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Abstract

Starting from a Lagrangian action functional for two scalar fields
we construct, by variational methods, the Laplacian Green function
for a bounded domain and an appropriate stress tensor. By a further
variation, imposed by a given vector field, we arrive at an interior
version of the Hadamard variational formula, previously considered
by P. Garabedian. It gives the variation of the Green function in terms
of a pairing between the stress tensor and a strain tensor in the inte-
rior of the domain, this contrasting the classical Hadamard formula
which is expressed as a pure boundary variation.
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Figure 0.1: Harold S. Shapiro with some friends (colleagues and visitors)
at the mathematical department of KTH, probably in April 2012. From
left: Ahmed Sebbar, Björn Gustafsson, Håkan Hedenmalm, Jan-Erik Björk,
Harold S. Shapiro. Photo taken by Henrik Shahgholian (in his office).

In memoriam: We believe that this paper is much in spirit of the interests
and work of Harold S. Shapiro. In fact, during his long carrier at KTH,
Harold S. Shapiro gave several doctoral courses, and also gave topics for
doctoral theses, inspired by that book of P. Garabedian out of which this
paper grew.
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1 Introduction

The Hadamard variational formula expresses how the Green function for
a domain changes under an infinitesimal variation of the boundary of the
domain. It is usually formulated in terms of a boundary integral, like in
(2.2) below. However, in his book [2], Paul Garabedian formulated the
principle instead in terms of an area integral (in two dimensions) con-
taining a generalization of the (Maxwell) stress tensor, a kind of energy-
momentum tensor for the electromagnetic field (see [3]). The present pa-
per grew out from attempts to understand Garabedian’s point of view
from a more general perspective.

We elaborate the subject in a setting of subdomains of a Riemannian
manifold of arbitrary dimension using tools of differential geometry and
tensor analysis. The main result of the paper, Theorem 6.1, expresses the
Hadamard principle in terms of a bulk integral containing a stress tensor
and a strain tensor. The Green function takes the role of being a physical
scalar field (or potential), and it is the main ingredient in a Lagrangian
action functional representing a polarized energy. In addition, the Green
function turns out to coincide (except for a sign) with the value of the
action at extremum. The stress tensor is obtained by varying the action
with respect to the underlying Riemannian metric, while the strain tensor
represents the information of how an imposed vector field deforms the
domain.

2 Hadamard formula in Euclidean setting

The (Laplacian) Green function Ga for a (bounded) domain Ω ⊂ Rn is
defined by the properties

−∆Ga = δa in Ω,

Ga = 0 on ∂Ω.

Writing G(x, a) = Ga(x), G(x, a) is symmetric with respect to x and a. This
is most clearly seen by using standard Green’s formulas to express the
Green function as a mutual energy:

G(a, b) =

∫
Ω

(∇Ga · ∇Gb) dx. (2.1)
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The Green function certainly depends on the domain, G = GΩ, and
Hadamard’s classical formula [2] expresses how GΩ(x, a) changes under
small variations of the boundary of this domain. In traditional notations it
reads

δG(a, b) =

∫
∂Ω

∂G(·, a)

∂n

∂G(·, b)
∂n

δn dσ, (2.2)

where δn represents an infinitesimal deformation of ∂Ω in the outward
normal direction. To express this more accurately one may divide by an
infinitesimal time interval δt so that vn = δn/δt represents the velocity of
the boundary in normal direction under an evolution Ω(t) with respect to
t. Then the formula becomes

d

dt
GΩ(t)(a, b) =

∫
∂Ω

∂G(·, a)

∂n

∂G(·, b)
∂n

vn dσ. (2.3)

For the derivation of (2.3) it is useful to think of vn as the normal com-
ponent of a vector field v which is defined everywhere, and then let all of
Ω ∪ ∂Ω move with v. In particular the boundary points move, and since
we shall not keep track of individual points on the boundary the effective
meaning simply becomes that the speed of the boundary ∂Ω in the normal
direction equals the normal component vn = v · n of v on ∂Ω.

Thus the tangential component of v on ∂Ω is insignificant for (2.3). The
same is true for the interior points of Ω: the restriction of v to Ω never
enters the formula. This is exactly what marks the difference between the
formula (2.3) and the formula given in [2]. The latter formula is based on
the strain on the points in Ω caused by v. This strain makes up a strain ten-
sor Dij , and together with a certain stress tensor T ij the variational formula
becomes

d

dt
GΩ(t)(a, b) =

∫
Ω

T ijDij dx+ source terms.

