | z | (which is a harmonic measure on each Q, ) . 

6. Quadrature domains containing the point at infinity 

In this section we shall generalize Theorem 3.2 to cover the case that Q C P 
contains oo E P. Observe that we never can have 1 EE(Cl) = £ ,

1

2

( o o ) ( Q ) in this case, 
just 1 £ £ • _ , . ( o o ) ( Q ) = i s 2 ( Q ) , namely if Q is bounded by finitely many rectifiable 
continua (Lemma 1.2). Therefore Theorems 3.1 and 3.2 need some modifications 
to cover the case oo E Q . 

Theorem 6.1. Let W = W u dW u W be a double of a plane domain, let 
D0 and D be divisors in W satisfying D0^D and let g E EDo( W). Then 

if and only if g extends to an element in Y( W, ©^-^(A)). 

Proof. With E„( W)L = {gEEnJi W):(J,g) = Q for all fEED( W)} the as­
sertion of the theorem is that 

(f,g) = 0 for all fEED(W) 
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ED(W)^Y(W, Qa,-itt)). 

The inclusion T( W, D^aiX)) C ED( W)x follows by the computation (3.3) in the 
proof of Theorem 3.1. Since 

dim Y(W, DD^D(A)) is deg(D - DQ) = deg(Z> - D0) 

by (3.2) and 

dim ED(W)X = dimiEoJiWyEoiW)) S deg(Z) - D0) 

the above inclusion cannot be proper, proving the theorem. • 

T h e o r e m 6.2. Let Cl be a domain in C bounded by finitely many continua 
and with ooEQ, and let D be a divisor in Cl, D g — 1 •(«>). Further, let 
W = W u dW u W be a double of a plane domain with Wconformallyequivalent 
toCl, let g: W-»Cl be a conformal map and let Dx = g~\D), w = g''(oo). Then 

(a) Vdg exists as an element in T(W, £)_X.{W)(X)). Moreover VdgE.E-X.(W){W) 
(b) / „ f\dz \ = Ofor allfEED(Cl) = E2

D+l .ix)(Cl) if and only if Vdg extends to 
an element in T(W, £)_Qt_x.{w)(k)). 

The proof is similar to that of Theorem 3.2, with Theorem 6.1 used in place of 
Theorem 3.1, and hence omitted. 

E x a m p l e 6 . 1 . In the simply connected case we may take W = P = C U 
{oo} with involution j(z)= l/z and with W = D* = { z E P : | z | > 1}. (Hence 
W = D.) Combined with Example 2.1 Theorem 6.2 then gives the following. 

Suppose o o G Q c P , where Cl is simply connected and has rectifiable bound­
ary, let D be a divisor in Cl such that D — 1 '(oo), say D = Z/i, M,(Z ;), z ,Efi . 
Further, let g: De -— Cl be a conformal map with g(cc) = oo. Then 

if and only if g' = R2 for some rational function R with div R ^ — Dx — 1 • (oo) + 
1 - (oo) = Du where D{ = Zf_, ns -(l/wj), g(Wj) = z,, 

Taking D = 0 e.g. we find that 

aa 

(6.1) 

an 

if and only if g' is constant (since a rational function R with div /? ^ 0 necessarily 
in constant), hence if and only if g(z) = Az+B for some A, B E C with A # 0, 
hence if and only if Cl is the exterior of some disc in C. • 
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Remark 6.1. The statement that (6.1) implies that ft is the exterior of a 
disc remains true with the mere assumption on ft that it is a domain in P 
bounded by finitely many rectifiable continua. In fact, if oo £ ft then 1 EE(Q) and 
(6.1) cannot hold. Thus we may assume that oo E ft. 

