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is the orthogonal projection onto the closed convex set K = {v € H-*(B) :
v < 1}. Thus v = F(x) minimizes ||z — v||* = (the energy of x — v) under the
constraint v < 1(u,v € H~1(B)). Expressed in another way

(1) F(p) = p+ Au
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where u € Hj(B) is the solution of the variational inequality (in complemen-
tarity form)

(2) p+ Au <,
(3) u>0

(4) <1l—p—Au,u>=0.

(< -,- > denotes the dual pairing between H~1(B) and H}(B).) B is supposed
to be so large that 4 and F(u) (and hence u) have compact support in B, and
then F() does not depend on B. When acting on measures F can be regarded
as a kind of balayage operator (cf. (9)). The definition of F easily extends to
arbitrary measures of compact support.

Under mild assumptions on g F(p) has the form

(5) F(u) =xa + HXB\Q

where = (the largest open set in which F(u) = 1).




Typically, Q simply coincides with the non-coincidence set {u > 0} for (2), (3),

(4)-

If 4 > 0 and satisfies suitable additional conditions, e.g. tha.t ¢ (as a measure)
is singl:lar with respect to Lebesgue measure or that there exxsts. an open Aset D
such that g > 1 on D, = 0 outside D, then the second term in (5) drops off

and one simply has
(6) F(p) = xo-

The situation (6) occurs in a number of free (and moving) boundz}ry pr9blems.
One example is the Hele-Shaw flow moving boundary problem in .wh1ch one
starts with an initial domain (blob of fluid) o and asks for the (increasing)

family of domains {Q(¢) : t > 0} satisfying
@ 0) = Qo;
(™) (i1) 00(t) moves with velocity — (Vp) o

where, for each ¢, p = p(z,t) denotes the solution of

—Ap =f in Q(t)
{ p =0 on o0(t).

Here f(z,t) > 0 is a (given) source term with supp f(-,t) C o for e.ach £
It is well-known that problem (7) always has a unique (weak) solution {Q(%) :
t > 0}, and this is given by

(8) F(u(t) = xa

where

u(t) = xa, + At f(-y7)dr.

Another application of F is to so-called quadrature domains: if (6) holds then
(roughly, and if p is a measure)

® e [

for all integrable harmonic functions ¢ in 2 and one says that  is a quadra-
ture domain for p with respect to harmonic functions. (Actually (9) holds,

with = replaced by <, for all integrable subharmonic .) The term equipoten-
tial domain could also have been used because (9) essentially means that the
Newtonian potentials of 2 and p coincide outside §, if Q is regarded as a body
of density one.

2. Main results.
THEOREM 1. Suppose p > 0 and supp p C D where D is an open halfspace,
sayD={ze€RVN :zy < 0}. Then

F(u)lpe = xa

where § is an open set of the form
Q={(z",zn) €ERY : 2’ € w,0 <z <g(z")}
for some open w C RV-! and some real analytic g : w — R. (D¢ =RN\D.)

SKETCH OF PROOF.: Referring to (1)~(4), let & denote the reflection of u in
the hypersurface zy = 0, i.e.

u(z',zn) = u(z', —zN)

and define

{ inf(u, o) in De
v =
u on D.

Clearly v > 0 everywhere and it is easy to check that Av <1 — g (and that
v € Hj(B)). From this it follows that

(10) u<v

because it is well-known that the solution v of (2), (3), (4) is the smallest of all
functions satisfying (2), (3) alone.

(10) shows that « < @ in D¢ and this gives that

Ou

<
e 0 oD.

Now the maximum principle can be applied to Ou/0zy in {u > 0} N D¢ and one

obtains that du/dzxy < 0 in all D°. From this the statements of the theorem

follows easily (for the regularity part one has to apply the regularity theory of
Caffarelli and others.) O




Applying Theorem 1 to all half-spaces containing supp p gives

COROLLARY 1. Suppose p > 0 and let K denote the closed convex hull of
supp u. Then the restriction of F(u) to K¢ is of the form xq where € is an open
set with 8Q\K consisting of real analytic hypersurfaces (without singularities).

Moreover (2 U K)° is connected.

A particularly nice and concrete consequence of Theorem 1 is the following.

COROLLARY 2. With assumptions and notations as in Corollary 1, for any
¢ € OQ\K the normal of 0Q at z intersects K. If N = 2 and supp y is
connected the normal even has to intersect supp p itself.
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Finally we state without proof another result about F', which to a part can

be viewed as a generalization of Theorem 1.
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THEOI'{EM 2. Suppos;_e_u > 0 and let D be an open set with smooth bound
and with supp u C D. Then there exists a v € H-Y(B) with v > 0 :;(}i,
Clearly (by (8)) Corollary 2 says a lot about the geometry of the solution () k PPy oD ek that _
of the Hele-Shaw problem (7). By reversion of the time variable ¢ one also gets : Fp) ' =F) , )
interesting information for the corresponding suction problem, 1.e. the problem ’ "

(7) with f < 0. In fact, if f <0 and Q(t) solves (7) one has

, t
F{ xaq _/ FC,m)dT ) = xq, (t > 0). ~: Bj6érn Gustafsson Makoto Sakai
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all t under consideration.) Swed
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Theorem 1 and Corollary 2 then show that the shaded areas in the figures " Tokyo, 192-03

below never can be completely emptied by Q(t). Japan