See more precisely Theorem 6.1 below. Garabedian’s formula appears as
equation (15.20) in [2], and the stress tensor there is also given in our Ex-
ample 3.1.

3 Several variations of an action functional

We shall put the variational formula (2.2) in a context of field theory, where
we vary a Lagrangian action functional with respect to all fields involved.
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The action is
S =

∫
Ω

∇ψa · ∇ψb − ψa(b)− ψb(a), (3.1)

a polarized energy for two real-valued scalar fields and provided with
source terms (point sources at a and b). The fields are to vanish on the
boundary:

ψa = ψb = 0 on ∂Ω.

Variation of S with respect to ψa, ψb and requiring it to be stationary to
the first order (i.e. setting δS = 0 in traditional notation) gives

−∆ψa = δa, −∆ψb = δb, (3.2)

hence that ψa, ψb are actually the Green functions at a and b:

ψa = Ga = G(·, a), ψb = Gb = G(·, b). (3.3)

From this, together with (2.1), we see that “on-shell” (i.e. with (3.3) in-
serted) the action equals the Green function itself, modulo a sign:

S = G(a, b)−G(b, a)−G(a, b) = −G(a, b). (3.4)

This is a negative number, which is natural since setting δS = 0 should
mean that the action is minimized. Notice that ψa = ψb = 0 are allowed
test functions.

In relativistic field theory one often introduces energy-momentum ten-
sors by varying an action with respect to the underlying Minkowskian
metric. In our case there is no time variable present, and it is more appro-
priate to speak of just a stress tensor (or possibly stress-energy tensor), and
this can then be introduced on an abstract basis by varying the underlying
Riemannian metric. So far we have not seen any metric, but the Euclidean
metric ds2 = dx2

1 + · · ·+ dx2
n actually is there, implicit in the scalar product

and the nabla operator. When varying this Euclidean metric we get more
general Riemannian metrics. Therefore it is natural that we, from outset,
let Ω be a subdomain of a Riemannian manifold M .

We shall need notations from differential geometry, in particular those
of tensor analysis and differential forms. We shall then write coordinates
with upper indices, like x1, . . . , xn, and we write the metric as

ds2 = gij(x)dxi ⊗ dxj,
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with (gij) symmetric and positive definite at each point. Summation over
repeated indices (when one is up, the other down) is implied.

In this setting the action functional (3.1) becomes

S =

∫
Ω

∂ψa

∂xi
∂ψb

∂xj
gij
√
g dx− ψa(b)− ψb(a). (3.5)

In (3.5) we have also used the metric tensor with upper indices. By defini-
tion, (gij) represents the inverse of (gij) when these tensors are viewed as
a matrices:

gijg
jk = gki =

{
1 (i = k),

0 (i 6= k).
(3.6)

Moreover, g = det(gij) denotes the determinant of (gij), and

dx = dx1 ∧ · · · ∧ dxn.

This n-form depends on the choice of coordinates, while there is an invari-
ant version, namely the volume form given by

voln =
√
g dx.

The manifold is assumed to be oriented, and of course we choose
√
g > 0.

If we want to spell out all dependencies for S we may write

S = S[ψa, ψb; (gij); Ω]. (3.7)

We have already varied S with respect to ψa and ψb, this was elementary in
the Euclidean setting and it extends directly to the Riemannian case. See
(4.2) and thereafter for some details and coordinate expressions.

The variation with respect to (gij) is also standard, but for the sake
of completeness we shall give the details. In fact, this is what makes the
stress tensor pop up. When varying S with respect to (gij) it is convenient
to think of (gij) as depending on a real parameter, say t, and write gij =
gij(t). We shall only make variations which keep (gij) symmetric. Thus,
on denoting t-derivatives by a dot whenever convenient we have ġij = ġji.

Now d
dt

(gijg
jk) = 0, hence ġijgjk + gij ġ

jk = 0. Therefore,

ġk` = −gkiġijgj`, ġij = −gikġk`g`j. (3.8)
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In general, if A is an n × n matrix, assumed here to be symmetric with
positive eigenvalues (just for simplicity), then

d

dt
(detA) =

d

dt
(elog detA) = elog detA · d

dt
(log detA) =

= detM · d
dt

(tr logA) = detA · tr d
dt

(logA) = detA · tr(A−1Ȧ).