Choose W and g: W —• ft as in Theorem 6.2 with D = 0. Then, if (6.1) holds, 
y/dgEY(W, £_,.(M1)(A)) where w = g~l(oo)E W. This means that, for some 
constant factor c ¥= 0, y/dg = c • A w where A w is the Szego kernel (for W) as in 
Remark 3.2. Further, 

dg - (Vd~g)2EY(W, D_2.(W)(A2)) = T(W, D_ 2. ( w )0c)) and Ja <fe - 0 

for every closed curve a in W (or in W) since g is single-valued on W. But these 
properties characterize (up to a constant factor) the so-called reduced Bergman 
kernel Ks = Ks(-, w) for W, i.e. the reproducing kernel for the Hilbert space of 
square-integrable holomorphic differentials in Shaving a single-valued integral 

Thus if (6.1) holds we have Ks = cA2 for some constant c (which then must be 
An). However, it is known that such a relation holds only if Wh&s genus zero, i.e. 
if Wis simply connected. See [8], in particular Section XII. Thus we are back in 
the case of Example 6.1 and ft is the exterior of a disc, as claimed. 

The above arguments may also be used to give an alternative proof of the 
assertion in Remark 3.4. • 

7. Other aspects of quadrature identities 

The following theorem contains some further aspects of quadrature identities. 
It has partly been suggested by Harold S. Shapiro and Jaak Peetre. For example, 
the condition (iii) in it is the counterpart in our context to that the so-called 
Friedrichs operator has finite rank (in the context of quadrature identities for 
area measure). See [ 13]. The idea to consider conditions of the kind (iv) is due to 
Jaak Peetre. 

Theorem 7.1. Let ftcC be a domain bounded by finitely many rectifiable 
continua and let 

Then the following conditions are equivalent. 
(i) ft is a quadrature domain, i.e. there exists a (positive) divisor D in ft such 

that 

(in W). 

aa 
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J f\dz\=0 forallfEED{Q). 
dCl 

(ii) There exists a divisor D in Q such that 

ED(Q) c / . 

(iii) codim / < o c . 
(iv) There exist continuous linear functionals a,,..., am, bu ..., bm on E(Q.) 

such that 

/

m 
fg\dz\= I ak(f)bk(g) forallf gEE(Q). 

k-l 
an 

Proof, (i) implies (ii): If fEED(Q) and gEE(Q), then, as is easily seen, 
fgEED{Q). By Corollary 3.2 (i) therefore implies that J3nfg\dz\=0 for 
/ E £ 0 ( Q ) , g EE(Q). But this is exactly the assertion of (ii) (with the D in (i)). 

(ii) implies (iii): This is obvious, since codim ED(Q) < oo. 
(iii) implies (iv): Assume (iii) and consider the continuous bilinear map 

B:E(n)XE(Cl)^C, 

B{f,g)= J fg\dz\. 

an 

By the definition of / , B can be factorized: 

(7.1) E(Q)XE(Q)^E(n)/lXE(Q)/I^C. 

Since / is a closed subspace of finite codimension / is the kernel of some 
continuous linear map a : E(Q)-» C m , / I — (ax(f),..., am(f)) say, where m = 
codim / . Hence 

£ ( i l ) / / - C " , [ / ] h * ( « , ( / ) , . . . , am(f)) 

and inserting this isomorphism into (7.1) and using that the general bilinear map 
C m X Cm — C is of the form ((zk), (iv,-))i->Z AkjzkWj the desired form of B results 
(with ak as above and bk(g) = 2 , 1 , Akjaj(g)). 

(iv) implies (iii): This is obvious, since e.g. 

m 

D ker(ajt) C / . 
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(iii) implies (i): Assume (iii). Then / must contain some polynomial p, not 
identically zero. Write p = qr where q and r are polynomials with zeroes only 
in Q and Qc respectively. By the definition of / we have 

(7.2) J qrf\ dz\=0 for all fEE(£l). 
an 

Since q is bounded away from zero on 3Q it follows from (7.2) that 

(7.3) j rf\dz\-0 for all feED(0), 

an 

where D is the divisor of q (in Q). 
Now we must get rid of the factor r in (7.3). To this end we shall prove the 

following. 
Suppose that 0 £ Q. Then 

(7.4) zE(Q) is dense in E(Q). 

Suppose (7.4) is proven. Then, for each linear factor rk in r, rkE(Q) will b.e dense 
in E{Cl). It is easy to see that this implies that rE(£l) = r, • • • rJ£(Q) is dense in 
E(Q) (d = the degree of r) and also, e.g. using that ED(Q) = qE(£l), that rED(Q) is 
dense in ED(£l). Therefore (7.4) implies that 

I f\dz\=0 fora l l / e£ f l ( I2 ) , 

which is the desired conclusion. 
It remains to prove (7.4). Let Ku ..., Km be the components of P \ Q , with 

Q<EKU say, and put Q, = P\Kj. L e t / e £ ( Q ) = E2(Q) (Q C C) be the function to 
be approximated by functions in zE(il). By the decomposition theorem (1.2) we 
may write 

(7.5) f=f1+...+fm 

where fjE.E2(Qj). This time we however do not choose fj as in (1.3), but rather 

(7.6) fj{z) = ^-. [/(*)(— ~)dw (z<EQj), 
2m J \w — z wl 

an, 

so that fj(0) = 0 for; = 2 , . . . , m. 
Since fj(0) = 0{j ^ 2) we can write (7.5) as 

(7.7) f(z) = fl(z) + z(g2(z)+ ••• +gm(z)) (zEf l ) 



88 B. GUSTAFSSON 

where gj(z) = fj(z)/z (j > 2). It is clear that gjE£2(Q,) C E2(Cl) since fjEE\Q.j) 
and 1/z is bounded outside a neighbourhood of z = 0. Hence the second term in 
(7.7) belongs to zE\Sl). 

Thus it only remains to prove that/j EZs^Q,) in (7.7) can be approximated, in 
the £'2(Q)-norm, by functions in z£'2(Q). What we shall do is to prove the stronger 
statement that f{ can be approximated in the £ 2(Q 1)-norm by functions in 
z£' 2. ( o o )(Q 1). Observe that the restriction operator E2(£lx)-~ E\£l) is well-defined 
and continuous, due to the fact that df2\dft, is rectifiable and compact in Q,, so 
the latter approximation is really stronger. More precisely, we shall prove that 

(7.8) z£, 2 . ( x ) (fl ,) is dense in £ 2 (Q,). 

Let <p: D — fl, be a conformal map. We first consider the case that oo £ Q,. Then <p 
is holomorphic and bounded in D and tp'EH1 (since 1 Eis^Q,); see Lemma 1.2). 
It follows that the m a p / h* ( / ° cp)\/q>' is an isometric isomorphism from E2{Q.X) 
onto H2. The statement (7.8) to be proved now takes the form: <pH2 is dense in H2. 
But this is well-known to be true because every univalent functions in D without 
zeroes (such as q>) is an outer function ([5, Thm 3.17] e.g.) and then even the 
polynomial multiples of q> are dense in H2. 

Now suppose that ooEfi, . Then <p has a pole, which we may take to be at the 
origin (<p(Q) = oo). By (a)(iii) in Section 1 we now get an isometric isomorphism 
fr—(fo cp)V'<p' from £ , , 2 . ( x )(Q 1) onto H2. This isomorphism also maps E\0.X) 
(isometrically) onto 

Thus (7.8) takes the form: tpH2 is dense in Hil<Q), or, equivalently, z(p{z)H2 is 
dense in z • Hi, .(0) = H2. 

Thus it is enough to prove that z(p(z) is an outer function in H2 (observe 
that zcp(z) is holomorphic and even bounded in D so that really z<p(z)EH2). 
But now l/<p(z) is univalent and holomorphic in D. Hence, by [5, Thm 3.16-17] 
\/(pEH" for all p < \ and \lq> has no singular inner factor. Therefore the inner 
factor of \l<p(z) is just z, so that l/z^>(z) is an outer function (in H", p < i). But 
this implies that also z<p(z) is an outer function (in H2 e.g.). This completes the 
proof of (iii)=»(i). • 
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