With A = (gij), g = det(gij) this gives

ġ = ggij ġij.

It also follows that
d

dt

√
g =

ġ

2
√
g

=
1

2

√
ggij ġij. (3.9)

Starting from (3.5) and using (3.8), (3.9) we now have

d

dt
S[ψa, ψb; (gij(t)); Ω] =

d

dt

∫
Ω

∂ψa

∂xk
∂ψb

∂x`
gk`
√
g dx =

=

∫
Ω

(
− ∂ψa

∂xk
∂ψb

∂x`
gkiġijg

j`
)√

g dx+
1

2

∫
Ω

∂ψa

∂xk
∂ψb

∂x`
gk`
√
ggij ġij dx =

=
1

2

∫
Ω

(
− ∂ψa

∂xk
∂ψb

∂x`
gkigj` − ∂ψa

∂xk
∂ψb

∂x`
gkjgi` +

∂ψa

∂xk
∂ψb

∂x`
gk`gij

)
ġij
√
g dx =

= −1

2

∫
Ω

T ij ġij
√
g dx.

Here we have defined the stress tensor in contravariant form (upper in-
dices) as that tensor T ij ∂

∂xi ⊗ ∂
∂xj which has components

T ij =
∂ψa

∂xk
∂ψb

∂x`
gkigj` +

∂ψa

∂xk
∂ψb

∂x`
gkjgi` − ∂ψa

∂xk
∂ψb

∂x`
gk`gij. (3.10)

In covariant form (lowered indices) it is the tensor Tijdxi ⊗ dxj with

Tij =
∂ψa

∂xi
∂ψb

∂xj
+
∂ψa

∂xj
∂ψb

∂xi
− ∂ψa

∂xk
∂ψb

∂x`
gk`gij. (3.11)
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Example 3.1. When n = 2 and gij = δij we get, on setting ψa = Ga, ψb = Gb,
x = x1, y = x2,

(
T11 T12

T21 T22

)
=


∂Ga

∂x

∂Gb

∂x
− ∂Ga

∂y

∂Gb

∂y

∂Ga

∂x

∂Gb

∂y
+
∂Ga

∂y

∂Gb

∂x

∂Ga

∂x

∂Gb

∂y
+
∂Ga

∂y

∂Gb

∂x

∂Ga

∂y

∂Gb

∂y
− ∂Ga

∂x

∂Gb

∂x

 .

This is exactly the expression given in Garabedian [2].

4 Classical Hadamard by Lie derivatives

The final step now is to vary the action (3.5), (3.7) with respect to the do-
main Ω, and so obtain the Hadamard formula. This step becomes more
elegant when expressed in the language of differential forms.

We let the smoothly bounded domain Ω = Ω(t) ⊂ M move in the flow
of a vector field v =

∑n
j=1 v

j ∂
∂xj , and denote by Lv the Lie derivative, and

by i(v) interior derivation (“contraction”), with respect to v. See in general
Frankel [1] for differential geometric concepts and notations.

In terms of differential forms the representation (2.1) of the Green func-
tion becomes

G(a, b) =

∫
Ω

dG(·, a) ∧ ∗dG(·, b), (4.1)

the star being the Hodge star operator. When acting on a one-form ν =
vjdx

j , the Hodge star is related to interior derivation with the correspond-
ing vector field v = vk ∂

∂xk by ∗ν = i(v)voln. This makes the n-form

d ∗ ν = (
√
g vk),k dx = vk;k

√
g dx = (div v)voln (4.2)

have the role of being the “divergence” of ν. Above we have used some
standard tensor analysis notations, like

vk,j =
∂vk

∂xj
, vk;j = vk,j + Γk

j`v
`

for ordinary and covariant derivatives (respectively), with

Γk
j` =

1

2
gki(g`i,j + gij,` − gj`,i)
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denoting the “Christoffel symbols” (connection coefficients). Implicit in
(4.2) is the crucial identity (vk

√
g),k = vk;k

√
g. For the Laplacian of a func-

tion φ we have, similarly,

d ∗ dφ =
∂

∂xk
(
√
g gkj

∂φ

∂xj
)dx = φ;kjg

kj√g dx = ∆φ voln.

We remark also that voln = ∗1.
Now the action functional becomes

S =

∫
Ω

dψa ∧ ∗dψb − ψa(b)− ψb(a). (4.3)

Here the Riemannian metric is not visible, but it is built into the Hodge
operator. Varying S in (4.3) with respect to ψa (for example) gives, by
partial integration, that

−d ∗ dψb = εb,

where εb denotes the Dirac measure at b regarded as a n-form current. The
relation to δb as a Dirac “function” (or distribution) is

εb = δb voln = δb
√
g dx.

In view of (3.4) it is a matter of taste whether one performs the variation
with respect to Ω in the equation (4.1) for G(a, b) or in the expression (4.3)
for S, but it is slightly more elegant and general to work directly with (4.3)
as far as possible. To simplify notation we set

α = αjdx
j = dψa, β = βjdx

j = dψb, Φ = αkβ
k. (4.4)

Thus αj = ∂ψa/∂x
j , βj = ∂ψb/∂x

j . Clearly dα = dβ = 0 in Ω, and ψa, ψb

being constant (zero) on the boundary give that α = β = 0 along ∂Ω.
Let

dσ = voln−1 = i(n)voln

denote the surface area element on ∂Ω when this is regarded as a manifold
in itself, and where n denotes the outward unit normal vector on ∂Ω. We
then interprete

i(v)α =
∂ψa

∂n
vn on ∂Ω,

∗β =
∂ψb

∂n
dσ along ∂Ω.
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Two basic properties of the Lie derivative are the “homotopy” formula

Lv = d ◦ i(v) + i(v) ◦ d

(when acting on differential forms) and the fact that for a domain Ω(t) (or
chain of integration of any sort) moving in the flow of v,

d

dt

∫
Ω(t)

(. . . ) =

∫
Ω(t)

Lv(. . . ).

In the notations (4.4) the action S takes the form

S =

∫
Ω

α ∧ ∗β − ψa(b)− ψb(a) =

∫
Ω

Φ voln − ψa(b)− ψb(a).

From this it follows that

dS

dt
=

∫
Ω

Lv(α ∧ ∗β) =

∫
Ω

(d ◦ i(v) + i(v) ◦ d)(α ∧ ∗β) =

=

∫
Ω

d(i(v)(α ∧ ∗β)) + 0 =

∫
∂Ω

i(v)(α ∧ ∗β) =

=

∫
∂Ω

(i(v)α) ∧ ∗β −
∫
∂Ω

α ∧ i(v)(β) =

∫
∂Ω

∂ψa

∂n

∂ψb

∂n
vndσ − 0.

This result can be rewritten as

d

dt

∫
Ω(t)

dψa ∧ ∗dψb =

∫
∂Ω

∂ψa

∂n

∂ψb

∂n
vndσ.

We never used that ψa, ψb eventually are to be the Green functions of Ω,
but inserting finally (3.3) and using (4.1) gives the Hadamard formula in
its classical form (2.3).

5 Divergence of stress tensor

In terms of α, β, Φ in (4.4) the covariant version (3.11) of the stress tensor
can be written

Tij = αiβj + αjβi − gijαkβ
k = αiβj + αjβi − Φ gij. (5.1)
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The trace of T is
trT = Tijg

ij = (2− n)Φ, (5.2)

and the Green function becomes, with (3.3) in force,

G(a, b) =

∫
Ω

α ∧ ∗β =

∫
Ω

Φ voln. (5.3)

The contravariant version (3.10) of the stress tensor has components

T ij = Trs g
rigsj = αiβj + αjβi − Φ gij. (5.4)

The divergence of this tensor is obtained by contracting the second index
with the covariant derivative:

div T = T ij
;j

∂

∂xi
.

Using the fact that all covariant derivatives of the metric tensor vanish and
that, by (4.4), αi;j = αj;i, βi;j = βj;i we have

T ij
;j = αi

;jβ
j + αiβj

;j + αj
;jβ

i + αjβi
;j − Φ;j g

ij = αiβj
;j + βiαj

;j . (5.5)

When ψa = Ga, ψb = Gb, so that αj
;j = ∆ψa = −δa, βj

;j = ∆ψb = −δb,
equation (5.5) becomes

T ij
;j = −αiδb − βiδa. (5.6)

The right member in (5.6) can be interpreted as a source concentrated at
the points a and b. More precisely, it is a vector field with distributional
coefficients (a vector current) composed by the isolated vector −∇Ga sit-
ting (like a point charge) at the point b and the vector −∇Gb sitting at a. In
summary we have

Lemma 5.1. When ψa = Ga, ψb = Gb the divergence of the stress tensor vanishes
except for the two point source field given in (5.6). Expressed in vector notation:

div T = −(∇Ga) δb − (∇Gb) δa. (5.7)
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6 Hadamard in terms of stress and strain tensors

In the final computation in Section 4 we had an integral over Ω involving
a Lie derivative, and this integral was pushed to the boundary. But there
is also the possibility not to go to the boundary. Then also the vector field
v becomes differentiated, and one may arrange matters so that the deriva-
tives of v appear only in a certain strain tensor D. This is to be paired with
the stress tensor T discussed in Sections 3 and 5.

The stress and strain tensors are the main actors in linear elasticity
theory, where the basic result, Hooke’s law (first formulated in 1678), ex-
presses that the stress and strain tensors are proportional (more exactly,
linearly related) to each other for an elastic material (see in general [4]).

Given a vector field v, thought of as representing an infinitesimal de-
formation of some material, the corresponding strain tensor D is the sym-
metric covariant tensor defined by

2D = 2Dij(x) dxi ⊗ dxj = Lv(gijdx
i ⊗ dxj). (6.1)

The components of D are given by

2Dij = gikv
k
;j + gkjv

k
;i = vi;j + vj;i.

Using this we can now formulate the following generalization of equation
(15.20) in [2].

Theorem 6.1. The variation of the Green function GΩ(a, b) due to a deformation
of Ω ⊂ M driven by a smooth vector field v is, in terms of the stress tensor
T = T (a, b) and the strain tensor D = D(v), given by

d

dt
GΩ(t)(a, b) =

∫
Ω

T ijDij voln − v(Ga)(b)− v(Gb)(a). (6.2)

In the right member v = vj ∂
∂xj is regarded as a derivation (directional derivative).

Proof. Using (5.3) and (4.2) (essentially) we first have

d

dt
GΩ(t)(a, b) =

∫
Ω

Lv(α ∧ ∗β) =

∫
Ω

Lv(Φ voln) =

=

∫
Ω

d(i(v)Φ voln) =

∫
Ω

d(i(Φv) voln) =

∫
Ω

(Φ vj);j voln. (6.3)
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The next step is to show that∫
Ω

(Φ vj);j voln =

∫
Ω

(T ijvi);j voln. (6.4)

This will be achieved by pushing the difference between the two members
to the boundary, after which cancellations will make it disappear.

Let n denote the outward unit normal vector on ∂Ω and let njdx
j be the

corresponding one-form. It may be realized as njdx
j = du for a function

u which is defined near ∂Ω, vanishes on ∂Ω, and increases away from Ω
with |∇u| = 1 on ∂Ω. (One may take u = −Ga/|∇Ga|, for example.) Then
inserting (4.4), (5.4) and using Stokes’ formula we have∫

Ω

(T ij vi);j voln −
∫

Ω

(Φ vj);j voln =

=

∫
Ω

(
(αiβj + αjβi − αkβ

kgij − αkβkg
ij) vi

)
;j

voln =

=

∫
Ω

(
(αiβj − αkβ

kgij)vi + (αjβi − αkβkg
ij) vi

)
;j

voln =

=

∫
∂Ω

(
(αiβj − αkβ

kgij)vi + (αjβi − αkβkg
ij) vi

)
njdσ =

=

∫
∂Ω

βj(αinj − αjni) v
idσ +

∫
∂Ω

αj(βinj − βjni) v
idσ = 0.

In the last step we used that, along the boundary ∂Ω,

αidx
i = βidx

i = nidx
i = 0,

hence that the covectors with components αi, βi, ni are proportional at
each point of ∂Ω. From this it follows that

αinj = αjni, βinj = βjni for all i, j.

Thus (6.4) is now established.
Finally, using the symmetries of T and D together with (5.6), (5.7) we

can continue the right member of (6.4) by∫
Ω

(T ijvi);j voln =

∫
Ω

(T ij
;j vi + T ijvi;j) voln =

13



=

∫
Ω

(−αiδb − βiδa)vi voln +

∫
Ω

T ijDij voln =

= −v(Ga)(b)− v(Gb)(a) +

∫
Ω

T ijDij voln.

Combing this with (6.3), (6.4) completes the proof.
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